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Abstract Large scale nonsmooth convex optimization is a common problem
for a range of computational areas including machine learning and computer vi-
sion. Problems in these areas contain special domain structures and character-
istics. Special treatment of such problem domains, exploiting their structures,
can significantly improve the computational burden. We present a weighted
Mirror Descent method to solve optimization problems over a Cartesian prod-
uct of convex sets. The algorithm employs a nonlinear weighted distance in
the iterative projection scheme. The convergence analysis identifies optimal
weighting parameters that, eventually, lead to the optimal weighted step-size
strategy for every projection on a corresponding convex set. We demonstrate
the efficiency of the algorithm by solving the Markov Random Fields opti-
mization problem. In particular, we use a weighted log-entropy distance and a
weighted Euclidean distance. Promising experimental results demonstrate the
effectiveness of the proposed method.

Keywords Subgradient Projection · Weighted Distance · Mirror Descent ·
Markov Random Fields

1 Introduction

It is well known that convex optimization problems can be solved in poly-
nomial time at a low iteration count using interior point methods. However,
most of these methods do not scale well with the dimension of an optimization
problem. A single iteration cost of an interior point method grows nonlinearly
with the problem size. As a result, low iteration count becomes expensive in
term of CPU performance. Since what matters most in practice is the overall

Duy V.N. Luong
Department of Computing,
Imperial College London,
E-mail: vu.luong@imperial.ac.uk



2 Duy V.N. Luong et al.

computational time to solve the problem, first order methods with computa-
tionally low-cost iterations become a viable choice for large scale optimization
problems. This paper presents an adaptive first order method to solve a gen-
eral large scale nonsmooth optimization problem over a Cartesian product of
convex sets. Consider the following nonsmooth convex optimization problem:

max
x∈X

f(x) (1)

where X = X1 × X2 × ... × XN is the Cartesian product of N closed convex
set. In this problem, the decision variable x can be decomposed to N disjoint
blocks, where each block xi ∈ Xi. In addition, we assume the following for (1):

– The objective function f : X → < is a concave Lipschitz continuous func-
tion.

– f∗ := f(x∗) denotes optimal objective value, where x∗ ∈ X .
– A subgradient f ′(x),∀x ∈ X exists.

Our method is a variant of the Mirror Descent (MD) algorithm [1,16,10], an
iterative first order approach for nonsmooth optimization problems. The main
idea of MD is to adapt a Bregman distance [11] to the feasible domain. In the
special case of a single feasible domain X (i.e. N = 1), problem (1) is exactly
the problem addressed by the general MD framework. The main difference
between the standard MD algorithm and the proposed weighted MD is that we
consider the optimal step-size strategy for each projection on the corresponding
subset instead of using a common step-size for the projection on the entire
domain. In order to achieve this, we employ a weighted distance function
for projecting in the corresponding domain. The weigthed distance function
exploits the ‘disjoint’ property of the feasible set X by considering suitable
weights αi for every subset Xi. By assessing the optimality bound for the
proposed algorithm, we establish the optimal weighting parameters for each
distance function of the corresponding subset. These weighting parameters
influence the projection step as scaling factors of the common step-size. Thus,
the step-size is scaled appropriately for corresponding subset projection.

As an illustration, we demonstrate the performance of the weighted MD al-
gorithm by solving the Markov Random Fields (MRF) optimization problem
[12,18]. This problem often arises from the areas of image analysis and ma-
chine learning [15]. We employ the proposed weighted MD algorithm with
log-entropy distances and optimal subset-dependent step-sizes to initialize the
starting point. Subsequently, we use the weighted MD algorithm with Eu-
clidean distances and incorporate the duality gap in the step-sizes computa-
tion. Experimental results demonstrate the superiority of the weighted MD
over the basic (unweighted) MD algorithm.

The remainder of this paper focuses on analyzing and describing the proposed
weighted MD algorithm and its application to the MRF optimization problem.
In the next section, we review the basic MD algorithm and its optimality
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bound for solving the problem (1). Section 3 introduces required definitions
for developing the weighted MD algorithm. These include weighted definitions
for distance, compatible norm and dual norm, and Lipschitz constant. By using
these definitions, we are able to derive the optimality bound for the proposed
weighted MD algorithm and show that it is either an improvement to, or in the
worst-case as good as, the standard MD algorithm. In section 4, we consider
the dual of the MRF optimization problem. The MRF dual has the form of
(1), and therefore can be solved by the proposed weighted MD algorithm. We
report very promising computational results.

2 Basic Mirror Descent algorithm

The Mirror Descent algorithm[1,2,10] is a generalization of the projected sub-
gradient method. The standard subgradient approach employs the Euclidean
distance function with a suitable step-size in the projection step. Mirror De-
scent extends the standard projected subgradient method by employing a non-
linear distance function with an optimal step-size in the nonlinear projection
step. In this section, we review a basic Mirror Descent algorithm for solving
problem (1) without considering the domain geometry.
A basic Mirror Descent algorithm employs a sequence of nonlinear projection:

xk+1 = argmax
x∈X

〈f ′xk , x〉 −
1

µ
DX (x, xk) . (2)

where f ′xk is a subgradient at the point xk, µ is the optimal step-size and
DX (x, xk) is a nonlinear distance between two points x and xk. The set up
of Mirror Descent [10] requires a distance function D(., .) compatible with the
norm:

– ‖.‖X on the space embedding X , and its dual norm
– ‖ξ‖X∗ = maxx∈X {〈x, ξ 〉 : ‖x‖X ≤ 1}.

Let ΩX denote the maximum distance between two points in the set X , i.e.

