
Peter R. Pietzuch
prp@doc.ic.ac.uk

Trends in Scalable Stream Processing:

Peter Pietzuch

Large-Scale Distributed Systems Group
Department of Computing, Imperial College London

http://lsds.doc.ic.ac.uk

EBSIS Summer School 2016 – Sinaia, Romania

prp@imperial.ac.uk

Parallelism & Programmability

Imperial College London

• Focus on science, engineering, medicine and business
– Located in South Kensington near Hyde Park
– About 15,000 students

2Peter Pietzuch – Imperial College London

Who Am I?

• Peter Pietzuch

• PhD, Distributed Systems group, University of Cambridge

• Post-doc, Systems Research group, Harvard University

• Reader (Associate Professor)
Department of Computing, Imperial College London

– Joined Imperial 8 years ago
– Head, Large-Scale Distributed Systems (LSDS) Group

3

Large-Scale Distributed Systems (LSDS) Group

• Currently 15 members
(8 post-docs, 7 PhD students)

•

• LSDS Mission Statement:
“To support the design and engineering
of scalable, robust and secure distributed applications”

4

http://lsds.doc.ic.ac.uk

Peter Pietzuch – Imperial College London

Past and Present LSDS Research

LSDS Group:
Experimental Systems Research

§ Data centre networking
§ In-network

processing
[CoNEXT’14, ATC'16]

§ Protocol checking
[TSE’14]

§ MANET data processing
§ Overlay networks
§ Content distribution

§ Distributed dataflow systems
[ICDE’16, ATC’14, SIGMOD’13]

§ Multicore data processing
[SIGMOD’16, VLDB’14]

§ Heterogeneous architectures
[SIGMOD’16]

§ Stream processing
[SIGMOD’16, CIDR’15, ICDE’11]

§ Scalable machine
learning

§ Complex event processing

§ Cloud computing
§ Multi-data-centre support

§ Edge computing
[TMC, MobiSys’15]

§ Resource allocation
§ Data centre management

§ Publish/subscribe
systems

§ Middleware

§ Cloud security
[CCS’15, ESORICS'16]

§ Information
Flow Control

[ICDE’14, Middleware’11, ATC’10]
§ Web vulnerabilities

[WebApps’11]
§ Hardware trust
§ Browser security

Databases Distributed
Systems

Networking Security

Event Data Is Everywhere

• More data created than ever
– Generated 2.5 Exabytes (billion GBs) each day in 2015

• Many new sources of event data become available

• Storage and networking costs become cheaper
– Hard drive cost per GB dropped from $8.93 (2000) to $0.03 (2014)

6

Mobile
devices Scientific

instruments

CamerasSocial feeds IoT
devices

Internet services,
web sites

RFID
tags

Data
repositories

Peter Pietzuch – Imperial College London

E Many applications want to exploit these events in real-time…

Intelligent Urban Transport

7

• Instrumentation of urban
transport

– Induction loops to measure
traffic flow

– Video surveillance of hot spots
– Sensors in public transport

• Potential queries
– How to detect traffic

congestion and road
closures?

– How to explain the cause of
congestion (public event,
emergency)?

– How to react accordingly (eg
by adapting traffic light
schedules)?

Peter Pietzuch – Imperial College London

Real-Time Web Analytics

• Potential queries
– How to uniquely identify web site visitors?
– How to maximize user experience with

relevant content?
– How to analyse “click paths” to trace most

common user routes?

• Example: Online predictions for
adverts to serve on search engines

8

Hits

Page Views

Visits

Unique Visitors

Uniquely Identified Visitors

Volume of Available Data

…
f1

fn

y E {−1,1}

predict

update

Peter Pietzuch – Imperial College London

• Solution: AdPredictor
– Bayesian learning algorithm

ranks ads according to click
probabilities

Social Data Mining

9

Twitter Cascade
Detection

Peter Pietzuch – Imperial College London

Applications Follow An Event-Based Model

10

Event streams

Results

Users

ApplicationsEvent/stream
processing

system
Event

producers
Event

consumers

Subscriptions,
Queries

Loose coupling
(results in

scalable design)

Peter Pietzuch – Imperial College London

Challenge 1: Performance Matters!

