Decision-Making

Paolo Turrini

Department of Computing, Imperial College London

Introduction to Artificial Intelligence 2nd Part

・ロト ・回ト ・ヨト

< ∃ >

æ

Outline

- Lotteries (and how to win them)
- Risky moves
- maybe "Time" but I very much doubt it

- 4 回 ト - 4 回 ト - 4 回 ト

Lotteries (and how to win them)

▲ 御 ▶ → 注 ▶

.≞⇒

The main reference

Stuart Russell and Peter Norvig Artificial Intelligence: a modern approach Chapters 16-17

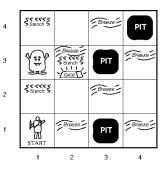
- 4 同 ト - 4 三

Rewards

Sensors Breeze, Glitter, Smell Actuators Turn L/R, Go, Grab, Release, Shoot, Climb Rewards 1000 escaping with gold, -1000 dying, -10 using arrow, -1 walking

Environment • Squares adjacent to Wumpus are smelly

- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills Wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square



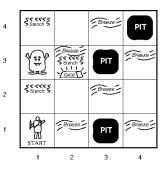
A D > A D > A D
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

Rewards

Sensors Breeze, Glitter, Smell Actuators Turn L/R, Go, Grab, Release, Shoot, Climb Rewards 1000 escaping with gold, -1000 dying, -10 using arrow, -1 walking Environment • Squares adjacent to Wumpus are smelly

- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills Wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square



A D > A D > A D
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

The universe in which the agent moves is a finite set of states

 $S = \{s_1, \ldots, s_n\}$

イロト イヨト イヨト イヨト

The universe in which the agent moves is a finite set of states

 $S = \{s_1, \ldots, s_n\}$

e.g., the squares in the Wumpus World.

・ 同・ ・ ヨ・

The universe in which the agent moves is a finite set of states

 $S = \{s_1, \ldots, s_n\}$

e.g., the squares in the Wumpus World.

• States can also take into account the inner state of the agent, e.g., the knowledge base *KB*;

The universe in which the agent moves is a finite set of states

 $S = \{s_1, \ldots, s_n\}$

e.g., the squares in the Wumpus World.

- States can also take into account the inner state of the agent, e.g., the knowledge base *KB*;
- or the actions they have performed, e.g., climbing out of the cave with the gold.

Utility functions

A utility function is a function

 $u:S \to \mathbb{R}$

associating a real number to each state.

(ロ) (部) (E) (E)

Utility functions

A utility function is a function

 $u:S\to\mathbb{R}$

associating a real number to each state.

Important:

Utility functions are not the same as money. Utility functions are a representation of happiness, goal satisfaction, fulfilment and the like. They are just a mathematical tool to represent a comparison between outcomes. So altruism, unselfishness, and so fort **can** be modelled using utility functions.

Utility functions

A utility function is a function

 $u:S\to\mathbb{R}$

associating a real number to each state.

Important:

Utility functions are not the same as money. Utility functions are a representation of happiness, goal satisfaction, fulfilment and the like. They are just a mathematical tool to represent a comparison between outcomes. So altruism, unselfishness, and so fort **can** be modelled using utility functions. (Paolo Turrini 2016)

Lotteries

A lottery is a probability distribution over the set of states.

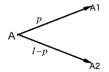
- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

Lotteries

A lottery is a probability distribution over the set of states. e.g., for outcomes A_1 and A_2 , and $p \in [0, 1]$

Lottery $A = [p, A_1; (1 - p), A_2]$

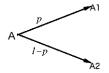


< 同 > < 臣 > < 臣 >

Lotteries

A lottery is a probability distribution over the set of states. e.g., for outcomes A_1 and A_2 , and $p \in [0, 1]$

Lottery $A = [p, A_1; (1 - p), A_2]$



L is the set of lotteries over *S*.

Simple Lotteries

Observation: A state $s \in S$ can be seen as a lottery

・ロト ・回ト ・ヨト

⊸ ≣ ≯

Simple Lotteries

Observation: A state $s \in S$ can be seen as a lottery: where s is assigned probability 1 and all other states probability 0.