ΩX = max
x,y∈X

DX (x, y) .

Suppose f(x) is Lipschitz continuous on X with the Lipschitz constant:

LX = max
x∈X
‖f ′x‖X∗ <∞ ,

Theorem 1 [1,10] Let f∗ denotes the global optimal objective function and
x̄ = argmax

x={x1,..,xK}
f(x). Then, using the optimal step-size:

µ =

√
2 ΩX

LX
√
K

, (3)

we have the following optimality bound after K iterations:

f∗ − f(x̄) ≤ LX
√

2 ΩX√
K

. (4)
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Remark 1. When X is the Cartesian product ofN convex sets Xi, i ∈ {1, 2, .., N},
the distance between two vectors x, y ∈ X is the sum of distances between any
two blocks xi, yi ∈ Xi. As a result, the maximum distance ΩX is also the sum
of maximum distances on subset Xi. Let ΩXi

denote the maximum distance of
a subset Xi, i.e.,

ΩXi
= max
xi,yi∈Xi

D(xi, yi) ,

the optimality bound (4) becomes:

f∗ − f(x̄) ≤
LX
√

2
∑N
i=1 ΩXi√
K

. (5)

The projection step (2) employs a common step-size µ for the entire domain.
While the feasible domain consists a product set of multiple subsets (each sub-
set might have different characteristics or structures), the basic MD algorithm
does not consider a suitable step-size for the projection on each subset. In the
next section, we address this scenario.

3 Weighted Mirror Descent

We consider a distance measurement on the given domain (the product set of
multiple subsets) as a sum of weighted subset-distances. In this setting, each
subset is equipped with a specific distance function and a weighting parameter.
We subsequently utilize this weighted distance in the projection step to develop
a weighted Mirror Descent algorithm.

3.1 Weigthed distance function

The distance function DX (x, y) is defined as the Bregman distance:

DX (x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y 〉 ,

where ψ(.) needs to be a σ-strongly convex function over a compatible norm
‖.‖X , i.e.,

〈∇ψ(x)−∇ψ(y), x− y〉 ≥ σ‖x− y‖2X , ∀x, y ∈ X (6)

Without loss of generality, we assume1 σ = 1 throughout the paper. A compat-
ible norm ‖.‖X is dependent of the choice of distance function. For example,
l1-norm is chosen for log-entropy distance [1], l2-norm for Euclidean distance.
Now, instead of using one distance function over the entire domain, let us
consider the choice of Bregman distance DXi for subset Xi, i ∈ {1, 2, ..., N}:

DXi
= ψi(xi)− ψi(yi)− 〈∇ψi(yi), xi − yi 〉 , ∀xi, yi ∈ Xi (7)

Various choices of distance functions and their compatible norms ‖.‖Xi are
discussed in [7,8,11]. Two basic examples of Bregman distance are:

1 Note that Theorem 1 assumes σ = 1.
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– Euclidean distance: DXi(xi, yi) = 1
2‖xi−yi‖

2
2. In this case, ψi(xi) = 1

2‖xi‖
2
2

and it is straightforward to show ψi(.) is 1-strongly convex w.r.t ‖.‖2.
– Log-entropy distance: DXi

(xi, yi) =
∑
j x

j
i log(xji/y

j
i )+yji −x

j
i . In this case,

ψi(xi) =
∑
j x

j
i log xji −x

j
i is also shown to be 1-strongly convex w.r.t. ‖.‖1

[1].

For each subset-distance DXi
let us introduce a weighting parameter αi > 0.

The weighted distance Dw is then defined as a combination of these weighted
subset-distances:

Dw(x, y) =

N∑
i=1

αi DXi(xi, yi) =

N∑
i=1

αi ψ
i(xi)−αi ψ

i(yi)−αi 〈∇ψi(yi), xi−yi 〉

We then propose to employ the weighted distance Dw in the projection step
(2) instead of the distance DX that does not employ weighting. The weighted
Mirror Descent algorithm iteratively computes a search point:

xk+1 = argmax
x∈X

〈f ′xk , x〉 −
1

µ
Dw(x, xk) (8)

xk+1 = argmax
x∈X

〈f ′xk , x〉 −
1

µ

N∑
i=1

αi DXi
(xi, x

k
i ) .

Essentially, the property of X triggers an ability to independently compute the
projection (8) on each subset Xi. In other words, if we consider the optimality
condition of the optimization problem (8) w.r.t. each block xi ∈ Xi, then (8)
is separable and is equivalent to:

∀i ∈ {1, .., N} : xk+1
i = argmax

xi∈Xi

〈
f ′xk

i
, xi

〉
− αi

µ
DXi

(xi, yi) . (9)

As a result, we hope to achieve better performance by using suitable (or opti-
mal) weighting pararmeters αi for the corresponding subset Xi.

3.2 Compatible norm, dual norm, weighted Lipschitz constant and maximum
weighted distance

In order to analyze the convergence of the sequence generated by (8), we need
to establish the Lipschitz constant associated with the weighted distance. This
can be computed as the upper bound of the compatible dual norm. To this end,
we rewrite Dw in the form of the Bregman distance:

Dw(x, y) = ψw(x)− ψw(y)− 〈∇ψw(y), x− y 〉 .

This, in turn, yields the definition for ψw(x) as a weighted sum of convex
function ψi(xi):

ψw(x) =

N∑
i=1

αi ψ
i(xi) ,
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where ψw(.) is a convex function and we need to define a compatible norm
‖.‖w such that, ψw(.) is 1-strongly convex w.r.t. ‖.‖w.

