Reasoning with Probabilities

Paolo Turrini

Department of Computing, Imperial College London

Introduction to Artificial Intelligence 2nd Part

・ロト ・回ト ・ヨト

The main reference

Stuart Russell and Peter Norvig Artificial Intelligence: a modern approach Chapter 14

- 4 同 ト - 4 三

Today

Paolo Turrini Intro to AI (2nd Part)

・ロト ・回ト ・ヨト ・ヨト

590

æ

Today

- Bayes' rule
- Conditional independence
- Back to the Wumpus World
- Bayesian Networks

▲ (日) ト → 三

≣ >

Intro to AI (2nd Part)

Bayes' Rule

Paolo Turrini Intro to AI (2nd Part)

æ

Paolo Turrini Intro to AI (2nd Part)

・ロト ・回ト ・ヨト ・ヨト

æ

Upon your return from a holiday on an exotic island, your doctor has bad news and good news.

<- ↓ ↓ < ≥ >

3 D

Upon your return from a holiday on an exotic island, your doctor has bad news and good news. The bad news is that you've been diagnosed a serious disease and the test is 99% accurate.

< A → <

Upon your return from a holiday on an exotic island, your doctor has bad news and good news. The bad news is that you've been diagnosed a serious disease and the test is 99% accurate. The good news is that the disease is very rare (1 in 10.000 get it).

A (1) > (1) > (1)

Upon your return from a holiday on an exotic island, your doctor has bad news and good news. The bad news is that you've been diagnosed a serious disease and the test is 99% accurate. The good news is that the disease is very rare (1 in 10.000 get it).

How worried should you be?

Conditional probability and Bayes' Rule

Definition of conditional probability:

$$P(a|b) = rac{P(a \wedge b)}{P(b)}$$
 if $P(b) \neq 0$

- 4 日 ト - 4 日 ト

⊸ ≣ ≯

Conditional probability and Bayes' Rule

Definition of conditional probability:

$$P(a|b) = rac{P(a \wedge b)}{P(b)}$$
 if $P(b) \neq 0$

Product rule gives an alternative formulation:

 $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Conditional probability and Bayes' Rule

Definition of conditional probability:

$$P(a|b) = rac{P(a \wedge b)}{P(b)}$$
 if $P(b) \neq 0$

Product rule gives an alternative formulation:

 $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$ but then...

・ 同下 ・ ヨト ・ ヨト

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

Paolo Turrini Intro to AI (2nd Part)

▲口 → ▲圖 → ▲屋 → ▲屋 → □

æ

Useful for assessing diagnostic probability from causal probability:

 $P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$

▲圖▶ ▲屋▶ ▲屋▶

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g., let *c* be cold, *s* be sore throat:

 $P(c|s) = \frac{P(s|c)P(c)}{P(s)} = \frac{0.9 \times 0.001}{0.005} = 0.18$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

$$P(c|s) = \frac{P(s|c)P(c)}{P(s)} = \frac{0.9 \times 0.001}{0.005} = 0.18$$

▲口 → ▲圖 → ▲屋 → ▲屋 → □

æ

$$P(c|s) = \frac{P(s|c)P(c)}{P(s)} = \frac{0.9 \times 0.001}{0.005} = 0.18$$

We might not know the prior probability of the evidence P(S)

- 4 回 ト - 4 回 ト - 4 回 ト

$$P(c|s) = \frac{P(s|c)P(c)}{P(s)} = \frac{0.9 \times 0.001}{0.005} = 0.18$$

We might not know the prior probability of the evidence P(S)In this case...

- 4 回 2 - 4 回 2 - 4 回 2 - 4

$$P(c|s) = \frac{P(s|c)P(c)}{P(s)} = \frac{0.9 \times 0.001}{0.005} = 0.18$$

We might not know the prior probability of the evidence P(S)In this case...

 we compute the posterior probability for each value of the query variable (c, ¬c)

A (1) > (1) > (1)

$$P(c|s) = \frac{P(s|c)P(c)}{P(s)} = \frac{0.9 \times 0.001}{0.005} = 0.18$$

We might not know the prior probability of the evidence P(S)In this case...