…

High-throughput streams

Facebook Insights: Aggregates 9 GB/s < 10 sec latency
Feedzai: 40K credit card transactions/s < 25 ms latency
Google Zeitgeist: 40K user queries/s (1 sec windows) < 1 ms latency
NovaSparks: 150M trade options/s < 1 ms latency

Low-latency results

11Peter Pietzuch – Imperial College London

Stream
processing

system

Challenge 2: Programmability Matters!

12

…
Share state

Aggregate

Iterate…

Pre-process

Parallelize
…

Online machine
learning, data

mining

Peter Pietzuch – Imperial College London

Topic-
based
filtering

Content-
based
filtering

Complex
pattern

matching
Stream
queries

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

T1

T2

T3

T1(a, b, c)

T2(c, d, e)

T3(g, i, h)

Publish/Subscribe Complex Event
Processing (CEP)

Stream
processing

Challenge 2: Programmability
How to support online machine learning algorithms
over stream data?

Challenge 1: Performance
How to exploit parallelism on modern hardware independently
of processing semantics?

Roadmap

• Introduction to Stream Processing Systems

13

• Conclusions

Peter Pietzuch – Imperial College London

What Is An Event?

14

An event is a happening of interests. An event type is a
specification of a set of events of the same structure and
semantics.
[Etzion and Niblett (2011)]

• Events can have fixed relational schema
– Payload of event is a set of attributes

highway = M25
segment = 42
direction = north
speed = 85

Vehicle speed data

Vehicles(highway, segment, direction, speed)

Peter Pietzuch – Imperial College London

What Is An Event Stream?

• Event stream is an infinite sequence of event tuples
– Assume associated timestamp (eg time of reading, time of arrival, …)

15

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

timeEvent stream

t1 t2 t3 t4 ...

Peter Pietzuch – Imperial College London

E But we have an infinite amount of data to process…

window

How Many Tuples To Process?

• Windows defined finite set of tuples for processing
– Process events in window-sized batches

16

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

now

Peter Pietzuch – Imperial College London

Time-based window with size τ at current time t
[t - τ : t] Vehicles[Range τ seconds]

Count-based window with size n:
last n tuples Vehicles[Rows n]

• Window converts event stream to dynamic relation (database table)
– Similar to maintaining database view
– Use regular relational algebra operators on tuples

How To Define Event Queries?

Streams Relations

Window specification

Special operators:
Istream, Dstream, Rstream

Any relational
query

(select, project,
join, group by, etc)

17Peter Pietzuch – Imperial College London

Converting Relations è Streams

• Define mapping from relation back to stream
– Assumes discrete, monotonically increasing timestamps

τ, τ+1, τ+2, τ+3, ...

• Istream(R)
– Stream of all tuples (r, τ) where r∈R at time τ but r∉R at time τ-1

• Dstream(R)
– Stream of all tuples (r, τ) where r∈R at time τ-1 but r∉R at time τ

• Rstream(R)
– Stream of all tuples (r, τ) where r∈R at time τ

18Peter Pietzuch – Imperial College London

CQL: SQL-Based Declarative Queries

CQL provides well-defined semantics for stream queries
– Based on well-defined relational algebra (select, project, join, …)

• Example: Identify slow moving traffic on highway
– Find highway segments with average speed below 40 km/h

19

select highway, segment,
direction, AVG(speed) as avg

from Vehicles[range 5 sec slide 1 sec]
group by highway, segment, direction
having avg < 40

Peter Pietzuch – Imperial College London

Input stream

Output

Operators

E Principled way to define stream processing semantics…

Stanford,
2003

Challenge 2: Programmability
How to support online machine learning algorithms
over stream data?

Challenge 1: Performance
How to exploit parallelism on modern hardware independently
of processing semantics?

Roadmap

• Introduction to Stream Processing Systems

20

• Conclusions

Peter Pietzuch – Imperial College London

How To Scale Big Data Systems?