Simple Lotteries

Observation: A state $s \in S$ can be seen as a lottery: where s is assigned probability 1 and all other states probability 0.

e.g., $A = [1, A_1; 0, A_2; 0, A_3; \ldots]$

We get A_1 with probability 1, and the rest with probability 0.

同 ト イヨ ト イヨト

A lottery over the set of lotteries

<- ↓ ↓ < ≥ >

⊸ ≣⇒

A lottery over the set of lotteries is itself a lottery.

<- ↓ ↓ < ≥ >

A lottery over the set of lotteries is itself a lottery.

 $\mathbf{A} = [q_1, A; q_2, B; \dots; q_n, C] =$

→ 同 ▶ → 三 ▶

3 D

A lottery over the set of lotteries is itself a lottery.

$$\mathbf{A} = [q_1, A; q_2, B; \dots; q_n, C] = = [q_1, [p_1, A_1; p_2, A_2; \dots p_n, A_n]; q_2, B; \dots; q_n, C] =$$

- 4 回 ト - 4 回 ト - 4 回 ト

æ

A lottery over the set of lotteries is itself a lottery.

$$\mathbf{A} = [q_1, A; q_2, B; \dots; q_n, C] = = [q_1, [p_1, A_1; p_2, A_2; \dots, p_n, A_n]; q_2, B; \dots; q_n, C] = = [q_1p_1, A_1; q_1p_2, A_2; \dots, q_np_n, A_n; q_2, B; \dots; q_n, C] = \dots$$

<- ↓ ↓ < ≥ >

A lottery over the set of lotteries is itself a lottery.

$$\mathbf{A} = [q_1, A; q_2, B; \dots; q_n, C] = = [q_1, [p_1, A_1; p_2, A_2; \dots p_n, A_n]; q_2, B; \dots; q_n, C] = = [q_1p_1, A_1; q_1p_2, A_2; \dots q_np_n, A_n; q_2, B; \dots; q_n, C] = \dots$$

Compound lotteries can be reduced to simple lotteries

A ■

Let $A = [p_1, A_1; p_2, A_2; ..., p_n, A_n]$ be a lottery.

(本部) (本語) (本語)

æ

Let $A = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$ be a lottery. The expected utility of A is

$$u(A) = \sum_{p_i,A_i} p_i \times u(A_i)$$

▲ 御 ▶ → 三 ▶

Let $A = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$ be a lottery. The expected utility of A is

$$u(A) = \sum_{p_i,A_i} p_i \times u(A_i)$$

e.g., rolling a fair six-sided dice, I win 27k if 6 comes out, lose 3k otherwise.

Let $A = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$ be a lottery. The expected utility of A is

$$u(A) = \sum_{p_i,A_i} p_i \times u(A_i)$$

e.g., rolling a fair six-sided dice, I win 27k if 6 comes out, lose 3k otherwise. The expected utility is

Let $A = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$ be a lottery. The expected utility of A is

$$u(A) = \sum_{p_i,A_i} p_i \times u(A_i)$$

e.g., rolling a fair six-sided dice, I win 27k if 6 comes out, lose 3k otherwise. The expected utility is $=\frac{1}{6}27k - \frac{5}{6}3k$

Let $A = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$ be a lottery. The expected utility of A is

$$u(A) = \sum_{p_i,A_i} p_i \times u(A_i)$$

e.g., rolling a fair six-sided dice, I win 27k if 6 comes out, lose 3k otherwise. The expected utility is $=\frac{1}{6}27k - \frac{5}{6}3k = 2k$.

Tverski and Kahneman's Prospect Theory:

- Humans have complex utility estimates
- Risk aversion, satisfaction level

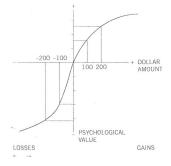


Figure: Typical empirical data

< 17 × <

-

Tverski and Kahneman's Prospect Theory:

- Humans have complex utility estimates
- Risk aversion, satisfaction level

Warning! controversial statement:

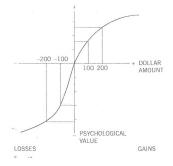


Figure: Typical empirical data

< 17 > <

Tverski and Kahneman's Prospect Theory:

- Humans have complex utility estimates
- Risk aversion, satisfaction level

Warning! controversial statement:

PT does not refute the principle of maximization of expected utility.

