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Abstract—In autonomic networks, the self-configuration of
network entities is one of the most desirable properties. In
this paper, we show how formal verification techniques can
verify the correctness of self-configuration. As a case study, we
describe the configuration of physical cell identifiers (PClIs),
a radio configuration parameter in cellular base stations. We
provide formal models of PCI assignment algorithms and their
desired properties. We then demonstrate how the potential
for conflicting PCI assignments can be detected using model
checking and resolved in the design stage. Through this case
study, we argue that both simulation and verification should
be adopted and highlight the potential of runtime verification
approaches in this space.
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I. INTRODUCTION

The complexity of current communication networks is
increasing due to their scale, heterogeneity and new require-
ments imposed by users. Recently the wireless communica-
tion industry has introduced new technologies, such as the
Long Term Evolution [1], as the next step in the evolution of
mobile networks. These networks require network operators
to deploy new cellular base stations and core network
entities in order to cover an equivalent geographical area.
For example, a new type of cellular home base station
may be installed by home users to extend coverage and
capacity [2]. A solution to these management challenges in
future networks is to apply concepts from autonomic com-
puting to design autonomous networks [3]. Such networks
include functionality for self-configuration, self-optimisation
and self-healing. This leads not only to efficient and reliable
operation but also a reduction in costs to network operators.

We argue that formal verification should play a central
role in the design and operation of future autonomous
networks. Formal verification techniques based on model-
checking have been successfully used for the verification
of hardware designs, communication protocols and safety-
critical systems. Such approaches explore the entire state
space of a system to ensure that there are no violations of
correctness properties. For network operators, formal veri-
fication can provide correctness assurances for autonomous
networks throughout the design and operation.

In this paper, we compare formal verification with sim-
ulation for analysing the correctness of self-configuration
in autonomous networks. As a case study, we focus on a
specific management problem, namely the self-configuration
of cellular base stations. We show how it can benefit from
model-checking. We formalise the correct assignment of
physical cell identifiers (PCIs) to base stations and verify
assignment algorithms using model-checking.

Our verification results show that current PCI assign-
ment algorithms cannot guarantee correctness due to two
types of violation. First, violations occur when available
PCIs are fewer than the number of base stations. Second,
violations also can be caused by concurrent deployment
of adjacent base stations. However, verification based on
model-checking has limited scalability due to the large
number of possible states. Simulation does not suffer from
this short-coming but it only explores a small portion of the
possible state space. It is less likely to detect violations in
specific conditions. To combine the exhaustive analysis of
verification while retaining the scalability of simulation, we
propose a network verification approach based on runtime
verification that searches for error states starting from partial
snapshots of the configuration state.

In the next section, we survey related research on au-
tonomous networks and formal network verification. §III
describes the PCI assignment problem and algorithms for
solving it. We then present formal models and the associated
verification approach using model-checking in §IV. In §V,
we discuss the experimental results from verification and
simulation. To address the limited scalability of verification,
we propose runtime verification in autonomous networks in
8VI. The paper finishes with conclusions in §VIIL.

II. BACKGROUND

Research into autonomous networks comes from the idea
of autonomic computing initially proposed by IBM [4] and
extends its scope to networking. There are a number of
ongoing research projects in this area and different archi-
tectures for autonomous networks have been proposed and
analysed [3], [S]. The Self-NET project [6] describes and val-
idates an innovative architecture for cognitive self-managed
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Figure 1. Overview of self-configuration in cellular base stations

elements for the future Internet. Standardisation efforts,
such as the Third Generation Partnership Project (3GPP)
for the telecommunication industry, have started work on a
standard for the Self-Organising Network (SON) that has the
autonomous features [7].

Formal methods can guarantee the correctness of systems.
They can be used to model and verify existing protocols
and algorithms. Architectures or protocols are designed first
and verified after the design phase to check for correctness
according to a specification. Model checking [8] has been
used successfully in various software systems and protocol
specifications to discover design bugs, verify correctness
and analyse systems. Examples include the analysis of
the Dynamic Host Configuration Protocol (DHCP) [9], the
FireWire tree identity protocol [10] and the root contention
protocol [11]. As part of such verification, new bugs have
been discovered.

