Imperial College

sl (@ LsDs

ale Distributed Systems Group

Trends in Scalable Stream Processing:

Parallelism & Programmability

prp@imperial.ac.uk

Large-Scale Distributed Systems Group

Department of Computing, Imperial College London
http://Isds.doc.ic.ac.uk

EBSIS Summer School 2016 — Sinaia, Romania

Imperial College London

Focus on science, engineering, medicine and business
— Located in South Kensington near Hyde Park
— About 15,000 students

o o A T X

Imperial College | I ,- 7
London - il

Peter Pietzuch — Imperial College Lond L k= \‘ C g

Who Am |?

Peter Pietzuch
, Distributed Systems group, University of Cambridge

, Systems Research group, Harvard University

Department of Computing, Imperial College London
— Joined Imperial 8 years ago
— Head, Large-Scale Distributed Systems (LSDS) Group

Large-Scale Distributed Systems (LSDS) Group

1"
Currently 15 members (by |L—SS ljﬁb e o
Q' arge-oscale bistribute ystems Group
(8 post-docs, 7 PhD students) http://Isds.doc.ic.ac.uk

LSDS Mission Statement:
“To support the design and engineering
of scalable, robust and secure distributed applications”

Peter Pietzuch — Imperial College London

Past and Present LSDS Research

Distributed dataflow systems = Cloud computing

ICDE'16, ATC'14, SIGMOD'13] = Multi-data-centre support
Multicore data processing - Ed -

e computin
[SIGMOD'16, VLDB'14] g e I\/IlzbiSys’ng]

Heterogeneous architectures = Resource allocation

[SIGMOD'16]

: » Data centre management
Stream processin . deE
[SIGMOD’16,IgIDR’15, ICDE’1?] Databases Distributed = Publish/subscribe
Scalable machine Systems systems
learning = Middleware
Complex event processing

LSDS Group:
Experimental Systems Research

Data centre networking = Cloud security
In-network _ [CCS'15, ESORICS'16]
processing Networklng Security = Information
[CONEXT'14, ATC'16] Flow Control
Protocol checking [ICDE'14, Middleware'11, ATC'10]

[TSE'14] = Web vulnerabilities
MANET data processing [WebApps'11]

Overlay networks = Hardware tru_st
Content distribution = Browser security

Event Data Is Everywhere

More data created than ever
— Generated 2.5 Exabytes (billion GBs) each day in 2015

Many new become available e
' \ T GETALL THE
V- ”// o-. INFORMATION YoU CAN,
_ = WE'LL THINK 0F A
Internet services, Social feeds loT USe FOR (T LATER.
web sites devices

~

S

Mobile
devices Scientific
instruments

Data
repositories

Storage and networking costs become cheaper
— Hard drive cost per GB dropped from $8.93 (2000) to $0.03 (2014)

*- Many applications want to exploit these events in real-time...

Peter Pietzuch — Imperial College London 6

Intelligent Urban Transport

Microsoft*

Research SensorMap

Instrumentation of urban

Node 3161 St.Matthews St. (Junction) transport
B Road Aerial indseve |eg /)) — Induction loops to measure
@@ﬁ\ @D Sl 2 |) traffic flow
9 o S o — Video surveillance of hot spots

.k See this location in
IJ L1 bird's eye view.

— Sensors in public transport

4L
vid() .

| RT— . we Potential queries

Park cé: puargn
A AN B Live — How to detect traffic

Mount Auburn SIS .
L SRSE~dsona o | congestion and road
Watertown i ;5 I I\ ‘ %\ : C|OSU reS'7

— How to explain the cause of
congestion (public event,
emergency)?

— How to react accordingly (eg
by adapting traffic light
schedules)?

> e f { £

27 ¢)]

3 9 of@rfﬁ 7,
i £ gt

- o IR "
AWML]
Hopyard ¢ Owens (Ph 2 & 5) NB B— Live Drive [Livel
- .

