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Abstract The Markowitz Mean Variance model (MMV) and its variants are widely
used for portfolio selection. The mean and covariance matrix used in the model orig-
inate from probability distributions that need to be determined empirically. It is well
known that these parameters are notoriously difficult to estimate. In addition, the
model is very sensitive to these parameter estimates. As a result, the performance and
composition of MMV portfolios can vary significantly with the specification of the
mean and covariance matrix. In order to address this issue we propose a one-period
mean-variance model, where the mean and covariance matrix are only assumed to
belong to an exogenously specified uncertainty set. The robust mean-variance portfo-
lio selection problem is then written as a conic program that can be solved efficiently
with standard solvers. Both second order cone program (SOCP) and semidefinite pro-
gram (SDP) formulations are discussed. Using numerical experiments with real data
we show that the portfolios generated by the proposed robust mean-variance model
can be computed efficiently and are not as sensitive to input errors as the classical
MMV’s portfolios.

Keywords Mean variance optimization · Robust optimization · Conic programming

1 Introduction

The mean-variance model proposed by Markowitz [8], lies at the core of modern
portfolio theory. The model is known to be sensitive to its two main input parame-
ters: the mean and covariance of the returns. The sensitivity of the Markowitz Mean
Variance model (MMV) has been investigated and found to be significant in Broadie
[2], as well as in Kuhn et al. [6]. In order to address the sensitivity of the model to its
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input parameters it is natural to formulate the original model as a robust optimization
problem. The portfolios obtained using robust optimization remain reliable, possibly
at the cost of performance, even when the estimates of the input parameters are incor-
rect. The robust optimization approach has been investigated by Rustem et al. [10] for
discrete sets of rival risk and return scenarios, and by Rustem and Howe [11] using
a range, or box, uncertainty set for continuous return scenarios. Tütüncü and Koenig
in [14] assume componentwise uncertainty sets over the mean return vector and the
covariance matrix. They formulate robust portfolio selection as a saddle-point prob-
lem that involves semidefinite constraints. Goldfarb and Iyengar [5] develop a robust
factor model for the asset returns and cast robust portfolio selection as a SOCP prob-
lem that can be solved efficiently. Additionally, El Ghaoui et al. [4] propose a robust
approach to the portfolio selection problem using worst-case Value-at-Risk (VaR).

One shortcoming of the work cited above is that the authors consider separate un-
certainty sets for the expected return vector x̂ and for the covariance matrix �. As a
result, the probability measure with the minimized mean is different from the proba-
bility measure with the maximized second moment. In other words, they assume that
the uncertainty sets of expected returns and the covariance matrix are independent. In
general, this is not the case. In order to address this problem we propose a modeling
framework to capture the uncertainty over model parameters in a consistent manner.
Having two uncertainty sets may lead to a worse than worst-case situation and poten-
tially over-conservative results. In practice, the return distribution is not Gaussian and
this is a further motivation for adopting a robust approach. Rustem and Howe [11] as
well as Ceria and Stubbs [3] propose a robust portfolio model with an uncertainty re-
gion over the expected returns. They assume that the covariance matrix of the returns
are known exactly, or that the uncertainty over the covariance matrix is specified in
terms of a finite number of discrete scenarios (Rustem and Howe [11]).

We propose a robust portfolio optimization and selection model using a conic pro-
gramming approach that can be applied to the mean-variance framework in general.
We introduce uncertainty sets for the mean and the second moment of returns. The
uncertainty sets in the literature cited above are either polytopes or ellipsoids. In this
paper, we consider an ellipsoidal uncertainty set on the second moment matrix of re-
turns and componentwise bounds on the mean vector of returns. What differentiates
this work from others is that we do not have an uncertainty set over the covariance
matrix directly, but two uncertainty sets over the mean vector and the second moment
matrix of returns simultaneously under a single probability measure. A salient fea-
ture of this distinction is that the mean and the covariance of the returns are defined in
a consistent manner. Furthermore, we do not assume any specific distributions over
returns, but we do assume that the uncertainty sets of the first two moments of the
returns are known.