- we compute the posterior probability for each value of the query variable (c, ¬c)
- and then normalise

$$P(c|s) = rac{P(s|c)P(c)}{P(s)} = rac{0.9 imes 0.001}{0.005} = 0.18$$

We might not know the prior probability of the evidence P(S)In this case...

- we compute the posterior probability for each value of the query variable (c, ¬c)
- and then normalise

$$\mathbf{P}(C|s) = \alpha \left\langle P(s|c)P(c), P(s|\neg c)P(\neg c) \right\rangle$$

 $\mathbf{P}(X|Y) = \alpha \, \mathbf{P}(Y|X) \mathbf{P}(X)$

æ

Upon your return from a holiday on an exotic island, your doctor has bad news and good news. The bad news is that you've been diagnosed a serious disease and the test is 99% accurate. The good news is that the disease is very rare (1 in 10.000 get it).

Upon your return from a holiday on an exotic island, your doctor has bad news and good news. The bad news is that you've been diagnosed a serious disease and the test is 99% accurate. The good news is that the disease is very rare (1 in 10.000 get it).

Upon your return from a holiday on an exotic island, your doctor has bad news and good news. The bad news is that you've been diagnosed a serious disease and the test is 99% accurate. The good news is that the disease is very rare (1 in 10.000 get it).

E.g., let D be disease, P be that you scored positive at the test:

Upon your return from a holiday on an exotic island, your doctor has bad news and good news. The bad news is that you've been diagnosed a serious disease and the test is 99% accurate. The good news is that the disease is very rare (1 in 10.000 get it).

E.g., let D be disease, P be that you scored positive at the test:

P(d|p)

Upon your return from a holiday on an exotic island, your doctor has bad news and good news. The bad news is that you've been diagnosed a serious disease and the test is 99% accurate. The good news is that the disease is very rare (1 in 10.000 get it).

E.g., let D be disease, P be that you scored positive at the test:

 $P(d|p) = \frac{P(p|d)P(d)}{P(p|d)P(d) + P(p|\neg d)P(\neg d)}$

Upon your return from a holiday on an exotic island, your doctor has bad news and good news. The bad news is that you've been diagnosed a serious disease and the test is 99% accurate. The good news is that the disease is very rare (1 in 10.000 get it).

E.g., let D be disease, P be that you scored positive at the test:

 $P(d|p) = \frac{P(p|d)P(d)}{P(p|d)P(d) + P(p|\neg d)P(\neg d)} = \frac{0.99 \times 0.0001}{0.99 \times 0.0001 + 0.01 \times 0.9999}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Upon your return from a holiday on an exotic island, your doctor has bad news and good news. The bad news is that you've been diagnosed a serious disease and the test is 99% accurate. The good news is that the disease is very rare (1 in 10.000 get it).

E.g., let D be disease, P be that you scored positive at the test:

 $P(d|p) = \frac{P(p|d)P(d)}{P(p|d)P(d) + P(p|\neg d)P(\neg d)} = \frac{0.99 \times 0.0001}{0.99 \times 0.0001 + 0.01 \times 0.9999} = 0.0098$

Upon your return from a holiday on an exotic island, your doctor has bad news and good news. The bad news is that you've been diagnosed a serious disease and the test is 99% accurate. The good news is that the disease is very rare (1 in 10.000 get it).

E.g., let D be disease, P be that you scored positive at the test:

 $P(d|p) = \frac{P(p|d)P(d)}{P(p|d)P(d) + P(p|\neg d)P(\neg d)} = \frac{0.99 \times 0.0001}{0.99 \times 0.0001 + 0.01 \times 0.9999} = 0.0098$

Notice:posterior probability of disease still quite small!

(4回) (4日) (4日)

Start with the joint distribution:

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

 $P(Cavity | toothache \land catch) =$

Start with the joint distribution:

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

 $\mathsf{P}(\mathit{Cavity}|\mathit{toothache} \land \mathit{catch}) = \alpha \langle 0.108, 0.016 \rangle$

Start with the joint distribution:

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

 $P(Cavity | toothache \land catch) = \alpha \langle 0.108, 0.016 \rangle =$

Start with the joint distribution:

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

 $\mathsf{P}(\mathit{Cavity}|\mathit{toothache} \land \mathit{catch}) = \alpha \langle 0.108, 0.016 \rangle = \langle 0.871, 0.129 \rangle$

Start with the joint distribution:

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

- It doesn't scale up to a large number of variables
- Absolute Independence is very rare
- Can we use Bayes' rule?