A truck has broken dowt
junction of Conyngham |

Peter Pietzuch — Imperial College London 7

Real-Time Web Analytics

Potential queries @g) Uniquely Identified Visitors
— How to uniquely identify web site visitors? Q,g Unique Visitors
— How to maximize user experience with & Visits
relevant content? f" / \\ Page Views
— How to analyse “click paths” to trace most Y/ \ His
common user routes? Volume of Available Data
Example: Online predictions for Solution: AdPredictor
adverts to serve on search engines — Bayesian learning algorithm
ranks ads according to click
OING' | Chezp fights P probabilities
g::;%’;etaop%%?ﬁcl?l.iug:ts Now- Try Cheapflights today. fn

update

Cheap Flights from £20
Skyscanner.net/CheapFlights
Find Cheap Flights & Book Today. Prices from only £20

Cheap Flights from £29
eDreams.co.uk/Cheap_Flight
Offer Ends on the 30th: Hurry, Book Now & Save Today!

Cheap Flight Upto 65% OFF
www.CheapOair.co.uk/Cheap-Flightss
Fares Just Dropped! Upto 65% Off + Eamn Extra £15 Discount Today.

<€

y E{-11}

predict

Peter Pietzuch — Imperial College London 8

Social Data Mining

-
TWItter Cascad gl stephanienour Stephanie NourPrince
OMG, FYI, and LOL enter Oxford English Dictionary, foreshadow the
u \
Detection

apocalypse engt.co/i5fsoO
1 minute ago

RSS

/RSS

Peter Pietzuch — Imperial College London 9

Applications Follow An Event-Based Model

X, Event streams
-/

Event
producers

Peter Pietzuch — Imperial College London

—

Loose coupling
(results in
scalable design) I

Subscriptions,

Queries
Results
Event/stream
processing
system

Applications

Event
consumers

10

Challenge 1: Performance Matters!

! Stream
EEEm = (v processing

system

&

High-throughput streams Low-latency results

Facebook Insights: Aggregates 9 GB/s

Feedzai: 40K credit card transactions/s
Google Zeitgeist: 40K user queries/s (1 sec windows)
NovaSparks: 150M trade options/s

Peter Pietzuch — Imperial College London

< 10 sec latency
< 25 ms latency
< 1 ms latency
< 1 ms latency

11

Challenge 2: Programmability Matters!

T1 T1(a b, ¢)
T2 2009 B0 B
T3 T3(g,i, h)
Topic- Content- Complex
based based pattern
filtering filtering matching

Complex Event

Publish/Subscrib
ublish/Subscribe Processing (CEP)

Peter Pietzuch — Imperial College London

segment | segment | segment segment | segment

Stream
queries

Stream
processing

E @ B Pre-process
[@ 9 ¥ Share staté

mu m Parallelize
Aggregate

Online machine
learning, data
mining

12

Roadmap

Introduction to Stream Processing Systems

Challenge 1: Performance

How to exploit parallelism on modern hardware independently
of processing semantics?

Challenge 2: Programmability
How to support online machine learning algorithms
over stream data?

Conclusions

Peter Pietzuch — Imperial College London

13

What Is An Event?

An event is a happening of interests. An event type is a
specification of a set of events of the same structure and

semantics.
[Etzion and Niblett (2011)]

can have fixed relational schema highway = M25
— Payload of event is a set of attributes segment = 42
direction = north
speed = 85

Vehicle speed data

Vehicles(highway, segment, direction, speed)

Peter Pietzuch — Imperial College London

14

What Is An Event Stream?

is an infinite sequence of event tuples
— Assume associated timestamp (eg time of reading, time of arrival, ...)

t,) t t,

highway highway highway highway highway highway highway highway highway highway
segment segment segment segment segment segment segment segment segment segment
direction direction direction direction direction direction direction direction direction direction
speed speed speed speed speed speed speed speed speed speed

Event stream time

*- But we have an infinite amount of data to process...

Peter Pietzuch — Imperial College London 15

How Many Tuples To Process?

defined finite set of tuples for processing
— Process events in window-sized batches

highway highway highway highway highway highway highway highway highway highway
segment | segment | segment | segment | segment | segment segment | segment | segment | segment
direction direction direction direction direction direction direction direction direction direction
speed speed speed speed speed speed speed speed speed speed

window

]

now

Time-based window with size T at current time t
[t-T:1] Vehicles[Range T seconds]

Count-based window with size n:
last n tuples Vehicles[Rows n]

Peter Pietzuch — Imperial College London

How To Define Event Queries?