2 Robust portfolio optimization

In this section we progressively construct the proposed robust portfolio selection
model. After we introduce some notation in Sect. 2.1, we will then consider the
robust portfolio optimization model with an uncertainty region over the expected
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returns only (Sect. 2.2). This is essentially the same model as in Ceria and Stubbs
[3], but serves as a convenient starting point for the model proposed in this paper.
In Sect. 2.3.1, we introduce a robust portfolio selection model that considers an un-
certainty region over the second moment matrix of returns, assuming the expected
returns are known. In Sect. 2.3.2, we extend this model by introducing separate un-
certainty sets over the expected returns and the second moment matrix of returns.
Numerical results are presented in Sect. 3.

2.1 Notation and conventions

We use x ∈ R
n to represent one period returns. For a symmetric matrix A, we use the

notation A � 0 in order to denote that A is positive semidefinite. We use,

S = {x ∈ R
n|θ(x) = xT Pix + 2qix + ri ≥ 0, i = 1, . . . ,m},

to denote the support of the probability distribution of returns. For some probability
measure μ,

∫
S

xdμ = x̂ = [
x̂1 . . . x̂n

]T ∫
S

xxT dμ = �,

denote the first moment (mean) and second moment of returns, respectively. The co-
variance matrix is given by

� = � − x̂x̂T , � � 0.

The full second moment matrix is given by

�̂ =
∫

S

[
x

1

][
x

1

]T

dμ

=
[

� x̂

x̂T 1

]
. (1)

We assume that �̂ � 0. It follows from the Schur complement that � = � − x̂x̂T � 0.
It can be seen that the constraint that defines the set S can also be described by,

M0(θ) =
∫

S

[
x

1

]T [
Pi qi

qT
i ri

][
x

1

]
dμ

=
〈
�̂,

[
Pi qi

qT
i ri

]〉

= 〈�,Pi〉 + 2qT
i x̂ + ri ≥ 0, i = 1, . . . ,m.

Here 〈A,B〉 = Tr(AB) denotes the standard scalar product for the symmetric ma-
trices A,B . M0(θ), a notation borrowed from Lasserre [7], represents the set S in
terms of the full second moment matrix. Note that M0(θ) is a special case of the so-
called localizing matrix described in Lasserre [7]. Following Putinar [9] the positive
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semi-definiteness of the moment and localizing matrices are necessary and sufficient
conditions for the elements of �̂ to be the moments of some measure μ supported
on S. This result will be directly applied in this paper and we refer interested read-
ers to Lasserre [7] and Putinar [9]. In addition, we introduce the quadratic matrix
variable denoted by,

X̄ =
[
x̂x̂T x̂

x̂T 1

]
. (2)

The term “quadratic matrix variable” reflects the fact that the matrix X̄ has entries
that are quadratic in x̂. We use the term portfolio quadratic matrix variable to refer
to the following,

Ŵ =
[
wwT w

wT 1

]
. (3)

Here w ∈ W are the weights of a portfolio.

Remark 1 In SDP models the matrix variable is linear in its entries. It can be seen
from the positive semidefinite constraint below,

[
X x

x 1

]
� 0, (4)

that X − xxT � 0. Therefore, X̄ and Ŵ are in general not valid SDP underlying vari-
ables. However, according to an interesting result given in Boyd and Vandenberghe
[1], the quadratic programming problem defined below,

min
x

〈A0,X〉 + 2bT
0 x + c0

s.t. 〈A1,X〉 + 2bT
1 x + c1 ≤ 0

X = xxT ,

can be formulated as the following SDP problem:

min
X,x

〈A0,X〉 + 2bT
0 x + c0

s.t. 〈A1,X〉 + 2bT
1 x + c1 ≤ 0[

X x

x 1

]
� 0.

