Imperial College London



# Trends in Scalable Stream Processing: Parallelism & Programmability

prp@imperial.ac.uk

Large-Scale Distributed Systems Group Department of Computing, Imperial College London http://lsds.doc.ic.ac.uk

EBSIS Summer School 2016 - Sinaia, Romania

### **Imperial College London**

#### Focus on science, engineering, medicine and business

- Located in South Kensington near Hyde Park
- About 15,000 students



Peter Pietzuch – Imperial College Lond

### Who Am I?

#### **Peter Pietzuch**

PhD, Distributed Systems group, University of CambridgePost-doc, Systems Research group, Harvard University

#### **Reader (Associate Professor)**

Department of Computing, Imperial College London

- Joined Imperial 8 years ago
- Head, Large-Scale Distributed Systems (LSDS) Group

### Large-Scale Distributed Systems (LSDS) Group

Currently 15 members (8 post-docs, 7 PhD students)





**LSDS Mission Statement:** 

"To support the design and engineering of scalable, robust and secure distributed applications"

Peter Pietzuch – Imperial College London

### **Past and Present LSDS Research**



### **Event Data Is Everywhere**

#### More data created than ever

- Generated 2.5 Exabytes (billion GBs) each day in 2015

#### Many new sources of event data become available



#### Storage and networking costs become cheaper

- Hard drive cost per GB dropped from \$8.93 (2000) to \$0.03 (2014)

Many applications want to exploit these events in real-time...

### **Intelligent Urban Transport**



# Instrumentation of urban transport

- Induction loops to measure traffic flow
- Video surveillance of hot spots
- Sensors in public transport

#### Potential queries

- How to detect traffic congestion and road closures?
- How to explain the cause of congestion (public event, emergency)?
- How to react accordingly (eg by adapting traffic light schedules)?

#### Peter Pietzuch - Imperial College London

### **Real-Time Web Analytics**

#### **Potential queries**

- How to uniquely identify web site visitors?
- How to maximize user experience with relevant content?
- How to analyse "click paths" to trace most common user routes?

# Example: Online predictions for adverts to serve on search engines





#### Solution: AdPredictor

 Bayesian learning algorithm ranks ads according to click probabilities



#### Peter Pietzuch - Imperial College London

### **Social Data Mining**



### **Applications Follow An Event-Based Model**



### **Challenge 1: Performance Matters!**



| Facebook Insights: |
|--------------------|
| Feedzai:           |
| Google Zeitgeist:  |
| NovaSparks:        |

Aggregates 9 GB/s 40K credit card transactions/s 40K user queries/s (1 sec windows) 150M trade options/s

< 10 sec latency

- < 25 ms latency
- < 1 ms latency
- < 1 ms latency

### **Challenge 2: Programmability Matters!**



### Roadmap

Introduction to Stream Processing Systems

**Challenge 1: Performance** 

How to exploit **parallelism on modern hardware** independently of processing semantics?

Challenge 2: Programmability How to support online machine learning algorithms over stream data?

Conclusions

Peter Pietzuch – Imperial College London

### What Is An Event?

An **event** is a happening of interests. An **event type** is a specification of a set of events of the same structure and semantics. [Etzion and Niblett (2011)]

#### Events can have fixed relational schema

- Payload of event is a set of attributes

highway = M25 segment = 42 direction = north speed = 85

Vehicle speed data

#### Vehicles(highway, segment, direction, speed)

### What Is An Event Stream?

#### Event stream is an infinite sequence of event tuples

- Assume associated timestamp (eg time of reading, time of arrival, ...)



But we have an infinite amount of data to process...

### **How Many Tuples To Process?**

#### Windows defined finite set of tuples for processing

- Process events in window-sized batches



Time-based window with size τ at current time t[t - τ : t]Vehicles[Range τ seconds]

# Count-based window with size n:last n tuplesVehicles[Rows n]

### **How To Define Event Queries?**

#### Window converts event stream to dynamic relation (database table)

- Similar to maintaining database view
- Use regular relational algebra operators on tuples



### **Converting Relations → Streams**

#### Define mapping from relation back to stream

– Assumes discrete, monotonically increasing timestamps  $\tau$ ,  $\tau$ +1,  $\tau$ +2,  $\tau$ +3, ...

