Automata: a short introduction

Automata: a short introduction

Paolo Turrini

ILIAS, University of Luxembourg

Discrete Mathematics |l
May 2012

Paolo Turrini Automata: a short introduction

Automata: a short introduction

What is a computer?

@ Real computers are complicated;
@ We abstract up to an essential model of computation,

@ We begin with the simplest possible model, a finite
automaton.

Paolo Turrini Automata: a short introduction

Automata: a short introduction

Outline: Deterministic Finite Automata

b
start — —>

@ A formal description of abstract computers, with a finite
number of states, with distinguished accepting ones, and
with labelled transitions, where each action labels exactly
one outgoing arrow.

Paolo Turrini Automata: a short introduction

Automata: a short introduction

Outline: Non-deterministic Finite Automata

b

o)

0 a,b
€

b
start —>‘(—>

@ A formal description of abstract computers, with a finite
number of states, with distinguished accepting ones, and
with labelled transitions, where each action needs not

label exactly one outgoing arrow. Special characters are
possible.

Paolo Turrini Automata: a short introduction

Automata: a short introduction

Outline: Languages

@ Abstract languages, i.e. sets of words obtained from a
given alphabet.

o L ={a,b,ba,ab,aaa,aab,...}, i.e. all possible
combinations of words formed using a and b;

o L' = {e}, the language containing only the empty word;

o L' ={a"b"| for each natural number n}, i.e. the
language of words with n times a followed by n times b,
for instance having aaabbb inside.

Paolo Turrini Automata: a short introduction

Automata: a short introduction

Outline: Regular Expressions

e Operations that generate languages with properties that
are interesting from a computational point of view.

o (aUb)* ={a, b, ba,ab,aaa,aab,...}, i.e. all possible
combinations of words formed using a and b;

o (aob) = {ab} i.e. the concatenation of the words a and
b

o (a)* ={e,a, aa, aaa, aaaa, ...}, i.e. the word a repeated
zero, one or many times.

Paolo Turrini Automata: a short introduction

Automata: a short introduction

What we will talk about

o We will study the mathematical properties of these
structures.

Paolo Turrini Automata: a short introduction

Automata: a short introduction

What we will observe

@ These structures are one and the same thing.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Introduction

The book

[3 Michael Sipser
Introduction to the Theory of Computation
2nd edition, 2006

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Formal definition of an automaton

@ An automaton has several parts:

e a set of states;

o rules for going from one state to another, depending on
the input symbol;

e a starting state and a set of accepting states.

@ The formal definition:

e makes this precise;
e it can be used to study automata as mathematical
structures.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

The formal definition

Definition (Deterministic Finite Automata)
A deterministic finite automaton is a tuple (Q, X, d, qo, F),
where:

@ Q is a finite set called the states;

@ X is a finite set called the alphabet;

© 0: Q xX — Q@ is the transition function;

Q@ g € Q is the start state;

© F C Q is the set of accepting (or terminal) states.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Example

a,b

o)

a,b
a
b
start — —

@ The set of states Q is {v, w, x}.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Example

start — —>

@ The alphabet X is {a, b}, the set of basic characters that
we have used.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Example

ab

o
o
; A
-0
start — —

@ The transition function ¢ is d(v, a) = w, (v, b) =
x,0(w,a) = o(w, b) = w,d(x, a) = d(x,b) = x.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Example

a,b

O b

a
b
start —>‘(—>

@ The initial state qq is v.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Example

a,b

o)

“ aYb
a

b
start — —

@ The set F of accepting states is {x}.