III. SELF-CONFIGURATION OF BASE STATIONS

As a case study, we describe self-configuration in a
self-organising network. We show how formal verification
techniques can be adopted to analyse algorithms in self-
organising network. A self-organising network (SON) is an
autonomous network specified by the 3GPP that configures,
optimises, heals and protects itself to help operators reduce
operational expenses [7]. Figure 1 shows its architecture. In a
SON, evolved Node B (eNBs) and Home Node B (HNBs)—
also called Femtocells or home base stations—are cellular
base stations that cover macro and small (home-range) areas,
respectively. A cell is the basic geographic unit covered by
a base station. A cell has a unique physical-layer cell iden-
tifier (PCI) as a basic configuration parameter that identifies
the cell. As depicted in Figure 1, a macrocell created by
an eNB includes multiple small cells created by HNBs. An
eNB has a logical X2 interface to exchange configuration
data with adjacent eNBs. An Operation and Management
Unit (OAM) is responsible for a set of management func-
tions. It incorporates a self-configuration subsystem for
configuring parameters of eNBs and HNBs.

In a SON, self-configuration enables a newly-deployed
base station to configure radio parameters automati-
cally. During startup, base stations connect to the self-
configuration subsystem to configure their initial parameters.

New Cell
Cell B
PCl=1

COLLISION CONFUSION

Figure 2. Examples of collision and confusion in PCI assignment
This includes three steps: basic setup, initial radio config-
uration and self-optimisation. During the basic setup, an IP
address is allocated to the new base station and a gateway is
configured. After the basic setup, the base station starts to set
its radio parameters. This includes managing a neighbour list
and allocating unique PCIs to provide mobility management
and avoid interference with adjacent cells.

A. PCI assignment problem

In a SON, the PCI is an essential configuration parameter
for a cell and corresponds to a unique combination of
one orthogonal and one pseudo-random sequence for data
encoding. Only 504 unique PCIs are supported because
of compatibility with legacy base stations [7]. When a
new base station is deployed, a PCI needs to be selected.
In anticipation of the large number of base stations to
be deployed in the future, the reuse of PCIs by different
base stations becomes unavoidable. In currently deployed
networks, PCIs of cells are configured by means of static
planning [12]. Besides being expensive, this approach does
not scale to a large number of home base stations.

According to the SON specifications [7], an automated
PCI selection algorithm should fulfil the following two
requirements regardless of deployment strategies:

« collision-free: a PCI should be unique in the area that
the cell covers;

« confusion-free: a cell should not have neighbour cells
with identical PCIs.

Figure 2 illustrates PCI collision and confusion. If the PCI
of Cell B is equal to 1, there is a collision between Cells A
and B because the PCI of Cell A is also 1. If the PCI of a new
Cell D is selected to be 1, it will lead to confusion of Cells B
and C with A. This would cause hand-over procedures from
B to the new Cell D to fail.

The PCI selection problem is equivalent to the distance-2
vertex colouring problem where the PCI is a colour. It has
been shown that this problem is NP-complete [13]. There
exist randomised distributed algorithms for solving it in
wireless ad-hoc networks [14]. The time complexity of such
algorithms is O(A log® n) where A is the maximum degree
and n is the number of network nodes.



B. PCI assignment algorithm

To achieve collision- and confusion-free assignments, the
3GPP proposed a PCI selection algorithm with several
optional extensions, which Figure 1 summarises. The algo-
rithm is divided into four main steps, with steps 2-3 being
optional. Network operators have the flexibility to implement
the optional steps to improve the PCI selection process.

(1) A base station tries to get a valid range of PCIs from
the OAM. The list of returned PCIs depends on the location
of the deployment and the operator’s planning policies.

(2) The base station performs neighbour discovery through a
broadcasting mechanism to detect the PCIs of its neighbour
cells, thus avoiding selecting these PCls.

(3) The X2 interface enables neighbours to exchange a
neighbour relation table that contains information about
neighbours of neighbours. Therefore, the base station may
avoid selecting PCIs that result in confusion.

(4) The base station selects a random PCI from the list of
candidate PCIs. The base station then sends the selected PCI
to the OAM that records this configuration.