Lemma 1 For all i ∈ {1, .., N}, let αi > 0, ψi(xi) is 1-strongly convex w.r.t.
‖xi‖Xi

, then the weighted function:

ψw(x) =

N∑
i=1

αi ψ
i(xi) ,

is 1-strongly convex w.r.t. the weighted norm:

‖x‖w =

√√√√ N∑
i=1

αi‖xi‖2Xi
. (10)

Proof We have, ∀x, y ∈ X :

〈∇ψw(x)−∇ψw(y), x− y〉 =

N∑
i=1

αi〈∇ψi(xi)−∇ψi(yi), xi − yi〉

≥
N∑
i=1

αi‖xi − yi‖2Xi

= ‖x− y‖2w .

ut

The dual norm ‖.‖w ∗ of the proposed weighted norm (10) can be derived using
the definition of dual norm (see section 2 and [4]):

‖ξ‖w ∗ =

√√√√ N∑
i=1

‖ξi‖2Xi ∗
αi

, (11)

where ‖.‖Xi ∗ is a dual norm of ‖.‖Xi
over the subset Xi. Let LXi

= max
xi∈Xi

‖f ′xi
‖Xi ∗

denote the local Lipschitz constant w.r.t. to a subset Xi, then the weighed Lip-
schitz constant is given by:

Lw = max
x∈X
‖f ′x‖w ∗ =

√√√√ N∑
i=1

LXi

2

αi
. (12)

In addition, the maximum weighted distance Ωw becomes:

Ωw = max
x,y∈X

Dw(x, y) =

N∑
i=1

αi ΩXi ,

where ΩXi
= max
xi,yi∈Xi

DXi
(xi, yi).
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Remark 2. The basic MD algorithm in section 2 uses the same distance func-
tion definition for all subset Xi and assigns αi = 1 , ∀i = 1, 2, .., N . This choice
for αi yields the corresponding unweighted Lipschitz constant and maximum
distance:

LX =

√√√√ N∑
i=1

LXi

2 and ΩX =

N∑
i=1

ΩXi (13)

3.3 Optimality bound of the weighted MD algorithm

We show the first result for optimality bound of the weighted MD algorithm.

Lemma 2 Let f∗ denote the global optimal objective function and
x̄ = argmax

x={x1,..,xK}
f(x) and µ is the step-size. We have the following optimality

bound after K iterations:

f∗ − f(x̄) ≤ Ωw

Kµ
+
µLw

2

2
. (14)

Similar results can be found in [1,10,16]. The initial bound (14) depends on
three terms µ, Lw and Ωw, where the last two terms are themselves functions
of the weighting parameters αi. Therefore, we can tighten the bound (14) by
considering its minimization w.r.t. µ and αi.

Theorem 2 For each subset Xi, let LXi
= max
xi∈Xi

‖f ′xi
‖Xi ∗ be the local Lipschitz

constant and ΩXi = max
xi,yi∈Xi

DXi(xi, yi) be the maximum subset distance. Then,

the optimal weighting parameters are given by:

αi =
LXi√

ΩXi

(∑N
i=1 LXi

√
ΩXi

) ,∀i = 1, 2, ..., N . (15)

In addition, these parameters yield the optimal step-size:

µ =

√
2

√
K
(∑N

i=1 LXi

√
ΩXi

) . (16)

Proof Let us consider the optimality bound (14):

Ωw

Kµ
+
µLw

2

2
,

where Ωw and Lw are functions of the weighting parameters αi. For any αi >
0,∀i = 1, 2, ..., N , we can compute the corresponding values Ωw and Lw. For

given values of Ωw and Lw, consider the minimization of Ωw

Kµ + µLw
2

2 w.r.t. µ.
This yields the optimal step-size dependent on αi:

µ =

√
2 Ωw

Lw

√
K

. (17)
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This has the same form as the optimal step-size (3) for the basic MD algorithm
(where αi = 1,∀i = 1, 2, ..., N). The optimality bound (14) corresponding to
(17) is thus given by:

Lw

√
2 Ωw√
K

.

For α = [α1, α2, ..., αN ]>, the above optimality bound is a function of α. The
best optimality bound can be achieved by considering a minimization of the
following function of α:

φ(α) = Lw
2(α) Ωw(α) =

N∑
i=1

LXi

2

αi

N∑
i=1

αi ΩXi
.

The optimizer of φ(α) needs to satisfy the following optimality condition:

αi
2 ΩXi

LXi

2

N∑
j=1,j 6=i

LXj

2

αj
=

N∑
j=1,j 6=i

αjΩXj
, ∀i = 1, 2, ..., N. (18)

Now, let us rewrite the optimality bound Ωw

Kµ + µLw
2

2 in (14) as:

Ωw

Kµ
+
µLw

2

2
=

∑N
i=1 αi ΩXi

Kµ
+
µ

2

N∑
i=1

LXi

2

αi
.

Minimizing the RHS of the above equality w.r.t. αi and substituting the opti-

mal step-size µ =
√

2 Ωw

Lw

√
K

in the minimizer gives:

αi =
LXi

√
Ωw

Lw

√
ΩXi

, ∀i = 1, 2, ..., N.

Substituting these weighting parameters into the definition of maximum dis-
tance Ωw =

∑N
i=1 αi ΩXi yields:

√
Ωw =

∑N
i=1 LXi

√
ΩXi

Lw
.