Start with the joint distribution:

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

 $\mathbf{P}(Cavity | toothache \land catch) = \\ \alpha \mathbf{P}(toothache \land catch | Cavity) \mathbf{P}(Cavity)$

Start with the joint distribution:

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

$P(Cavity | toothache \land catch) =$

 $\alpha \mathbf{P}(toothache \land catch|Cavity)\mathbf{P}(Cavity)$

Still not good: with n evidence variables 2^n possible combinations for which we would need to know the conditional probabilities

We can't use absolute independence:

We can't use absolute independence:

• Toothache and Catch are **not** independent:

We can't use absolute independence:

• Toothache and Catch are **not** independent: If the probe catches in the tooth then it is likely the tooth has a cavity, which means that toothache is likely too.

We can't use absolute independence:

- Toothache and Catch are **not** independent: If the probe catches in the tooth then it is likely the tooth has a cavity, which means that toothache is likely too.
- But they are independent **given** the presence or the absence of cavity!

We can't use absolute independence:

- Toothache and Catch are **not** independent: If the probe catches in the tooth then it is likely the tooth has a cavity, which means that toothache is likely too.
- But they are independent **given** the presence or the absence of cavity! Toothache depends on the state of the nerves in the tooth, catch depends on the dentist's skills, to which toothache is irrelevant

@▶ 《 ≧ ▶

</l>< □ > < □ >

< ∃ >

æ

P(catch|toothache, cavity) = P(catch|cavity), the same independence holds if I haven't got a cavity:

< A > < 3

- P(catch|toothache, cavity) = P(catch|cavity), the same independence holds if I haven't got a cavity:
- 2 $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

< 🗇 > < 🖃 >

- P(catch|toothache, cavity) = P(catch|cavity), the same independence holds if I haven't got a cavity:
- $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

Catch is conditionally independent of Toothache given Cavity:

A (1) > (1) > (1)

P(*Catch*|*Toothache*, *Cavity*) = **P**(*Catch*|*Cavity*)

<**□** > < ⊇ >

∃ >

P(Catch|Toothache, Cavity) = P(Catch|Cavity)Equivalent statements:

<**●** ► < E ►

∃ >

P(*Catch*|*Toothache*, *Cavity*) = **P**(*Catch*|*Cavity*) Equivalent statements:

P(*Toothache*|*Catch*, *Cavity*) = **P**(*Toothache*|*Cavity*)

4 ∰ ▶ < ∃ ▶</p>

P(*Catch*|*Toothache*, *Cavity*) = **P**(*Catch*|*Cavity*) Equivalent statements:

P(Toothache|Catch, Cavity) = P(Toothache|Cavity) P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

< 🗇 > < 🖃 >

Write out full joint distribution using chain rule:

P(*Toothache*, *Catch*, *Cavity*)

< 🗇 > < 🖃 >

Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch, Cavity)

Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)

Write out full joint distribution using chain rule:

P(*Toothache*, *Catch*, *Cavity*)

- = **P**(Toothache|Catch, Cavity)**P**(Catch, Cavity)
- = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
- = **P**(*Toothache*|*Cavity*)**P**(*Catch*|*Cavity*)**P**(*Cavity*)

Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity) = P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

・ 同 ト ・ ヨ ト ・ ヨ ト

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

 $P(Cavity | toothache \land catch)$

▲同 ▶ ▲ 臣 ▶

 $P(Cavity | toothache \land catch)$

 $= \alpha \mathbf{P}(toothache \wedge catch|Cavity)\mathbf{P}(Cavity)$

 $P(Cavity | toothache \land catch)$

- $= \alpha \mathbf{P}(toothache \wedge catch|Cavity)\mathbf{P}(Cavity)$
- $= \alpha \mathbf{P}(toothache|Cavity)\mathbf{P}(catch|Cavity)\mathbf{P}(Cavity)$