Paolo Turrini Automata: a short introduction

Automata: a short introduction

Deterministic Finite Automata

Definition (Word acceptance)

Let X be our alphabet and let A = (Q, X, 0, o, F) be our
automaton. A finite sequence wy, wo, . .., w,, where each w; is
an element of ¥, is accepted by A if and only if there exists a
sequence of states ry, r1, ..., r, in @ such that:

Q o = qo, i.e. we start from the starting state;

@ for each i between 0 and n— 1, §(r;, wi11) = riy1, i.e. the
computation follows exactly the word,;

© r, € F,i.e. weend upin an accepting state.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Example

ab

o
o
2 f!
RO
start — —>

@ The word (b, b, a, b, a, b), briefly bbabab, is accepted by
this automaton, because there is a sequence of states,
namely (v, x, x, x, x, x, x), briefly vxxxxxx, such that:

© v = qo, i.e. we start from the starting state;

© for each i between 0 and 6, §(rj, wjyr1) = rit1, i.e. the
computation follows exactly the word,;

© x € F,ie. weend up in an accepting state.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Example

a,b

o)

0 a,b
a

b
start —>‘(—>

@ The empty word, ¢, is not accepted by this automaton
because... the starting state is not an accepting state!

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Example

a 0 a,b
. N\
start — —

a,b

@ Can you find a word, longer than 20 characters, that is
accepted by this automaton?

@ Can you find a word that is not accepted by this
automaton?

@ Is g, the empty word, accepted by this automaton?

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Regular Languages

Definition (Language Recognition)

We say that a determistic finite automaton A recognizes a
language L if and only if £ = {w | A accepts w}

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Regular Languages

Definition (Language Recognition)

A language is called regular if and only if some deterministic
finite automaton recognizes it.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Regular Languages

b b

0 .
start ﬁ&;‘/&

@ The language £, made by all words with an even number
of a, is regular;

@ Is the language £’, made by all words with an odd
number of a, regular?

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Exercise

@ Show that:

e The language made only by ¢, is regular;

e The empty language, i.e. the language with no words, is
regular;

e The language made by all words with no b is regular;

e The language made by all words with more than two a is
regular;

e The language made by all words with exactly two b is
regular;

o The language {babba, cab,c} is regular.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Regular Operations on Languages

@ So far we have described languages that automata can
recognize;

@ Each time we have constructed an automaton;

@ However we can apply certain regular operations on
languages, being sure to preserve regularity: if we start
with a regular language, no matter how many times we
will apply these operations, we will still have a regular
language.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Regular Operations on Languages

Definition

Let £, L' be two languages. We define the regular operations
of union, concatenation, star, as follows:

Union: LUL = {x|x € Aor x € B}, i.e. words in the

first language with words in the second language;

Concatenation: Lo L' = {xy | x € Aand y € B}, i.e. words
in the first language followed by words in the
second language;

Star: £* = {x1,x2,...,%, | n >0 and each x; € L},

i.e. words made by repeting words in the starting
language, zero, one, or many times.

o

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Regular Operations on Languages

Let £ = {a, babab, bbb}, L' = {bb}. We have:

Union: £U L' = {a, babab, bb, bbb}, i.e. words in the
first language with words in the second language;

Concatenation: £ o L' = {abb, bababbb, bbbbb}, i.e. words in
the first language followed by words in the second
language. Notice that £ o £ is not the same as
L' oL;

Star: L* =
{e, a, babab, ababab, abbb, bbbbbb, abbba, . .. },
i.e. words made by repeting words in the starting
language, zero, one, or many times.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Exercise

Let £ be the language of words with exactly two a and let £’
be the language of words with exactly two b.

e Whatis LU L'?
@ Whatis Lo L?
o What is £*?

Paolo Turrini Automata: a short introduction

Automata: a short introduction

Deterministic Finite Automata

A fundamental result

Theorem (Closure)

Let L, L' be two languages. If L, L’ are regular then:
o LUL is regular;
@ Lo/ isregular;
@ Both L* and L™ are regular.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

Exercise

Let £ = {a, babab, bbb}, L' = {bb}. We have:

Union: £U L' = {a, babab, bb, bbb};
Concatenation L o L' = {abb, bababbb, bbbbb};
Star: L* =
{e, a, babab, ababab, abbb, bbbbbb, abbba, . . . }.

@ Can you construct the automata recognizing the new
languages?