Suppose the weighted distance is normalized by the weighting parameters, i.e.
Ωw = 1, then the weighted Lipschitz constant is given by:

Lw =

N∑
i=1

LXi

√
ΩXi

(19)

Using the above weighted Lipschitz constant and the normalized maximum
distance, Ωw = 1, yields the optimal weighting parameters:

αi =
LXi√

ΩXi

(∑N
i=1 LXi

√
ΩXi

) , ∀i = 1, 2, ..., N.
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We can easily verify that the above choice of αi (also in (15)) normalizes the
maximum distance, i.e. Ωw = 1, generates the weighted Lipschitz constant
(19) using the definition (12) and satisfies the optimality condition (18) of the
optimality bound function φ(α). ut

Theorem 3 Let f∗ denotes the global optimal objective function and
x̄ = argmax

x={x1,..,xK}
f(x). The weighted MD algorithm with the optimal step-size

(16) and the optimal weighting parameters (15) has the following optimality
bound after K iterations:

f∗ − f(x̄) ≤
√

2
∑N
i=1 LXi

√
ΩXi√

K
. (20)

Proof Substituting the optimal step-size (16) and the optimal weighting pa-
rameters (15) into (14) directly yields the result. ut

The following result establishes the relative performance of the proposed weighted
MD algorithm compared to standard MD. The proposed algorithm is an im-
provement with a worst-case convergence that is the same as standard MD.
The numerical experiments discussed in the next section underline this promis-
ing performance.

Corollary 1 The optimality bound (20) of the weighed Mirror Descent algo-
rithm satisfies the inequality:

√
2
∑N
i=1 LXi

√
ΩXi√

K
≤ LX

√
2 ΩX√
K

(21)

Proof From Remarks 2, equations (13), we have:

LX 2 ΩX =

(
N∑
i=1

LXi

2

)(
N∑
i=1

ΩXi

)

By the Cauchy-Schwarz inequality, we have:

(
N∑
i=1

LXi

√
ΩXi

)2

≤

(
N∑
i=1

LXi

2

)(
N∑
i=1

ΩXi

)

The above inequality directly yields the result (21), which is also the optimality
bound (5) of the standard MD algorithm. ut
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4 Weighted Mirror Descent algorithm for MRF optimization

Markov Random Fields [15] are an important class of graph-structured mod-
els in image processing and machine learning. In general, MRF model aims
to reveal hidden quantities ξ based on some observations of available input
data. Various discussion about MRF modelling and MRF optimization meth-
ods in image analysis and machine learning can be found in [15,12,13,20]. In
this paper, we only give a high level description of the MRF model for image
analysis. This is illustrated by an undirected graph-structured model. We de-
rive a large scale Linear Programming (LP) formulation for the MRF problem
and we focus on solving the dual of this LP using the proposed weighted MD
algorithm.

4.1 MRF optimization as Linear Programming

MRF can be described by an undirected graph G = (V,E), where V,E denote
a set of nodes and a set of edges respectively. The set V contains unobservable
features (e.g. pixel or object) of a given image that needs to be estimated. An
unobservable, or hidden, quantity ξa,l, for all a ∈ V , can be assigned a label
l from the set of discrete labels L. Each label represents a feasible value (to
be estimated) of the corresponding unobservable/hidden feature. Each label
assignment is subject to an input cost of labelling θa,l, which encodes how much
the assignment of a label l ∈ L to node a ∈ V disagrees with the observed
image data at the node a. Furthermore, the labelling at a node a also influences
its neighbouring nodes. The neighbouring nodes are represented by the set of
edges E. The neighbouring influences are often known a priori and encoded
into the pairwise cost θab,lk, where ab ∈ E is an edge connecting neighbouring
nodes a and b, while labels l, k ∈ L are candidates of the assignment for nodes
a, b respectively. The optimal labelling for G can be approximately realised
by minimizing the cost of label assignments over all possible combinations of
unobserved/hidden quantities and observed image data:

min
ξ∈ΞG

∑
a∈V

∑
l∈L

θa,l.ξa,l +
∑
ab∈E

∑
l∈L

∑
k∈L

θab,lk.ξab,lk

where ΞG is given by:

ΞG
def
=

ξ
∣∣∣∣∣∣∣∣
∑
l∈L ξa,l = 1, ∀a ∈ V∑

k∈L ξab,lk = ξa,l, ∀ab ∈ E,∀l ∈ L
ξa,l ∈ [0, 1], ∀a ∈ V,∀l ∈ L
ξab,lk ∈ [0, 1], ∀ab ∈ E,∀l, k ∈ L

 . (22)

The above LP problem can be written in the following compact form, where
θ is a vector of input data and ξ is a vector of decision variables:

min
ξ∈ΞG

〈θ, ξ〉 (23)
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The above LP relaxation for MRF optimization is shown to be the tightest re-
laxation amongst other relaxation approaches [13]. The set ΞG approximately
implies label consistency, such that:

ξa,l = 1 ⇐⇒ label l assigned to node a

ξab,lk = 1 ⇐⇒ labels l, k assigned to the neighbouring a, b.

A simple application is illustrated using the image segmentation problem,
see figure 1. In this example, each image pixel corresponds to a node a ∈
V , whilst a pair of neighbouring pixels forms an edge ab ∈ E. Each node
associates with 4 unobserved/hidden quantities, ξa,l, where the label set L =
{white, red, green, blue}. The input data consists of unary costs θa,l for each
label and pairwise costs θab,lk for each pair of neighbouring nodes. The data
cost is specified such that a more likely label assignment is less expensive. The
multilabelling problem aims to obtain a label assignment for all nodes such that
the overall cost is minimized. This application can be solved approximately by
the given LP problem (23).