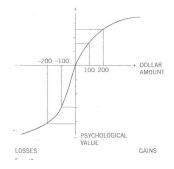


Figure: Typical empirical data

< 67 ▶

Tverski and Kahneman's Prospect Theory:

- Humans have complex utility estimates
- Risk aversion, satisfaction level

Warning! controversial statement:

PT does not refute the principle of maximization of expected utility.

We can incorporate risk aversion and satisfaction as properties of outcomes.

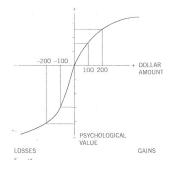


Figure: Typical empirical data

A ■

Preferences

A preference relation is a relation $\succeq \subseteq L \times L$ over the set of lotteries.

<ロ> (日) (日) (日) (日) (日)

æ

Preferences

A preference relation is a relation $\succeq \subseteq L \times L$ over the set of lotteries.

• $A \succeq B$ means that lottery A is weakly preferred to lottery B.

Preferences

A preference relation is a relation $\succeq \subseteq L \times L$ over the set of lotteries.

- $A \succeq B$ means that lottery A is weakly preferred to lottery B.
- A ≻ B = (A ≥ B and not B ≥ A) means that lotter A is strictly preferred to lottery B.

Preferences

A preference relation is a relation $\succeq \subseteq L \times L$ over the set of lotteries.

- $A \succeq B$ means that lottery A is weakly preferred to lottery B.
- A ≻ B = (A ≥ B and not B ≥ A) means that lotter A is strictly preferred to lottery B.
- A ~ B = (A ≽ B and B ≿ A) means that lottery A the same as lottery B value-wise (indifference).

Let A, B, C be three states and let $p, q \in [0, 1]$.

Image: A (a) > A (

Let A, B, C be three states and let $p, q \in [0, 1]$. A preference relation \succeq makes sense if it satisfies the following constraints

< 17 > <

Let A, B, C be three states and let $p, q \in [0, 1]$. A preference relation \succeq makes sense if it satisfies the following constraints

Orderability $(A \succ B) \lor (B \sim A) \lor (B \succ A)$

A (1) < (1) < (1) </p>

Let A, B, C be three states and let $p, q \in [0, 1]$. A preference relation \succeq makes sense if it satisfies the following constraints

Orderability $(A \succ B) \lor (B \sim A) \lor (B \succ A)$ Transitivity $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$

A (1) < (1) < (1) </p>

Let A, B, C be three states and let $p, q \in [0, 1]$. A preference relation \succeq makes sense if it satisfies the following constraints

Orderability $(A \succ B) \lor (B \sim A) \lor (B \succ A)$ Transitivity $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$ Continuity $A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$

▲圖▶ ▲屋▶ ▲屋▶

Let A, B, C be three states and let $p, q \in [0, 1]$. A preference relation \succeq makes sense if it satisfies the following constraints

Orderability $(A \succ B) \lor (B \sim A) \lor (B \succ A)$ Transitivity $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$ Continuity $A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1 - p, C] \sim B$ Substitutability $A \sim B \Rightarrow [p, A; \ 1 - p, C] \sim [p, B; 1 - p, C]$

マロト イヨト イヨト

Let A, B, C be three states and let $p, q \in [0, 1]$. A preference relation \succeq makes sense if it satisfies the following constraints

Orderability $(A \succ B) \lor (B \sim A) \lor (B \succ A)$ Transitivity $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$ Continuity $A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$ Substitutability $A \sim B \Rightarrow [p, A; \ 1-p, C] \sim [p, B; 1-p, C]$ Monotonicity $A \succ B \Rightarrow (p \ge q \Leftrightarrow [p, A; \ 1-p, B] \gtrsim [q, A; \ 1-q, B])$

マロト イヨト イヨト

Violating the constraints leads to self-evident irrationality.

< 17 > <

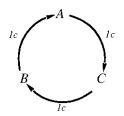
< ∃⇒

Violating the constraints leads to self-evident irrationality. Take transitivity.

<**-**→ **-**→ **-**→

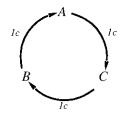
∢ 臣 →

Violating the constraints leads to self-evident irrationality. Take transitivity.



