Computational Logic and
Human Thinking

Robert Kowalski
Imperial College London

based on Computational Logic and
Human Thinking — How to be Artificially Intelligent
Cambridge University Press (June 2011)

+ Abductive Logic Programming Agents with Destructive Databases

(with Fariba Sadri) an extended version of An Agent Language with
Destructive Assignment and Model-theoretic Semantics, In CLIMA XI -
Computational Logic in Multi- Agent Systems (eds. J. Dix, G. Governatori, W.

Jamroga and J. Leite) Springer, 2010.

Computational Logic and
Human Thinking

Al tools and techniques can
 bereconciled and be combined
 improve those of existing academic disciplines

 be used by ordinary people

Computational Logic and
Human Thinking —

Overview
- lecture 1

Psychology of Logic — Part 1 .
The Language of Thought (LOT) :

lecture 2
Semantics)

. |lecture 3

Abductive Logic Programming (ALP)
proof procedure -
Psychology of Logic — Part 2

lecture 4
ALP agents and BDI agents compared

Computational Logic and Human Thinking - Overview

The Abductive Logic Programming (ALP) agent model

v' The agent cycle

v" Model-theoretic and operational semantics
v' Deciding between alternatives

ALP agent model as a foundation for a better decision theory

The agent cycle

repeatedly:

observe
think
decide
act

Abductive Logic Programming (ALP) Agents

Maintenance goal

p Achievement goal

f Backward
reasoning
v Consequences
> of alternative
Forward Forward candidate actions
reasoning reasoning

\ 4
> Decide

stimulus-response associations

Observe

y Act
The world

ALP agent model as a dual process theory

In dual process theories, intuitive thinking “quickly
proposes intuitive answers to judgement problems as
they arise”, while deliberative thinking “monitors the
quality of these proposals, which it may endorse,
correct, or override”.

Kahneman and Frederick [2002]

The ALP agent model as a variant of BDI agents

Agents use their beliefs to attain their desires by

generating intentions, which are selected plans of
actions.

In ALP agents, beliefs and desires (or goals) are both
represented as conditionals in the clausal form of logic.

Beliefs are represented as logic programming clauses,

whereas goals are represented as range-restricted
clauses in full first-order logic (FOL).

Goals and Beliefs

Goals: (reason forwards)

if there is an emergency
then | deal with it myself or | get help or | escape.

Beliefs: (reason forwards or backwards)

| get help if there is an emergency and | am on a train
and | alert the driver of the train.

there is an emergency if there is a fire.
| alert the driver of the train if | press the alarm button.

| am on a train.

The syntax of goals and beliefs

Beliefs: Logic programming clauses have the form:
conclusion if condition, and condition, and condition,

where conclusion is an atomic formula and
condition. are atomic formulas or negations of atomic formulas.

If n =0, then the clause is a “fact”
If all condition; are atomic formulas, then the clause is a Horn clause.
All variables are universally quantified with scope the entire clause.

If every variable occurs in an unnegated condition,
then the clause is range-restricted.

The syntax of goals and beliefs

Goals: include clauses of the form:

If condition, and condition, and condition,
then conclusion, or conclusion, or conclusion,,

where condition, and conclusion; are atomic formulas.
All variables in a clause are universally quantified.

A clause is range-restricted if every variable in conclusion
occurs in conditions.

If m =0, then the goal is equivalent to a denial (or constraint):

it is not the case that
condition, and condition, and condition,

ALP agents - model-theoretic semantics

Beliefs describe the world as the agent sees it.
Goals describe the world as the agent would like it to be.

In deductive databases:
Beliefs represent data.
Goals represent queries and integrity constraints.

More formally:

Given beliefs B, goals G and observations O,
the task is to generate a set A of actions and
assumptions about the world such that:

G U O is true in the minimal model of the world determined by B U A.

If B is a set of Horn clauses, then B U A has a unique minimal model.
Other cases can be reduced to the Horn clause case.

ALP agents - operational semantics

Reason forwards from observations and
forwards and backwards from beliefs,
to determine whether some instance
of the conditions of a goal is true.

Derive the corresponding instance of the conclusion of the goal as an
achievement goal, to make true.

This is like forward chaining in production systems, but it has the
semantics of aiming to make the goal true by making its conclusion true
whenever its conditions become true.
Conditional goals understood in this way are called maintenance goals.
Reason backwards from achievement goals,
reducing goals to subgoals,
searching for a plan of actions whose execution solves the goals.

Executable actions are a special case of atomic sub-goals.

Operational semantics - example

Observe: there is a fire.
Forward reasoning: there is an emergency.

Forward reasoning, derive achievement goal:
| deal with it myself or | get help or | escape.

Backward reasoning: reducing
the goal | get help

to the consecutive sub-goals

| alert the driver of the train and
| press the alarm button.

If this last sub-goal is an atomic action

and the action is executed successfully,

then the action makes the achievement goal and
this instance of the maintenance goal both true.

Abduction

Abduction is the task of generating assumptions A
to explain observations O.

For example, if instead of observing fire,
| observe there is smoke, and
| believe there is smoke if there is a fire.

Backwards reasoning from the observation
generates an assumption there is a fire.

Forward and backward reasoning then continue as before,
to generate a plan of actions to deal with the emergency.

Observations treated as goals

In ALP agents, observations O and goals G are treated similarly.