(a) Corrupted image (b) Segmented image

Fig. 1 Multilabelling for an image segmentation problem

4.2 Dual decomposition

The MRF optimization problem in image processing and machine learning
normally represents every pixel as a node of the graph G. As a result, the LP
problem (23) is excessively large, with millions of variables and constraints.
Using a standard LP solver such as an interior point method becomes imprac-
tical because a single iteration may take too long to compute. It is well-known
that certain problems with specific graph-structures can be solved exactly by
dynamic programming. For example, tree-structured (acyclic) graphs can be
solved by max-product belief propagation [21], submodular graph-structured
and binary labelling problems can be solved by graph-cut [6,5]. Therefore,
one approach to solve the LP problem (23) (i.e. an approximate solution to
the MRF problem) is to decompose the graph G associated with the LP into
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sub-graphs with favourable structures and then combine the exact solutions
of these sub-graphs to obtain the solution of the orginal graph. This approach
employs the dual decomposition technique in optimization.

Dual decomposition decomposes the original graph-based problem into eas-
ier and smaller sub-problems with favourable structures (e.g. submodular or
acyclic). The sub-problems arising from the dual decomposition are subse-
quently combined using the corresponding Lagrange multipliers (dual vari-
ables). The dual and the initial primal graph-structured optimization prob-
lems are equivalent by convex duality. The focus of this section is the solution
of the dual. This is a large scale nondifferentiable optimization problem (1).
This is solved by utilizing the exact solution of each sub-problem to update
the dual variables. A complete treatment of dual decomposition is beyond the
scope of this paper and can be found in [12,17,20] and references therein.
Let us assume there exist a set T of sub-graphs that covers (at least once)
every node and edge of the original graph G. These sub-graphs should have
a favourable graph-structure, e.g. submodular graph [5], acyclic graph [21].
For each sub-graph t ∈ T , the corresponding MRF sub-problem can be solved
exactly using a dynamic programming algorithm (max-product belief propa-
gation for acyclic graphs or graph-cut for submodular graphs). The basic idea
for decomposing the LP problem (23) is to make copies θt (data cost) and ξt

(decision variables) of the original LP data cost θ and decision variables ξ so
that each copy of the pairs (θt, ξt) forms a MRF sub-problem:

min
ξt∈Ξt

〈θt, ξt〉

where the set Ξt has similar form of ΞG, but only applies on the copy ξt.
The copied vector ξt corresponds to a sub-graph, it does not need to cover
every node or edge of the original graph G. The collection {ξt}∀t∈T must
cover all nodes and edges of the original graph G. Each copy ξt is required
to be consistent with the corresponding partition ξ|t of the original decision
variables ξ, i.e.

ξt = ξ|t , ∀t ∈ T .

Various choices for decomposing (i.e. making copies) the original graph G are
discussed in [12]. For the ease of presentation, let us assume each sub-graph
t ∈ T covers all nodes and edges of G, then the above consistency requirement
can be written as:

ξt = ξ , ∀t ∈ T .

In addition, the sum of copied data-vectors must equal to the original data-
vector: ∑

t∈T
θt = θ . (24)

The equivalent copied problem of the LP (23) is given by:

min
ξ∈ΞG

〈 θ, ξ 〉 =

{
min
ξ∈ΞG

∑
min
ξt∈Ξt

〈 θt, ξt 〉
∣∣ ξt = ξ , ∀t ∈ T

}
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where {θt}∀t∈T are initialized to satisfy (24). The simplest setting is θt = θ
T ,

where T denotes the cardinality of the set T (the number of sub-graphs in
the set T ). The copied problem is equivalently difficult to solve as the LP (23)
because all decision variables are simultaneously coupled by the constraint
ξt = ξ. Applying the dual decomposition technique to the copied problem
directly yields the dual problem:

max
λ∈Λ

∑
t∈T

min
ξt∈Ξt

〈 θt + λt, ξt 〉 (25)

where Λ
def
=
{∑

t∈T λ
t = 0

}
. The domain Λ is a Cartesian product of subsets

{Λi}∀i∈I , where

I
def
= {(a, l)}∀a∈V,∀l∈L

⋃
{(ab, lk)}∀ab∈E,∀l,k∈L

Each subset is defined as Λi
def
=
{∑

t∈T λ
t
i = 0

}
, ∀i ∈ I. As a result, Λ =

Λ1 × Λ2 × ... × ΛI , where I is the cardinality of I. It is well-known that the
solution of (25) is the lower bound of the LP problem (23). By strong duality
properties, the solution of (25) becomes the solution of the LP (23). Problem
(25) is a nonsmooth convex optimization problem over the Cartesian product
of convex subsets, it can be written in the exact form of (1):

max
λ∈Λ

f(λ)

There have been several approaches for solving the nonsmooth problem (25).
One approach is by Savchynskyy et. al. [18] using Nesterov’s smoothing tech-
nique. This approach relaxes the nonsmooth objective function by a smoothing
parameter. As a result, the algorithm only computes a suboptimal solution of
the dual problem, which in turn, does not yield the optimal solution for the
LP problem (23). In addition, this algorithm requires computations for all
dual variables at every iteration, whilst the weighted MD requires fewer dual
updates as the algorithm converges (as we will see in Remark 3 ). Schmidt et.
al. [19] proposed a primal-dual method for solving the LP (23), however, their
paper shows that the primal-dual method is inferior to the dual decomposition
technique for large scale problem. The weighted MD algorithm is a general-
ization of the projected subgradient algorithm which was also proposed for
solving the dual (25) by Komodakis et. al. [12] and Jancsary et. al. [9].