@ Think of how they are obtained from the original ones.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Deterministic Finite Automata

What we have seen so far

@ Deterministic finite automata are abstract models of
computation;
@ They recognize languages;

@ The language that they recognise are closed under the
operations of union, concatenation, and star.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

The constraints of determinism

start —

@ In deterministic finite automata, when the machine is at a
state and reads a symbol, we know exactly what the next
state will be;

o Now we want to generalize these models, and allow a
machine to be at different states at the same moment.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

A generalization

@ Non-deterministic finite automata:

e might have € actions, that jump to different states

istantaneously;
e from each letter from the alphabet, there might be zero,
one, or more outgoing arrows labelled with that letter.

@ In fact every deterministic finite automaton is just a
special case of non-deterministic finite automata: can you

see why?

Paolo Turrini Automata: a short introduction

Automata: a short introduction

Non-deterministic Finite Automata

Different states at the same moment

a b
0 . ii
start —>0/—\A
a

o At state v, after reading a, the machine is in both v and
w.

Paolo Turrini Automata: a short introduction

Automata: a short introduction

Non-deterministic Finite Automata

Different states at the same moment

a b

0.0
o QO
"
€

o At state w, after reading b, the machine is in both v and
w.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

Different states at the same moment

a b

o Q). @
"
€

@ At what state(s) goes the machine if it reads a at state v?
@ And if it reads b at state w?

@ And if it reads a at state w?

Paolo Turrini Automata: a short introduction

Automata: a short introduction

Non-deterministic Finite Automata

An example: babaab

A A
start —
@ Suppose we are at the start state and the machine
receives the word babaab;
@ We start from the state v; we read b;

@ We go to v and we now read a.

@ We go to v and w and also x (notice the €), following all
the possibilities.

Paolo Turrini Automata: a short introduction

Automata: a short introduction

Non-deterministic Finite Automata

An example: babaab

start —

@ We are in v, w and x and the third letter is b. From v we
go to v, while from w we go to x, finally from x we break
the computation (notice: with no arrow we go nowherel);

@ We are in v and x and fourth letter is a; now we are in
v, w, x, y. (notice the €!);

@ Now we read again a: we go to v, w, x, y;

e Finally we read b and we go to v, x, y.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

An example: babaab

a,b a,b

O a b,e a O
A A

@ We ended up in v, x, y;

@ Acceptance rule: if we end up in at least one accepting
state, the word is accepted.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

The formal definition

@ Remember first that, for every set A, its powerset (which
we indicate with 24) is the set of all its subsets.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

The formal definition

Definition (Non-deterministic Finite Automata)
A non-deterministic finite automaton is a tuple
(Q,%,9, qo, F), where:
O Q is a finite set called the states;
© X is a finite set called the alphabet;
O 0:Q x Y Ue— 29 s the transition function;
Q qo € Q is the start state;
© F C Q is the set of accepting (or terminal) states.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

Differences

@ The only special feature is the transition function
d:Q x LUe— 29 which associates to each state and
each input symbol enriched with the € action a possibly
empty set of successor states;

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

Example

a aYb
a O

€
Q)

@ The set of states Q is {v, w, x}.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

Example

a a,b
a O

€
@

@ The alphabet X is {a, b}, the set of basic characters that
we have used.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

Example

st _,g

@ The transition function ¢ is

(5(‘/76) = {X}u(S(V? a) = {W}vd(vv b) =0, ()
d(w, b) = 0,(x,a) = d(x,b) = x,0(w,€) = (

Il
=

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

Example

a,b

a
€
start —>‘(—>

@ The initial state qq is v.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

Example

a aYb
a O

€
Q)

@ The set F of accepting states is {x}.

Paolo Turrini Automata: a short introduction

Automata: a short introduction

Non-deterministic Finite Automata

Definition (Word acceptance)
Let X be our alphabet and let A = (Q, X, 0, o, F) be our

automaton. A finite sequence wy, wo, . .., w,, where each w; is
an element of ¥ U, is accepted by A if and only if there
exists a sequence of states ry, ry, ..., r, in @ such that:

Q o = qo, i.e. we start from the starting state;

@ for each j between 0 and n— 1, riy1 € §(r;, wiy1), i.e. the
computation follows exactly the word,;

© r, € F,i.e. weend upin an accepting state.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

Example

o)

-

a o
€

qg/_,g

@ The empty word € is accepted;

@ The word a is accepted;

@ The word b is not accepted.

e Can you tell some more words that are accepted or not?