Here both Ai , i = 0,1 are symmetric matrices, bi ∈ R
n, ci ∈ R. The result follows

from the fact that both problems have the same dual. This result is valid when ma-
trices Ai are positive semidefinite or negative semidefinite. The proof employs the
so-called S-procedure and is discussed in Boyd and Vandenberghe [1]. In this paper
we will only encounter the convex case, which means Ai � 0. We assume that Slater’s
constraint qualification is satisfied therefore strong duality holds.
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2.2 Robustness to first moment estimation errors

We consider the similarities between the MMV model and the approach of Ceria and
Stubbs [3] that aims to establish the robustness of the portfolio to uncertainties in
the expected returns. The MMV model can be formulated as the following quadratic
programming problem (QP).

max
w∈Rn

x̂T w − λwT �w

s.t. w ∈ W̄ ,

where x̂ is the vector of estimated expected returns, the matrix � is an estimate of
the covariance of the returns, W̄ represents a convex set of feasible portfolios (e.g.
W̄ = {w ∈ R

n|∑n
i=1 wi = 1, w ≥ 0}) and λ ≥ 0 is the relative importance associated

with risk, as represented by the portfolio variance. We note that λ ≥ 0 can also be
interpreted as the Lagrange multiplier associated with the portfolio risk constraint in
maxw∈Rn{x̂T w | wT �w ≤ υ; w ∈ W̄ } for some given value of υ . Ceria and Stubbs
[3] consider the worst case scenario on the expected returns by assuming that the
vector of true expected returns x̂t is normally distributed and lies in the confidence
region represented by the ellipsoid,

(x̂e − x̂t )
T �−1

e (x̂e − x̂t ) ≤ k2, (5)

generated by estimated expected returns x̂e and a covariance matrix �e of the esti-
mates of expected returns with probability η. Where k2 = χ2

n(1 − η) and χ2
n is the

inverse cumulative distribution function of the chi-squared distribution with n degrees
of freedom. For a fixed portfolio (ŵ) the worst case returns are given by,

max
x̂e−x̂t

(x̂e − x̂t )
T ŵ

s.t. (x̂e − x̂t )
T �−1

e (x̂e − x̂t ) ≤ k2.

(6)

By constructing the Lagrangian of (6), it is straightforward to obtain x̂T
t ŵ = x̂T

e ŵ −
k‖�1/2

e ŵ‖. The problem now becomes the robust portfolio selection problem given
below.

max
w∈Rn

x̂T
e w − k‖�1/2

e w‖
s.t. wT �w ≤ γ 2

w ∈ W̄ .

(7)

Thus, (7) is the traditional maximum return formulation, augmented with the term
k‖�̂1/2

e ŵ‖ that reduces the effect of estimation error on the optimal portfolio. This
problem can be straightforwardly written as a second order cone programming
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(SOCP) problem:

max
w∈Rn

x̂T
e w − kt

s.t. w ∈ W̄ ,

γ ≥ ‖�1/2w‖,
t ≥ ‖�1/2

e w‖,

(8)

where γ is a standard deviation target. An efficient frontier, similar to that associ-
ated with the MMV model, can be constructed by varying γ . We note that � is the
covariance matrix of returns and �e is the covariance matrix of the estimated ex-
pected returns. The latter is related to error arising from the process of estimating x̂t .
This model, discussed by Ceria and Stubbs [3], only considers an uncertainty region
around the mean vector of returns, and assumes perfect knowledge of the covariance
matrix. The main contribution of this paper is concerned with the relaxation of this
assumption.

2.3 Robustness to first and second moment estimation errors

The minimum variance formulation of the portfolio selection problem is given below.

min
w∈Rn

wT �w

s.t. w ∈ W̄ ,

wT x̂ ≥ R,

where R is the lower limit on the target expected return. Goldfarb and Iyengar [5],
Tütüncü and Koenig [14] consider the best portfolio in view of the worst-case return
and covariance matrix. We extend these models to provide a covariance definition
that is consistent with the worst-case mean computed. In addition to consistency, in-
voking explicitly the functional dependence of the covariance matrix on the first and
second moments provides the correct representation, with the corresponding struc-
tural constraint, that is expected to lead to a less conservative robust policy. Consider
the following “min-max” robust portfolio problem,

min
w∈Rn

max
�∈�U ,x̂∈x̂U

wT �w = wT (� − x̂x̂T )w

s.t. w ∈ W̄ ,

min
x̂∈x̂U

wT x̂ ≥ R.