Given beliefs B, goals G and observations O,

generate actions and other assumptions A

to make G U O true

in the minimal model of the world determined by B U A.

Given B and G above and O = {there is smoke},
then B U A makes G and O both true.
where A = {there is a fire, | press the alarm button}

The operational semantics is sound and
(with sufficient restrictions) complete
with respect to the model-theoretic semantics.

Choosing the Best Solution

There can be several, alternative A that, together with B,
make G and O both true.

The challenge is to find the best A
within the computational resources available.

In classical decision theory, the value of an action is measured by
the expected utility of its consequences.

In philosophy of science, the value of an explanation is measured
similarly in terms of its probability and explanatory power.
(The more observations explained the better.)

In ALP agents, the same measure can be used to evaluate both
candidate actions and candidate explanations.

In both cases, candidate assumptions in A are evaluated by using
forward reasoning to generate consequences of the assumptions in A.

Combining searching and deciding

In ALP agents, finding the best A is incorporated into
the search strategy for generating A.

This can be performed using some form of best-first search,
like A* or branch-and-bound.
This task is analogous to conflict resolution in production systems.

Conventional production systems avoid complex decision-theory

and abductive reasoning by compiling higher-level goals, beliefs and decisions
into lower-level heuristic rules. For example:

if there is smoke and | am on a train
then | press the alarm button.

In ALP agents, lower-level rules and higher-level thinking and deciding can be
combined, as in dual process theories, to get the best of both worlds.

Interleaving thinking, observing and acting

Like BDI agents, ALP agents interleave thinking with observing and
acting, and do not need to construct complete plans before
starting to act.

Unlike most BDI agents, which select and commit to a single plan
at a time, ALP agents select and commit only to individual actions.

Unlike most BDI agents, ALP agents can interleave the pursuit of
several alternative plans, to improve the chances of success.

For example, in an emergency an agent can both press the alarm
button and try to escape at more or less the same time.

ALP reconciles logic and probability by associating
probability with conditions

The general pattern of cause and effect:

a particular outcome happens if | do a certain action
and the world is in a particular state.

e

uncertain

David Poole [1997] has shown that associating

probabilities with assumptions gives ALP the expressive
power of Bayesian networks.

Uncertainty
For example:

You will be rich if you buy a lottery ticket
and your number is chosen.

It will rain if you do a rain dance
and the gods are pleased.

You can control your own actions
(like buying a ticket or doing a rain dance).

But you cannot always control the state of the world
(yvour number is chosen or the gods are pleased).

You might be to judge its probability (one in a million?).

Classical decision theory makes unrealistic
simplifying assumptions

Uncertainty is one of the complications contributing the
problem of deciding what to do.

To reduce this complexity, classical decision theory
makes the simplifying assumption that all of the
alternatives to be decided between are given in advance.

For example, if you are looking for a new job, classical
decision theory would assume that all of the job options
are given, and it would focus on the problem of deciding
which option is most likely to give the best outcome.

Smart choices — a better decision theory

But as [Keeney, 1992; Hammond et al., 1999; Carlson et al.,
2008]] and other decision analysts point out,

the assumption that all alternatives are given in advance is
not only unrealistic as a descriptive model of human decision
making, but it is also unhelpful as a normative model.

To make a good decision between alternatives, it is necessary
first to establish the goals (or problem) that motivate the
alternatives. These goals might be generated explicitly by
higher-level thinking or they might be hidden implicitly in
lower-level heuristic rules.

Smart choices involve
creative generation of alternatives

For example, you might receive an offer of a new job
when you are not looking for one, and you may be
tempted to limit your options simply to deciding
between accepting or rejecting the offer.

If you step back from the temptation, and think about
the broader context of your goals, then you might
generate other alternatives, like perhaps using the job
offer to negotiate an improvement in the conditions of
your current employment.

The ALP agent model provides a simple
framework for making Smart Choices

Decision making between alternatives is integrated with
generation of the alternatives.

The same criteria of expected utility, which is used in classical
decision theory to choose between alternatives, can also be
used to guide the search for alternatives in some form of
best-first search.

Moreover, the ALP agent model shows how heuristics and
stimulus-responses can be combined with logical thinking
and decision theory in the spirit of dual process models.

Conclusions

ALP agent model arguably

reconciles and combines FOL, production systemes,
decision theory, connectionism, and probability.

can be used by ordinary people
to improve their own human intelligence.

can help people make smarter choices.

Computational Logic and Human Thinking —
Psychology — Part 1

Robert Kowalski
Imperial College London

The Psychology of Logic - Part 1

e The Wason selection task and its variants
 The suppression task

* Reasoning with cause and effect

Wason selection task

Four cards, letters on one side, numbers on the other.

Determine whether the following rule holds:

If D is on one side,
then 3 is on the other side.

Only 5-10% of all people select the right cards.

29

Wason selection task — two “mistakes”

If D is on one side,
then 3 is on the other side.

Most people unnecessarily turn over the card showing 3.
(reasoning with the converse)

Most people fail to turn over the card showing 7.
(failing to reason with the contra-positive)

30

The selection task

Determine whether the following rule holds:

If a person is drinking beer in a bar,
then the person should be over eighteen.

Most people get the right answer.

Conclusion (Cosmides, 1985, 1989):
People don’t use logic, but have evolved a cheater detection scheme:

If you receive a benefit,
you must meet its requirement.