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

An exercise

a,b

g
o O

@ What language does this automaton recognize?

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

An exercise

a,b

02 2
_ _

@ What language does this automaton recognize?

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

An exercise

a,b

O a ab a,b
A A

@ What language does this automaton recognize?

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

It is not a proper generalization

Every nondeterministic finite automaton has an equivalent
deterministic finite automaton

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

Proof idea 1

We know that every DFA is an NFA. But what about
the contrary? If a language is recognized by an NFA,
then we must show the existence of a DFA that also
recognizes it. The idea is to convert the NFA into an
equivalent DFA that simulates the NFA.

But we can use the idea that when we encounter the
same simbol on an NFA the machine splits in
multiple copies!

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

Proof idea 2

If k is the number of states of the NFA, it has 2¥
subsets of states. Each subset corresponds to one of
the possibilities that the DFA must remember, so the
DFA simulating the NFA will have 2% states. If one
state w is connected to one state z in the NFA, then
all the sets in the DFA containing w will be
connected to states containing z. And if some state
accepts in the NFA then all sets containing that
state will be accepting in the corresponding DFA.

Paolo Turrini Automata: a short introduction

Automata: a short introduction

Non-deterministic Finite Automata

A consequence

@ We have called regular a language recognized by some
deterministic finite automaton. But now we can say more.

Proposition (Equivalence)

A language is regular if and only if it is recognized by some
nondeterministic finite automaton.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

|deas

d
A

e What language does this automaton recognize?

@ How does a DFA look like recognizing the same language?

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Non-deterministic Finite Automata

What we have seen so far

@ Nondeterministic finite automata generalize deterministic
ones, by allowing:
e zero, one, more outgoing arrows labelled with the same
alphabet symbol;
e special € actions;
@ However they cannot recognize more languages than
deterministic finite automata;
@ But, they are much more efficient! To construct a DFA
simulating and NFA of n states we need between n and 2"
states.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Building languages

@ In arithmetic, we can use operations + and x to build
expressions such as (5 + 3) x 4

@ Similarly, we can use regular operations (such as union,
concatenation and star) to build up expressions describing
languages;

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Building languages

e Consider (0U 1)0*. What is the value of this expression?
e In this case the value is the language consisting of all
strings starting with a 0 or a 1 followed by any number of

0.
e So for instance words such as 1,0,10000 are in this

language;
e Words such as 01,11,1100000 are not in this language.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Building languages

@ How can we calculate the value of (0 U 1)0*?7 We get the
result by dissecting the expression in small parts:

e The symbols 0 and 1 are shorthand for the sets {0} and
{1}

e So (0U1) is the language {0,1};

e The part 0* means {0}*, and its value is all the strings
consisting of any number of 0;

e (0U1)0* is a shorthand for (0 U 1) o 0%;

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Building languages

@ What is the value of (0U 1)*7
@ For convenience,

e when the alphabet ¥ = {0,1}, we abbreviate the
expression (0 U 1) with X.
o We write R™ to mean R o R*. Notice that RT Ue = R*.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Regular expressions

@ They are everywhere in theoretical computer science;

e Many programming languages use them to facilitate
description of long expressions;

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Formal definition

R is a regular expression if and only if it is of the form:

© a for some a in some alphabet ¥;

2

Q 0;

Q (R1URy), where Ry and R; are two regular expressions;
© (R10Ry), where R; and R, are two regular expressions;

O (Ry), where Ry is a regular expression.