(9)

Here the covariance matrix is written as � = � − x̂x̂T , � is the second moment ma-
trix of returns. �U and x̂U are the uncertain regions of � and x̂, respectively. Note
that existing solution algorithms can be applied to the model in (9). However, such a
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direct approach will be based on the assumption that the distribution of the first mo-
ments is independent from the distribution of the second moments. This assumption
may not be satisfied in practice. In the next section we introduce a framework that
does not require this assumption and treats the relationship between first and second
moments in a consistent manner.

2.3.1 Robustness to second moment estimation errors

In this subsection we will assume that the expected returns (x̂) are known and fixed.
Using this assumption we formulate the portfolio optimization problem with worst-
case variance as an SDP problem. It follows that when the expected returns (x̂) are
fixed, the worst-case variance dependents only on the second moment �. For a given
portfolio w the worst-case can be obtained by solving the problem below.

sup
μ

〈
wwT ,

∫
S

xxT dμ

〉
−

〈
w,

∫
S

xdμ

〉2

s.t.
∫

S

xdμ = x̂,

∫
S

dμ = 1,

μ(x) ≥ 0.

(10)

The model above is an infinite dimensional optimization problem, and cannot be
solved directly. However, it can also be viewed as a variant of the moment problem.
Below we use the results from [7] to reformulate the model as a convex SDP problem.

Theorem 2.1 Suppose that S is a compact, convex semialgebraic set with a nonempty
interior, then problem (10) is equivalent to the following problem:

max
�̂

〈Ŵ , �̂〉 − 〈Ŵ , X̄〉

s.t. �̂ � 0, (11a)

〈Ai, �̂〉 = x̂i , i = 1, . . . , n + 1, (11b)

〈Bj , �̂〉 ≥ 0, j = 1, . . . ,m. (11c)

Here �̂, X̄ and Ŵ are defined by (1), (2) and (3) respectively.

The proof follows from Theorem 3.7 in [7]. The constraints (11a) and (11c) are
enforcing positive semi-definiteness of the moment and localizing matrices. The ma-
trices A and B in (11) are selected to satisfy the constraints of the problem. The
matrices Ai are used to define the first moment constraints (i.e. the first constraint
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in(10)). For example,

A1 =
⎡
⎢⎣

0 . . . 0.5
...

. . .
...

0.5 . . . 0

⎤
⎥⎦

ensures that x̂ in the moment matrix �̂ is equal to the specified x̂1. The matrix B1 is
used to define the support S of the return distribution. For example, if S is given by,

{x ∈ R
n | xT x ≤ 1}.

Then B1 needs to be specified as,

[−I 0
0 1

]
,

where I is the n-dimensional identity matrix. The constraints (11c) for j = 2, . . . ,m

are optional and are used to define constraints on the second moments of the return
distribution. For concreteness we give an example on how these matrices are specified
for the case when we only have two assets. For this two dimensional example the full
second moment matrix is defined by,

�̂ =
⎡
⎣ x̂2

1 x̂1x̂2 x̂1

x̂2x̂1 x̂2
2 x̂2

x̂1 x̂2 1

⎤
⎦ .

If we are given an upper bound, say σ1 on the second moment of asset x1 we define

B2 =
⎡
⎣−1 0 0

0 0 0
0 0 σ1

⎤
⎦ ,

so that 〈B2, �̂〉 ≥ 0 enforces the constraint x̂2
1 ≤ σ1. The same procedure is used to

define constraints on the mixed second moments of the returns. For example in order
to implement the constraint x̂1x̂2 ≤ σ1,2, we define

B3 =
⎡
⎣ 0 −0.5 0

−0.5 0 0
0 0 σ1,2

⎤
⎦ ,

so that 〈B3, �̂〉 ≥ 0 ensures the constraint is satisfied. With this formulation we can
define the entries of matrix Bi to satisfy any linear constraints imposed on the mo-
ments of the returns.
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It follows from Theorem 2.1 that the robust portfolio selection problem in (9) can
be re-formulated as follows.

min
Ŵ

max
�̂

〈Ŵ , �̂〉 − 〈Ŵ , X̄〉

s.t. �̂ � 0,

〈Ai, �̂〉 = x̂i , i = 1, . . . , n + 1,

〈Bj , �̂〉 ≥ 0, j = 1, . . . ,m,

〈Cp, Ŵ 〉 ∈ W̄ , p = 1,2 . . . ,

Ŵ � 0,

〈D,Ŵ 〉 ≥ R.