 $P(Cavity | toothache \land catch)$

- $= \alpha \mathbf{P}(toothache \wedge catch|Cavity)\mathbf{P}(Cavity)$
- $= \alpha \mathbf{P}(toothache|Cavity)\mathbf{P}(catch|Cavity)\mathbf{P}(Cavity)$

P(*Cavity*|*toothache* ∧ *catch*)

- $= \alpha \mathbf{P}(toothache \wedge catch|Cavity)\mathbf{P}(Cavity)$
- $= \alpha \mathbf{P}(toothache|Cavity)\mathbf{P}(catch|Cavity)\mathbf{P}(Cavity)$

This is an example of a naive Bayes model:

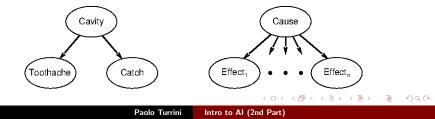
 $P(Cause, Effect_1, \dots, Effect_n) = P(Cause) \prod_i P(Effect_i | Cause)$

P(*Cavity*|*toothache* \land *catch*)

- $= \alpha \mathbf{P}(toothache \wedge catch|Cavity)\mathbf{P}(Cavity)$
- $= \alpha \mathbf{P}(toothache|Cavity)\mathbf{P}(catch|Cavity)\mathbf{P}(Cavity)$

This is an example of a naive Bayes model:

 $P(Cause, Effect_1, \dots, Effect_n) = P(Cause) \prod_i P(Effect_i | Cause)$



- 4 回 ト - 4 回 ト - 4 回 ト

æ

£		
OK A		

・ロト ・四ト ・ヨト ・ヨト

æ

ок		
OK A	ок	

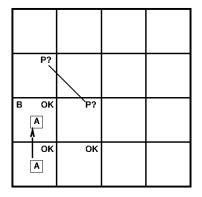
・ロト ・四ト ・ヨト ・ヨト

æ

В [OK A		
[ок А	ОК	

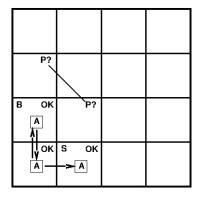
・ロト ・四ト ・ヨト ・ヨト

æ



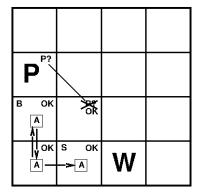
ヘロン 人間 とくほと 人間 とう

E



・ロン ・四 と ・ ヨ と ・ ヨ と …

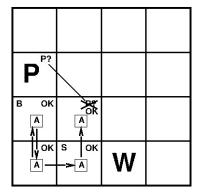
E



Paolo Turrini Intro to AI (2nd Part)

æ

The Wumpus World

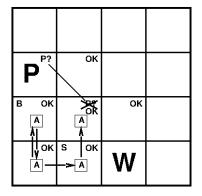


5990

æ

ヘロン 人間 とくほと 人間 とう

The Wumpus World

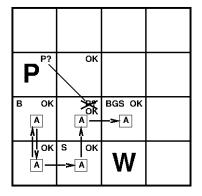


Paolo Turrini Intro to AI (2nd Part)

ヘロン 人間 とくほと 人間 とう

æ

The Wumpus World



Paolo Turrini Intro to AI (2nd Part)

ヘロン 人間 とくほと 人間 とう

æ

Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	2,1 B	3,1	4,1
ОК	ОК		

・ロン ・部と ・ヨン ・ヨン

æ

Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1 OK	^{2,1} B OK	3,1	4,1

 $P_{ij} = true \text{ iff } [i, j] \text{ contains a pit}$ $B_{ij} = true \text{ iff } [i, j] \text{ is breezy}$

Image: A = A = A

⊸ ≣ ≯

Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1 OK	^{2,1} B OK	3,1	4,1

 $P_{ij} = true \text{ iff } [i, j] \text{ contains a pit}$ $B_{ij} = true \text{ iff } [i, j] \text{ is breezy}$

Image: A = A = A

⊸ ≣ ≯

æ

Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model!

