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Outline

Lotteries (and how to win them)

Risky moves

maybe “Time” but I very much doubt it
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The main reference

Stuart Russell and Peter Norvig
Artificial Intelligence: a modern approach
Chapters 16-17
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Rewards
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Sensors Breeze, Glitter, Smell

Actuators Turn L/R, Go, Grab, Release, Shoot, Climb

Rewards 1000 escaping with gold, -1000 dying, -10 using
arrow, -1 walking

Environment Squares adjacent to Wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills Wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square
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State space

The universe in which the agent moves is a finite set of states

S = {s1, . . . , sn}

e.g., the squares in the Wumpus World.

States can also take into account the inner state of the agent,
e.g., the knowledge base KB;

or the actions they have performed, e.g., climbing out of the
cave with the gold.
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Utility functions

A utility function is a function

u : S → R

associating a real number to each state.

Important:
Utility functions are not the same as money. Utility functions are a
representation of happiness, goal satisfaction, fulfilment and the
like. They are just a mathematical tool to represent a comparison
between outcomes. So altruism, unselfishness, and so fort can be
modelled using utility functions.
(Paolo Turrini 2016)
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Lotteries

A lottery is a probability distribution over the set of states.

e.g., for outcomes A1 and A2, and p ∈ [0, 1]

Lottery A = [p,A1; (1− p),A2]

L is the set of lotteries over S .
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Simple Lotteries

Observation: A state s ∈ S can be seen as a lottery

: where s is
assigned probability 1 and all other states probability 0.

e.g.,
A = [1,A1; 0,A2; 0,A3; . . .]

We get A1 with probability 1, and the rest with probability 0.
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Compound Lotteries

A lottery over the set of lotteries

is itself a lottery.

A = [q1,A; q2,B; . . . ; qn,C ] =
= [q1, [p1,A1; p2,A2; . . . pn,An]; q2,B; . . . ; qn,C ] =
= [q1p1,A1; q1p2,A2; . . . qnpn,An; q2,B; . . . ; qn,C ] = . . .

Compound lotteries can be reduced to simple lotteries
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Expected Utility

Let A = [p1,A1; p2,A2; . . . pn,An] be a lottery.

The expected utility of A is

u(A) =
∑
pi ,Ai

pi × u(Ai )

e.g., rolling a fair six-sided dice, I win 27k if 6 comes out, lose 3k
otherwise. The expected utility is = 1

627k − 5
63k = 2k .
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Humans and Expected Utility
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Tverski and Kahneman’s Prospect Theory:

Humans have complex utility estimates

Risk aversion, satisfaction level

Warning! controversial statement:

PT does not refute the principle
of maximization of expected utility.

We can incorporate risk aversion and
satisfaction as properties of outcomes.

Figure: Typical empirical data
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Preferences

A preference relation is a relation �⊆ L× L over the set of
lotteries.

A � B means that lottery A is weakly preferred to lottery B.

A � B = (A � B and not B � A) means that lotter A is
strictly preferred to lottery B.

A ∼ B = (A � B and B � A) means that lottery A the same
as lottery B value-wise (indifference).
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Rational preferences

Let A,B,C be three states and let p, q ∈ [0, 1].

A preference relation � makes sense if it satisfies the following
constraints

Orderability (A � B) ∨ (B ∼ A) ∨ (B � A)

Transitivity (A � B) ∧ (B � C ) ⇒ (A � C )

Continuity A � B � C ⇒ ∃ p [p,A; 1− p,C ] ∼ B

Substitutability A ∼ B ⇒ [p,A; 1− p,C ] ∼ [p,B; 1− p,C ]

Monotonicity A � B ⇒ (p ≥ q ⇔ [p,A; 1− p,B] �∼
[q,A; 1− q,B])
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Rational preferences contd.
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Violating the constraints leads to self-evident irrationality.

Take transitivity.

If B � C , then an agent who has
C would pay (say) 1 cent to get B

If A � B, then an agent who has B
would pay (say) 1 cent to get A

If C � A, then an agent who has A
would pay (say) 1 cent to get C



Intro to AI (2nd Part)

Rational preferences contd.

Paolo Turrini Intro to AI (2nd Part)

Violating the constraints leads to self-evident irrationality.

Take transitivity.