Alternative conclusion (Cheng and Holyoak, 1985):
Subjects interpret belief (or descriptive) conditionals
and goal (or deontic) conditionals differently.

An ALP explanation of the selection task

People interpret :
* Belief conditionals as logic programming clauses:

All the conditionals with the same conclusion are the only
conditionals with that conclusion

(which justifies reasoning with the converse).

Almost all reasoning is backwards or forwards
(which inhibits reasoning with contra-positives).

* Goal conditionals as FOL clauses
(which explains reasoning in accordance with classical logic).

Specialized algorithm = specialized knowledge +
general-purpose reasoning.

The cheater detection algorithm can be viewed as combining
a specialized goal (or constraint) of the logical form:

if a person accepts a benefit

and the person fails to meet its requirement
then false.

with general-purpose reasoning of the form:

Given a conditional goal if conditions then conclusion.

Reason forward to match an observation with a condition of the goal.
Reason backward to verify the other conditions of the goal.

Reason forward to derive the conclusion as an achievement goal.
But false can never be achieved.

The Psychology of Logic - Part 1

e The Wason selection task and its variants
* The suppression task

* The representation of cause and effect

The suppression task (Byrne, 1989)

Consider the following pair of premises:

If she has an essay to write, then she will study late in the library.
She has an essay to write.

Most people correctly conclude:
She will study late in the library.
Suppose | now say:
If the library is open, then she will study late in the library.

Given this additional information, many people (about 40%) suppress
their earlier conclusion that She will study late in the library.

The suppression task as a rule and exception

If she has an essay to write,
then she will study late in the library.

But If the library is not open,
then she will not study late in the library.

rather than If the library is open,
then she will study late in the library.
In general, rules and exceptions have the form:

If conditions, then conclusion.
But If other conditions, then not conclusion.

Conclusion: The suppression task illustrates:
poor use of natural language,
not necessarily poor logical thinking.

Two alternative ways of representing the
logic of rules and exceptions

Argumentation: An argument supporting an exception
attacks an argument supporting the general rule.
The attacking argument wins
if there is no successful counterattack. etc.

Strict rules: The rule and the exception have implicit
conditions:

If conditions and not other-conclusion, then conclusion.

If other-conditions and not yet-other-conclusion, then other-conclusion.

If yet-other-conditions and not yet-yet-other-conclusion, then yet-other-conclusion.
If yet-yet-other-conditions and not yet-yet-yet-other-conclusion, then yet-yet-other-conclusion.

The suppression task represented by strict rules

If she has an essay to write,
and she is not prevented from studying late in the library
then she will study late in the library.

she is prevented from studying late in the library
if the library is not open.

she is prevented from studying late in the library
if she has an important meeting.

she is prevented from studying late in the library
if she is distracted.

etc.

Rules and exceptions can be compiled into
simple rules

If she has an essay to write,

and the library is open

and she does not have an important meeting
and she is not distracted, etc.

then she will study late in the library.

In general, rules and exceptions:

If conditions, then conclusion.
but If other conditions, then other-conclusion.

can be compiled into:

If conditions and not other conditions, then conclusion.
If other conditions, then other-conclusion.

In natural language it is common
to omit conditions

If she hqs an essay to write,
then she will study late in the library.

the driver will stop the train in a station
i Eregleior o adoctod
and-any part of the train is in the station.

a person receives housing benefit

if the person is on other benefits

or the person works part-time

or the person works full-time on a low income
gipclelot ot ofber paore cowmnolicadtod

st inf [. itions.

The Psychology of Logic - Part 1

e The Wason selection task and its variants
 The suppression task

* The representation of cause and effect

The use of conditionals to explain observations

Suppose | tell you that: An object is red if it looks red.
This apple looks red.

You will probably conclude: This apple is red.

Suppose | now say: An object looks red
if it is illuminated by a red light.

It is likely that you will now suppress your previous conclusion.

The philosopher John Pollock (1995) explains the example as an
illustration of argumentation: The new information supports an
argument that defeats the original argument supporting the
original conclusion This apple is red.

An alternative explanation

The example confuses operation rules and emergent
properties and

The operation rules are: Ar-objectisreditlooksred:

An object looks red if it is red.
An object looks red if it is illuminated by a red light.

An emergent property is:

An object is red or the object is illuminated by a red light
if it looks red.

i.e. An object is red
if it looks red end-the-ebject—is-not-iHuminated-by-aredlight

Conclusions

* The selection task and its variants

- fails to distinguish between belief conditionals and goal conditionals
- confuses natural language conditionals with logical conditionals
- confuses the relationship between specialised algorithms
and general-purpose reasoning
+ draws attention to the problems of reasoning with negation

* The suppression task

- confuses natural language conditionals with logical conditionals
- employs a poor representation of rules and exceptions
+ draws attention to the fact that natural language

often suppresses hidden conditions

e The red light example

- combines two alternative representations of cause and effect
+ illustrates a potential relationship between argumentation
and rules and exceptions

Computational Logic and
Human Thinking — The Language of Thought (LOT)

Robert Kowalski
Imperial College London

Computational Logic and Human Thinking - LOT

* The clausal logic of ALP as the LOT

v'The London Underground Emergency Notice
v'Coherence

* The relationship between natural language and the LOT
= the relationship between FOL and ALP

* ALP clausal logic as a connectionist model of the mind

ALP as the LOT

In ALP agents, clausal logic serves as an agent’s private language of
thought, independently of any
public language for communicating with other agents.