IV. VERIFICATION APPROACH

To assess the satisfaction of the collision- and confusion-
free properties, we adopt model-checking as a rigor-
ous method to evaluate the current PCI selection algo-
rithm. We chose to use the SPIN model-checker [15]
because it supports the verification of asynchronous and
distributed process system. It uses the PROcess Meta LAn-
guage (PROMELA) to describe the algorithm and its as-
signment policies. PROMELA can be translated into a C
program for efficient verification using SPIN. It supports
the specification of safety properties in linear temporal
logic (LTL). The semantics of LTL provides temporal modal
operators that can make statements about properties that are
globally true or eventually true. This is sufficient to describe
collision- and confusion-free PCI assignments.

A. Modelling PCI assignment

We consider an abstract model of the PCI assignment
problem. We view the SON as a distributed system that
includes base stations and the OAM. We only model the
configuration procedure and do not consider failure of any
process. All communication channels are assumed to be
reliable and do not duplicate messages. The local clocks of
processes are synchronised and clock drifts can be ignored.
With these simplifying assumptions, we can focus on the
fundamentals of the PCI selection algorithm.

To define neighbour relationships and detect collision and
confusion, we need to model the spatial layout of cells.
A matrix position (i, j) (where (¢, j) are non-negative
integers) is a coordinate that represents the spatial location
of a cell. A cell with its PCI located at (i, j) can be
represented as P(;, ;. We assume that all places that can
be reached directly from (¢, j) are neighbours of (i, j);

all places that can be reached directly from neighbours of
(i, j) are neighbours of neighbours of (¢, j). Any deployed
base station can have a maximum of 8 neighbours and
16 neighbours of neighbours.

In practice, HNBs can have a varying number of neigh-
bour cells depending on the deployment environment, the
density of HNBs and radio propagation properties. However,
the principle of PCI selection remains the same irrespective
of the numbers of neighbours. We adopt this simple model
to illustrate the problem and investigate the feasibility of
formal verification. As we show in §V, the scalability of
model-checking is limited even in this simple scenario.

B. Verification goals

Let N* represent the positive integers and let & be the
empty set. N x [N represents the size of the two-dimensional
matrix where N € Nt and N > 2. Let (i, j) be the
coordinates of a cell where ¢ € [0, N|, 7 € [0, NJ]. Let
P, j) represents the PCI of a cell at position (i, j) in
the matrix where 0 < i £2 < N, 0 < j+2 < N.
,P(i7 7) S [1, 504] Imtlally P(z, i = .

The neighbour relationship can be expressed using cell’s
coordinates. Let (x, y) be the neighbour coordinates of
(i, j) where z, y € N*, z € [0, N], y € [0, N] and
T #1,y # j. If ¥, is a finite set containing a list of Py; ;)
neighbours’ PClIs, then

Yo ={Pay lzecli—-1,i+1], yclj—1, j+1]}.

Let 3y, be a finite set containing a list of P(; ;) neighbours
of neighbours’ PCIs, then

Yo ={Pay lzeli—2, i+2]Azdi—1, i+1],
yeli—2 j+2Ayéi—1 j+1]}

With these definitions, we define the collision-free and
confusion-free properties. Let ¥ and & be defined as:

) ::P(iJ) € X, ¢:= 'P(i’j) €Xm

Let M, represent a SON, then the safety properties can be
stated as:
collision-free: M =0 -0

confusion-free: M, =0 -

We use the assert command in PROMELA to express
the violation of our safety properties (see Equation (1)). The
assert statement can take any valid PROMELA expression
as its argument. The expression is evaluated each time the
statement is executed. If the expression evaluates to false,
an assertion violation is reported.

(D

V. EXPERIMENTAL RESULTS

The goal of our experimental evaluation is to evaluate
the feasibility of formal verification compared to simulation
and examine how it can ensure the correctness of future
autonomous networks. We use the SPIN to exhaustively



search the state space for collision or confusion violations of
the PCI selection algorithm described in §III-B. In addition,
we take advantage of SPIN’s support for simulating a model
represented in PROMELA. The non-deterministic choices in
the model are simulated as random choices and processes
communication is simulated as message passing. The SPIN
model-checker ran on a 2.4 Ghz Intel Core2 Duo machine
with 2 GB of RAM.