• Use scale out designs
– Commodity servers
– Fast network fabric

• Software designed for failure

21Peter Pietzuch – Imperial College London

Servers have many parallel CPU cores

Servers with GPUs common
– GPU have even more specialised cores

L3

C1

C2

C3

C4

C5

C6

C7

C8

L3

C1

C2

C3

C4

C5

C6

C7

C8

L2 Cache

DRAM DRAM

SMX1 ... SMXN

So
ck

et
 1

So
ck

et
 2

Command Queue
PCIe Bus

DMA

1000s of
GPU cores

10s of
CPU cores

But Must Also Exploit Parallel Hardware

22Peter Pietzuch – Imperial College London

Task Parallelism Vs Data Parallelism

23

select highway, segment, direction, AVG(speed)
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

Task parallelism:
Multiple queries

Data parallelism:
Single query

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select highway, segment, direction, AVG(speed)
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

highway 1-10 highway 1-5

Peter Pietzuch – Imperial College London

Stream
partitioning

Operators/Tasks

executed in
parallel

Apache Storm: Dataflow Graphs

24

• Idea:
Execute event operators as data-
parallel tasks

• Task organised as dataflow graph

• Many systems do this, e.g. Apache
Storm, Apache Flink, Google
Dataflow, …

•

Peter Pietzuch – Imperial College London

parallelism
degree 3

parallelism
degree 2

E But must manually assign tasks to nodes…

Use Apache Hadoop For Stream Processing?

25

• MapReduce model
– Data model: (key, value) pairs
– Two processing functions:

map(k1,v1) à list(k2,v2)
reduce(k2, list(v2)) à list (v3)

•

• Benefits
– Simple programming model
– Transparent parallelisation
– Fault-tolerant processingMap

Reduce

Shuffle

Partitioned data
on distributed

file system

M M M

R R R

Peter Pietzuch – Imperial College London

E Shuffle phase introduces synchronisation barrier (batch processing)

Apache Spark: Micro-Batching

26

UC Berkeley,
SOSP’13

• Idea:
Reduce size of data partitons to
produce up-to-date, incremental results

• Micro-batching for stream data
– Tasks operate on micro-batch partitions
– Results produced with low latency

Stream, divided into micro-batches

Peter Pietzuch – Imperial College London

E Interaction of query windows and micro-batches?

Spark: Small Slides Result In Low Throughout

27

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut

(1
06

tu
ple

s/
s)

Window slide (106 tuples)

E Want to avoid coupling performance with query definition

Peter Pietzuch – Imperial College London

select AVG(S.1) from S [rows 1024 slide x]

28

select highway, segment, direction, AVG(speed) as avg
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

1234567

w1
w2

w3
w4

Worker B

Worker A
Synchronise to output
results in order

Task

Task

How To Parallelise Sliding Windows?

E Leads to redundant computation

Peter Pietzuch – Imperial College London

Avoiding Redundant Computation

• Use panes to remove window overlap between tasks
– Smallest unit of parallelism without data dependencies between windows

• Apache Spark uses panes for micro-batches with windowed queries

12345

p1

p2

p3

p4

p5

Panes processed in parallel

Window results assembled
from pane results

29Peter Pietzuch – Imperial College London

E Window slide limited
by minimum micro-
batch size (~500 ms)

E Micro-batch size
limited by pane size

SABER: Window Fragment Model

Idea: Decouple task size from window size/slide
– e.g. 5 tuples/task, window size 7 rows, slide 2 rows

30

10 9 8 7 6 5 4 3 2 115 14 13 12 11

w1w2w3w4w5

T1T2T3

w1w2w3w4w5

Task contains one or more window fragments
– Closing/pending/opening windows in T2

– Workers process fragments incrementally

Imperial,
SIGMOD’16

Peter Pietzuch – Imperial College London

Merging Window Fragment Results

Idea: Decouple task size from window size/slide
– Assemble window fragment results
– Output them in correct order

31

Worker B: T2

w1
w2
w3

w4
w5

Worker A: T1
w1

w2
w3

w1
result

w2
result

Result Stage
Slot 2 Slot 1

EmptyEmpty

Output result
circular buffer

Worker B stores T2 results and exits (nothing to forward)Worker A stores T1 results, merges window fragment results and
forwards complete windows downstream

Peter Pietzuch – Imperial College London

Evaluation: SABER Window Performance

0

0.05

0.1

0.15

0.2

0

2

4

6

8

64 256 1024 4096 16384

La
te

nc
y

(se
c)

Th
ro

ug
hp

ut
 (G

B/
s)

Window slide (tuples)

select AVG(S.1) from S [rows 1024 slide x]

32Peter Pietzuch – Imperial College London

SABER throughout

SABER latency

E Performance with windowed queries remains predictable

2 8 32 128 512

When to use a GPU for a CQL operator?