・ 回 ト ・ ヨ ト ・ ヨ ト

Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model! The full joint distribution is $P(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$

(4回) (4 注) (4 注)

Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model! The full joint distribution is $P(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$

Apply product rule: $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, ..., P_{4,4})P(P_{1,1}, ..., P_{4,4})$ (Do it this way to get P(Effect | Cause).)

<回> < 注)、 < 注)、 < 注)、

Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model! The full joint distribution is $P(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$

Apply product rule: $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4}) P(P_{1,1}, \dots, P_{4,4})$ (Do it this way to get P(Effect | Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

<回> < 注)、 < 注)、 < 注)、

Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model! The full joint distribution is $P(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$

Apply product rule: $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, ..., P_{4,4}) P(P_{1,1}, ..., P_{4,4})$ (Do it this way to get P(Effect | Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

(本間) (本語) (本語)

Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model! The full joint distribution is $P(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$

Apply product rule: $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4}) P(P_{1,1}, \dots, P_{4,4})$ (Do it this way to get P(Effect | Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

$$\mathbf{P}(P_{1,1},\ldots,P_{4,4}) = \prod_{i,j=1,1}^{4,4} \mathbf{P}(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for *n* pits.

・ 回 ト ・ ヨ ト ・ ヨ ト

We know the following facts:

 $b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$

▲ 御 ▶ → 三 ▶

.≞⇒

We know the following facts:

 $b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$

 $explored = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$

◆ □ ▶ ◆ □ ▶ ◆ □ ▶

We know the following facts:

 $b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$

 $explored = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$

Query is $P(P_{1,3}|explored, b)$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

We know the following facts:

 $b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$

 $explored = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$

Query is $P(P_{1,3}|explored, b)$

Define $Unexplored = P_{ij}$ s other than $P_{1,3}$ and Explored

< □ > < □ > < □ >

We know the following facts:

 $b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$

 $explored = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$

Query is $P(P_{1,3}|explored, b)$

Define $Unexplored = P_{ij}$ s other than $P_{1,3}$ and Explored

< □ > < □ > < □ >

For inference by enumeration, we have

 $\mathbf{P}(P_{1,3}|explored, b) = \alpha \sum_{unexplored} \mathbf{P}(P_{1,3}, unexplored, explored, b)$

・ 同 ト ・ ヨ ト ・ ヨ ト

For inference by enumeration, we have

 $\mathbf{P}(P_{1,3}|explored, b) = \alpha \sum_{unexplored} \mathbf{P}(P_{1,3}, unexplored, explored, b)$

• There are 12 unknown squares

4 ∰ ▶ < ∃ ▶</p>

For inference by enumeration, we have

 $\mathbf{P}(P_{1,3}|explored, b) = \alpha \sum_{unexplored} \mathbf{P}(P_{1,3}, unexplored, explored, b)$

- There are 12 unknown squares
- The summation contains $2^{12} = 4096$ terms

4 ∰ ▶ < ∃ ▶</p>

For inference by enumeration, we have

 $\mathbf{P}(P_{1,3}|explored, b) = \alpha \sum_{unexplored} \mathbf{P}(P_{1,3}, unexplored, explored, b)$

• There are 12 unknown squares

• The summation contains $2^{12} = 4096$ terms

In general the summation grows exponentiatly with the number of squares!

イロト イポト イヨト イヨト

For inference by enumeration, we have

 $\mathbf{P}(P_{1,3}|explored, b) = \alpha \sum_{unexplored} \mathbf{P}(P_{1,3}, unexplored, explored, b)$

• There are 12 unknown squares

• The summation contains $2^{12} = 4096$ terms

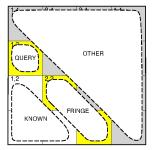
In general the summation grows exponentiatly with the number of squares!

And now?

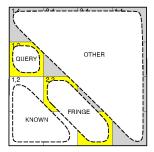
▲□ ► ▲ □ ►

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

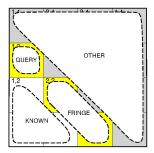


Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares



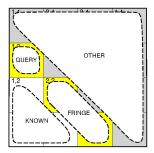
Define $Unexplored = Fringe \cup Other$

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares



Define $Unexplored = Fringe \cup Other$ $\mathbf{P}(b|P_{1,3}, Explored, Unexplored) = \mathbf{P}(b|P_{1,3}, Explored, Fringe)$

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares



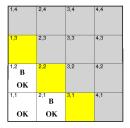
Define $Unexplored = Fringe \cup Other$ $\mathbf{P}(b|P_{1,3}, Explored, Unexplored) = \mathbf{P}(b|P_{1,3}, Explored, Fringe)$ Manipulate query into a form where we can use this!