We chose the minimum number of available PCIs to
be 30 to ensure enough PCIs for the 5 x 5 matrix. For
the first scenario, we set the number of available PCIs to
200 and tried to deploy two eNBs in the matrix. However,
the verification could not be completed because the model-
checker exhausted memory after 31,272,100 state transitions.
Therefore, we limited the maximum number of available
PCIs to 110 to reduce the number of verifiable states. We
use this range of PCIs for the experiments unless otherwise
stated. For simulation results, we run each experiment 500
times to ensure a reasonable number of samples.

A. Single base station scenario

In this scenario, one eNB is deployed in the 5 x 5 matrix
and the other 24 places have pre-deployed eNBs. The self-
configuration requirement is that the PCI of the new eNB is
collision- and confusion-free in relation to the other cells.
We evaluate this scenario according to the PCI assignment
algorithm (described in §III-B) in three cases: (1) PCI LIST:
the eNB can only receive a valid list of available PCIs from
the OAM; (2) NEIGHBOUR DETECT: the eNB can detect
its neighbours’ PClIs; (3) X2: eNBs can exchange neighbour
information over the X2 interface.

The verification results show that for (1) PCI LIST, there
are 8 collisions and 16 confusions; for (2) NEIGHBOUR
DETECT, there are no collisions and 16 confusions; and for
(3) X2, there are no collisions and confusions. It shows
the potential number of states that the deployed eNB has
with collisions and confusions. When the eNB cannot de-
tect neighbours’ PCIs and communicate with other eNBs
through the X2 interface (PCI LIST), both collisions and
confusions may occur. When the eNB is capable of detecting
its neighbours’ PCIs (NEIGHBOUR DETECT), the collision-
free property can be guaranteed but confusions may still
happen due to lack of PCI information about neighbours’
neighbours. When the X2 interface is added (X2), there are
no collisions or confusions. This result provides evidence for
the usefulness of the 3GPP’s recommendation of neighbour
detection and the X2 interface.

B. Multiple base station scenario

First we consider two eNBs that are deployed concurrently
as neighbours. We assume that all optional extensions are
implemented by each eNB, which is why we do not expect
collisions or confusions.
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Figure 3. Verification and simulation results for two deployed eNBs

Figure 3(a) presents the verification results in terms of
potential collisions and the total number of state transition.
The x-axis shows the number of available PCIs, the y-
axis shows the collisions (left) and the total state transition
(right). As the number of available PCIs increases, the
number of collision states also increases linearly and the
total transition states of the model increase faster than
the collision states. This indicates that, with more PClIs,
the possibility of collisions occurring is lower. However,
collisions still exist.

For each violation, SPIN generates a counterexample trace
that includes a path to the violation states. It shows that when
two neighbour eNBs select their PCIs concurrently to be the
same, they are not aware each others PCIs. This causes a
violation of the collision-free property. We can expect that
the confusion-free property can also be violated when two
neighbour of neighbour eNBs are deployed concurrently.

Figure 3(b) shows the simulation results of the average
number of occurred collisions. We can see that, as we in-
crease the number of available PClIs, the number of detected
collisions decreases. This result implies that when there are
more PClIs, the possibility of collisions occurring can be
reduced. Simulation cannot detect all potential collisions
when there are many candidate PCIs, while verification can
always detect all possible collision states. For assessing the
collision-free property, verification is more rigorous.

In addition, we also evaluated the effect of varying the
number of HNBs and available PCIs. To avoid the scalability
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Figure 4. Simulation results for multiple deployed HNBs

limitations of verification, we constructed two simulation
experiments with a limited number of HNBs. In the first
experiment, we fixed the number of concurrently deployed
HNBs to 25. All HNBs within the 5 X 5 matrix are deployed
concurrently. Each HNB can have up to eight neighbours,
which means that the number of available PCIs should be
more than that to make a collision-free assignment possible.
We then varied the value of available PCIs from 10 to 100.
In the second experiment, we keep the number of available
PCIs constant at 20 and 25, respectively. This simulates the
case when there are not enough PCIs available. For this
experiment, we varied the number of HNBs from 5-25.

Figure 4 shows the number of occurred collisions and
confusions for the multiple HNBs deployment. We can see
that, as the number of available PCIs increases with a fixed
number of HNBs, collisions decrease. Figure 4(b) shows that
as the number of HNBs increases with a fixed number of
PClIs, collisions increase. We conclude that the ratio between
the number of HNBs and available PCIs is an important
factor that determines the collisions and confusions.