Statically schedule queries on CPU/GPU based on cost model?
– Cost model depends on operators, windows, input

33

CPU GPU
QA 3 ms 2 ms
QB 3 ms 1 ms

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task Queue

T2

T1

CPU
GPU

Static: QA on CPU

T7 T9 T10

T3 T4 T5 T6 T8

0 3 6 9 12

CPU workers

GPU worker

E Static scheduling under-utilises processors

SABER’s Hybrid Stream Processing Model

Idea: Enable tasks to run on both processors
– Scheduler assigns tasks to idle processors

34

CPU GPU
QA 3 ms 2 ms
QB 3 ms 1 ms

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task Queue CPU workers

GPU worker

0 3 6 9 12

CPU
GPU

First-Come First-Served

T1 T4 T8

T2 T3 T5 T6 T7 T9

T10

E FCFS ignores effectiveness of processor for given task

Heterogeneous Look-Ahead Scheduler (HLS)

Idea: Idle processor skips tasks that could be executed faster by
another processor

– Decision based on observed query task throughput

35

CPU GPU
QA 3 ms 2 ms
QB 3 ms 1 ms

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task Queue CPU workers

GPU worker

0 3 6 9 12

CPU
GPU

HLS

T1 is slower on CPU: Skip

T1

T2 is slower on CPU: Skip

T2

T3 is slower on CPU but already have 3 ms of work for GPU

T3

T2T1

Skip T4, T5 and T6 and select T7

T4 T5 T6

T7

Finally skip T8 and T9 and select T10

T8 T9

T10

T4 T5 T6

CPU and GPU Contribute Proportionally

HLS gives aggregate throughput of all processors
– CPU executes both QA and QB tasks

36

HLS

CPU
GPU

T3 T7 T10

T2T1 T4 T5 T6 T9T8

T2

T1

CPU
GPU

Static

T7 T9 T10

T3 T4 T5 T6 T8

CPU
GPU

First-Come First-Served

T1 T4 T8

T2 T3 T5 T6 T7 T9

T10

0 3 6 9 12

SABER Architecture

• Window computation delayed until task execution à more parallelism

• All query tasks added to system-wide lock-free queue

• GPU parallelises window fragment result computation

• CPU performs incremental window computations instead

37

w3

w2
w1

T1

T2

Dispatching
Stage

T2 T1

Scheduling
Stage

α

αα
α

CPU execution

GPU execution

w3

T1 T2

w1

w2

Result
Stage

SABER Architecture

• Implemented in Java (15K LOC), C (2K) and OpenCL (2K)

• Supports projection, selection, aggregation (w/group-by) and
join over time- and count-based windows

• Available on Github: https://github.com/lsds/saber
38

w3

w2
w1

T1

T2

Dispatching
Stage

T2 T1

Scheduling
Stage

α

αα
α

CPU execution

GPU execution

w3

T1 T2

w1

w2

Result
Stage

Evaluation: Set-up & Workloads

39

Ubuntu Linux 14.04 NVIDIA 346.47

Intel Xeon 2.6 GHz NVIDIA Quadro K5200

PCIe 3.0
(x16)

10 Gbps
NIC

2,304 cores
8 GB GDDR 5
48 KB L2

16 physical cores
64 GB RAM
20 MB LLC

Google cluster data: jobs events from Google infrastructure

SmartGrid measurements: plug measurements from houses

Linear Road Benchmark: car positions and speed on highway

Is Hybrid Stream Processing Effective?