Window converts event stream to dynamic relation (database table)
— Similar to maintaining database view

— Use reqgular relational algebra operators on tuples

Window specification

Any relational

_ query
Streams Relations

(select, project,
join, group by, etc)

Special operators:
Istream, Dstream, Rstream

Peter Pietzuch — Imperial College London 7

Converting Relations = Streams

Define mapping from relation back to stream

— Assumes discrete, monotonically increasing timestamps
T, T+1, T+2, T+3, ...

— Stream of all tuples (r, T) wherer&R at time T but r&R at time 1-1
— Stream of all tuples (r, T) wherereR at time t-1 but r&R attime 1

— Stream of all tuples (r, T) wherer&R attime T

Peter Pietzuch — Imperial College London 18

s CQL: SQL-Based Declarative Queries

provides well-defined semantics for stream queries
— Based on well-defined relational algebra (select, project, join, ...)

Example: Identify slow moving traffic on highway
— Find highway segments with average speed below 40 km/h

Output
/select highway, segment,)
direction, AVG(speed) as avg
Input stream from Vehicles[range 5 sec slide 1 sec]
group by highway, segment, direction
Khavmg avg < 40)
Operators

* Principled way to define stream processing semantics...

Peter Pietzuch — Imperial College London 19

Roadmap

Challenge 1: Performance

How to exploit parallelism on modern hardware independently
of processing semantics?

Challenge 2: Programmability
How to support online machine learning algorithms
over stream data?

Conclusions

Peter Pietzuch — Imperial College London

20

S pr | J -

I E T

e

How To Scale Big Data Systems?

)

| -

=
8 e
s EF O
2 2 0o O @5
gerfl_
.&Wbd%
dSk C o
yr gC
H_m.&m
o2 O g
SN
£ £
o 8 ® 3
CF,_.M.m
1 0 T
D 5
Al

But Must Also Exploit Parallel Hardware

Servers have many parallel CPU cores

Servers with GPUs common
— GPU have even more specialised cores

PCle Bus
Command Queue
SMX; ... SMXy _l
- I\ T mm T 1R
0sof | E|le &l glie @ =
S0 Slle @l | 8|l o == I o 1000s of
CPU cores C; G C:; C; EE EE EE > GPU cores
\ C, GCg Cs Gy == == ==
[1 | HE HE
=l = g
DRAM pvA DRAM
L

Peter Pietzuch — Imperial College London 22

Task Parallelism Vs Data Parallelism

ictinet \Al ~id |

ickineat \Al ~idd | . g g
e e ANl in | select highway, segment, direction, AVG(speed)

f Vehicl 5 ds slide 1 d
select highway, segment, direction, AVG(speed) rom venic es[range Seconas Side 1 Secon]
.) group by highway, segment, direction
from Vehicles[range 5 seconds slide 1 second] having avg < 40
group by highway, segment, direction
having avg <40

Multiple queries Single query
highway 1-10 highway 1-5
Hy. executedin
Stream 9/7%,1/ parallel
partitioning 6170

Operators/Tasks
Peter Pietzuch — Imperial College London 23

Apache Storm: Dataflow Graphs

|dea:
Execute event operators as data-
parallel

Task organised as

parallelism
degree 2 Many systems do this, e.g. Apache
Storm, Apache Flink, Google
Dataflow, ...
parallelism
degree 3

*- But must manually assign tasks to nodes...

Peter Pietzuch — Imperial College London 24

Use Apache Hadoop For Stream Processing?

3
ror 9 MapReduce model
— Data model: (key, value) pairs

Reduce

? ? ? — Two processing functions:

— map(k,v) > list(kov2)

— reduce(ks, list(v)) > list (va)
Shuffle M

Benefits
— Simple programming model
— Transparent parallelisation

Map — Fault-tolerant processing

Partitioned data
on distributed

< Shuffle phase introduces synchronisation barrier (batch processing)

-@-| [l
-©-10
-0~ [

Peter Pietzuch — Imperial College London 25

sosr1a . Apache Spark: Micro-Batching

. |dea:
t 11 Reduce size of data partitons to

Q Q O produce up-to-date, incremental results
rr 1

—

for stream data
— Tasks operate on micro-batch partitions
[— Results produced with low latency

Stream, divided into micro-batches

[nd @kl

@ |nteraction of query windows and micro-batches?

