A Large-Scale Overlay Infrastructure for Streaming Real-Time Data

Peter Pietzuch
prp@eecs.harvard.edu

Systems Research Group – Harvard University
Division of Engineering and Applied Sciences

Cambridge Systems Colloquium - October 2005
Motivation: Internet-Scale SensorNets

- EarthScope: Instrument the continent to understand geological evolution
 - 400 seismometers, 1000 GPS stations, 180 strainmeters
 - How are we going to harness this real-time data?
Motivation: Network Monitoring

- Instrument routers to receive flow information
 - Many different queries by researchers, network admins, ...
 - How can we support many different applications?
Research Challenges

- **Scalability**
 - Large number of data sources and consumers
 - Large volume of data (sensors, RFID tags, telescopes, ...)

- **Performance**
 - Real-time stream data
 - Network and node resources are limited
 - Network and node conditions change over time

- **Heterogeneity**
 - Wide range of different applications
 - No single data model (relational, XML, VOTable, ...)
 - No fixed set of processing operators

☞ New Infrastructure for Building Large-Scale Stream-Processing Applications
Stream-Based Overlay Network (SBON)

- Overlay network that processes streams on behalf of clients
 - Massive number of data sources and queries
 - Where do we locate the operators?
SBON Model

- **Stream and Node Management**
 - Instantiation of stream data paths and operators
 - Management of resources for in-network processing
 - Stream Optimization

- **Operator Model**
 - SBON is data and operator model agnostic
 - Processing operators are application-defined
 - e.g. aggregate, join, filter-XML, match-face, adjust-parallax, ...
 - Describe abstract operator properties
 - Measure incoming/outgoing data rates to estimate **selectivity**
 - Functions to
 - **migrate**
 - **decompose**
 - **reuse**
Distributed Stream Optimization

- Classic DB query optimization doesn't work in this context
 - Assume knowledge of operator semantics
 - Smaller scale: 100s of processing nodes and 1000s of streams
 - Global stable view of the entire system
 - Network properties not taken into account
 - latency, bandwidth, packet loss, ...

- Need novel approach for distributed stream optimization
 - Our approach: Perform stream optimization decisions in a virtual metric space

- Optimization metric
 - Reduce latency and minimize network effect on others
 - Push aggregation operators close to data sources
 - Minimize the amount of in-flight data
 - Product of latency and datarate
Cost Space

- Encodes the cost of stream routing using *network coordinates*
 - Euclidean *distance* \approx *latency*
 - Latency is proportional to cost
 - Distributed implementation
 - *Vivaldi, Lighthouses, ...*

1. Compute optimal query in cost space
2. Map to physical overlay nodes
 - Nearest neighbor lookup
 - e.g. *geometric routing, DHT, ...*

- Advantages
 - Decentralized and scalable implementation
 - Adapts to changing network conditions
 - Geometric algorithms applicable for optimization decisions
Operator Placement

• Placement Problem
 - Different operator placements have different costs
 - Approximate optimization problem in cost space
 - Map solution back to physical node to host operator

• Relaxation Placement
 - Physical simulation: model streams in cost space as a network of springs
 • Spring extension = latency
 • Spring constant = datarate
 - Springs “pull” according to datarate
Relaxation Placement

- Minimize *latency-datarate* product
 - Decentralized and adaptive computation
Relaxation Placement

- Minimize latency-datarate product
 - Decentralized and adaptive computation

$\sum \text{Lat} \cdot \text{DR} = 2800\text{Mb}$
Relaxation Placement

- Minimize \textit{latency-datarate} product
 - Decentralized and adaptive computation

\[\sum \text{Lat} \times \text{DR} = 1950 \text{Mb} \]
Operator Decomposition

- Decompose operators due to network and CPU load
 - Consider springs pulling in given direction
Operator Decomposition

- Decompose operators due to high network and CPU load
 - Consider springs pulling in given direction
Operator Reuse

- Exploit commonality between queries
 - Use cost space to restrict search for reusable operators
Cross-Query Optimization

- Exploit commonality between queries
 - Use cost space to restrict search for reusable operators
Cross-Query Optimization

- Exploit commonality between queries
 - Use cost space to restrict search for reusable operators
Research Agenda

- **Distributed Stream Optimization**
 - Right set of optimization primitives
 - Take advantage of semantic knowledge

- **Query Interface**
 - Rich expressive query language
 - Implementation language for operators

- **Resource Discovery**
 - Efficient nearest neighbour search in cost space
 - Discover sensor networks

- **Build and deploy real applications**
 - Analysis of political weblogs
 - Detection of network attacks with PlanetFlow traffic data
 - Exploring collaborations with domain scientists
Summary

• Large-scale stream applications need new infrastructures
 – Support for in-network stream processing
 – Adaptation to network and node dynamics

• Stream-Based Overlay Network
 – Overlay infrastructure for multiple stream-processing applications
 – Data and operator model agnostic
 – Efficient placement of in-network processing operators

• Distributed Stream Optimization
 – Need new query optimization techniques for this space
 – **Cost Space** encodes network state efficiently
 – Algorithms for **placement**, **decomposition**, and **reuse**
 – SBON nodes periodically re-optimize hosted operators
Thanks!

Peter Pietzuch
http://www.eecs.harvard.edu/~prp
prp@eecs.harvard.edu

The Hourglass Project Team
Jonathan Ledlie, Jeff Shneidman, Rohan Murty, Matt Welsh, Mema Roussopoulos, Margo Seltzer