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1 OK	^{2,1} B OK	3,1	4,1
OK	OK		

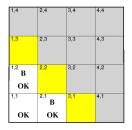
 $\mathbf{P}(P_{1,3}|explored, b)$

< □ > < □ > < □ >

æ



 $P(P_{1,3}|explored, b) = \alpha \sum_{unexplored} P(P_{1,3}, unexplored, explored, b)$



Inference by enumeration

 $P(P_{1,3}|explored, b) = \alpha \sum_{unexplored} P(P_{1,3}, unexplored, explored, b)$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} В ОК	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ок	ок		

 $\alpha \sum_{unexplored} \mathbf{P}(P_{1,3}, unexplored, explored, b)$

- 4 日 ト - 4 日 ト

 $\alpha \sum_{unexplored} \mathbf{P}(P_{1,3}, unexplored, explored, b)$ = $\alpha \sum_{unexplored} \mathbf{P}(b|explored, P_{1,3}, unexplored) \times$ × $\mathbf{P}(P_{1,3}, explored, unexplored)$

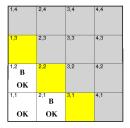
Product rule

 $\alpha \sum_{unexplored} \mathbf{P}(P_{1,3}, unexplored, explored, b)$ = $\alpha \sum_{unexplored} \mathbf{P}(b|explored, P_{1,3}, unexplored) \times$ × $\mathbf{P}(P_{1,3}, explored, unexplored)$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} В ОК	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ок	ОК		

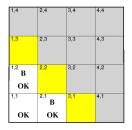
 $\alpha \sum_{unexplored} \mathbf{P}(b|P_{1,3}, unexplored, explored) \mathbf{P}(P_{1,3}, unexplored, explored)$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶



 $\alpha \sum_{unexplored} \mathbf{P}(b|P_{1,3}, unexplored, explored) \mathbf{P}(P_{1,3}, unexplored, explored)$ = $\alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|explored, P_{1,3}, fringe, other) \times$ × $\mathbf{P}(P_{1,3}, explored, fringe, other)$

Image: A test in te



Distinguishing the unknown

 $\alpha \sum_{unexplored} \mathbf{P}(b|P_{1,3}, unexplored, explored) \mathbf{P}(P_{1,3}, unexplored, explored)$ = $\alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|explored, P_{1,3}, fringe, other) \times$ × $\mathbf{P}(P_{1,3}, explored, fringe, other)$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} В ОК	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ок	ок		

 $\alpha \sum_{\text{fringe}} \sum_{\text{other}} \mathbf{P}(b|\text{explored}, P_{1,3}, \text{fringe}, \text{other}) \times \mathbf{P}(P_{1,3}, \text{explored}, \text{fringe}, \text{other})$

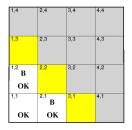
|| 目 || (目 || (目 |

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} В ОК	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ОК	ОК		

 $\begin{array}{l} \alpha \sum_{\textit{fringe}} \sum_{\textit{other}} \mathbf{P}(b | \textit{explored}, P_{1,3}, \textit{fringe}, \textit{other}) \times \\ \times \mathbf{P}(P_{1,3}, \textit{explored}, \textit{fringe}, \textit{other}) \end{array}$

= $\alpha \sum_{\text{fringe}} \sum_{\text{other}} \mathbf{P}(b|\text{explored}, P_{1,3}, \text{fringe}) \times \mathbf{P}(P_{1,3}, \text{explored}, \text{fringe}, \text{other})$

A (1) > (1) > (1)



Conditional Independence

 $\alpha \sum_{\text{fringe}} \sum_{\text{other}} \mathbf{P}(b|\text{explored}, P_{1,3}, \text{fringe}, \text{other}) \times \\ \times \mathbf{P}(P_{1,3}, \text{explored}, \text{fringe}, \text{other})$