In the philosophy of language, there are three schools of thought
regarding the relationship between private and public languages:

The LOT is a private, language-like representation, which is
independent of public, natural language.

The LOT is a form of public, natural language; and the natural
languages that we speak influence the way we think.

Human thinking does not have a language-like structure at all.

ALP as the LOT

Clear, coherent communications, which are easy to
understand, can help identify the LOT.

According to relevance theory, readers understand natural
language by attempting to extract the most information for
the least processing cost. [Sperber and Wilson, 1986]

One of the consequences of relevance theory is that,

if you want your communications to be easy to understand,
then you should express them in a form

that is close to the meaning that you want to convey.

The Emergency Notice on the London underground

Press the alarm signal button to alert the driver.

The driver will stop
if any part of the train is in a station.

If not, the train will continue to the next station,
where help can more easily be given.

There is a 50 pound penalty for improper use.

The Logic of the London Underground Notice

The first sentence is a goal-reduction procedure, whose logic is a
logic programming clause:

the driver is alerted
if you press the alarm signal button.

The second sentence is explicitly in logic programming clausal
form, but is ambiguous; and one of its conditions has been
omitted. Its obvious intended meaning is:

the driver will stop the train in a station
if the driver is alerted
and any part of the train is in the station.

The Logic of the London Underground Notice

The logic of the third sentence is two sentences, say:

the driver will stop the train in the next station
if the driver is alerted
and not any part of the train is in a station.

help can more easily be given in an emergency
if the train is in a station.

The relative clause where help can more easily be given adds an extra
conclusion to the sentence rather than an extra condition.

If the relative clause were meant to add an extra condition, then this
would mean that the driver will not necessarily stop the train at the next
station, but at the next station where help can more easily be given.

The Logic of the London Underground Notice

The fourth sentence is also a conditional, but in disguise:

You may be liable to a £50 penalty
if you use the alarm signal button improperly.

The conditional is meant to be used
not backwards as a goal-reduction procedure,
but forwards to monitor and reject candidate actions.

Coherence is sometimes the enemy of clarity

In English sentences, omitting conditions and other details
sometimes promotes coherence.

Williams [1990, 1995] in his guidelines for English writing
style emphasizes another way of achieving coherence:

Placing old, familiar ideas at the beginning of sentences
and new ideas at their end.

In a succession of sentences,

a new idea at the end of one sentence becomes
an old idea that can be put

at the beginning of the next sentence.

Coherence by anchoring new information
in relation to old information

It is raining.

If it is raining and you go out without an umbrella,
then you will get wet.

If you get wet, then you may catch a cold.
If you catch a cold, then you will be sorry.
You don’t want to be sorry.

So you do not want to go out without an umbrella.

Computational Logic and Human Thinking - LOT

* The relationship between natural language and the
LOT

= the relationship between FOL and ALP

v'The relationship between natural language and the LOT:
Eliminate ambiguity + convert to canonical form

v'The relationship between FOL and the clausal form of ALP

Natural Language and the LOT

The first problem in understanding natural language
communications is to identify their intended meaning. For
example, to understand “he gave her the book” it is necessary to
identify the individuals referred to by “he” and “her”.

The second problem is to represent the intended meaning in a
canonical form, so that equivalent communications are
represented in the same way. For example, the following English
sentences all have the same meaning:

John gave Mary the book.

John gave the book to Mary.

Mary received the book from John.
The book was given to Mary by John.

Natural Language and canonical form

The use of a canonical form in a mental representation
makes it easier to use the representation later.

In this case, the common meaning of the different
sentences could be represented either in the logical form
give(john, mary, book) or in the more precise form:

event(e1000) act(e1000, giving)
agent(e1000, john) recipient(e1000, mary)
object(e1000, book21) isa(book21, book)

The meaning of natural language sentences is
determined in large part by the relationship between
conditions and conclusions

The ambiguous English sentence:
“Every bird which belongs to class aves has feathers. ”
means either:

every bird has feathers.
every bird belongs to class aves.

or a bird has feathers if the bird belongs to class aves.

The relationship between
Standard FOL and Clausal Logic

Clausal logic is as powerful as standard FOL, but much
simpler.

It compensates for the lack of explicit existential
guantifiers by Skolemization to give individuals that are
supposed to exist a name,

like the names e1000 and book21.

Reasoning is also much simpler, and for the most part
can be reduced to just forward and backward reasoning,
which are both special cases of the resolution rule

Standard FOL is to clausal form
as natural language is to the LOT.

In both cases, inferences can be partitioned into two kinds,
performed in two stages.

The first kind converts sentences into canonical form, and the
second kind reasons with that canonical form.

In FOL, the first kind of inference rule (including both
Skolemization and the replacement of not(A or B) by not A
and not B') can be viewed as converting sentences into
clausal form.

The second kind (including the inference of P(t) from
VXP(X)) can be viewed as reasoning with clausal form, and is
built into the resolution rule.

Clausal logic is a canonical form of logic.

In clausal logic, thoughts have a simplified form, e.g.:

can-fly(X) & bird(X).
bird(john).

