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The main reference

Stuart Russell and Peter Norvig
Artificial Intelligence: a modern approach
Chapters 17
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The game ends when we reach either
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Collision results in no movement
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The environment is fully observable:

the agent always knows what the world looks like: e.g., there is a
wall, where the wall is, how to get to the wall . . .

the agent always knows his or her position during the game, even
though some trajectories might not be reached with certainty.
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agent is in and the action she performs.
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[x , y ]t is the fact that the agent is at square [x , y ] at time t

(x , y)t is the fact that the agent intends to go to [x , y ] at time t

P([x , y ]t | (x , y)t−1, [x − 1, y ]t−1) =
P([x , y ]t | (x , y)t−1, [x − 1, y ]t−1, [x − 5, y − 6]t−20) =
P([x , y ]t | (x , y)t−1, [x − 1, y ]t−1, (x − 4, y − 6)t−20)
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{Up,Down, Left,Right} to denote the intended directions.

So [Up,Down,Up,Right] is going to be the plan that, from the
starting state, executes the moves n the specified order.
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With deterministic agents, it gets us to +1 with probability 1.

But now?

What’s the probability that [Up,Up,Right,Right,Right] gets us to +1?
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It’s not 0.85!

0.85 is the probability that we get to +1 actually using the
intended plan [Up,Up,Right,Right,Right]

0.85 = 0.32768: this means that we do not even get there 1 time
out of 3.
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There is a small chance of [Up,Up,Right,Right,Right]
accidentally reaching the goal by going the other way round!

The probability of this to happen is 0.14 × 0.8 = 0.00008

So the probability that [Up,Up,Right,Right,Right] gets us to +1
is 0.32768 + 0.00008 = 0.32776
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In this case, the probability of accidental successes doesn’t play a
significant role. However it might very well, under different
decision models, rewards, environments etc.

0.32776 is still less than 1
3 , so we don’t seem to be doing very well.
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we also call it a reward function.
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utility and expected utility used as general terms applied to actions,
states, sequences of states etc. - denoted u
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Consider now the following. The reward is:

+1 at state +1, -1 at -1, -0.04 in all other states.

What’s the expected utility of [Up,Up,Right,Right,Right]?

IT DEPENDS on how we are going to put rewards together!
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Utility of state sequences

We need to compare sequences of states.

Look at the following:
u[s1, s2, . . . sn] is the utility of sequence s1, s2, . . . sn.
Does it remind you of anything?

multi-criteria decision making

Many ways of comparing states:

summing all the rewards

giving priority to the immediate rewards

. . .
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We are going to assume only one axiom,

stationary preferences on
reward sequences:

[r , r0, r1, r2, . . .] � [r , r ′0, r
′
1, r
′
2, . . .] ⇔ [r0, r1, r2, . . .] � [r ′0, r

′
1, r
′
2, . . .]
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Utility of state sequences

Theorem

There are only two ways to combine rewards over time.

Additive utility function:
u([s0, s1, s2, . . .]) = r(s0) + r(s1) + r(s2) + · · ·
Discounted utility function:
u([s0, s1, s2, . . .]) = r(s0) + γr(s1) + γ2r(s2) + · · ·

where γ ∈ [0, 1] is the discount factor
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Discount factor

γ is a measure of the agent patience. How much more she values a
gain of 5 today than a gain of 5 tomorrow, the day after etc...

Used everywhere in AI, game theory, cognitive psychology

A lot of experimental research on it

Variants: hyperbolic discounting
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Discounting

With discounted rewards the utility of an infinite sequence if finite
In fact, if γ < 1 and rewards are bounded by r, we have:

u[s1, s2, . . .] =
∞∑
t=0

γtr(st) ≤
∞∑
t=0

γtr =
r

1− γ
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Markov Decision Process

A Markov Decision Process is a sequential decision problem for a:

fully observable environment

with stochastic actions

with a Markovian transition model

and with discounted (possibly additive) rewards
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MDPs formally

Paolo Turrini Intro to AI (2nd Part)

Definition

States s ∈ S , actions a ∈ A

Model P(s ′|s, a) = probability that a in s leads to s ′

Reward function R(s) (or R(s, a), R(s, a, s ′)) ={
−0.04 (small penalty) for nonterminal states
±1 for terminal states
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Value of plans

Paolo Turrini Intro to AI (2nd Part)

The utility of executing a plan p from state s is given by:

vp(s) = E [
∞∑
t=0

γtr(St)]

Where St is a random variable and the expectation is wrt to the
probability distribution over state sequences determined by s and p.
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Calculate the utility of the sequences you can actually perform,
times the probability of reaching them.

Add these numbers

Forget about the rest
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Value of plans
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For instance the plan [Up,Up] can generate sequences

([1, 1], [2, 1], [3, 1]) with probability 0.82

([1, 1], [2, 1], [2, 1]) with probability 2× 0.8× 0.1 (collisions)

([1, 1], [1, 2], [1, 2]) with probability 0.1× 0.8
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For instance the plan [Up,Up] can generate sequences

([1, 1], [1, 1], [1, 1]) with probability 0.12

([1, 1], [1, 1], [2, 1]) with probability 0.1× 0.8

([1, 1], [1, 1], [1, 2]) with probability 0.12
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For instance the plan [Up,Up] can generate sequences

([1, 1], [1, 2], [1, 1]) with probability 0.12

([1, 1], [1, 2], [1, 3]) with probability 0.12

for a total of nine sequences
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Adding utility and summing up, we have that the expected utility is
−0.08

To be expected, because no matter how we proceed, we are making two
steps and at each step getting −0.04 of reward.
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Plans vs Policies

We have looked at a finite sequence of actions. But why
should the agent stop after, say, five steps, if she can reach
the terminal states in a few steps?

The intuitively “best” course of action is not getting us there
in 2

3 of the cases, even if we count getting unwanted
trajectories. Can we do better?

The idea is that we don’t only care about specifying a
sequence of moves, but we need to think of what to do in
each situation.

A policy is a specification of moves at each decision point
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A policy
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Expected utility of a policy

The expected utility (or value) of policy π, from state s is:

vπ(s) = E [
∞∑
t=0

γtr(st)]

The probability distribution over the state sequences is induced by
the policy π, the initial state t and the transition model for the
environment.
We want the optimal policy:

π∗s = argmax
π

vπ(s)
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A remarkable fact

Theorem

With discounted rewards and infinite horizons
π∗s = π∗s′ , for each s ′ ∈ S

Idea: Take π∗a and π∗b. If they both reach a state c , because they
are both optimal, there is no reason why they should disagree. So
π∗c is identical for both. But then they behave the same at all
states!
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Optimal policies

Figure: Optimal policy when state penalty R(s) is –0.04:
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To be continued

Next Tuesday we are going to finish the slides on MDPs
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