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Outline

Rewind

The Value Iteration Algorithm
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The main reference

Stuart Russell and Peter Norvig
Artificial Intelligence: a modern approach
Chapters 17
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The World
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Begin at the start state

The game ends when we reach either
goal state +1 or −1

Collision results in no movement

Rewards: +1 and −1 for terminal
states respectively, −0.04 for all others
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The World
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Fully observable

Markovian

Discounted rewards

Stochastic actions
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Each time it’s like throwing an unfair dice
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The Agent
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Walking is a repetition of throws:

The probability that I walk right the first time: 0.8

The probability that I walk right the second time: 0.8

It’s a product! 0.82
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Plans and their value
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Walking is a repetition of throws:

A plan, e.g., [Up,Up,Right,Right,Right], can bring us somewhere
unintentionally

How much is a plan worth? vp(s) = E [
∑∞

t=0 γ
tr(St)], the

expected (discounted) sum of rewards.



Intro to AI (2nd Part)

Plans and their value

Paolo Turrini Intro to AI (2nd Part)

Walking is a repetition of throws:

A plan, e.g., [Up,Up,Right,Right,Right], can bring us somewhere
unintentionally

How much is a plan worth?

vp(s) = E [
∑∞

t=0 γ
tr(St)], the

expected (discounted) sum of rewards.



Intro to AI (2nd Part)

Plans and their value

Paolo Turrini Intro to AI (2nd Part)

Walking is a repetition of throws:

A plan, e.g., [Up,Up,Right,Right,Right], can bring us somewhere
unintentionally

How much is a plan worth? vp(s) = E [
∑∞

t=0 γ
tr(St)], the

expected (discounted) sum of rewards.



Intro to AI (2nd Part)

Time and Risk

Paolo Turrini Intro to AI (2nd Part)

start

0.1

0.8

0.1

0.1

0.1

0.8



Intro to AI (2nd Part)

Time and Risk

Paolo Turrini Intro to AI (2nd Part)

r1start

r2

r3

r4

r5

r6

r7

0.1

0.8

0.1

0.1

0.1

0.8

The real value of rewards depends on the agent’s patience.
(as much as the real value of money depends on the attitude
towards risk)
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Multiplicative discounting γn after n steps.



Intro to AI (2nd Part)

Time and Risk

Paolo Turrini Intro to AI (2nd Part)

1γ0start

10γ1

−4γ1

4γ1

20γ2

20γ2

20γ2

0.1

0.8

0.1

0.1

0.1

0.8

Multiplicative discounting: γn after n steps.
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And now?

We include the probabilities...
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Probabilities of sequences:
to discount further the already discounted rewards!
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Expected utility of this intended course of actions (not considering the
rest = assuming it’s zero reward everywhere else) is:
6.9
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Let’s see what happens if we go up instead...
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Let’s see what happens if we go up instead...
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Including probabilities...
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Summing up: 5.5
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This means that switching to Up is dominated by going right.

Same reasoning for going down: lower expected utility!
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Now I’m going to be very impatient.
γ = 0.1
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Can you already see what’s going on?
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Let’s include the probabilities
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Notice the impact of discounting on negative rewards:
In the end, it’s all gonna be zero!
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The expected utility at the starting state is: 1.428
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The expected utility at the starting state is: 1.806
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Now Up is dominant!
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A policy is a specification of moves at each decision point
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Expected utility of a policy

The expected utility (or value) of policy π, from state s is:

vπ(s) = E [
∞∑
t=0

γtr(St)]

E , the probability distribution over the sequences is induced by:

the policy π (the actions we are actually going to make)

the initial state t (where we start)

the transition model (where we can get to)
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If this was the entire (relevant) world...
and γ = 0.5
Going straight twice in a row would have value: 6.9
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Optimal policies

We want the optimal policy:

π∗s = argmax
π

vπ(s)

And we know that it’s unique no matter the starting state.

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Optimal policies

Paolo Turrini Intro to AI (2nd Part)

1start

5

−2

2

5

5

5

0.1

0.8

0.1

0.1

0.1

0.8

If this was the entire (relevant) world...
and γ = 0.5
Going straight twice in a row would be optimal



Intro to AI (2nd Part)

Optimal policies

Paolo Turrini Intro to AI (2nd Part)

1start

5

−2

2

5

5

5

0.1

0.8

0.1

0.1

0.1

0.8

If this was the entire (relevant) world...

and γ = 0.5
Going straight twice in a row would be optimal



Intro to AI (2nd Part)

Optimal policies

Paolo Turrini Intro to AI (2nd Part)

1start

5

−2

2

5

5

5

0.1

0.8

0.1

0.1

0.1

0.8

If this was the entire (relevant) world...
and γ = 0.5

Going straight twice in a row would be optimal



Intro to AI (2nd Part)

Optimal policies

Paolo Turrini Intro to AI (2nd Part)

1start

5

−2

2

5

5

5

0.1

0.8

0.1

0.1

0.1

0.8

If this was the entire (relevant) world...
and γ = 0.5
Going straight twice in a row would be optimal



Intro to AI (2nd Part)

Risk and reward

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Value of states

The value of a state s is its value under the optimal policy.

In other words:

expected (discounted) sum of rewards
assuming optimal actions
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6.9 is the value of the starting state.
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VERY VERY IMPORTANT

Given the values of the states, choosing the best action is just
MEU: maximize the expected utility of the immediate successors

Paolo Turrini Intro to AI (2nd Part)



Intro to AI (2nd Part)

Value of states
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Figure: The values with γ = 1 and R(s) = −0.04
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Figure: The optimal policy

π∗(s) = argmax
a∈A(s)

∑
s′

P(s ′ | s, a)v(s ′)

Maximise the expected utility of the subsequent state
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Figure: The optimal policy

π∗(s) = argmax
a∈A(s)

∑
s′

P(s ′ | s, a)v(s ′)

Maximise the expected utility of the subsequent state
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The Bellman equation

Definition of utility of states leads to a simple relationship among
values of neighboring states:

Definition (Rewards)

expected sum of rewards = current reward + γ× expected
sum of rewards after taking best action
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The Bellman equation

Bellman equation (1957):

v(s) = r(s) + γ max
a

∑
s′

P(s ′ | (s, a))v(s ′)

We can use it to compute the optimal policy!
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Value Iteration Algorithm

1 Start with arbitrary values

2 Repeat for every s simultaneously until “no change”

v(s)← r(s) + γ max
a

∑
s′

v(s ′)P(s ′ | (s, a))
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The Value Iteration Algorithm
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A fundamental fact

Theorem

VIA:

terminates

returns the unique optimal policy (for the input values).
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Initialise the values, for γ = 1, r = −0.04
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Simultaneously apply the Bellmann update to all states

v(s) = r(s) + γ max
a

∑
s′

P(s ′ | (s, a))v(s ′)
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v(s) = r(s) + γ max
a

∑
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P(s ′ | (s, a))v(s ′)
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Value Iteration Algorithm
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The state values
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The optimal policy
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Summary

Stochastic actions can lead to unpredictable outcomes

But we can still find optimal “strategies”, exploiting
probabilities
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What’s next

What if we don’t know what game we are playing?

Play anyway and see what happens!
and play as much as possible!
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