In standard FOL, the same beliefs can be expressed in
infinitely many, equivalent ways, including:

-(3IX((-can-fly(X) A bird(X)) v =bird(john)))
-(3IX((-can-fly(X) v =bird(john)) A (bird(X) v -bird(john))))

Clausal logic as a model of the LOT can help
people to communicate more effectively

By expressing information:
Clearly So that it has its meaning is unambiguous.

Simply So that it is meaning is close to its
canonical form.

Coherently So thatitis easy to link new information
to old information.

Computational Logic and Human Thinking - LOT

e ALP as the LOT

* The relationship between natural language and the LOT
= the relationship between FOL and ALP

* ALP clausal logic as a connectionist model of the mind

v External links ground thoughts in reality

v'Internal links organise thoughts, and need not have any
“meaning”

v'Links can be activated by highest expected utility

A Connectionist Clausal Logic

In the same way that clausal logic implements FOL by reasoning in
advance, the connection graph proof procedure implements clausal
logic, by pre-computing links between the conditions and conclusions of
clauses.

It labels links with their unifying substitutions.
These links can then be activated later, either forwards or backwards,

generating resolvent clauses,
whose new links are inherited from their parent clauses.

In many cases, parent clauses can be deleted or over-written, when all
their links have been activated.

Links that are activated frequently can be compiled into shortcuts,
which achieve the same effects more directly,
like heuristic rules and stimulus-response associations.

Connection graphs combine
logic, search, connectionism, learning and decision

making

* Links can be weighted by statistics about how often
they have contributed to successful outcomes in
the past.

* Different input observations and goals can be
assigned different strengths (or utilities).

* The strength of observations and goals can be
propagated throughout the graph in proportion to
the weights on the links. Activating links with the
current highest weighted strength implements a
form of best-first search, and is similar to the
activation networks of [Maes, 1990].

Connection graphs, the LOT and reality

Although clausal form is a symbolic representation, once all
the links have been computed, the names of the predicate
symbols no longer matter.

The links in connection graphs include internal links, which
organize the agent’s thoughts, and external links, which
ground the agent’s thoughts in reality.

The external links are activated by observations and by the
agent’s own actions. They may also include links to
unobserved properties of the world.

Connection graphs and the LOT

Goal: if ®then ©

/

Qif $8£££

\

$SLEE@

Internal clauses and links need not represent
states of affairs in the real world

Goal: if Cthen D

Bif A DifE and F

DifGand H

\ /; v

Conclusion - The clausal logic of ALP
as a model of the LOT

English sentences that are closer to clausal logic
are generally easier to understand

English sentences that are stuctured by means of
connections between conditions and conclusions
are generally easier to understand

Understanding natural language and reasoning in FOL
similarly involve two stages of converting into canonical form
and reasoning with canonical form

The connection graph implementation of clausal logic

+ precomputes as much reasoning as possible in advance
+ can use weights on links and strengths of goals and observations
to guide the activation of connections

Computational Logic and Human Thinking —
Semantics

Robert Kowalski
Imperial College London

Computational Logic and Human Thinking —
Semantics

Logical consequence and truth

An argument for Herbrand interpretations

The paradoxes of material Implication

Paraconsistency

The argument for Minimal Herbrand Models

v" Minimal models of Horn clauses

v" The distinction between operational rules and emergent properties
v' Default reasoning
v

Truth versus proof in arithmetic

Logical consequence in classical logic

A sentence Cis a logical consequence of a set of sentences S
(or S logically implies C)
if Cis true in an interpretation

whenever S is true in the same interpretation.

A set of inference rules is sound (or truth-preserving)
if Cisalogical consequence of S
whenever there exists a derivation of C from S.

A set of inference rules is complete
if there exists a derivation of Cfrom S
whenever Cis a logical consequence of S.

Truth is relative to an interpretation

An interpretation is a collection of individuals and relations.
(For simplicity, properties of individuals are also regarded as relations.)

In the language, constants and other variable-free (ground) terms
denote (or name or represent) individuals.

Predicate symbols denote (or name or represent) relations.

Terms can be constructed using function symbols.

The simplest way to represent an interpretation in symbolic form is
by the set of all the atomic sentences that are true in the interpretation.
Such interpretations are called Herbrand interpretations.

The truth of more complicated sentences can be reduced to
the truth of atomic sentences by the standard definition.

Example

If the constant john denotes my cat,
the predicate symbols amazing and can-fly denote the
properties of being lazy and sleeping all day respectively,

then the conditionalamazing(john) < can-fly(john)
means: My cat is lazy if my cat sleeps all day.
Because my cat sleeps all day and my cat is lazy,

the sentences can-fly(john) and amazing(john) are both true,
the conditional is also true.

The definition of truth

A sentence that is not true is false.
A negative sentence - Cis true if Cis false.

An atomic sentence p(c,,..., ¢,), where c,,..., c,, is true in an interpretation
if the individuals denoted by c,,..., ¢, are in the relation denoted by p.

A sentence that is a conjunction C, A ... A C,is true in an interpretation
if all of C; are true. (Therefore, if n = 0, then the conjunction is true.)

A sentence that is a disjunction C, v... v C,is true in an interpretation
if at least one of C. is true. (Therefore, if n = 0, then the disjunction is not true.)

A sentence that is a conditional C = D is true in an interpretation
if Cis false or D is true. (Therefore if C is false, then C— false is true .)

A universally quantified sentence VX Cis true
if every ground instance of C is true.

An existentially quantified sentence JX Cis true
if some ground instance of Cis true.