= $\alpha \sum_{\text{fringe}} \sum_{\text{other}} \mathbf{P}(b|\text{explored}, P_{1,3}, \text{fringe}) \times \mathbf{P}(P_{1,3}, \text{explored}, \text{fringe}, \text{other})$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ок	ОК		

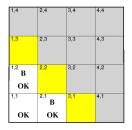
 $\alpha \sum_{\text{fringe}} \sum_{\text{other}} \mathbf{P}(b|\text{explored}, P_{1,3}, \text{fringe}) \times \mathbf{P}(P_{1,3}, \text{explored}, \text{fringe}, \text{other})$

< 同 > < 臣 > < 臣 >

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} В ОК	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ОК	ОК		

 $\begin{array}{l} \alpha \sum_{\textit{fringe}} \sum_{\textit{other}} \mathbf{P}(b | explored, P_{1,3}, \textit{fringe}) \times \\ \times \mathbf{P}(P_{1,3}, explored, \textit{fringe}, other) \end{array} \\ = \alpha \sum_{\textit{fringe}} \mathbf{P}(b | explored, P_{1,3}, \textit{fringe}) \times \\ \times \sum_{\textit{other}} \mathbf{P}(P_{1,3}, explored, \textit{fringe}, other) \end{array}$

< □ > < □ >



Pushing the sums inwards

 $\begin{array}{l} \alpha \sum_{\textit{fringe}} \sum_{\textit{other}} \mathbf{P}(b | \textit{explored}, P_{1,3}, \textit{fringe}) \times \\ \times \mathbf{P}(P_{1,3}, \textit{explored}, \textit{fringe}, \textit{other}) \end{array} \\ = \alpha \sum_{\textit{fringe}} \mathbf{P}(b | \textit{explored}, P_{1,3}, \textit{fringe}) \times \\ \times \sum_{\textit{other}} \mathbf{P}(P_{1,3}, \textit{explored}, \textit{fringe}, \textit{other}) \end{array}$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ок	ОК		

$$\alpha \sum_{\text{fringe}} \mathbf{P}(b|\text{explored}, P_{1,3}, \text{fringe}) \times \sum_{\text{other}} \mathbf{P}(P_{1,3}, \text{explored}, \text{fringe}, \text{other})$$

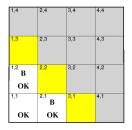
▲ 御 ▶ → 三 ▶

< ∃ >

æ

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ок	ОК		

$$\begin{split} &\alpha \sum_{fringe} \mathbf{P}(b|explored, P_{1,3}, fringe) \times \\ &\sum_{other} \mathbf{P}(P_{1,3}, explored, fringe, other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b|explored, P_{1,3}, fringe) \times \\ &\sum_{other} \mathbf{P}(P_{1,3}) P(explored) P(fringe) P(other) \end{split}$$



Independence

 $\begin{aligned} &\alpha \sum_{fringe} \mathbf{P}(b|explored, P_{1,3}, fringe) \times \\ &\sum_{other} \mathbf{P}(P_{1,3}, explored, fringe, other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b|explored, P_{1,3}, fringe) \times \\ &\sum_{other} \mathbf{P}(P_{1,3}) P(explored) P(fringe) P(other) \end{aligned}$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ок	ОК		

$$\begin{array}{l} \alpha \sum_{\textit{fringe}} \mathbf{P}(b|\textit{explored}, P_{1,3}, \textit{fringe}) \times \\ \times \sum_{\textit{other}} \mathbf{P}(P_{1,3}) P(\textit{explored}) P(\textit{fringe}) P(\textit{other}) \end{array}$$

Image: A (a) > A (

æ

< ≞ >

Reordering and pushing sums inwards

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1	^{2,1} B	3,1	4,1
ок	ОК		

 $\begin{array}{l} \alpha \ P(explored) \mathbf{P}(P_{1,3}) \times \\ \times \sum_{fringe} \mathbf{P}(b|explored, P_{1,3}, fringe) P(fringe) \sum_{other} P(other) \end{array}$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