Peter Pietzuch — Imperial College London 26

Spark: Small Slides Result In Low Throughout

select AVG(S.1) from S [rows 1024 slide x|

o -
1.8 -
32,
c O -
g) 5 1.2 :
s !
= = 0.8 A
0.6 1
0.4 -
0.2 -
0 T T T T T T T T |
0 1 2 3 4 5 6 7 8 9
Window slide ()

*- \Want to avoid coupling performance with query definition

Peter Pietzuch — Imperial College London 27

How To Parallelise Sliding Windows?

select highway, segment, direction, AVG(speed) as avg
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40
o /
7. 6 5 4 3 2 A1
Task(W1}—>[Worker A
! Wo /| Synchronise to output
W) results in order
Task 3 »[Worker B
{ Wy) J

* | eads to redundant computation

Peter Pietzuch — Imperial College London 28

Avoiding Redundant Computation

Use to remove window overlap between tasks
— Smallest unit of parallelism without data dependencies between windows
5 4 3 2 1

| I 1] I 1
H EEE NN EEN EEE
II=] |

-
P4
P2 Panes processed in parallel
Ps3 e
P4 Window results assembled
Ds from pane results

Apache Spark uses panes for micro-batches with windowed queries

< Window slide limited
by minimum micro-
batch size (~500 ms)

< Micro-batch size
limited by pane size

Peter Pietzuch — Imperial College London 29

sevoris SABER: Window Fragment Model

|dea: Decouple task size from window size/slide
— e.g. 5 tuples/task, window size 7 rows, slide 2 rows

T, T, T,
1511411312 | 11 1019 |8 |7 | 6 514|312 |1
\ W,
Wy
W3
Wy
Wsg

Task contains one or more
— Closing/pending/opening windows in T,
— Workers process fragments incrementally

Peter Pietzuch — Imperial College London

Merging Window Fragment Results

|dea: Decouple task size from window size/slide
— Assemble window fragment results
— Output themin correct order

Worker A: T,
W
[W2 1} l W2
result
W]
m mpt Wi
4 'i py result
Wi —
Wp
. w. " Slot 2 Slot 1 Output It
4 utput resu
_— s Result Stage circular buffer
Worker B: T,

WorkearBssimed | Iresedia)ts engdsenitsi tnofragopeotiemsubsand
forwards complete windows downstream

31
Peter Pietzuch — Imperial College London

Evaluation: SABER Window Performance

select AVG(S.1) from S [rows 1024 slide x]

8 - B 02
) SABER throughout
= 5 A x 015
m \ 9
c |y 2
§ 4 . \ - 0.1 E?
\
2 ~ 5
9 \‘ —1
|£ 2 A “ - 0.05
e SABER latency
0 . B R

2 8 32 128 512
Window slide ()

*- Performance with windowed queries remains predictable

Peter Pietzuch — Imperial College London

32

When to use a GPU for a CQL operator?

Statically schedule queries on CPU/GPU based on cost model?
— Cost model depends on operators, windows, input

i i | A

| Q, 3ms 2ms
3mS 1mS C)A C)A QB QA QB QB QB QB QA QB

T | To T1o

T
[T T T [T)T [Ta]

@ Static scheduling under-utilises processors

33

SABER’s Hybrid Stream Processing Model

|dea: Enable tasks to run on both processors
— Scheduler assigns tasks to idle processors

7o o N~ |
B

| Q, 3ms 2ms
3ms 1ms Qv Qa Qs Qu Qg Qs Qg Qg Qu Qg

T T T T i i i i i i T T T >

___I Tio
T [T [T [T]

o FCFS ignores effectiveness of processor for given task

34

Heterogeneous Look-Ahead Scheduler (HLS)

|dea: Idle processor skips tasks that could be executed faster by
another processor

— Decision based on observed query task throughput

Ad @ ||| &

| Q, 3ms 2 ms
3 ms 1ms Qn Qn Qs Qn Qg Qg Qg Qg Qu Qg

BN - [N -
Bikig § oRipdnBedrSiiglentdy tifiye 3 ms of work for GPU

35

CPU and GPU Contribute Proportionally

HLS gives aggregate throughput of all processors
— CPU executes both Q, and Qg tasks