Computational Logic and Human Thinking —
Semantics

Logical consequence and truth

An argument for Herbrand interpretations

The paradoxes of material Implication

Paraconsistency

The argument for Minimal Herbrand Models

v" Minimal models of Horn clauses

v' The distinction between operational rules and emergent properties
v' Default reasoning
v

Truth versus proof in arithmetic

Universal quantifiers, negation
and Herbrand interpretations

The semantics VX Cis true if every ground instance of C is true is called
the substitution interpretation of quantifiers.

For this to work, there need to be enough ground terms

to name all the individuals in the interpretation.

Not only the individuals in the set of sentences,

but any other individuals that might need talking about in the future.

The substitution interpretation does away with the mystery of what
counts as an individual and what counts as a relation.
It allows interpretations to be restricted to Herbrand interpretations.

The semantics - C is true if C fails to be true reflects
the asymmetry between truth and falsity.
In the ALP agent model, this asymmetry is reflected in the fact that

an agent’s “passive” observations are positive atomic sentences.

The relationship between an agent’s thoughts
and the Real World.

The interface between the Real World and an agent’s goals
and beliefs is the set of observations that the agent
encounters and the set of actions that the agent performs.

This interface is as close as the agent needs to get to the Real
World, to determine whether its beliefs are true and whether
its goals can be made true.

The use of Herbrand interpretations restricts the agent’s
knowledge of the world to this interface,

and avoids trying to identify the true nature of the World
without describing it in some other language.

Internal clauses and links need not represent
states of affairs in the Real World

Only A, F and H correspond
directly to reality.

Goal: if Cthen D

/ DifE and F

Cif4 Bif4
| 4

C and D are mental
constructs, which help the
agent organise its thoughts.

DifGand H

The definition of truth

projects these mental
constructs onto the
external world. This is

another argument for
Herbrand interpretations.

Computational Logic and Human Thinking —
Semantics

Logical consequence and truth

An argument for Herbrand interpretations

The paradoxes of material Implication

Paraconsistency

The argument for Minimal Herbrand Models

v" Minimal models of Horn clauses

v' The distinction between operational rules and emergent properties
v' Default reasoning
v

Truth versus proof in arithmetic

The paradoxes of material implication

A conditional (also called material implication) C - D
is logically equivalent to a disjunction - C v D.

The conditional is true whenever the conclusion D is true,
no matter whether the condition Cis true or false.

The conditional is also true whenever the condition C is false,
no matter whether the conclusion D is true or false.

For example: johncanfly> 2+2=4
the moon is made from green cheese - john can fly

are both true if 2+ 2 =4 is true and
the moon is made from green cheese is false.

But: john can fly - | am a monkey’s uncle

The paradoxes are avoided in the pragmatics

Why assert the weak disjunction, even if it is true:

| am going to the party or | will stay at home

if | have no intention of going to the party,
but | am planning to stay at home?

In clausal logic, the paradoxes are avoided by eliminating weak disjunctions and
weak conditionals for the sake of efficiency.

The subsumption rule eliminates C v D
given a stronger disjunction D.

It eliminatesBAC—>DorC—>D v E
given a stronger conditional C - D.

Therefore it eliminates B - D given D
and it eliminatesor C > E given C - false (i.e.-C)

Computational Logic and Human Thinking —
Semantics

Logical consequence and truth

An argument for Herbrand interpretations

The paradoxes of material Implication

Paraconsistency

The argument for Minimal Herbrand Models

v" Minimal models of Horn clauses

v" The distinction between operational rules and emergent properties
v' Default reasoning
v

Truth versus proof in arithmetic

Paraconsistency

The paradoxes of material implication are closely related to
the property of classical logic that an inconsistent set of sentences
logically implies every sentence.

Given the definition of logical consequence:

A sentence C is a logical consequence of a set of sentences S
(or S logically implies C) if (and only if) Cis true whenever S is true.

If Sis inconsistent, then it is false that S is true in any interpretation.
Therefore Cis true whenever S is true.

Therefore Cis a logical consequence of S.

But it would be more informative to say:

Given that Cis a logical consequence of S and that S is inconsistent,
it is impossible to say whether or not Cis true in any interpretation.

Clausal logic is inconsistency-tolerant
(paraconsistent)

The resolution rule derives only
informative consequences of a set of clauses.

Given only the clauses p and not p,
only one application of resolution is possible,
and it derives false in one step.

It doesn’t derive that the moon is made of green cheese,
or that the world is coming to an end.

Computational Logic and Human Thinking —
Semantics

Logical consequence and truth

An argument for Herbrand interpretations

The paradoxes of material Implication

Paraconsistency

The argument for Minimal Herbrand Models

v" Minimal models of Horn clauses

v' The distinction between operational rules and emergent properties
v' Default reasoning
v

Truth versus proof in arithmetic

Minimal models of Horn clause programs

Every Horn clause program has a unique minimal model. It is the
Herbrand model generated by instantiating universally quantified
variables with ground terms and by reasoning forwards.
Consider the recursive definite clauses E:

even(0)
even(s(s(X))) €< even(X)

Forward reasoning generates the infinite set of atomic sentences:
even(0), even(s(s(0))), even(s(s(s(s(0))))),.....ad infinitum.
This set is the smallest Herbrand model that makes E true.

The minimal model of a Horn clause program P
is contained in every other Herbrand model of P.