Violating the constraints leads to self-evident irrationality. Take transitivity.

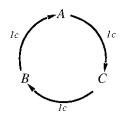
If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B



Violating the constraints leads to self-evident irrationality. Take transitivity.

If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B

If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A

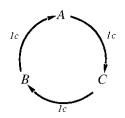


Violating the constraints leads to self-evident irrationality. Take transitivity.

If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B

If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A

If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C



Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944)

A preference relation \gtrsim makes sense if and only if there exists a real-valued function u such that:

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944)

A preference relation \gtrsim makes sense if and only if there exists a real-valued function u such that:

• $u(A) \ge u(B) \iff A \gtrsim B$

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944)

A preference relation \gtrsim makes sense if and only if there exists a real-valued function u such that:

- $u(A) \ge u(B) \Leftrightarrow A \stackrel{\succ}{\sim} B$
- $u([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i u(S_i)$

[⇔]

Representation Theorem

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944)

A preference relation \gtrsim makes sense if and only if there exists a real-valued function u such that:

- $u(A) \ge u(B) \Leftrightarrow A \stackrel{\succ}{\sim} B$
- $u([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i u(S_i)$

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944)

A preference relation \gtrsim makes sense if and only if there exists a real-valued function u such that:

• $u(A) \ge u(B) \Leftrightarrow A \gtrsim B$

•
$$u([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i u(S_i)$$

[\Leftarrow] By contraposition. E.g., pick transitivity and show that if the relation is not transitive there is no way of associating numbers to outcomes.

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944)

A preference relation \gtrsim makes sense if and only if there exists a real-valued function u such that:

• $u(A) \ge u(B) \Leftrightarrow A \stackrel{\succ}{\sim} B$

•
$$u([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i u(S_i)$$

[\Leftarrow] By contraposition. E.g., pick transitivity and show that if the relation is not transitive there is no way of associating numbers to outcomes.

 $[\Rightarrow]$

4 ∰ ▶ < ∃ ▶</p>

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944)

A preference relation \gtrsim makes sense if and only if there exists a real-valued function u such that:

•
$$u(A) \ge u(B) \Leftrightarrow A \gtrsim B$$

•
$$u([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i u(S_i)$$

[\Leftarrow] By contraposition. E.g., pick transitivity and show that if the relation is not transitive there is no way of associating numbers to outcomes.

 $[\Rightarrow]$ We use the axioms to show that there are infinitely many functions that satisfy them, but they are all "equivalent" to a unique real-valued utility functions.

A (10) > (10)

Michael Maschler, Eilon Solan and Shmiel Zamir Game Theory (Ch. 2) Cambridge University Press, 2013.

< 🗇 > < 🖃 >

Michael Maschler, Eilon Solan and Shmiel Zamir Game Theory (Ch. 2) Cambridge University Press, 2013.

The main message

Give me any order on outcomes that makes sense and I can turn it into a utility function!

• Certain outcomes seem difficult to compare:

< □ > < □

< ∃⇒

- Certain outcomes seem difficult to compare:
 - what factors are more important?

< 17 <

- Certain outcomes seem difficult to compare:
 - what factors are more important?
 - have we considered all the relevant ones?

- Certain outcomes seem difficult to compare:
 - what factors are more important?
 - have we considered all the relevant ones?
 - do factor interfere with one another?

- Certain outcomes seem difficult to compare:
 - what factors are more important?
 - have we considered all the relevant ones?
 - do factor interfere with one another?
- In other situations the utility function may be updated because of new incoming information (e.g., evaluating non-terminal positions in a long extensive game like Chess or Go)

Figure: Deep Blue- Kasparov 1996, Final Game. Material favours Black but the position is hopeless

・ロト ・回ト ・ヨト

< ∃ >

æ

How can we handle utility functions of many variables $X_1 \dots X_n$?

- 4 回 ト - 4 回 ト - 4 回 ト

How can we handle utility functions of many variables $X_1 \dots X_n$? e.g., what is U(king safety, material advantage, control of the centre)?

How can we handle utility functions of many variables $X_1 \dots X_n$? e.g., what is

U(king safety, material advantage, control of the centre)?