4.3 Weighted MD algorithm for the MRF problem

Problem (25) requires an initialization of θt that satisfies (24). The standard
initialization θt = θ

T might not give a good starting point for subgradient-
typed methods. A better initialization is an initialization such that the objec-
tive function value is closer to the optimal objective value. Suppose we have a
better initialization θt∗, we can reduce the computational efforts for solving λ
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significantly. To this end, let us introduce the following optimization problem
to find a better initialization for θt:

max
ρ∈∆

f(ρ)
def
= max

ρ∈∆

∑
t∈T

min
ξt∈Ξt

〈 ρt ◦ θ , ξt 〉 (26)

where ◦ is a Hadamard product notation, ∆ = ∆1 × ∆2 × ... × ∆I is the
product set of simplices:

∆i
def
=

{
ρi

∣∣∣∣∣∑
t∈T

ρti = 1 ; ρti ≥ 0 , ∀t ∈ T

}
, ∀i ∈ I . (27)

Problem (26) also has the same form as (1) and can be solved using the
weighted MD algorithm. After obtaining the optimal initialization {ρt∗◦θ , ∀t ∈
T}, where ρ∗ = argmaxρ∈∆ f(ρ), we can proceed to solve for λ:

max
λ∈Λ

f(λ)
def
= max

λ∈Λ

∑
t∈T

min
ξt∈Ξt

〈 ρt∗ ◦ θ + λt, ξt 〉 (28)

where Λ = Λ× Λ× ...× ΛI is the product set of linear subsets:

Λi
def
=

{
λi

∣∣∣∣∣∑
t∈T

λti = 0

}
, ∀i ∈ I (29)

The two problems (26) and (28) can be combined into one problem:

max
ρ∈∆,λ∈Λ

f(ρ, λ)
def
= max

ρ∈∆,λ∈Λ

∑
t∈T

min
ξt∈Ξt

〈 ρt ◦ θ + λt, ξt 〉 (30)

By setting λ = 0, we have (30) ≡ (26). Similarly, if we set ρt∗ = argmaxρ∈∆ f(ρ)
then we have (30) ≡ (28).

Algorithm 1: Weighted Mirror Descent for the MRF problem

Choose two nonegative numbers K1,K2;

Initialize ρ1 = 1
T .1 and λ1 = 0;

for k = 1, 2, ...,K1 − 1 do

ρk+1 = argmax
ρ∈∆

〈 f ′
ρk
, ρ 〉−

1

τ
D∆(ρ, ρk) . (31a)

Set ρ̄ = argmax
ρ

{
f(ρ, λ1)

∣∣ρ = ρ1, ρ2, ..., ρK1
}

;

for k = 1, 2, ...,K2 − 1 do

λk+1 = argmax
λ∈Λ

〈 f ′
λk , λ 〉−

1

η
DΛ(λ, λk) . (31b)

Set λ̄ = argmax
λ

{
f(ρ̄, λ)

∣∣λ = λ1, λ2, ..., λK2
}

;

The weighted MD approach for solving the MRF problem is described in Algo-
rithm 1. As we will see later (equation (39)), exact subset-dependent step-sizes
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can be computed for the recurrence (31a). However, recurrence (31b) can only
use estimate step-sizes. A step-size estimation is based on the difference be-
tween the current objective value and the optimal objective value. The smaller
this difference is, the more accurate estimation can be made. Clearly, if the
number of iterations K1 is large enough, we will obtain an objective value that
is better (closer to optimal objective value) than a random initialization.

We clarify the various aspects of the vector ρ (similarly applies for λ):

– ρ denotes a full vector corresponding to all sub-graphs of the set T , and
ρ ∈ ∆.

– With superscipt t, ρt denotes a vector corresponding to sub-graph t ∈ T .
– With subscript i, ρi denote a collection of scalars ρti across all sub-graphs

that cover the index i, and ρi ∈ ∆i.
– With numeric superscipts, such as ρ1, ρ2, .., ρK , or ρk, ρki , denote the cor-

responding iterate of the vector.
– When superscipts t and k are used together, we separate them by a comma:
ρt,k is a vector, or ρt,ki is a scalar.

Recurrence (31a) and (31b) seek for feasible points in the domains that are
intersections of subsets. As a result, we employ weighted distances for both
sequences. The subset-projections (also see (9)) for these recurrences can be
written as:

∀i ∈ I : ρk+1
i = argmax

ρi∈∆i

〈
f ′ρki

, ρi

〉
− α∆i

τ
D∆i

(ρi, ρ
k
i ) . (32a)

∀i ∈ I : λk+1
i = argmax

λi∈Λi

〈
f ′λk

i
, λi

〉
− αΛi

η
DΛi(λi, λ

k
i ) . (32b)

To this end, we choose the log-entropy distance function for each subset ∆i

and the Euclidean distance function for each subset Λi. In particular, let us
consider:

– For each ∆i, let:

ψi∆(ρi) =
∑
t∈T

ρti log ρti, if ρi ∈ ∆i; else,+∞ ,

then ψi∆ is 1-strongly convex [1, Proposition 5.1] w.r.t. ‖.‖1. The dual norm
of ‖.‖1 is ‖.‖∞ [4].