Istream(R)

- Stream of all tuples (r,  $\tau$ ) where r  $\in$  R at time  $\tau$  but r  $\notin$  R at time  $\tau$ -1

#### Dstream(R)

– Stream of all tuples (r,  $\tau$ ) where  $r{\in}R$  at time  $\tau{-}1$  but  $r{\notin}R$  at time  $\tau$ 

#### Rstream(R)

– Stream of all tuples (r,  $\tau$ ) where r  $\in$  R at time  $\tau$ 

### 2003 CQL: SQL-Based Declarative Queries

#### **CQL** provides well-defined semantics for stream queries

- Based on well-defined relational algebra (select, project, join, ...)

#### Example: Identify slow moving traffic on highway

- Find highway segments with average speed below 40 km/h



### Roadmap

Introduction to Stream Processing Systems

Challenge 1: Performance How to exploit parallelism on modern hardware independently

of processing semantics?

Challenge 2: Programmability How to support online machine learning algorithms over stream data?

Conclusions

Peter Pietzuch – Imperial College London

### How To Scale Big Data Systems?

# Use scale out designs Commodity servers — Fast network fabric \_

Software designed for failure

### **But Must Also Exploit Parallel Hardware**



### **Task Parallelism Vs Data Parallelism**



### **Task parallelism:** Multiple queries

select highway, segment, direction, AVG(speed)from Vehicles[range 5 seconds slide 1 second]group byhighway, segment, directionhavingavg < 40</th>

### **Data parallelism:** Single query



### **Apache Storm: Dataflow Graphs**



Idea: Execute event operators as dataparallel tasks

Task organised as dataflow graph

Many systems do this, e.g. Apache Storm, Apache Flink, Google Dataflow, ...

But must manually assign tasks to nodes...

### **Use Apache Hadoop For Stream Processing?**



#### MapReduce model

- Data model: (key, value) pairs
- Two processing functions:

 $map(k_1,v_1) \rightarrow list(k_2,v_2)$ reduce(k\_2, list(v\_2)) \rightarrow list (v\_3)

#### **Benefits**

- Simple programming model
- Transparent parallelisation
- Fault-tolerant processing

Shuffle phase introduces synchronisation barrier (batch processing)

#### Peter Pietzuch - Imperial College London



### **Apache Spark: Micro-Batching**



Stream, divided into micro-batches

Idea: **Reduce size of data partitons** to produce up-to-date, incremental results

#### Micro-batching for stream data

- Tasks operate on micro-batch partitions
- Results produced with low latency

Interaction of query windows and micro-batches?

#### Peter Pietzuch – Imperial College London

### **Spark: Small Slides Result In Low Throughout**

#### select AVG(S.1) from S [rows 1024 slide x]



Want to avoid coupling performance with query definition

### **How To Parallelise Sliding Windows?**

| select   | highway, segment, direction, AVG(speed) as avg |
|----------|------------------------------------------------|
| from     | Vehicles[range 5 seconds slide 1 second]       |
| group by | highway, segment, direction                    |
| having   | avg < 40                                       |
|          |                                                |



#### Leads to redundant computation

#### Peter Pietzuch – Imperial College London

### **Avoiding Redundant Computation**

#### Use panes to remove window overlap between tasks

- Smallest unit of parallelism without data dependencies between windows



Apache Spark uses panes for micro-batches with windowed queries

 Micro-batch size limited by pane size  Window slide limited by minimum microbatch size (~500 ms)

### SIGMOD'16 SABER: Window Fragment Model

#### Idea: Decouple task size from window size/slide

- e.g. 5 tuples/task, window size 7 rows, slide 2 rows



Task contains one or more window fragments

- Closing/pending/opening windows in T<sub>2</sub>
- Workers process fragments incrementally

### **Merging Window Fragment Results**

#### Idea: Decouple task size from window size/slide

- Assemble window fragment results
- Output them in correct order



Worker ABstrass 3, Tresettalts angelse wits (notrigg to the swits) of the swits of

### **Evaluation: SABER Window Performance**

select AVG(S.1) from S [rows 1024 slide x]



### When to use a GPU for a CQL operator?

#### Statically schedule queries on CPU/GPU based on cost model?

- Cost model depends on operators, windows, input



Static scheduling under-utilises processors

### **SABER's Hybrid Stream Processing Model**

#### Idea: Enable tasks to run on both processors

- Scheduler assigns tasks to idle processors



FCFS ignores effectiveness of processor for given task

### **Heterogeneous Look-Ahead Scheduler (HLS)**

Idea: Idle processor skips tasks that could be executed faster by another processor