(12)

Where Cp are selected so that the constraints on the weights of the portfolio are
satisfied. For example, by choosing

C1 =
[

0 0.5
0.5 0

]
and C2 =

[−I 0
0 1

]
,

we can compute portfolios that lie in the set,

W̄ =
{

w ∈ R
n

∣∣∣
n∑

i=1

wi = 1, w ≥ 0, wT w ≤ 1

}
.

Note that for every positive semidefinite matrices �̂ − X̄ the problem (12) is a convex
quadratic programming problem with respect to the portfolio variable w. As noted in
Remark 1, the linear matrix variable

[
W w

w 1

]
,

is equivalent to the quadratic matrix variable Ŵ . Therefore (12) is a standard SDP
problem. The last constraint in (12) is the performance constraint and it is given by,

D =
[

0 1
2 x̂

1
2 x̂ 0

]
,

and R is the required return of the portfolio. The result below will help us formulate
the robust optimization problem as a conic programming problem that can be solved
by standard solvers.
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Lemma 2.1 Suppose that strong duality holds for the max part of (12), the “min-
max” problem (12) can then be expressed by the following “min” SDP problem:

min
y,Ŵ

−x̂T y − 〈Ŵ , X̄〉

s.t. − AT y − BT τ − Ŵ = �,

� � 0,

τ ≥ 0, τ ∈ R
m,

〈C,Ŵ 〉 ∈ W̄ ,

〈D,Ŵ 〉 ≥ R.

(13)

Proof The proof of this lemma is straightforward and so we omit the details. The
basic idea is to write the Lagrangian of the inner maximization problem in (12). We
then consider the dual of the inner problem, thus transforming the inner maximization
problem to a minimization problem. It follows from strong duality that this transfor-
mation is valid (see e.g. [1]). �

The implication of this lemma is that we can solve the robust portfolio selection
problem (9) by a single “min” SDP problem instead of a “min-max” problem (12).
This means that no special solver needs to be designed for the robust portfolio op-
timization problem. Without the last performance constraint, (13) yields the optimal
portfolio assuming the worst-case variance of returns. If one wants to find out the
worst-case mean and variance corresponding the optimal portfolio of (11) (which is
also the “max” part of (12)), then (12) needs to be solved for the given portfolio w.
Based on the results of this section we next discuss the case where uncertain regions
are introduced over both the expected returns and the second moment matrix of re-
turns.

2.3.2 The general case

In this subsection we will relax the assumption that the returns are fixed. We will
remove the first equality constraint in (10), and replace it with the weaker assumption
that the returns belong to an exogenously defined set [x̂l , x̂u] ∈ R

n. Here x̂u, x̂l are
given component-wise upper and lower bounds of the mean vector, respectively. We
will follow the approach developed in Sect. 2.3.1 and we will provide two equivalent
robust formulations. The first is based on solving the robust portfolio optimization
problem with semi-infinite programming. The second approach is based on the refor-
mulation method introduced in the preceding section and relies on strong duality to
solve the robust problem using standard cone programming solvers.

We start our analysis of the “max” function by assuming that vector of portfolio
weights (w) is given. With the weights fixed, the value of the “max” function is given
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by the objective function value of the following problem:

max
�̂,X̄

〈Ŵ , �̂〉 − 〈Ŵ , X̄〉

s.t. 〈Ai, �̂〉 ∈ [x̂il , x̂iu], i = 1, . . . , n,

〈Ai, X̄〉 ∈ [x̂il , x̂iu], i = 1, . . . , n,

〈Ai, (�̂ − X̄)〉 = 0, i = 1, . . . , n,

〈Bj , �̂〉 ≥ 0, j = 1, . . . ,m,

〈C, �̂〉 = 1,

〈C, X̄〉 = 1,

�̂ � 0,

X̄ � 0,

�̂ − X̄ � 0.