If B � C , then an agent who has
C would pay (say) 1 cent to get B

If A � B, then an agent who has B
would pay (say) 1 cent to get A

If C � A, then an agent who has A
would pay (say) 1 cent to get C



Intro to AI (2nd Part)

Rational preferences contd.

Paolo Turrini Intro to AI (2nd Part)

Violating the constraints leads to self-evident irrationality.

Take transitivity.

If B � C , then an agent who has
C would pay (say) 1 cent to get B

If A � B, then an agent who has B
would pay (say) 1 cent to get A

If C � A, then an agent who has A
would pay (say) 1 cent to get C



Intro to AI (2nd Part)

Rational preferences contd.

Paolo Turrini Intro to AI (2nd Part)

Violating the constraints leads to self-evident irrationality.

Take transitivity.

If B � C , then an agent who has
C would pay (say) 1 cent to get B

If A � B, then an agent who has B
would pay (say) 1 cent to get A

If C � A, then an agent who has A
would pay (say) 1 cent to get C



Intro to AI (2nd Part)

Rational preferences contd.

Paolo Turrini Intro to AI (2nd Part)

Violating the constraints leads to self-evident irrationality.

Take transitivity.

If B � C , then an agent who has
C would pay (say) 1 cent to get B

If A � B, then an agent who has B
would pay (say) 1 cent to get A

If C � A, then an agent who has A
would pay (say) 1 cent to get C



Intro to AI (2nd Part)

Rational preferences contd.

Paolo Turrini Intro to AI (2nd Part)

Violating the constraints leads to self-evident irrationality.

Take transitivity.

If B � C , then an agent who has
C would pay (say) 1 cent to get B

If A � B, then an agent who has B
would pay (say) 1 cent to get A

If C � A, then an agent who has A
would pay (say) 1 cent to get C



Intro to AI (2nd Part)

Representation Theorem

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944)

A preference relation �∼ makes sense if and only if there exists a
real-valued function u such that:

u(A) ≥ u(B) ⇔ A �∼ B

u([p1, S1; . . . ; pn,Sn]) = Σi piu(Si )

[⇐] By contraposition. E.g., pick transitivity and show that if the
relation is not transitive there is no way of associating numbers to
outcomes.
[⇒] We use the axioms to show that there are infinitely many
functions that satisfy them, but they are all “equivalent” to a
unique real-valued utility functions.
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Representation Theorem

Michael Maschler, Eilon Solan and Shmiel Zamir
Game Theory (Ch. 2)
Cambridge University Press, 2013.

The main message

Give me any order on outcomes that makes sense and I can turn it
into a utility function!
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Multicriteria decision-making

Certain outcomes seem difficult to compare:

what factors are more important?
have we considered all the relevant ones?
do factor interfere with one another?

In other situations the utility function may be updated because
of new incoming information (e.g., evaluating non-terminal
positions in a long extensive game like Chess or Go)
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Multicriteria decision-making

Figure: Deep Blue- Kasparov 1996, Final Game. Material favours Black
but the position is hopeless
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Multicriteria decision-making

How can we handle utility functions of many variables X1 . . .Xn?

e.g., what is
U(king safety,material advantage, control of the centre)?

We need to find ways to compare bundles of factors, but
might be difficult in general (strict dominance, stochastic
dominance).

Search methods to avoid multicriteria altogether: Monte Carlo
Tree Search generates random endgames.

We assume there is a way of assigning a utility function to bundles
of factors and therefore compare them.
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Rationality and expected utility

Robert J. Aumann
Nobel Prize Winner

Economics

“A person’s behavior is rational if it is in
his best interests, given his information”

Paolo Turrini Intro to AI (2nd Part)

Choose an action that
maximises the expected utility
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Beliefs and Expected Utility
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Rewards:

−1000 for dying

0 any other square

What’s the expected utility of going to [3, 1], [2, 2], [1, 3]?
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Using conditional independence contd.