• We need to find ways to compare bundles of factors, but might be difficult in general (strict dominance, stochastic dominance).

How can we handle utility functions of many variables $X_1 \dots X_n$? e.g., what is

U(king safety, material advantage, control of the centre)?

- We need to find ways to compare bundles of factors, but might be difficult in general (strict dominance, stochastic dominance).
- Search methods to avoid multicriteria altogether: Monte Carlo Tree Search generates random endgames.

How can we handle utility functions of many variables $X_1 \dots X_n$? e.g., what is

U(king safety, material advantage, control of the centre)?

- We need to find ways to compare bundles of factors, but might be difficult in general (strict dominance, stochastic dominance).
- Search methods to avoid multicriteria altogether: Monte Carlo Tree Search generates random endgames.

We assume there is a way of assigning a utility function to bundles of factors and therefore compare them.

→ 同 → → 三 →

Rationality and expected utility

Robert J. Aumann Nobel Prize Winner Economics "A person's behavior is rational if it is in his best interests, given his information"

Rationality and expected utility

Robert J. Aumann Nobel Prize Winner Economics "A person's behavior is rational if it is in his best interests, given his information"

Choose an action that maximises the expected utility

Paolo Turrini Intro to AI (2nd Part)

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ОК	ОК		

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1 OK	^{2,1} B OK	3,1	4,1

Rewards:

• -1000 for dying

- 4 日 ト - 4 日 ト

< ∃ >

• 0 any other square

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ОК	ОК		

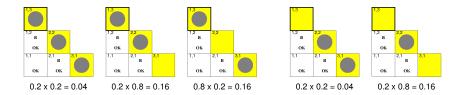
Rewards:

• -1000 for dying

• 0 any other square

What's the expected utility of going to [3,1], [2,2], [1,3]?

Using conditional independence contd.



 $\begin{aligned} \mathsf{P}(P_{1,3}|\textit{known}, b) &= \alpha' \left< 0.2(0.04 + 0.16 + 0.16), \ 0.8(0.04 + 0.16) \right> \\ &\approx \left< 0.31, 0.69 \right> \end{aligned}$

 $\mathsf{P}(P_{2,2}|known, b) \approx \langle 0.86, 0.14 \rangle$

A A

The expected utility u(1,3) of the action (1,3) of going to [1,3] from an explored adjacent square is:

u(1,3) =

The expected utility u(1,3) of the action (1,3) of going to [1,3] from an explored adjacent square is:

u(1,3) = u[0.31, -1000; 0.69, 0]

The expected utility u(1,3) of the action (1,3) of going to [1,3] from an explored adjacent square is:

u(1,3) = u[0.31, -1000; 0.69, 0] = -310

▲冊 ▶ ▲ 臣 ▶ .

The expected utility u(1,3) of the action (1,3) of going to [1,3] from an explored adjacent square is:

u(1,3) = u[0.31, -1000; 0.69, 0] = -310

u(3,1) = u(1,3)

< □ > < □ > < □ >

The expected utility u(1,3) of the action (1,3) of going to [1,3] from an explored adjacent square is:

u(1,3) = u[0.31, -1000; 0.69, 0] = -310u(3,1) = u(1,3)u(2,2) =

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

The expected utility u(1,3) of the action (1,3) of going to [1,3] from an explored adjacent square is:

u(1,3) = u[0.31, -1000; 0.69, 0] = -310u(3,1) = u(1,3)u(2,2) = u[0.86, -1000; 0.14, 0]

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

The expected utility u(1,3) of the action (1,3) of going to [1,3] from an explored adjacent square is:

u(1,3) = u[0.31, -1000; 0.69, 0] = -310u(3,1) = u(1,3)u(2,2) = u[0.86, -1000; 0.14, 0] = -860

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

The expected utility u(1,3) of the action (1,3) of going to [1,3] from an explored adjacent square is:

u(1,3) = u[0.31, -1000; 0.69, 0] = -310u(3,1) = u(1,3)u(2,2) = u[0.86, -1000; 0.14, 0] = -860

Clearly going to [2,2] from either [1,2] or [2,1] is irrational.