40

γcnt

[1,1]

` `

[1,1]
γavg

π

γavg

[30,1]
part

[1]

` `

[1,1]

σ
[60,1]

γcnt

[30,1]

γcnt

[1,1]

0

10

20

30

40

50

60

CM1 CM2 SG1 SG2 SG3 LRB1 LRB2 LRB3 LRB4

Th
ro

ug
hp

ut
 (1

06
tu

ple
s/

s)

SABER (CPU contrib.) SABER (GPU contrib.)

Cluster Mgmt. Smart Grid LRB

γsum

[60,1]

σ

γavg

[60,1]

αavg

[3600,1]

γavg

[3600,1]

1150
MB/s

1010
MB/s

751
MB/s

98
MB/s

635
MB/s

1043
MB/s

609
MB/s

1143
MB/s

1175
MB/s

Challenge 2: Programmability
How to support online machine learning algorithms
over stream data?

Challenge 1: Performance
How to exploit parallelism on modern hardware independently
of processing semantics?

Roadmap

• Introduction to Stream Processing Systems

41

• Conclusions

Peter Pietzuch – Imperial College London

Executed as dataflow graph

Supporting Online Machine Learning

Rating: 3
User A
Item:

“iPhone”
Rating: 5

User A
Recommend:

“Apple
Watch”

Customer events
on website

Up-to-date
recommendation
stream

• Online recommender system
– Recommendations based on past user ratings
– Eg based on collaborative filtering (cf Netflix, Amazon, …)

(eg Storm, Spark, Flink, …)

42Peter Pietzuch – Imperial College London

E What programming abstraction to use to specify the algorithm?

Programming Models For Stream Processing?

• Declarative query languages (eg CQL) challenging for complex
algorithms (eg machine learning, data mining)

– Consider iterative algorithms over event data
– Typically need to use user-defined functions (UDFs)

• Domain experts tend to write imperative programs
– Java, Matlab, C++, R, Python, Fortran, …

• But distributed dataflow frameworks favour functional models
– MapReduce, SQL, PIG, DryadLINQ, Spark, …
– Simplifies consistency and fault tolerance

43Peter Pietzuch – Imperial College London

Online Collaborative Filtering In Java

44

Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

void processRatingEvent(int user, int item,
int rating) {

userItem.setElement(user, item, rating);
updateCoOccurrence(coOcc, userItem);

}
Vector processRecEvent(int user) {

Vector userRow = userItem.getRow(user);
Vector userRec = coOcc.multiply(userRow);
return userRec;

}

Item-A Item-B
User-A 4 5
User-B 0 5

Item-A Item-B
Item-A 1 1
Item-B 1 2

User-Item matrix (UI)

Co-Occurrence matrix (CO)

Update with
new ratings

Multiply for
recommendation

User-B 1 2 x

Peter Pietzuch – Imperial College London

Collaborative Filtering In Spark (Java)

45

// Build the recommendation model using ALS
int rank = 10;
int numIterations = 20;
MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), rank, numIterations, 0.01);

// Evaluate the model on rating data
JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(
new Function<Rating, Tuple2<Object, Object>>() {

public Tuple2<Object, Object> call(Rating r) {
return new Tuple2<Object, Object>(r.user(), r.product());

}
}

);
JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD(
model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(

new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){

return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());

}
}

));
JavaRDD<Tuple2<Double, Double>> ratesAndPreds = JavaPairRDD.fromJavaRDD(ratings.map(

new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){

return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());

}
}

)).join(predictions).values();

Peter Pietzuch – Imperial College London

Collaborative Filtering In Spark (Scala)

46

// Build the recommendation model using ALS
val rank = 10
val numIterations = 20
val model = ALS.train(ratings, rank, numIterations, 0.01)

// Evaluate the model on rating data
val usersProducts = ratings.map {
case Rating(user, product, rate) => (user, product)

}
val predictions =
model.predict(usersProducts).map {
case Rating(user, product, rate) => ((user, product), rate)

}
val ratesAndPreds = ratings.map {
case Rating(user, product, rate) => ((user, product), rate)

}.join(predictions)

E All event data is immutable, no fine-grained model updates
Peter Pietzuch – Imperial College London

Processing State As First Class Citizen

47

User A
Item 2

User B

Item 1
2
4 1

5

Tasks process
stream data

State Elements
(SEs) represent
transient state

Dataflows
represent
streams

• State elements (SEs) are mutable in-memory data structures
– Tasks have local access to SEs
– SEs can be shared between tasks

Imperial,
SIGMOD’13

Peter Pietzuch – Imperial College London

Challenges With Large Processing State

• State will not fit into single node

48

Big Data
problem:
Matrices

become large
Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

Peter Pietzuch – Imperial College London

E How to handle distributed state in a scalable fashion?