Nothing else is a regular expression.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Example

Assume ¥ = {0,1}. We have the following:
@ 0*10* = {w | w contains a single 1}
@ Y*1¥* = {w | w has at least one 1}
e (XX)* = {w | wis a string of even length}
o (OUe)l*=01*"UT*
e 1*0=10

o)*=¢

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Exercise

Assume ¥ = {0,1}. Calculate and describe the following:
e (0Ue)(1ue)
o (XIX)*
e (011)*

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Exercise

Let R be a regular expression. Are the following statements

true?
e RUD=R
@ Roe=R
e RUe=R
@ Roh=R

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Equivalence with finite automata

A language is regular if and only if some regular expression
describes it

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Proof idea

Two lemmas:

© /f a language is described by a regular
expression, then it is regular;

@ /f a language is regular, then it is described by a
regular epxression.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Proof idea

For the first case, for the language A described by R
we can construct an NFA recognizing it. But then A
is regular. For the second case, we know that the the
language A described by R is regular. But then we
can construct a DFA recognizing it. Then we use a
standard procedure to convert the DFA into an
equivalent regular epression.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

What we have seen so far

@ Regular expressions are building blocks of languages;
@ They can build all regular languages.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Summing up...

@ Deterministic finite automata are equivalent to
nondeterministic finite automata;

@ Determinisitic finite automata are equivalent to regular
expressions;

@ Regular expressions are equivalent to nondeterministic
finite automata;

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Regular Expressions

Nonregular languages

@ Not all languages are regular!
@ How do non-regular languages look like?

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Nonregular languages

Nonregular languages

Proposition
All finite languages are regular

e Can you prove this?

e Construct an automaton that is big enough and accept all
and only the words of that language.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Nonregular languages

Nonregular languages

e What about infinite languages?

e Can we reuse the same argument?

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Nonregular languages

Nonregular languages

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Nonregular languages

Nonregular languages

e Consider the following {a"b" | for every n € N}

@ We need to see n times a and then accept the word only
if we see n times b, for every n € NI

@ We would need an infinite finite automaton. But there is
no such thing.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Nonregular languages

Nonregular languages

@ Let w be a word and w™ be the same word written in
reverse , e.g. abb™ = bba;

o Consider the following
{wxw~ | for every word w with x € ¥}

o What are these words?

@ They are palindromes, words that are read the same in
both directions

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Nonregular languages

Nonregular lanuages

@ The language of all the palindromes from an alphabet ©
is non-regular

@ Again, for every word wx (x € ¥) that we meet, we
would need to remember it in order to accept the word if
followed by w—

@ Again, we would need an infinite automaton!

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Nonregular languages

A formal statement

@ Notice first this: if a word of 6 characters is accepted by
an automaton of 3 states then... there is a loop
somewhere and it is leading to an accepting state!

@ And if there is a loop somewhere leading to an accepting
state then the language recognized by the automaton... is
infinite!

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Nonregular languages

The pumping lemma

Theorem

Let L be a regular language. Then there exists an natural
number p > 1 such that every string w in L of length at least
p (p is called the "pumping length") can be written as

w = xyz (i.e., w can be divided into three substrings),
satisfying the following conditions:

° |y|>1
° [xy|<p
@ foralli>0,xy'zc L

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Nonregular languages

The pumping lemma

@ If the conditions are not met, the language is not regular

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Nonregular languages

Palindromes are not regular

Suppose that the set of palindromes were regular.
Let p be the value from the pumping lemma.
Consider the string w = 0P110P. w is clearly a
palindrome and |w| > p. By the pumping lemma,
there must exist strings x, y, and z satisfying the
constraints of the pumping lemma. Pick any such
X,y,z such that w = xyz, |xy| < p, and |y| > 1.
Because |xy| < p, xy is entirely contained in the 0P
at the start of w. So x and y consist entirely of
zeros. Now, consider xz. By the pumping lemma, xz
must be in the language. But xz can't be a
palindrome. This means that the set of palindromes
doesn't satisfy the pumping lemma and, thus, the set
of palindromes cannot be regular.

Paolo Turrini Automata: a short introduction

Automata: a short introduction
Nonregular languages

Conclusion

e Automata can recognize regular languages
@ But they can't recognize every language

@ Their power and limitation is summarized in the pumping
lemma.

Paolo Turrini Automata: a short introduction