The expected utility u(1,3) of the action (1,3) of going to [1,3] from an explored adjacent square is:

```
u(1,3) = u[0.31, -1000; 0.69, 0] = -310
u(3,1) = u(1,3)
u(2,2) = u[0.86, -1000; 0.14, 0] = -860
```

Clearly going to [2,2] from either [1,2] or [2,1] is irrational. Either going to [1,3] or [3,1] is the rational choice.

(1日) (日) (日)

Risky moves

æ

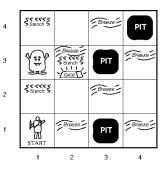
999

Actuators

Sensors Breeze, Glitter, Smell Actuators Turn L/R, Go, Grab, Release, Shoot, Climb Rewards 1000 escaping with gold, -1000 dying, -10 using arrow, -1 walking

Environment • Squares adjacent to Wumpus are smelly

- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills Wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square



A D > A D > A D
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

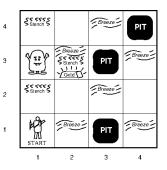
-

Actuators

Sensors Breeze, Glitter, Smell Actuators Turn L/R, Go, Grab, Release, Shoot, Climb Rewards 1000 escaping with gold, -1000 dying, -10 using arrow, -1 walking

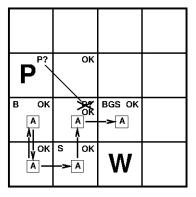
Environment • Squares adjacent to Wumpus are smelly

- · Squares adjacent to pit are breezy
- · Glitter iff gold is in the same square
- Shooting kills Wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square



A D > A D > A D
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Actions in the Wumpus World are **deterministic**

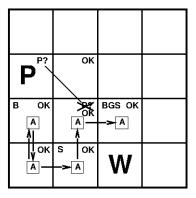


A D > A D > A D
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

문 > 문

Actions in the Wumpus World are **deterministic**

If I want to go from [2,3] to [2,2] I just go.

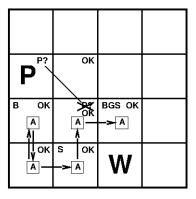


< **₽** ► < E

Actions in the Wumpus World are **deterministic**

If I want to go from [2,3] to [2,2] I just go.

 $P([2,2] \mid [2,3],(2,2))$

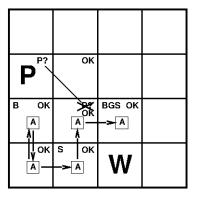


∃ >

Actions in the Wumpus World are **deterministic**

If I want to go from [2,3] to [2,2] I just go.

 $P([2,2] \mid [2,3],(2,2)) = 1$



- ◆ @ ▶ - ◆ 注 ▶

→ Ξ →

The result of performing a in state s is a lottery over S, i.e., probability distribution over the set of all possible states.

The result of performing a in state s is a lottery over S, i.e., probability distribution over the set of all possible states.

 $(s, a) = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$

The result of performing a in state s is a lottery over S, i.e., probability distribution over the set of all possible states.

 $(s, a) = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$

e.g., the agent decides to go from [2,1] to [2,2] but:

The result of performing a in state s is a lottery over S, i.e., probability distribution over the set of all possible states.

 $(s, a) = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$

e.g., the agent decides to go from [2,1] to [2,2] but:

• Goes to [2, 2] with probability 0.5

The result of performing a in state s is a lottery over S, i.e., probability distribution over the set of all possible states.

 $(s, a) = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$

e.g., the agent decides to go from $\left[2,1\right]$ to $\left[2,2\right]$ but:

- Goes to [2,2] with probability 0.5
- Goes to [3, 1] with probability 0.3

The result of performing a in state s is a lottery over S, i.e., probability distribution over the set of all possible states.

 $(s, a) = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$

e.g., the agent decides to go from [2,1] to [2,2] but:

- Goes to [2,2] with probability 0.5
- Goes to [3, 1] with probability 0.3
- Goes back to [1,1] with probability 0.1

The result of performing a in state s is a lottery over S, i.e., probability distribution over the set of all possible states.

 $(s, a) = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$

e.g., the agent decides to go from [2,1] to [2,2] but:

- Goes to [2,2] with probability 0.5
- Goes to [3, 1] with probability 0.3
- Goes back to [1,1] with probability 0.1
- Bumps his head on the wall and stays in [2,1] with prob. 0.1

・ 同下 ・ ヨト ・ ヨト

The result of performing a in state s is a lottery over S, i.e., probability distribution over the set of all possible states.