1. Partitioned State Elements

• Idea: Partitioned SEs are split into disjoint partitions

49

Dataflow routed according to
hash function

Item-A Item-B

User-A 4 5

User-B 0 5

Access
by key

State partitioned according
to partitioning key

User-Item matrix (UI)

hash(userID)

Key space: [0-N]

[0-k]

[(k+1)-N]

Peter Pietzuch – Imperial College London

2. Partial State Elements

• Partial SEs are replicated (when partitioning is not possible)

– Replicas kept weakly consistent

• Access to partial SEs either local or global

50

Local access:
Tuples sent to one

Global access:
T`uples sent to all

Peter Pietzuch – Imperial College London

Item-A Item-B
Item-A 1 1
Item-B 1 2

Co-Occurrence matrix (CO)

State Synchronisation with Partial SEs

• Reading all partial SE instances results in set of partial values

• Requires application-specific merge logic
– Merge task reconciles state and updates partial SEs

51

Merge
logic

Peter Pietzuch – Imperial College London

State Synchronisation with Partial SEs

• Reading all partial SE instances results in set of partial values

52

Multiple
partial values

Merge
logic

Peter Pietzuch – Imperial College London

State Synchronisation with Partial SEs

• Reading all partial SE instances results in set of partial values

• Barrier collects partial state

53

Multiple
partial values

Collect partial
values

Merge
logic

Peter Pietzuch – Imperial College London

SDG for Collaborative Filtering

be scheduled for execution or materialised in a pipeline,
each with different performance implications. Some
frameworks follow a hybrid approach in which tasks on
the same node are pipelined but not between nodes.

Since tasks in stateless dataflows are scheduled to pro-
cess coarse-grained batches of data, such systems can
exploit the full parallelism of a cluster but they can-
not achieve low processing latency. For lower latency,
batched dataflows divide data into small batches for pro-
cessing and use efficient, yet complex, task schedulers
to resolve data dependencies. They have a fundamental
trade-off between the lower latency of smaller batches
and the higher throughput of larger ones—typically they
burden developers with making this trade-off [39].

Continuous dataflow adopts a streaming model with
a pipeline of tasks. It does not materialise intermedi-
ate data between nodes and thus has lower latency with-
out a scheduling overhead: as we show in §6, batched
dataflows cannot achieve the same low latencies. Due to
our focus on online processing with low latency, SDGs
are fully pipelined (see §3.1).

To improve the performance of iterative computation
in dataflows, early frameworks such as HaLoop [5] cache
the results of one iteration as input to the next. Recent
frameworks [15, 38, 25, 9] generalise this concept by
permitting iteration over arbitrary parts of the dataflow
graph, executing tasks repeatedly as part of loops. Simi-
larly SDGs support iteration explicitly by permitting cy-
cles in the dataflow graph.
Failure recovery. To recover from failure, frameworks
either recompute state based on previous data or check-
point state to restore it. For recomputation, Spark rep-
resents dataflows as RDDs [38], which can be recom-
puted deterministically based on their lineage. Contin-
uous dataflow frameworks use techniques such as up-
stream backup [14] to reprocess buffered data after fail-
ure. Without checkpointing, recomputation can lead to
long recovery times.

Checkpointing periodically saves state to disk or the
memory of other nodes. With large state, this becomes
resource-intensive. SEEP recovers state from memory,
thus doubling the memory requirement of a cluster [10].

A challenge is how to take consistent checkpoints
while processing data. Synchronous global checkpoin-
ting stops processing on all nodes to obtain consistent
snapshots, thus reducing performance. For example, Na-
iad’s “stop-the-world” approach exhibits low throughput
with large state sizes [26]. Asynchronous global check-
pointing, as used by Piccolo [30], permits nodes to take
consistent checkpoints at different times.