For Horn clauses, truth in the minimal model is
equivalent to truth in all models

For every Horn clause program P,
there exists a unique minimal model M
such that for all Horn goal clauses G:

G is a logical consequence of P
(i.e. G is true in all models of P)
if and only if G is true in M.

This is a direct consequence of a theorem in (van Emden and Kowalski,
1976) for the case where G is an atomic fact.

It also holds for disjunctions of definite goal clauses,

i.e. sentences of the form G, v... v G,

where each G.is an (existentially quantified) Horn goal clause.

However, the equivalence does not hold for
goals containing negation or universal quantification.

The equivalence does not hold for
goals containing negation

not even(s(s(s(0))))
is true in the minimal model M of E:

even(0)
even(s(s(X))) < even(X)

because the atomic sentence even(s(s(s(0)))) is not true in M.
However, it is not a logical consequence of E,

because it is not true, for example, in the maximal model of E
(in which all atomic sentences are true)

The equivalence does not hold for goals
containing universal quantification

VX (even(s(s(X))) — even(X))

is true in the minimal model M of E
because for all ground terms t that can be constructed from the constant 0 and
the function symbol s:

if even(s(s(t))) is true in M, then it must have been derived by forward reasoning
using the ground instance even(s(s(t))) < even(t) of the conditional in E. But
then the condition even(t) of this ground instance must also be true in M.

But it is not true in all models of E, because there exist non-Herbrand models
containing weird individuals, for example the individual named weird.

such that even(s(s(weirﬁ))) is true, but even(weird) is not true. The simplest and
smallest such model is just the minimal model augmented with the one
additional atomic sentence even(s(s(weird))).

Computational Logic and Human Thinking —
Semantics

Logical consequence and truth

An argument for Herbrand interpretations

The paradoxes of material Implication

Paraconsistency

The argument for Minimal Herbrand Models

v" Minimal models of Horn clauses

v" The distinction between operational rules and emergent properties
v' Default reasoning
v

Truth versus proof in arithmetic

The distinction between operational rules and
emergent properties

The clauses/beliefs: even(0)
even(s(s(X))) < even(X)

are operational definitions of the even predicate.

The sentences: not even(s(s(s(0))))
VX (even(s(s(X))) — even(X))

are emergent properties/goals.

A similar distinction holds between programs and their
properties.

Failure to make the distinction is responsible for much
confusion in psychological and philosophical studies of logic.

Computational Logic and Human Thinking —
Semantics

Logical consequence and truth

An argument for Herbrand interpretations

The paradoxes of material Implication

Paraconsistency

The argument for Minimal Herbrand Models

v" Minimal models of Horn clauses

v' The distinction between operational rules and emergent properties
v' Default reasoning
v

Truth versus proof in arithmetic

Default reasoning can be understood in terms of
truth in minimal models

Let P be: mary will go if john will go.
john will go if mary will go.

The minimal model of Pis {},
in which no atomic sentence is true.

Therefore mary will not go.
Similarly john will not go, as far as | know.

Default reasoning can be understood in terms of
truth in minimal models

Let P be: mary will go if john will go.
john will go if bob will not go.

There are two minimal models: {bob will go}
and {mary will go, john will go}

But default reasoning and negation as failure
give higher priority to the second minimal model,

treating john will go if bob will not go.
as an operational rule
and the contra-positive bob will go if john will not go.

as an emergent property.

Two ways to Represent Cause and Effect

In the form effect if cause:

there is smoke if there is a fire.
there is smoke if there is teargas.

In the form cause if effect:

there may be a fire if there is smoke.
there may be teargas if there is smoke.

i.e. there is a fire or there is teargas if there is smoke.

Arguably, the effect if cause representation is operational,
whereas the cause if effect representation is emergent
(in the minimal model).

The effect if cause representation needs abduction to explain observations.
The cause if effect representation needs only deduction.

Computational Logic and Human Thinking —
Semantics

Logical consequence and truth

An argument for Herbrand interpretations

The paradoxes of material Implication

Paraconsistency

The argument for Minimal Herbrand Models

v" Minimal models of Horn clauses

v' The distinction between operational rules and emergent properties
v' Default reasoning
v

Truth versus proof in arithmetic

Truth versus proof in arithmetic

The standard model A of arithmetic is
the minimal model of the Horn clauses:

+(0, VY, Y) i.e. O+Y=Y
+(s(X), Y, s(Z)) & +(X, Y, Z) i.e. S(X)+Y=s(X+Y)
x(0, Y, 0) ie. O0xY=0

x(s(X), Y, V)& x(X, Y, U) A+(U Y, V) ie.s(X) xY=(XxY)+Y

The Peano axioms are emergent properties,
which are true in A.

Infinitely many instances can sometimes by inspected
finitely by using mathematical induction

VX (+(X, 0, X)) is true in A.
Base case: X =0.Then +(X, 0, X) is just +(0, 0, 0), which is true in A
because it is an instance of the clause +(0, Y, Y).
Inductive case: X =s(n). By induction hypothesis, +(n, 0, n) is true in A.
We need to show +(s(n), 0, s(n)) is true in A.
But this follows by forward reasoning, using
+(s(X), ¥, s(2)) & +(X, Y, Z).

This semantic argument can be expressed purely syntactically,

by augmenting the definite clauses with axioms for induction,
as in Peano arithmetic.