(14)

Analogous to Theorem 2.1, �̂ � 0 and 〈Bj , �̂〉 ≥ 0, j = 1, . . . ,m are used to guar-
antee �̂ to be the full second moment matrix of some probability measure supported
on S. The coefficients of the C matrix ensure that the measure under consideration is
a probability measure. Hence, Cnn = 1 and zero everywhere else. The matrices Ai ,
i = 1, . . . , n, are chosen so that 〈Ai, �̂〉 = x̂i . The constraints 〈Ai, (�̂ − X̄)〉 = 0,
i = 1, . . . , n, ensure that the mean vectors in the full second moment matrix and the
quadratic matrix variable are the same. In this worst-case variance formulation we
have a convex QP problem with respect to x̂ constrained by �̂ − X̄ � 0. As was
noted in Remark 1 the linear matrix variable,

[
X x̂

x̂ 1

]
,

is equivalent to the quadratic variable matrix X̄. Therefore (14) can be solved as
standard SDP problem.

Using the formulation of the “max” function in (14), the worst-case variance of
returns given the uncertainty set for returns, is given by the “min-max” problem be-
low.

min
w

max
�̂,X̄

q(w, X̄, �̂) = 〈Ŵ , �̂ − X̄〉, (15)

with the constraints in (14) and the portfolio constraints of (12). In the sequel, we use
two different approaches to solve the “min-max” problem. Firstly, following the same
procedure introduced in the previous section, we convert the “min-max” problem to
a convex “min” SDP problem. The second approach relies on semi-infinite program-
ming (Zakovic and Rustem [15]). We use the second approach as an alternative to
verify the validity of the first approach.



474 K. Ye et al.

By using a similar arguments as in Lemma 2.1, we can reformulate the original
model (15) to the model given below.

min
α1,α2,α3,τ,yu,yl ,zu,zl ,�,Ŵ

α1 + α2 − x̂T
l (yl + zl) + x̂T

u (yu + zu)

s.t. α1C + α3A − τB − ylA + yuA − � − Ŵ = �1,

α2C − α3A − zlA + zuA + � + Ŵ = �2,

〈D,Ŵ 〉 ∈ W̄ ,

τ ≥ 0,

yu, yl, zu, zl ≥ 0,

�,�1,�2 � 0,

〈E,Ŵ 〉 ≥ R.

(16)

The matrices A, B and C are the same as in (12). The matrix E enforces the per-
formance constraint. We can therefore obtain the optimal portfolio in view of the
worst-case mean and variance of returns by solving the single convex “min” SDP
problem (16).

It is well known that the “min-max” problem (15) is equivalent to the following
semi-infinite programming problem:

min
w

max
�̂,X̄

q(w, X̄, �̂) = [
wT 0

]
(�̂ − X̄)

[
w

0

]
.

The model above is a convex quadratic programming problem with respect to w

and a linear SDP problem with respect to (�̂, X̄). By employing the semi-infinite
programming algorithm introduced by Zakovic and Rustem [15], we can compute
the optimal portfolio and its corresponding worst-case mean and variance through
the iterative procedure described below.

{Semi-infinite Programming Algorithm}

Set A = {(�̂0, X̄0)}
while U > L do

Compute lower bound L = min
w∈W

max
�̂,X̄

q(w, X̄, �̂) globally

with w∗ = arg min
w∈W

max
(�̂,X̄)∈A

q(w, X̄, �̂)

Compute upper bound U = max
(�̂,X̄)∈B

q(w∗, X̄, �̂)

with (�̂∗, X̄∗) = arg max
(�̂,X̄)∈B

q(w∗, X̄, �̂)

A = A ∪ {(�̂∗, X̄∗)}
end while
Optimal values (w∗, �̂∗, X̄∗) are attained when U == L
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Note that the first “min-max” problem in the while loop of the algorithm above
can be cast as the following SOCP problem.

min
ŵ

max
�̂∈⋃

i=0,...,p(�̂i ,X̄i )

ŵT �̂iŵ = ‖�̂1/2
i ŵ‖2

s.t. w ∈ W̄ .