T I T Ty I T1o

2 7

___I To
L [T T] T]

[&] T || To
N - RN

36

SABER Architecture

@}_> Stage
l vy _ CPU execution Tl To

GPU execution

Dispatching Scheduling @3
Stage Stage

Window computation delayed until task execution =

All query tasks added to system-wide lock-free queue
GPU window fragment result computation

CPU performs window computations instead

37

SABER Architecture

@}_> Stage
l vy _ CPU execution Tl To

GPU execution

Dispatching Scheduling @3
Stage Stage

Implemented in Java (15K LOC), C (2K) and OpenCL (2K)

Supports projection, selection, aggregation (w/group-by) and
join over time- and count-based windows

Available on Github:

38

Evaluation: Set-up & Workloads

Intel Xeon 2.6 GHz NVIDIA Quadro K5200
16 physical cores 2,304 cores
10 Gbps 64 GB RAM PCle 3.0 8 GB GDDR 5
NIC 20 MB LLC (x16) 48 KB L2
N\ J g ~

Y

Ubuntu Linux 14.04 NVIDIA 346.47

Google cluster data: jobs events from Google infrastructure
SmartGrid measurements: plug measurements from houses

Linear Road Benchmark: car positions and speed on highway

39

Throughput (108 tuples/s)

Is Hybrid Stream Processing Effective?

60
50
40
30
20
10

Qb ¢

[60,1] [60,1]

D]
[1,1] [30,1]

© ® & ® E ©

[3600,1] [3600,1] [1 1] [1,1]

[1]

@ Yen
[60 1] [30,1]
[1,1]

O SABER (CPU contrib.) B SABER (GPU contrib.)

40

1143 1175
MB/s 1010 MB/s 1043
MB/s MB/s
751
1150 MB/s 635 609
MB/s MB/s MB/s
MB/s
1
N JI\ ' ' JI\ ! I I /I
Cluster Mgmt. Smart Grid LRB

Roadmap

Challenge 2: Programmability
How to support online machine learning algorithms

over stream data?

Conclusions

Peter Pietzuch — Imperial College London

41

Supporting Online Machine Learning

Online recommender system
— Recommendations based on past user ratings

— Eg based on (cf Netflix, Amazon, ...)
User A
User A Recommend:
ltem: “Apple
“iPhone” Watch”
Rating: 5
Customer events Up-to-date |
on website recommendation
stream

Executed as dataflow graph
(eg Storm, Spark, Flink, ...)

<@ \What programming abstraction to use to specify the algorithm?

Peter Pietzuch — Imperial College London 42

Programming Models For Stream Processing?

™] Lt] [/ NN N\ S n _ U = . I

TIOBE Programming Community In;jiexi

Source; www.tiobe.com

30

25

« Java
w C
C+4
C#
w= Python
w= Objective-C
PHP

w= Visual Basic .NE1T
we JavaScript
10 Perl
S L 'f\
- > ™
= N L2
., . ‘

e I

2002 2004 2006 2008 2010 2012 2014

20

15

Kaungs os)

Peter Pietzuch — Imperial College London 43

Online Collaborative Filtering In Java

Update with
new ratings
Item-A | Item-B
User-A 4 5
User-B 0 5

User-ltem matrix (Ul)

Multiply for
recommendation

@x userltem = new Matrix();

Matrix coOcc = new Matrix();

return userRec;

Item-A

Item-B

User-B|1]|2|X Item-A

1

1

Item-B

1

2

Co-Occurrence matrix (CO)

Peter Pietzuch — Imperial College London

userltem.setElement(user, item, rating);
updateCoOccurrence(coOcc, userltem);

Vector userRow = userltem.getRow(user);
Vector userRec = coOcc.multiply(userRow);

~

44

Collaborative Filtering In Spark (Java)

// Build the recommendation model using ALS

int rank=10;
int numlterations = 20;
MatrixFactorizationModel model = (JavaRDD.toRDD(ratings), rank, numlterations, 0.01);

// Evaluate the model onrating data
JavaRDD<Tuple2<Object, Object>> = (
new Function<Rating, Tuple2<Object, Object>>() {
public Tuple2<Object, Object> call(Ratingr) {
return new Tuple2<Object, Object>(r.user(), r.product());

}
) }
JavaPairRDD<Tuple2<Integer, Integer>, Double> = JavaPairRDD.fromJavaRDD(

(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());