2,3	3,3	4,3
2,2		4,2
^{2,1} B OK	3,1	4,1
	2,2	2,2 3,2 2,1 B ^{3,1}

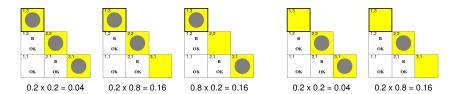
 $\begin{aligned} &\alpha \ P(explored) \mathbf{P}(P_{1,3}) \times \\ &\times \sum_{fringe} \mathbf{P}(b|explored, P_{1,3}, fringe) P(fringe) \sum_{other} P(other) \\ &= \alpha' \ \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|explored, P_{1,3}, fringe) P(fringe) \end{aligned}$

- - E ►

Simplifying

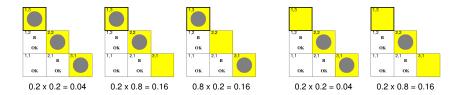
イヨト

 $\begin{aligned} &\alpha \ P(explored) \mathbf{P}(P_{1,3}) \times \\ &\times \sum_{fringe} \mathbf{P}(b|explored, P_{1,3}, fringe) P(fringe) \sum_{other} P(other) \\ &= \alpha' \ \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|explored, P_{1,3}, fringe) P(fringe) \end{aligned}$



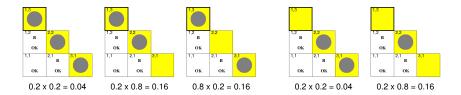
 $P(b|explored, P_{1,3}, fringe)$

A ■



$P(b|explored, P_{1,3}, fringe)$

- ullet = 1 when the frontier is consistent with the observations
- = 0 otherwise



$P(b|explored, P_{1,3}, fringe)$

- ullet = 1 when the frontier is consistent with the observations
- $\bullet = 0$ otherwise

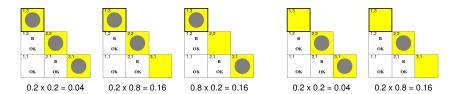
We can sum over the *possible configurations* for the frontier variables that are consistent with the known facts.

0.8 x 0.2 = 0.16

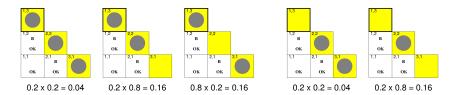
A ■

0.2 x 0.8 = 0.16

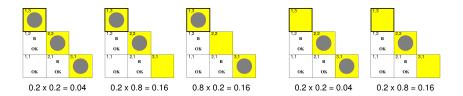
 $\mathbf{P}(P_{1,3}|explored, b) =$



 $\mathbf{P}(P_{1,3}|explored, b) = \\ \alpha' \langle 0.2(0.04 + 0.16 + 0.16), \ 0.8(0.04 + 0.16) \rangle$



 $\begin{aligned} & \mathbf{P}(P_{1,3}|explored, b) = \\ & \alpha' \left< 0.2(0.04 + 0.16 + 0.16), \ 0.8(0.04 + 0.16) \right> \\ & \approx \left< 0.31, 0.69 \right> \end{aligned}$



 $\begin{aligned} & \mathbf{P}(P_{1,3}|explored, b) = \\ & \alpha' \left< 0.2(0.04 + 0.16 + 0.16), \ 0.8(0.04 + 0.16) \right> \\ & \approx \left< 0.31, 0.69 \right> \end{aligned}$

 $\mathsf{P}(P_{2,2}|explored, b) \approx \langle 0.86, 0.14 \rangle$

$0.8 \ge 0.2 = 0.16$

 $0.2 \times 0.2 = 0.04$

1,2 в ок 1,1 2,1 в ок ок 0 3,1 0 4,1

0.2 x 0.8 = 0.16

 $\begin{array}{l} \mathbf{P}(P_{1,3}|explored, b) = \\ \alpha' \left< 0.2(0.04 + 0.16 + 0.16), \ 0.8(0.04 + 0.16) \right. \\ \approx \left< 0.31, 0.69 \right> \end{array}$

A ■

 $\mathsf{P}(P_{2,2}|explored, b) pprox \langle 0.86, 0.14
angle$