Decision based on observed query task throughput



Bikip Signation and Complete State Contains of work for GPU

### **CPU and GPU Contribute Proportionally**

#### HLS gives aggregate throughput of all processors

- CPU executes both  $Q_A$  and  $Q_B$  tasks



### **SABER Architecture**



Window computation delayed until task execution  $\rightarrow$  more parallelism

All query tasks added to system-wide lock-free queue

GPU parallelises window fragment result computation

CPU performs incremental window computations instead

### **SABER Architecture**



Implemented in Java (15K LOC), C (2K) and OpenCL (2K)

Supports projection, selection, aggregation (w/group-by) and join over time- and count-based windows

Available on Github: https://github.com/lsds/saber

38

### **Evaluation: Set-up & Workloads**



Google cluster data: jobs events from Google infrastructure

SmartGrid measurements: plug measurements from houses

Linear Road Benchmark: car positions and speed on highway

### **Is Hybrid Stream Processing Effective?**



### Roadmap

Introduction to Stream Processing Systems

Challenge 1: Performance How to exploit parallelism on modern hardware independently of processing semantics?

Challenge 2: Programmability How to support online machine learning algorithms over stream data?

Conclusions

Peter Pietzuch - Imperial College London

### **Supporting Online Machine Learning**

#### **Online recommender system**

- Recommendations based on past user ratings
- Eg based on collaborative filtering (cf Netflix, Amazon, ...)



What programming abstraction to use to specify the algorithm?

### **Programming Models For Stream Processing?**



#### Peter Pietzuch – Imperial College London

### **Online Collaborative Filtering In Java**

Update with new ratings

|        | Item-A | Item-B |
|--------|--------|--------|
| User-A | 4      | 5      |
| User-B | 0      | 5      |

User-Item matrix (UI)



Matrix userItem = new Matrix(); Matrix coOcc = new Matrix();

#### 

#### Vector processRecEvent(int user) {

Vector userRow = **userItem**.getRow(user); Vector userRec = **coOcc**.multiply(userRow); return userRec;

Co-Occurrence matrix (CO)

### **Collaborative Filtering In Spark (Java)**

```
// Build the recommendation model using ALS
```

int rank = 10; int numIterations = 20; MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), rank, numIterations, 0.01);

```
// Evaluate the model on rating data
JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(
 new Function<Rating, Tuple2<Object, Object>>() {
  public Tuple2<Object, Object> call(Rating r) {
   return new Tuple2<Object, Object>(r.user(), r.product());
JavaPairRDD<Tuple2<Integer, Integer>, Double>predictions = JavaPairRDD.fromJavaRDD(
 model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
  new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
   public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
    return new Tuple2<Tuple2<Integer, Integer>, Double>(
      new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
));
JavaRDD<Tuple2<Double, Double>> ratesAndPreds = JavaPairRDD.fromJavaRDD(ratings.map(
  new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
   public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
    return new Tuple2<Tuple2<Integer, Integer>, Double>(
      new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
)) join(predictions) values();
```

### **Collaborative Filtering In Spark (Scala)**

```
// Build the recommendation model using ALS
val rank = 10
val numlterations = 20
val model = ALS.train(ratings, rank, numlterations, 0.01)
// Evaluate the model on rating data
val usersProducts = ratings.map {
 case Rating(user, product, rate) => (user, product)
val predictions =
 model.predict(usersProducts).map {
  case Rating(user, product, rate) => ((user, product), rate)
val ratesAndPreds = ratings.map {
 case Rating(user, product, rate) => ((user, product), rate)
}.join(predictions)
```

All event data is immutable, no fine-grained model updates

#### Imperial, SIGMOD'13 Processing State As First Class Citizen



State elements (SEs) are mutable in-memory data structures

- Tasks have local access to SEs
- SEs can be shared between tasks

### **Challenges With Large Processing State**



#### State will not fit into single node

#### How to handle distributed state in a scalable fashion?

### **1. Partitioned State Elements**

Idea: Partitioned SEs are split into disjoint partitions



User-Item matrix (UI)



## State **partitioned** according to partitioning key



Dataflow **routed** according to hash function

### 2. Partial State Elements

Partial SEs are replicated (when partitioning is not possible)