The problem above is equivalent to,

min
ŵ

t

s.t. ‖�̂1/2
i ŵ‖ ≤ t, i = 0, . . . , p,

w ∈ W̄ ,

where w ∈ R
n, t ∈ R and ŵ ≡ [w 0]T . In each iteration, the lower bound L = t2

is computed and compared with the upper bound U generated by the second max-
imization problem. The second maximization problem in the algorithm is a linear
SDP problem that can be solved efficiently. After each iteration, if U > L then the
set A is enlarged by the new (�̂∗, X̄∗) generated by the second maximization prob-
lem. The additional constraint will cause the objective function value of the SOCP
problem to increase in the next iteration. The iterations terminate when U = L. Our
numerical experiments show that almost same results (within 1E −4) can be attained
by solving the robust portfolio selection problem via these two approaches. Compar-
ing these two approaches, the single SDP approach is easier to implement and faster
than the semi-infinite approach. The reason is that the SDP approach only computes
a single linear SDP problem whereas the semi-infinite programming approach needs
many iterations (each iteration contains an SCOP problem and a linear SDP problem)
to reach the optimal solution. Note that this optimal solution provides not only the
optimal portfolio but also the corresponding worst-case moments. The SDP approach
however, requires another step to obtain the corresponding worst-case moments. The
additional step consists of solving (14) given the optimal portfolio determined above.
The semi-infinite formulation is an alternative way to solve the robust portfolio se-
lection problem and also provides a way to empirically test the validity of the SDP
model. We can use the following algorithm to generate a discrete approximation to
the robust efficient frontier:

Robust Efficient Frontier Algorithm:

1. Solve problem (13) or (16) without the performance constraint in order to compute
optimal portfolio wmin.

2. Solve problem (11) or (14) to attain the worst-case mean and variance x̂wc,�wc .
3. Set Rmin = x̂T

wcwmin, Rmax = x̂T
wcwmax and � = Rmax − Rmin.

4. Choose N , the number of desired points on the efficient frontier. For R ∈ {Rmin +
�

N−1 ,Rmin +2 �
N−1 , . . . ,Rmin + (N −1) �

N−1 } solve problem (16) with constraints
x̂T
wcw = R.
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In this algorithm, wmin corresponds to the risk averse portfolio with respect to the
worst-case risk measure

min
w

max
�̂,X̄

q(w, X̄, �̂),

without a performance requirement as given in (16). This essentially corresponds to
the worst-case portfolio performance. On the other hand wmax , represents the best
portfolio return with respect to the worst-case x̂ with no consideration of risk. This is
just the problem maxw minx̂ x̂T w with constraints only on x̂ and w.

3 Numerical results

In this section we illustrate how the proposed framework can be used to solve practi-
cal robust portfolio optimization models. For the SOCP and SDP problems we used
SeDuMi version 1.1 developed by Sturm [12] and SDPT3 by Toh et al. [13]. The com-
putational experiments were performed on a Pentium IV 3.2 GHZ PC with 1 G RAM.

The first numerical experiment illustrates the effect of estimation errors in ex-
pected returns and the improvement in robustness attained by the proposed approach.
We take Broadie’s [2] true and estimated data as inputs. The estimated, true and actual
efficient frontiers are then generated. The estimated frontier is calculated by using the
estimated mean vector, the estimated covariance matrix of returns and the portfolios
computed by the mean-variance model. The true efficient frontier is calculated by
employing the true mean vector, the true covariance matrix of returns and the port-
folios computed by the mean-variance model. The actual frontier is calculated by
utilizing the true mean vector, the true covariance matrix of returns and the portfolios
computed by the mean-variance model but using the estimated inputs. We then solve
the model in (8) with the estimated expected returns and the true expected returns to
calculate the estimated robust efficient frontier and the actual robust efficient frontier,
respectively. Suppose that the true expected returns falls in the confidence region with
probability of 95%. This assumption implies k = 1.0703 in (7). The resulting efficient
frontiers are shown in Fig. 1. It can be seen that the robust portfolios perform better
than MMV’s portfolios in terms of sensitivity to the input data. The numerical results
also show that the robust portfolios are more diversified than MMV’s portfolios.