– For each Λi, let:

ψiΛ(λi) =
1

2

∑
t∈T

(λti)
2, if λi ∈ Λi; else,+∞

then ψiΛ is 1-strongly convex w.r.t. ‖.‖2. The dual norm of ‖.‖2 is itself.
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By using the Bregman distance: D(x, y) = ψ(x)−ψ(y)−〈∇ψy, x−y 〉, we can
obtain the log-entropy distance function and the Euclidean distance function
for the corresponding subset. As a result, each iteration of the recurrences (32)
can be solved in a closed form:

∀i ∈ I : ρt,k+1
i =

ρt,ki . exp
(

τ
α∆i

.f ′
ρt,ki

)
∑
t∈T

(
ρt,ki . exp

(
τ
α∆i

.f ′
ρt,ki

)) . (34a)

∀i ∈ I : λt,k+1
i =

η

αΛi

(
f ′
λt,k
i

−

∑
t∈T f

′
λt,k
i

T

)
. (34b)

We note that the basic MD algorithm also uses the above recurrences with the
constant choice α∆i

= αΛi
= 1 , ∀i ∈ I. Using the definitions of optimal step-

size (16) and weighting pararmeters (15), the two subset-dependent step-sizes
τ
α∆i

and η
αΛi

can be written as:

τ

α∆i

=

√
2 Ω∆i

L∆i

√
k

and
η

αΛi

=

√
2 ΩΛi

LΛi

√
k

. (35)

The above subset-dependent step-sizes improve the performance of the weighted
MD because they use optimal values of α∆i and αΛi instead of the constant
1. It thus remains to show how to compute the subgradients f ′ρ and f ′λ at any
feasible ρ ∈ ∆ and λ ∈ Λ.

Lemma 3 Let ξ̄t = argmin
ξt∈Ξt

〈ρt◦θ+λt, ξt〉 be the optimal solution for the MRF

sub-problem of the corresponding sub-graph t ∈ T . Then the subgradients of
f(ρ, λ) w.r.t. the corresponding decision vector are given by:

f ′ρt = θ ◦ ξ̄t and f ′λt = ξ̄t .

Proof Let x, y be arbitrary vectors such that x ∈ ∆ and y ∈ Λ. By definition
ξ̄t is not necessarily optimal for min

ξt∈Ξt
〈xt ◦ θ + yt, ξt〉, i.e.

∀t ∈ T : min
ξt∈Ξt

〈xt ◦ θ + yt, ξt〉 ≤ 〈xt ◦ θ + yt, ξ̄t 〉 .

In addition,

f(x, y) =
∑
t∈T

min
ξt∈Ξt

〈xt ◦ θ + yt, ξt〉

≤
∑
t∈T
〈xt ◦ θ + yt, ξ̄t〉

=
∑
t∈T
〈ρt ◦ θ + λt, ξ̄t〉+ 〈θ ◦ ξ̄t, xt − ρt〉+ 〈ξ̄t, yt − λt〉

= F (ρ, λ) + 〈θ ◦ ξ̄, x− ρ〉+ 〈ξ̄, y − λ〉.

ut
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Remark 3. The above choices of subgradient rely on the exact solution ξ̄t ∈ ΞI
for each sub-graph t (that can be computed very efficiently by a dynamic pro-
gramming algorithm, e.g. max-product belief propagation or graph-cut). Using
these subgradients, we can verify that updates (34) are only needed at disagree-
ment nodes 2. As a result, we can utilize this property to define a stopping
criteria by counting the number of disagreement nodes. Let Lk be the number
of disagreement nodes at iteration k. Essentially, as Lk → 0, the algorithm
converges to a stationary point, i.e. the optimal solution.

By using the above subgradients and the fact that ξ̄ti ∈ [0, 1], we can derive
the local Lipschitz constants corresponding to their subsets, ∀i ∈ I:

L∆i
= sup
ρi∈∆i

‖f ′ρi‖∞ = |θi| and LΛi
= sup
λi∈Λi

‖f ′λi
‖2 =

√
T (36)

To specify the maximum subset distances, we need to find an upper bound for
the distance between any feasible point to starting points ρ1

i and λ1
i .

Lemma 4 Let all elements of starting point ρt,1i = 1
T , the upper bound of the

distance between any feasible vector and ρ1
i is given by:

Ω∆i = log T (37)

Proof Using the Bregman distance (7) with log-entropy function ψi∆(ρi) =∑
t∈T ρ

t
i log ρti for every subset ∆i, i ∈ I, we have:

D∆i(ρi, ρ
1
i ) =

∑
t∈T

ρi. log
ρi

ρt,1i
=
∑
t∈T

ρti log ρti +

(∑
t∈T

ρti

)
log T

≤

(∑
t∈T

ρti

)
log T ≤ log T

The last two inequalities follow from the facts that 0 ≤ ρti ≤ 1, therefore
log ρti ≤ 0; and

∑
t∈T ρ

t
i = 1. ut

Similarly, the Bregman distance with ψiΛ(λi) = 1
2

∑
t∈T (λti)

2 yields the Eu-
clidean distance corresponding to subset Λi, thus the quantity ΩΛi

is given by
(with λ1

i = 0):

ΩΛi
= max
λi∈Λi

1

2
‖λi − λ1

i ‖22 = max
λi∈Λi

1

2
‖λi‖22

The subset Λi defined in (29) does not allow exact computation for ΩΛi
. For

example, assume the index i ∈ I is covered by two sub-graphs t1, t2 ∈ T , then

2 ΩΛi = max
λ
t1
i +λ

t2
i =0
‖λi‖22 = max

λ
t1
i +λ

t2
i =0

(λt1i )2 + (λt2i )2

2 A node a ∈ V is a disagreement node if all sub-graphs do not assign the same label to
a, i.e. for any two sub-graphs t1, t2 ∈ T , there exists l ∈ L such that ξ̄t1a,l 6= ξ̄t2a,l .
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In theory, 2 ΩΛi can be infinitely large, thus, the step-size η
αΛi

also becomes

infinitely large. In this problem, we assume subset Λi is bounded and solutions
exist. Therefore, we estimate ΩΛi by a quantity that is proportional to the dis-
tance between the solution λ∗i and the starting point λ1

i = 0. The approximate
duality gap is a good heuristic to estimate how far the current iterate is from
the optimal solution.