Co-Occurrence matrix (CO)

|        | Item-A | Item-B |
|--------|--------|--------|
| Item-A | 1      | 1      |
| Item-B | 1      | 2      |



- Replicas kept weakly consistent

Access to partial SEs either local or global



**Global** access: Tuples sent to all

Peter Pietzuch – Imperial College London

### **State Synchronisation with Partial SEs**

Reading all partial SE instances results in set of partial values

Requires application-specific merge logic

- Merge task reconciles state and updates partial SEs

### **State Synchronisation with Partial SEs**

Reading all partial SE instances results in set of partial values



### **State Synchronisation with Partial SEs**

Reading all partial SE instances results in set of partial values



Barrier collects partial state

Peter Pietzuch – Imperial College London

### **SDG for Collaborative Filtering**



Note that this combines batch and stream processing in single model

#### USENIX ATC'14 Scalable & Elastic Event Processing (SEEP)



### **Partitioned Java Annotation**

#### @Partition field annotation indicates partitioned state

@Partitioned Matrix userItem = new SeepMatrix(); Matrix coOcc = new Matrix();

void processRatingEvent (int user, int item, int rating) {
 userItem.setElement(user, item, rating);
 updateCoOccurrence(coOcc, userItem);
}

Vector processRecEvent(int user) { Vector userRow = userItem.getRow(user);

Vector userRec = **coOcc**.multiply(userRow); return userRec;



### **Partial State and Global Annotations**

@Partitioned Matrix userItem = new SeepMatrix(); @Partial Matrix coOcc = new SeepMatrix();

void processRatingEvent(int user, int item, int rating) {
 userItem.setElement(user, item, rating);
 updateCoOccurrence(@Global coOcc, userItem);



@Partial field annotation indicates partial state

@Global annotates variable to indicate access to all partial instances

### **Partial and Collection Annotation**

@Partitioned Matrix userItem = new SeepMatrix(); @Partial Matrix coOcc = new SeepMatrix();

```
Vector processRecEvent(int user) {
    Vector userRow = userItem.getRow(user);
    @Partial Vector puRec = @Global coOcc.multiply(userRow);
    Vector userRec = merge(puRec);
    return userRec;
}
```

Vector merge(@Collection Vector[] v){



@Collection annotation indicates merge logic

### **Java2SDG: Translation Process**



Extract state and state access patterns through static code analysis



### **Fault Tolerance With State**



#### **Checkpointing state**

No updates allowed while state is being checkpointed Checkpointing state should not impact data processing path

#### State backup

Backups large and cannot be stored in memory Large writes to disk through network have high cost

### **Checkpointing Support for SDGs**

#### Challenge: Efficient checkpointing of large state in Java?



#### Asynchronous, lock-free checkpointing

- 1. Freeze mutable state for checkpointing
- 2. Dirty state supports updates concurrently
- 3. Reconcile dirty state

### **Distributed M-to-N Backup/Recovery**

#### Challenge: Fast recovery?

- Backups large and cannot be stored in memory
- Large writes to disk through network have high cost



### **Evaluation: Spark Comparison**

#### Online logistic regression with 100 GB training dataset

Deployed on Amazon EC2 ("m1.xlarge" VMs with 4 vCPUs and 16 GB RAM)



SDG has comparable throughput to Spark despite mutable state

### **Evaluation: Mutable State Access**

Collaborative filtering, while changing read/write ratio (add/getRating) Private cluster (4-core 3.4 GHz Intel Xeon servers with 8 GB RAM)



Workload (state read/write ratio)

Higher read workload impacts performance due to state reconciliation

### **Evaluation: Large State Size**

#### Increase state size in distributed key/value store



SDGs can support online applications with mutable state

### **Conclusions I**

Stream processing is a crucial part of many data processing stacks

- Many applications and services require real-time view of data streams
- Batch processing models increasingly replaced by stream processing



### **Conclusions II**

- 1. Modern parallel hardware (multicore CPUs/GPUs) raises challenges
  - New event-based system designs must exploit data parallelism
  - But must not couple performance with processing semantics
- SABER: Principled window handling in parallel stream processing

#### 2. Online machine learning over events is killer application

- Complex streaming applications require **expressive programming models**
- Want to offer natural programming abstractions to users
- SDG: Stateful stream processing for machine learning



Peter Pietzuch <prp@doc.ic.ac.uk> http://lsds.doc.ic.ac.uk