Both techniques include all global state in a check-
point and thus require all nodes to restore state after fail-
ure. Instead, SDGs use an asynchronous checkpointing
mechanism with log-based recovery. As described in §5,

updateUserItemnew
rating

rec
request merge

coOcc

rec
result

n1 n2

n3

State
Element

(SE)

dataflow

Task
Element

(TE)
getUserVec

updateCoOcc

user
Item

getRecVec

Figure 1: Stateful dataflow graph for CF algorithm

it does not require global coordination between nodes
during recovery, and it uses dirty state to minimise the
disruption to processing during local checkpointing.

3 Stateful Dataflow Graphs
The goal of stateful dataflow graphs (SDGs) is to make
it easy to translate imperative programs with mutable
state to a dataflow representation that performs paral-
lel, iterative computation with low latency. Next we de-
scribe their model (§3.1), how they support distributed
state (§3.2) and how they are executed (§3.3).

3.1 Model
We explain the main features of SDGs using the CF al-
gorithm from §2.1 as an example. As shown in Fig. 1,
an SDG has two types of vertices: task elements, t 2 T ,
transform input to output dataflows; and state elements,
s 2 S, represent the state in the SDG.

Access edges, a = (t,s) 2 A, connect task elements to
the state elements that they read or update. To facilitate
the allocation of task and state elements to nodes, each
task element can only access a single state element, i.e. A
is a partial function: (ti,s j) 2 A,(ti,sk) 2 A)s j = sk.
Dataflows are edges between task elements, d = (ti, t j) 2
D, and contain data items.
Task elements (TEs) are not scheduled for execution but
the entire SDG is materialised, i.e. each TE is assigned to
one or more physical nodes. Since TEs are pipelined, it is
unnecessary to generate the complete output dataflow of
a TE before it is processed by the next TE. Data items are
therefore processed with low latency, even across a se-
quence of TEs, without scheduling overhead, and fewer
data items are handled during failure recovery (see §5).

The SDG in Fig. 1 has five TEs assigned to three
nodes: the updateUserItem, updateCoOcc TEs realise the
addRating function from Alg. 1; and the getUserVec,
getRecVec and merge TEs implement the getRec function.
We explain the translation process in §4.2.
State elements (SEs) encapsulate the state of the compu-
tation. They are implemented using efficient data struc-
tures, such as hash tables or indexed sparse matrices. In
the next section, we describe the abstractions for dis-
tributed SEs, which span multiple nodes.

Fig. 1 shows the two SEs of the CF algorithm: the
userItem and the coOcc matrices. The access edges spec-

4

54

E Note that this combines batch and stream processing in single model

Peter Pietzuch – Imperial College London

55

Program.java Cluster

Annotated
Java program
(@Partitioned, @Partial, @Global, …)

Static
program
analysis

SEEP distributed
dataflow framework

Translation &
checkpoint-
based fault

tolerance

Data-parallel
Stateful Dataflow

Graph (SDG)

Scalable & Elastic Event Processing (SEEP)Imperial,
USENIX
ATC’14

Peter Pietzuch – Imperial College London

Partitioned Java Annotation

56

@Partitioned Matrix userItem = new SeepMatrix();
Matrix coOcc = new Matrix();

void processRatingEvent (int user, int item, int rating) {
userItem.setElement(user, item, rating);
updateCoOccurrence(coOcc, userItem);

}

Vector processRecEvent(int user) {
Vector userRow = userItem.getRow(user);
Vector userRec = coOcc.multiply(userRow);
return userRec;

}

@Partition field annotation indicates partitioned state

hash(msg.id)

Partial State and Global Annotations

57

@Partitioned Matrix userItem = new SeepMatrix();
@Partial Matrix coOcc = new SeepMatrix();

void processRatingEvent(int user, int item, int rating) {
userItem.setElement(user, item, rating);
updateCoOccurrence(@Global coOcc, userItem);