}
}

);
JavaRDD<Tuple2<Double, Double>> = JavaPairRDD.fromJavaRDD((
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());

}
}

). values);

Peter Pietzuch — Imperial College London 45

Collaborative Filtering In Spark (Scala)

// Build the recommendation model using ALS
val rank =10

val numlterations = 20
val model = (ratings, rank, numlterations, 0.01)

// Evaluate the model on rating data
val usersProducts = ratings. {

case Rating(user, product, rate) => (user, product)

}

val predictions =

model.predict(usersProducts). {
case Rating(user, product, rate) => ((user, product), rate)
}
val ratesAndPreds = ratings. {

case Rating(user, product, rate) => ((user, product), rate)
\}. (predictions) /

* All event data is immutable, no fine-grained model updates

Peter Pietzuch — Imperial College London 46

Imperial,

sevons Processing State As First Class Citizen

Tasks process
stream data

Item 1 Item 2 3
5
3:::2 i] Dataflows
represent
streams
State Elements -
(SEs) represent . . ’()

transient state

are mutable in-memory data structures
— Tasks have local access to SEs
— SEs can be shared between tasks

Peter Pietzuch — Imperial College London

47

Challenges With Large Processing State

- ~N Big Data
problem:
Matrices

become large

Matrix userltem = new Matrix();
Matrix coOcc = new Matrix();

. J

State will not fit into single node

e How to handle distributed state in a scalable fashion?

Peter Pietzuch — Imperial College London 48

1. Partitioned State Elements

|dea: Partitioned SEs are split into disjoint partitions

A
Key space: [0-N] ‘ |:>
A\ ACOR
User-ltem matrix (Ul)

Item-A | Item-B
Access L

User-A 4 5 hash(userID) Q/v
by key

User-B 0 5

State partitioned according Dataflow routed according to
to partitioning key hash function

Peter Pietzuch — Imperial College London

2. Partial State Elements

Partial SEs are replicated (when partitioning is not possible)

Co-Occurrence matrix (CO) ‘
Item-A | Item-B

Item-A 1 1 |:>

Item-B 1 2

— Replicas kept weakly consistent

Access to partial SEs either local or global

Local access: Global access:
Tuples sent to one Tuples sent to all

Peter Pietzuch — Imperial College London 50

State Synchronisation with Partial SEs

Reading all partial SE instances results in set of

ol
- Q:’

~ Merge
logic

Requires application-specific merge logic
— Merge task reconciles state and updates partial SEs

Peter Pietzuch — Imperial College London 5

State Synchronisation with Partial SEs

Reading all partial SE instances results in set of partial values

o
g ' C]
~ Merge
o logic
Multiple

partial values

Peter Pietzuch — Imperial College London 52

State Synchronisation with Partial SEs

Reading all partial SE instances results in set of partial values

Merge
logic

Multiple Collect partial
partial values values

Barrier collects partial state

Peter Pietzuch — Imperial College London 53

SDG for Collaborative Filtering

n1 ____________________________ n2 ________________________ S
new | . :' “.
—_">r ZTilEe updateUserltem . . updateCoOcc i
| > o ;
\ 4 State.
Element
Task ;(SE) |
Element j N
— _p getUserVec : getRecVec i :(/ ;ejge\ \) _rec
C’“eSf dataflowu AN Vi resum

SN ____=-" —fm e e = =7 S h d e e e e e e -

*- Note that this combines batch and stream processing in single model

Peter Pietzuch — Imperial College London 54

Imperial,

usenx Scalable & Elastic Event Processing (SEEP)

ATC’14

Annotated
Java program

(@Partitioned, @Partial, @Global, ...)

