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Holiday

Upon your return from a holiday on an exotic island, your
doctor has bad news and good news. The bad news is
that you’ve been diagnosed a serious disease and the test
is 99% accurate. The good news is that the disease is
very rare (1 in 10.000 get it).

How worried should you be?
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Conditional probability and Bayes’ Rule

Definition of conditional probability:

P(a|b) =
P(a ∧ b)

P(b)
if P(b) 6= 0

Product rule gives an alternative formulation:

P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a) but then...
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Bayes’ Rule

Useful for assessing diagnostic probability from causal probability:

P(Cause|Effect) =
P(Effect|Cause)P(Cause)

P(Effect)

E.g., let c be cold, s be sore throat:

P(c |s) =
P(s|c)P(c)

P(s)
=

0.9× 0.001

0.005
= 0.18
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Bayes’ rule

P(c |s) =
P(s|c)P(c)

P(s)
=

0.9× 0.001

0.005
= 0.18

We might not know the prior probability of the evidence P(S)
In this case...

we compute the posterior probability for each value of the
query variable (c ,¬c)

and then normalise

P(C |s) = α 〈P(s|c)P(c),P(s|¬c)P(¬c)〉
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Bayes’ Rule

P(X |Y ) = αP(Y |X )P(X )
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Holiday solved

Upon your return from a holiday on an exotic island, your
doctor has bad news and good news. The bad news is
that you’ve been diagnosed a serious disease and the test
is 99% accurate. The good news is that the disease is
very rare (1 in 10.000 get it).

E.g., let D be disease, P be that you scored positive at the test:

P(d |p) = P(p|d)P(d)
P(p|d)P(d)+P(p|¬d)P(¬d) = 0.99×0.0001

0.99×0.0001+0.01×0.9999 = 0.0098

Notice:posterior probability of disease still quite small!
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Back to joint distributions: combining evidence
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Start with the joint distribution:

P(Cavity |toothache ∧ catch) =

α 〈0.108, 0.016〉 = 〈0.871, 0.129〉
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Back to joint distributions: combining evidence
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Start with the joint distribution:

It doesn’t scale up to a large number of variables

Absolute Independence is very rare

Can we use Bayes’ rule?
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Start with the joint distribution:

P(Cavity |toothache ∧ catch) =
αP(toothache ∧ catch|Cavity)P(Cavity)

Still not good: with n evidence variables 2n possible combinations
for which we would need to know the conditional probabilities
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Back to joint distributions: combining evidence

We can’t use absolute independence:

Toothache and Catch are not independent: If the probe
catches in the tooth then it is likely the tooth has a cavity,
which means that toothache is likely too.

But they are independent given the presence or the absence
of cavity! Toothache depends on the state of the nerves in the
tooth, catch depends on the dentist’s skills, to which
toothache is irrelevant
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Conditional independence

1 P(catch|toothache, cavity) = P(catch|cavity), the same
independence holds if I haven’t got a cavity:

2 P(catch|toothache,¬cavity) = P(catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity :
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Conditional independence

P(Catch|Toothache,Cavity) = P(Catch|Cavity)

Equivalent statements:

P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache,Catch|Cavity) =
P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence contd.

Write out full joint distribution using chain rule:

P(Toothache,Catch,Cavity)

= P(Toothache|Catch,Cavity)P(Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2
remove 2)
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Conditional independence contd.

In most cases, the use of conditional independence reduces the size
of the representation of the joint distribution from exponential in n
to linear in n.

Conditional independence is our most basic and robust
form of knowledge about uncertain environments.
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Bayes’ Rule and conditional independence

P(Cavity |toothache ∧ catch)

= αP(toothache ∧ catch|Cavity)P(Cavity)

= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . ,Effectn) = P(Cause)ΠiP(Effecti |Cause)

Total number of parameters is linear in n
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Wumpus World

Pij = true iff [i , j ] contains a pit
Bij = true iff [i , j ] is breezy
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Intro to AI (2nd Part)

Specifying the probability model

Include only B1,1,B1,2,B2,1 in the probability model!
The full joint distribution is P(P1,1, . . . ,P4,4,B1,1,B1,2,B2,1)

Apply product rule:
P(B1,1,B1,2,B2,1 |P1,1, . . . ,P4,4)P(P1,1, . . . ,P4,4)
(Do it this way to get P(Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

P(P1,1, . . . ,P4,4) = Π4,4
i ,j =1,1P(Pi ,j) = 0.2n× 0.816−n

for n pits.
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Intro to AI (2nd Part)

Observations and query

We know the following facts:

b = ¬b1,1 ∧ b1,2 ∧ b2,1

explored = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Query is P(P1,3|explored , b)

Define Unexplored = Pijs other than P1,3 and Explored
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Intro to AI (2nd Part)

Complexity

For inference by enumeration, we have

P(P1,3|explored , b) = αΣunexploredP(P1,3, unexplored , explored , b)

There are 12 unknown squares

The summation contains 212 = 4096 terms

In general the summation grows exponentiatlly with the number of
squares!

And now?
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Intro to AI (2nd Part)

Using conditional independence

Basic insight: observations are conditionally independent of other
hidden squares given neighbouring hidden squares

Define Unexplored = Fringe ∪ Other
P(b|P1,3,Explored ,Unexplored) = P(b|P1,3,Explored ,Fringe)
Manipulate query into a form where we can use this!
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Inference by enumeration

P(P1,3|explored , b)

= α
∑

unexplored P(P1,3, unexplored , explored , b)
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Product rule

α
∑

unexplored P(P1,3, unexplored , explored , b)

= α
∑

unexplored P(b|explored ,P1,3, unexplored)×
×P(P1,3, explored , unexplored)
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Distinguishing the unknown

α
∑

unexplored P(b|P1,3, unexplored , explored)P(P1,3, unexplored , explored)

= α
∑

fringe

∑
other P(b|explored ,P1,3, fringe, other)×

×P(P1,3, explored , fringe, other)
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Conditional Independence
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Pushing the sums inwards
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Independence

α
∑

fringeP(b|explored ,P1,3, fringe)×∑
otherP(P1,3, explored , fringe, other)

= α
∑

fringe P(b|explored ,P1,3, fringe)×∑
other P(P1,3)P(explored)P(fringe)P(other)
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Reordering
and pushing sums inwards

α
∑

fringe P(b|explored ,P1,3, fringe)×
×
∑

other P(P1,3)P(explored)P(fringe)P(other)

= αP(explored)P(P1,3)×
×
∑

fringe P(b|explored ,P1,3, fringe)P(fringe)
∑

other P(other)
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Simplifying

αP(explored)P(P1,3)×
×
∑

fringe P(b|explored ,P1,3, fringe)P(fringe)
∑

other P(other)

= α′ P(P1,3)
∑

fringe P(b|explored ,P1,3, fringe)P(fringe)
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P(b|explored ,P1,3, fringe)

= 1 when the frontier is consistent with the observations

= 0 otherwise

We can sum over the possible configurations for the frontier
variables that are consistent with the known facts.
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P(P1,3|explored , b)=

α′ 〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉
≈ 〈0.31, 0.69〉

P(P2,2|explored , b) ≈ 〈0.86, 0.14〉
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