We next report on numerical experiments that illustrate the effect of uncertainty
on the covariance matrix of returns. The robust efficient frontiers are also pre-
sented. When the expected returns are specified, we optimize the portfolios assuming
the worst-case variance, as in model (13). For simplicity, suppose that S := {x ∈
R

5|xT x ≤ 0.1} and the expected returns and the covariance matrix of returns are the
same as in Broadie [2]. An efficient frontier for the MMV model and the worst-case
variances with the given portfolios using (11) are computed using the robust efficient
frontier algorithm and the formulation in (13). The optimal portfolios are obtained
assuming the worst-case variances. The result is shown in Fig. 2.

When the expected returns are only given by componentwise upper and lower
bounds, we implement the two models proposed previously to solve the robust port-
folio selection problem. Using the semi-infinite approach we can obtain the worst-
case expected returns, the covariance matrix of returns and the corresponding optimal
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Fig. 1 Efficient frontiers

Fig. 2 Efficient frontier, worst-case variance, and worst-case optimal portfolio

portfolio simultaneously. However, it is slower than using the linear SDP model ((14)
and (16)). By choosing upper bounds and lower bounds of the expected returns, the
semi-infinite algorithm needs about 90 iterations to converge to the optimal value. On
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Fig. 3 Robust efficient frontier

the other hand, we can solve a single convex SDP problem (16) to gain the optimal
portfolio assuming the worst-case variance. To this end, the classical efficient frontier
and the robust efficient frontier generated by the aforementioned algorithm are shown
in Fig. 3. Note that Fig. 3 only demonstrates how different the robust efficient frontier
can be compared with the classical efficient frontier. The performance of the robust
portfolio is largely dependent on the settings of the uncertainty regions.

3.1 Backtesting

We arbitrarily chose 5 stocks (BT, BP, Barclays, Bay system, HSBO) from the
FTSE100 as our portfolio. We employed the robust portfolio optimization and se-
lection model proposed in this paper to compare the returns with the index FTSE100
from 3rd January 2005 to 22th January 2008. We took 10 weeks as a historical win-
dow from which we approximately determine the full second moment matrices. We
used the highest and the lowest values in the full second moment matrices as the up-
per and lower bound values. According to (16), a robust portfolio can be obtained
by assuming that in the future week the mean and the second moment matrix of re-
turns would not transgress from the bounds provided. In addition, we take three points
from the frontiers to run the backtesting: (1) the minimum risk level (i.e., (16) without
performance requirements), (2) half of the maximum risk level (model (16) with per-
formance requirement R = 50%Rmax ), and (3) maximum risk level (model (16) with
performance requirement R = Rmax ). The historical window keeps moving which
means that we are always looking back for the latest 10 weeks in order to construct
a portfolio for the next week. In this backtesting experiment, we also include the
Markowitz mean-variance portfolio, the worst case portfolio proposed by Tütüncü
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Fig. 4 Backtesting results

and Koenig [14] and the equally weighted portfolio. For the mean-variance portfolio,
we calculate the mean and variance of our historic window as inputs of the Markowitz
model. In the case of Tütüncü and Koenig’s portfolio, the mean vector always takes
the lower bound values. Equally weighted portfolio can be obtained when S is de-
scribed by a sphere. The results are shown in Fig. 4. It can be seen that the portfolio
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Fig. 4 (Continued)

calculated by our model performs well, in terms of expected returns, compared with
the existing methods.

4 Conclusion

We have discussed the formulation of the one time period robust portfolio selection
model as a conic programming problem. Uncertain regions were introduced to both
the expected returns and the second moment matrix of returns. The resulting robust
portfolio selection problems were formulated and solved as conic programs using
public domain solvers. It is shown that the robust portfolios perform more reliably
than MMV portfolios as robust portfolios are less sensitive to input errors.
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