 $(s, a) = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$

e.g., the agent decides to go from [2,1] to [2,2] but:

- Goes to [2,2] with probability 0.5
- Goes to [3, 1] with probability 0.3
- Goes back to [1,1] with probability 0.1
- Bumps his head on the wall and stays in [2,1] with prob. 0.1
- Goes to any other square with probability 0

(4回) (4 注) (4 注)

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1 OK	^{2,1} B OK	3,1	4,1

æ

- ∢ ≣ ▶

▲ □ ▶ ▲ 三 ▶

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ОК	ОК		

回下 くほと くほと

æ

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ОК	ОК		

Rewards:

- -1000 for dying
- 0 any other square

▲ □ ▶ ▲ 三 ▶

- < ≣ →

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ОК	ОК		

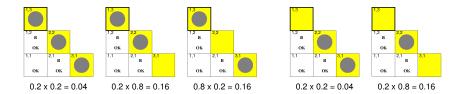
Rewards:

- -1000 for dying
- 0 any other square

▲ □ ► < □ ►</p>

What's the expected utility of going to [3,1], [2,2], [1,3]?

Expected Utility and Stochastic Actions



 $\begin{aligned} \mathsf{P}(P_{1,3}|\textit{known},b) &= \alpha' \left< 0.2(0.04 + 0.16 + 0.16), \ 0.8(0.04 + 0.16) \right> \\ &\approx \left< 0.31, 0.69 \right> \end{aligned}$

 $\mathsf{P}(P_{2,2}|known, b) \approx \langle 0.86, 0.14 \rangle$

A ₽

Let $(s, a) = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$ be the result of performing action *a* in state *s*

Let $(s, a) = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$ be the result of performing action *a* in state *s*, where each A_i is of the form $[q_1, A_{1i}; q_2, A_{2i}, \dots, q_n, A_{ni}]$.

同 と く ヨ と く ヨ と

Let $(s, a) = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$ be the result of performing action *a* in state *s*, where each A_i is of the form $[q_1, A_{1i}; q_2, A_{2i}, \dots, q_n, A_{ni}]$. Then the utility of such action is given be:

$$u(s,a) = \sum_{p_i,A_i} p_i \times u(A_i)$$

Let $(s, a) = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$ be the result of performing action *a* in state *s*, where each A_i is of the form $[q_1, A_{1i}; q_2, A_{2i}, \dots, q_n, A_{ni}]$. Then the utility of such action is given be:

$$u(s,a) = \sum_{p_i,A_i} p_i \times u(A_i)$$

The expected utility of each outcome, assuming we have reached it, times the probability of actually reaching it.

Let $(s, a) = [p_1, A_1; p_2, A_2; \dots p_n, A_n]$ be the result of performing action *a* in state *s*, where each A_i is of the form $[q_1, A_{1i}; q_2, A_{2i}, \dots, q_n, A_{ni}]$. Then the utility of such action is given be:

$$u(s,a) = \sum_{p_i,A_i} p_i \times u(A_i)$$

The expected utility of each outcome, assuming we have reached it, times the probability of actually reaching it.

It is a lottery of lotteries!

u(1,3) =

Paolo Turrini Intro to AI (2nd Part)

< □ > < □ > < □ >

 $\begin{array}{l} u(1,3) = 0.8 \times u[0.31,-1000;0.69,0] + 0.1 \times u[1,0] + \\ + 0.1 \times u[0.86,-1000;0.14,0] \end{array}$

 $u(1,3) = 0.8 \times u[0.31, -1000; 0.69, 0] + 0.1 \times u[1,0] + 0.1 \times u[0.86, -1000; 0.14, 0] = 0.8 \times -310 + 0.1 \times -860 =$

$$u(1,3) = 0.8 \times u[0.31, -1000; 0.69, 0] + 0.1 \times u[1, 0] + 0.1 \times u[0.86, -1000; 0.14, 0] = 0.8 \times -310 + 0.1 \times -860 = -248 - 86$$