Overall, both our verification and simulation results pro-
vide evidence that collisions and confusions cannot be
avoided due to the concurrent PCI selection. which has not
been addressed in the 3GPP specification.

C. Discussion

Our evaluation of verification and simulation has yielded
several insights. Both verification and simulation are useful

for detecting hidden design flaws and finding correctness
violations. Simulation is easier to understand and perform.
It scales better because it avoids the problem of state space
explosion. However, simulation has lower state space cov-
erage and only tests scenarios under predefined conditions,
thus may not discover infrequently occurring problems.
Formal verification techniques are more rigours when
assessing required properties. However, modelling and ver-
ification of a complex network is challenging and requires
a certain level of abstraction. The problem of state space
explosion is the main obstacle when applying formal verifi-
cation using model-checking. Even our simple deployment
model with simplifying assumptions had limited scalable
below what would be considered a realistic deployment.

VI. FUTURE WORK

We will study more realistic models that consider failure
of base stations, message errors and other probabilistic
behaviour. We will adopt quantitative verification techniques
to assist the design of algorithms and protocols according
to the desired overall performance. We also plan to look
into reconfiguration approaches to avoid collisions and con-
fusions after they have happened. In addition, we plan to
address the scalability limitations of verification at a more
fundamental level, as follows:

Runtime verification. Based on the lessons that we learnt
as part of this work, we propose a framework for the
verification in future autonomous networks. Our approach
aims at combining the scalability of simulation with the
rigour of model-checking. The main idea is to apply runtime
verification techniques [16], [17] to verify autonomous net-
works. Runtime verification adopts model checking during
program execution to detect faults. In runtime verification,
a runtime verifier periodically checks the correctness of a
protocol and algorithm implementation at runtime. During
normal system operation, runtime verification observes the
system’s input and output behaviour to verify given prop-
erties. Desired correctness properties are only checked for
potential future states in the network model. Since this
results in a bounded state depth without searching the entire
state space, it minimises the number of explored states and
thus avoids the state explosion problem. When a potential
violation is detected, a fault-avoidance mechanism can be
used to influence the operation of the network avoiding states
that may lead to incorrect behaviour.

Figure 5 shows how an autonomous network may include
a runtime verification mechanism. A runtime verifier is em-
bedded into the network architecture to provide correctness
guarantees. It continuously monitors and checks the network
state against given desired properties. Such properties can
be described as logical representations using a formal spec-
ification and are embedded as monitors into the network
implementation. Correctness properties can be functional
and non-functional properties, such as consistency, quality
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of service and system resiliency etc. During runtime, unsafe
states should be globally avoided and desired properties
should be eventually achieved. When unsafe or inconsistent
states are detected by the verifier, it avoids such states to
ensure that the network continues operating correctly.

To cope with potentially unknown conditions and require-
ments, verification goals must evolve. Statistical reasoning
techniques can be adopted to learn from the system out-
put and provide feedback to verification requirements. We
believe that such runtime verification can be applied as an
effective and scalable technique for the verification of cor-
rectness and performance properties, for example, relating
to Femtocell coverage optimisation, adaptive interference
management and dynamic load balancing.

VII. CONCLUSIONS

In this paper, we show how to use verification based on
model-checking and simulation to assess the collision-free
and confusion-free properties when assigning PCIs to cellu-
lar base station in a SON. We specify the self-configuration
procedure as a model checking problem. For this, we im-
plement the PCI selection algorithm using PROMELA and
verify the model using the SPIN model checker. Our results
reveal potential assignment issues when base stations are
deployed concurrently. A simple solution based on serial
processing of request can alleviate this problem.

Our comparison of simulation and verification reveals
their respective strengths. Verification is more rigorous when
discovering incorrect behaviour but its limited scalability
precludes its use in non-trivial deployment scenarios. As
a solution to this problem, we describe a verification ar-
chitecture for autonomous networks that exploits runtime
verification. This approach reduces the number of states to
be considered by the verifier but nevertheless can discover
and avoid correctness problems at operation time. As future
work, we plan to explore the potential of this approach.
We hope that it is a first step towards provably-correct
autonomous networks.
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