Paolo Turrini Intro to AI (2nd Part)

P(P1,3|known, b) = α′ 〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉
≈ 〈0.31, 0.69〉

P(P2,2|known, b) ≈ 〈0.86, 0.14〉
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Beliefs and expected utility

The expected utility u(1, 3) of the action (1, 3) of going to [1, 3]
from an explored adjacent square is:

u(1, 3) =

u[0.31,−1000; 0.69, 0] = −310

u(3, 1) = u(1, 3)

u(2, 2) = u[0.86,−1000; 0.14, 0] = −860

Clearly going to [2, 2] from either [1, 2] or [2, 1] is irrational.
Either going to [1, 3] or [3, 1] is the rational choice.
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Risky moves
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Actuators

Paolo Turrini Intro to AI (2nd Part)

Sensors Breeze, Glitter, Smell

Actuators Turn L/R, Go, Grab, Release, Shoot, Climb

Rewards 1000 escaping with gold, -1000 dying, -10 using
arrow, -1 walking

Environment Squares adjacent to Wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills Wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square
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Deterministic actions

Paolo Turrini Intro to AI (2nd Part)

Actions in the Wumpus World
are deterministic

If I want to go from [2, 3] to
[2, 2] I just go.

P([2, 2] | [2, 3], (2, 2)) =1
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Stochastic actions

The result of performing a in state s is a lottery over S , i.e.,
probability distribution over the set of all possible states.

(s, a) = [p1,A1; p2,A2; . . . pn,An]

e.g., the agent decides to go from [2, 1] to [2, 2] but:

Goes to [2, 2] with probability 0.5

Goes to [3, 1] with probability 0.3

Goes back to [1, 1] with probability 0.1

Bumps his head on the wall and stays in [2, 1] with prob. 0.1

Goes to any other square with probability 0
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Rewards:

−1000 for dying

0 any other square

What’s the expected utility of going to [3, 1], [2, 2], [1, 3]?



Intro to AI (2nd Part)

Beliefs, Expected Utility and Stochastic Actions

Paolo Turrini Intro to AI (2nd Part)

Rewards:

−1000 for dying

0 any other square

What’s the expected utility of going to [3, 1], [2, 2], [1, 3]?



Intro to AI (2nd Part)

Beliefs, Expected Utility and Stochastic Actions

Paolo Turrini Intro to AI (2nd Part)

Rewards:

−1000 for dying

0 any other square

What’s the expected utility of going to [3, 1], [2, 2], [1, 3]?



Intro to AI (2nd Part)

Beliefs, Expected Utility and Stochastic Actions

Paolo Turrini Intro to AI (2nd Part)

Rewards:

−1000 for dying

0 any other square

What’s the expected utility of going to [3, 1], [2, 2], [1, 3]?



Intro to AI (2nd Part)

Expected Utility and Stochastic Actions
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P(P1,3|known, b) = α′ 〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉
≈ 〈0.31, 0.69〉

P(P2,2|known, b) ≈ 〈0.86, 0.14〉
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Beliefs, Expected Utility and Stochastic Actions

Let (s, a) = [p1,A1; p2,A2; . . . pn,An] be the result of performing
action a in state s

, where each Ai is of the form
[q1,A1i ; q2,A2i , . . . , qn,Ani ].
Then the utility of such action is given be:

u(s, a) =
∑
pi ,Ai

pi × u(Ai )

The expected utility of each outcome, assuming we have reached
it, times the probability of actually reaching it.

It is a lottery of lotteries!
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Beliefs, Expected Utility and Stochastic Actions

u(1, 3) =

0.8× u[0.31,−1000; 0.69, 0] + 0.1× u[1, 0]+
+0.1× u[0.86,−1000; 0.14, 0] = 0.8×−310 + 0.1×−860 =
−248− 86 = −334

We can can get to [2, 2] from two directions, but by symmetry it’s
the same.
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Beliefs, Expected Utility and Stochastic Actions

u(2, 2) =

0.8× u[0.86,−1000; 0.14, 0] + 0.1× u[0.31,−1000; 0.69, 0]+
+0.1× u[1, 0] = 0.8×−860 + 0.1×−310 = − 688− 31 = −729

u(1, 3) = u(3, 1) (because of symmetry)

Going to [2, 2] is still the irrational choice, but not as bad.
The rational choice is either going to [1, 3] or [3, 1].

Obviously, the more chaotic the decision system the less the
impact of reward difference.
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Summary

Utility, lotteries and preferences

Maximisation of expected utility

Stochastic actions
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What’s next

Risky plans

What’s the best “strategy” to follow?

Estimating future gains: how patient should we be?
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