æ

- ∢ ≣ ≯

▲ □ ▶ ▲ 三 ▶

 $\begin{array}{l} u(1,3) = 0.8 \times u[0.31, -1000; 0.69, 0] + 0.1 \times u[1,0] + \\ + 0.1 \times u[0.86, -1000; 0.14, 0] = 0.8 \times -310 + 0.1 \times -860 = \\ -248 - 86 = -334 \end{array}$

伺下 イヨト イヨト

 $\begin{array}{l} u(1,3) = 0.8 \times u[0.31, -1000; 0.69, 0] + 0.1 \times u[1,0] + \\ + 0.1 \times u[0.86, -1000; 0.14, 0] = 0.8 \times -310 + 0.1 \times -860 = \\ -248 - 86 = -334 \end{array}$

伺下 イヨト イヨト

$$u(1,3) = 0.8 \times u[0.31, -1000; 0.69, 0] + 0.1 \times u[1,0] + 0.1 \times u[0.86, -1000; 0.14, 0] = 0.8 \times -310 + 0.1 \times -860 = -248 - 86 = -334$$

We can can get to $\left[2,2\right]$ from two directions, but by symmetry it's the same.

u(2,2) =

< □ > < □ > < □ >

```
 \begin{array}{l} u(2,2) = \\ 0.8 \times u[0.86,-1000; 0.14,0] + 0.1 \times u[0.31,-1000; 0.69,0] + \\ + 0.1 \times u[1,0] \end{array}
```

 $\begin{array}{l} u(2,2) = \\ 0.8 \times u[0.86,-1000;\,0.14,0] + 0.1 \times u[0.31,-1000;\,0.69,0] + \\ + 0.1 \times u[1,0] = 0.8 \times -860 + 0.1 \times -310 = \end{array}$

 $\begin{array}{l} u(2,2) = \\ 0.8 \times u[0.86, -1000; 0.14, 0] + 0.1 \times u[0.31, -1000; 0.69, 0] + \\ + 0.1 \times u[1, 0] = 0.8 \times -860 + 0.1 \times -310 = -688 - 31 \end{array}$

 $\begin{array}{l} u(2,2) = \\ 0.8 \times u[0.86, -1000; 0.14, 0] + 0.1 \times u[0.31, -1000; 0.69, 0] + \\ + 0.1 \times u[1, 0] = 0.8 \times -860 + 0.1 \times -310 = -688 - 31 = -729 \end{array}$

$$\begin{array}{l} u(2,2) = \\ 0.8 \times u[0.86, -1000; 0.14, 0] + 0.1 \times u[0.31, -1000; 0.69, 0] + \\ + 0.1 \times u[1,0] = 0.8 \times -860 + 0.1 \times -310 = -688 - 31 = -729 \end{array}$$

u(1,3) = u(3,1) (because of symmetry)

$$\begin{array}{l} u(2,2) = \\ 0.8 \times u[0.86, -1000; 0.14, 0] + 0.1 \times u[0.31, -1000; 0.69, 0] + \\ + 0.1 \times u[1,0] = 0.8 \times -860 + 0.1 \times -310 = -688 - 31 = -729 \end{array}$$

u(1,3) = u(3,1) (because of symmetry)

Going to [2,2] is still the irrational choice, but not as bad. The rational choice is either going to [1,3] or [3,1].

$$\begin{array}{l} u(2,2) = \\ 0.8 \times u[0.86, -1000; 0.14, 0] + 0.1 \times u[0.31, -1000; 0.69, 0] + \\ + 0.1 \times u[1, 0] = 0.8 \times -860 + 0.1 \times -310 = -688 - 31 = -729 \end{array}$$

u(1,3) = u(3,1) (because of symmetry)

Going to [2,2] is still the irrational choice, but not as bad. The rational choice is either going to [1,3] or [3,1].

Obviously, the more chaotic the decision system the less the impact of reward difference.

A (1) > A (2) > A

Summary

- Utility, lotteries and preferences
- Maximisation of expected utility
- Stochastic actions

@ ▶

What's next

- Risky plans
- What's the best "strategy" to follow?
- Estimating future gains: how patient should we be?

< A > < 3

What's next

- Risky plans
- What's the best "strategy" to follow?
- Estimating future gains: how patient should we be?