In order to estimate the duality gap at iteration k, we need to compute (ap-
proximately) the primal value P (ξk) = 〈 θ, ξk 〉. Several approaches to estimate
the primal variables are discussed in [12]. We employ the ergodic sequence of
dual subgradients f ′λk to estimate the primal variables. Ergodic convergence
analysis [14] has been used by many authors to bridge the primal-dual gap
in convex optimisation. In the approach, primal variables ξk are estimated by
considering the weighted average of the dual subgradients over all iterations:

ξK =

∑K
k=1

∑
t∈T f

′
λt,k

K
=

∑K
k=1

∑
t∈T ξ̄

t,k

K
.

The approximate duality gap is given by:

|P (ξK)− f(ρ̄, λK)| ,

which can be used as a heuristic to estimate ΩΛi at iteration k:

ΩΛi
=
|P (ξk)− f(ρ̄, λk)|

2Lk
. (38)

where Lk is the number of disagreement nodes (see Remark 3 ). Substituting
local Lipschitz constants (36) and subset distances (37),(38) into the subset-
dependent step-sizes (35) yields:

τ

α∆i

=

√
2 log(T )

|θi|
√
k

and
η

αΛi

=

√
|P (ξk)− f(ρ̄, λk)|

Lk T k
. (39)

Relating the step-size η
αΛi

to the duality gap allows the algorithm to admits

large step-sizes (as a result, applies large changes) when the duality gap is large
(far from the optimum). As the duality gap reduces, so does the step-size. This
choice of step-size is consistent with the diminishing step-size approach that
guarantees convergence for subgradient methods [3].

4.4 Experiments

In order to demonstrate the effectiveness of our method, we present experimen-
tal results for two MRF problems. The first is a graph structure optimisation
problem with synthetic data. The second is an image segmentation problem.
In the first experiment, we apply the weighted Mirror Descent (wMD), and the
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Fig. 2 Synthetic data: Potts model

standard Mirror Descent algorithm (MD). Both methods performs 20 itera-
tions of log-entropy projections (i.e. K1 = 20 in Algorithm 1) before switching
to Euclidean projections. The standard MD algorithm employs unweighted
distance function, i.e. assign all weighting parameters αi = 1. In the second,
we use the image segmentation implementation from the UGM Matlab pack-
age [19]. The provided package also implements the Tree Reweighted Belief
Propagation (TRBP) which is one of the state-of-the-art dynamic program-
ming algorithms for MRF opitimisation (however, its global convergence is not
guaranteed [12]). TRBP only returns the primal objective value, therefore, we
use the primal objective values of TRBP as reference to compare with the
primal objective values of wMD and MD.

Synthetic data. For synthetic experiments, we use a graph of size 100×100 and
5 labels. Two popular methods to set up a synthetic MRF problem are based
on the Potts model and the uniform model. Let U(0, 1) and N (0, 1) denote
the uniform distribution and normal distribution respectively. In the Potts
model, θa,l ∼ U(0, 1), while θab,lk = ωab ∗ I(l = k), where ωab ∼ N (0, 1) and
I(l = k) = 1 ⇐⇒ l = k and I(l = k) = 0 ⇐⇒ l 6= k. In the uniform model,
θa,l ∼ U(0, 1) and θab,lk = ωab.γab, where ωab ∼ N (0, 1) and γab ∼ U(0, 1).

Figure 2(a) shows the convergence for the Potts model. The two algorithms
compute a pair of dual and primal values at each iteration. The optimal solu-
tions are achieved when the duality gap vanishes. As the duality gap decreases,
the number of disagreement nodes reduces, see Figure 2(b). For the uniform
model, the corresponding graphs are shown in Figure 3. In addition to the con-
vergence rate, what matters most is the time required to compute the solution.
We generate 1000 random simulations for the uniform model with graphs of
size 100×100, 500×500 and 1000×1000. All graphs recover a solution for the
MRF graph problem with 5 discrete labels. The average computational time
is presented in the boxplot Figure 4.
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Fig. 3 Synthetic data: Uniform model
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Fig. 4 Computational time for 1000 random simulations of uniform model.

Image segmentation problem. The image segmentation problem aims to allo-
cate every pixel to the best corresponding label, see Figure 1. There are 4
input labels: white, blue, red and green. The unary potentials are defined by
the cost to assign a label l ∈ L to a pixel I(a), for example, one way of defining
this cost is:

θa,l = − log p(I(a)|a = l) ∀a ∈ V, ∀l ∈ L

where p(.) is a known probability distribution. The pairwise potentials are
computed to penalise the differing label assignment of neighbouring pixels,

θab,lk = exp

(
−|I(a)− I(b)|

σ2

)
.

1

‖l − k‖
.I(l = k) ∀ab ∈ E, ∀l, k ∈ L
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Fig. 5 Image segmentation: convergence properties

where σ corresponds to the level of noise in the image. Figure 5 demonstrates
the performance of three methods: TRBP, wMD and MD.

5 Conclusion

An efficient algorithm is presented for solving a large scale nonsmooth convex
problem. The method is based on the Mirror Descent algorithm employing
a suitable weighted distance function. By assessing the optimality bound of
the proposed algorithm, we are able to compute the optimal subset-dependent
step-sizes. This yields a convergence rate that is not worse than the standard
MD algorithm. The experimental results for MRF optimization problems con-
firm the improved performance.
Conflict of Interest. We acknowledge a partial support of the EPSRC award
EP/I014640/1 for the author Duy. V.N. Luong. We declare that we have no
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