}

@Global annotates variable to indicate access to all partial instances

@Partial field annotation indicates partial state

Partial and Collection Annotation

58

@Partitioned Matrix userItem = new SeepMatrix();
@Partial Matrix coOcc = new SeepMatrix();

Vector processRecEvent(int user) {
Vector userRow = userItem.getRow(user);
@Partial Vector puRec = @Global coOcc.multiply(userRow);
Vector userRec = merge(puRec);
return userRec;

}

Vector merge(@Collection Vector[] v){
/*…*/

}

@Collection annotation indicates merge logic

Program.java

Java2SDG: Translation Process

59

Extract TEs,
SEs and
accesses

Live variable
analysis

TE and SE
access code
assembly

SEEP runnable

SOOT
Framework

Javassist

Extract state and state access patterns through static code analysis

Generation of runnable code using TE and SE connections

Annotated
Program.java

Fault Tolerance With State

60

RAM RAM

Physical deployment of SDG

Backups large and cannot be
stored in memory
Large writes to disk through
network have high cost

State backup

Node failures may
lead to state loss

Checkpointing state

No updates allowed while state is
being checkpointed
Checkpointing state should not
impact data processing path

Task elements access
local in-memory state

Physical
nodes

Checkpointing Support for SDGs

• Challenge: Efficient checkpointing of large state in Java?

61

Dirty state

• Asynchronous, lock-free checkpointing
1. Freeze mutable state for checkpointing
2. Dirty state supports updates concurrently
3. Reconcile dirty state

Distributed M-to-N Backup/Recovery

• Challenge: Fast recovery?
– Backups large and cannot be stored in memory
– Large writes to disk through network have high cost

62

• M-to-N distributed backup and
parallel recovery

– Partition state and backup to
multiple nodes

– Recover state to multiple nodes

Evaluation: Spark Comparison

63

 0

 10

 20

 30

 40

 50

 60

25 50 75 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of nodes

SDG
Spark

Online logistic regression with 100 GB training dataset
Deployed on Amazon EC2 (“m1.xlarge” VMs with 4 vCPUs and 16 GB RAM)

SDG

Spark

Peter Pietzuch – Imperial College London
E SDG has comparable throughput to Spark despite mutable state

Evaluation: Mutable State Access

Collaborative filtering, while changing read/write ratio (add/getRating)
Private cluster (4-core 3.4 GHz Intel Xeon servers with 8 GB RAM)

64

0

5

10

15

20

1:5 1:2 1:1 2:1 5:1

100

1000

Th
ro

ug
hp

ut
(1

00
0

re
qu

es
ts

/s
)

La
te

nc
y

(m
s)

Workload (state read/write ratio)

Throughput
Latency

E Higher read workload impacts performance due to state reconciliation

Evaluation: Large State Size

Increase state size in distributed key/value store

65

 0

 0.5

 1

 1.5

 2

50 100 150 200
 1

 10

 100

 1000

T
h
ro

u
g
h
p
u
t
(m

ill
io

n
 r

e
q
u
e
st

s/
s)

L
a
te

n
cy

 (
m

s)

Aggregated memory (GB)

Throughput
Latency

E SDGs can support online applications with mutable state

Conclusions I

• Stream processing is a crucial part of many data processing stacks
– Many applications and services require real-time view of data streams
– Batch processing models increasingly replaced by stream processing

• Interesting tension between
performance and
algorithmic complexity

66Peter Pietzuch – Imperial College London

Easy

Hard for
complex
algorithms

Hard for
all algo-
rithms

Result latency

St
re

am
 r

at
e

KB/s

MB/s

GB/s

mins 10s 1s 100ms 10ms

Conclusions II

• 1. Modern parallel hardware (multicore CPUs/GPUs) raises challenges
– New event-based system designs must exploit data parallelism
– But must not couple performance with processing semantics

• E SABER: Principled window handling in parallel stream processing

• 2. Online machine learning over events is killer application
– Complex streaming applications require expressive programming models
– Want to offer natural programming abstractions to users

• E SDG: Stateful stream processing for machine learning

67Peter Pietzuch – Imperial College London

Peter Pietzuch
<prp@doc.ic.ac.uk>

http://lsds.doc.ic.ac.uk
Thank you! Any Questions?