~O—~0-0~

>

Program.java
[)

Peter Pietzuch — Imperial College London

Static
program
analysis

Data-parallel

SEEP distributed
dataflow framework

Translation & §
checkpoint-
based fault
tolerance

55

Partitioned Java Annotation

@Partition field annotation indicates state

@Partitioned Matrix userltem = new SeepMatrix();

userltem.setElement(user, item, rating);

-
hash(msg.id)
Vector userRow = userltem.getRow(user);

56

Partial State and Global Annotations

@Partial Matrix coOcc = new SeepMatrix();

B

updateCoOccurrence(@Global coOcc, userltem);

@Partial field annotation indicates

@Global annotates variable to indicate

57

Partial and Collection Annotation

@Partial Matrix coOcc = new SeepMatrix();

@Partial Vector puRec = @Global coOcc.multiply(userRow);

Vector merge(@Collection Vector[] v){

@Collection annotation indicates

58

Java2SDG: Translation Process

—

4)
Extract TEs : -
' Live variable
Annotated » { SEs and] » [analysis J
Program.java accesses

SOOT
_ Y, l l Fr

0’0 Framework
® e § %
O OO0

—

Extract state and state access patterns through static code analysis

—

TE and SE o
[access code J ‘ \Vb — Javassist
assembly

SEEP runnabile

—

Generation of runnable code using TE and SE connections

59

Fault Tolerance With State

N ()

(RAM)
— ——
Physical deployment of SDG

Checkpointing state

No updates allowed while stateis
being checkpointed

Checkpointing state should not
impact data processing path

Physical
nodes

Task elements access
local in-memory state

Node failures may
lead to state loss

State backup

Backups large and cannot be
stored in memory

Large writes to disk through
network have high cost

60

Checkpointing Support for SDGs

Challenge: Efficient checkpointing of large state in Java?

Dirty state

?

N\
/ N
N vz

~

1. Freeze mutable state for checkpointing
2. Dirty state supports updates concurrently
3. Reconcile dirty state

61

Distributed M-to-N Backup/Recovery

Challenge: Fast recovery?
— Backups large and cannot be stored in memory
— Large writes to disk through network have high cost

-9

: : 4 /7
N ' — Partition state and backup to
__)O multiple nodes

— Recover state to multiple nodes
_— P -

Evaluation: Spark Comparison

Online logistic regression with 100 GB training dataset
Deployed on Amazon EC2 (“m1.xlarge” VMs with 4 vCPUs and 16 GB RAM)

60 l . l l
% 50 SDG
m
G 40 |
a 30F
-
S ook
S
= 10
O]]]]

25 50 75 100
Number of nodes

* SDG has comparable throughput to Spark despite mutable state

63

Evaluation: Mutable State Access

Collaborative filtering, while changing read/write ratio (add/getRating)
Private cluster (4-core 3.4 GHz Intel Xeon servers with 8 GB RAM)

220 | , | | |
1%

o -

N ~ - 71000
S T~ o S S
© 10 - |] ol = ey >
— o | N o | c
: | | L_I_ L : -9
a _L' : : : I v,
s 5T L | i | S
- o]

2 Throughput —+— - 4100

S Latency -7 :

L | l l | |

|_

o

1:5 1:2 1:1 2:1 5:1

Workload (state read/write ratio)

*- Higher read workload impacts performance due to state reconciliation

Evaluation: Large State Size

Increase state size in distributed key/value store

)

E 2 | | | |

2 Throughput —+—

=1 5L - Latency O — 1 1000_
o ' | | |] %)
= i | ‘ i S
@) . I P

= b | | ! 4 100 3
£ . . . R G
a 05F | = - 4 10 =
S - | .

(@)) _i_ : L i

- I I I

g O | | | | 1

= 50 100 150 200

Aggregated memory (GB)

o SDGs can support online applications with mutable state

Conclusions |

Stream processing is a crucial part of many data processing stacks
— Many applications and services require real-time view of data streams
— Batch processing models increasingly replaced by stream processing

GB/s
Interesting tension between o :.?Zf.';ﬁ
wpd
and S B/s rithms
e Hard for
S complex
o .
= algorithms
KB/s

Easy

e

mins 10s 1s 100ms 10ms
Result latency

Peter Pietzuch — Imperial College London 66

Conclusions Il

1. Modern (multicore CPUs/GPUs) raises challenges
— New event-based system designs must exploit data parallelism
— But must not couple performance with processing semantics

e~ SABER: Principled window handling in parallel stream processing

2. over events is killer application
— Complex streaming applications require expressive programming models
— Want to offer natural programming abstractions to users

o SDG: Stateful stream processing for machine learning 9

_ Peter Pietzuch
Thank you! Any Questions? <prp@doc.ic.ac.uk>

QUESTIONS

Peter Pietzuch — Imperial College London 67