Truth versus proof in arithmetic

The incompleteness of any constructive axioms for arithmetic
is a consequence of the fact that

to show a universally quantified or negative sentence is
true,

it is necessary to inspect infinitely many atomic
sentences, and

these infinitely many instances
do not conform to any finitely recurring pattern.

The same incompleteness applies to
default reasoning and properties of logic programs.

Computational Logic and Human Thinking —
Semantics - Conclusions

Logical consequence and truth

An argument for Herbrand interpretations

The paradoxes of material Implication

Paraconsistency

The argument for Minimal Herbrand Models

v" Minimal models of Horn clauses

v" The distinction between operational rules and emergent properties
v' Default reasoning
v

Truth versus proof in arithmetic

Computational Logic and Human Thinking —
Semantics - Conclusions

The definition of truth in classical logic applies to the clausal logic of ALP

Herbrand interpretations avoid the problem of trying to identify
the individuals and relations in arbitrary interpretations

The paradoxes of material Implication can be resolved
in the pragmatics of classical logic

Paraconsistency can be achieved in the pragmatics of classical logic

Truth in Minimal Herbrand Models

v

v

DN NN

is equvalent to logical consequence for Horn clause programs

is more fundamental than logical consequence

distinguishes between operational rules and emergent properties
is an appropriate semantics for default reasoning

explains the distinction between truth and proof in arithmetic

Computational Logic and
Human Thinking

The Logic of Abductive Logic Programming

Robert Kowalski
Imperial College London

The Logic of Abductive Logic Programming

* Semantics

* Abductive derivations
e Stable models
 Admissibility semantics

 Argumentation-theoretic interpretation

ALP - Abstract semantics

An abductive logic program <P, O, IC> consists of a logic program
P, a set of open predicates O and a set of integrity constraints /C.

The open predicates are restricted so they do not occur in the
conclusions of clauses in P.

A solution of a goal clause G is a set A of ground instances of the
open predicates O such that:

G holds with respect to the program P U A and
P U A satisfies IC.

G can be an observation to explain or an achievement goal.
IC can be maintenance goals and constraints.

ALP - Concrete semantics

A solution of a goal clause G
is a set A of ground instances of the open predicates O such that:

G is true in the minimal model of P U A and
IC is true in the minimal model of P U A.

i.e. {G} U ICis true in the minimal model of P U A.

The notion of minimal model is clear-cut in the case in which
P U Ais a Horn clause program.
This case is the basis for all other cases and extensions.

The Logic of Abductive Logic Programming

* Semantics

* Abductive derivations

* Stable models
 Admissibility semantics

 Argumentation-theoretic interpretation

An inference system for ground Horn ALP

A ground Horn abductive logic program <P, O, IC>

consists of a ground (variable-free) Horn clause program P,
a set of open predicates O, and integrity constraints /C,
which are ground conditionals of the form:

Ar B —>C

where A is an open atom
(i.e. an atom with an open predicate in O),
and Band C are conjunctions of atoms.

Integrity constraints of this form are like

event-condition-action rules of active databases
(Widom and Ceri, 1996).

The problem is to solve a ground Horn goal clause G,
which is a conjunction of variable-free atoms.

Abductive derivation

The ALP proof procedure is adapted from the

IFF proof procedure for ALP (Fung and Kowalski, 1997).
But the IFF proof procedure uses logic programs
expressed in the biconditional if and only if form and
employs the theoremhood view of integrity satisfaction.

The ALP proof procedure uses forward and backward
reasoning to generate a solution A of G,

by generating an abductive derivation G,, G,, ... G,
such that G, contains the set A

but no other goals that need to be solved.

G,,, is obtained from G; by one of:

Fi

Fact:

Forward reasoning with a selected open atom Ain G, = A A G and an
integrity constraint AAB—-> C. ThenG,;=(B>C)AA ArG.
(The resulting goal clause is a generalised goal clause.)

Forward reasoning with a selected open atom A and a conditional in G; =
(AAB—>C)AA AG. ThenG,,= (B>C)AAAG.

Backward reasoning with a selected atom CinG,;= CA G
and a clause C< D in P, Then G,,;isD 2 G.

Backward reasoning with a selected atom Cin G;=(CAB—-> H) A G.
Suppose C&< D, €< D, are all the clauses in P having conclusion C.
ThenG,,;=(D, AB>H) A...A(D,,AB—> H) 2 G.

Factoring G.=A A A A G. ThenG,,;=A A G.
(Any previous applications of F, and F,to any occurrence of A
are deemed to have been done to the resulting single copy of A.)

Logical simplification: Replace true - Cby C.
Replace true A Chy C.
Replace false A C by false.

Successfully terminating derivation

An abductive derivation G,, G,, ... Gyisa
successfully terminating derivation of A={A,, ..., A }if and only if:

G, is not false
Gy=(B;,2>C)r.A(B,>C)rAA Ar..Ar A ,m=0 n=0where
each A, is an open atom and

no further inferences can be performed on G,

The residual conditionals B, - C; are conditionals introduced by F,
but whose conditions B; are not true in the minimal model of P U A.

The inference rules are sound

Theorem: Given a ground Horn abductive logic program <P, O, IC>
and ground Horn goal clause G,

If there exists a successfully terminating derivation of A
then {G,} U ICis true in the minimal model of P U A.

The inference rules are not complete, because they do not
recognise infinite failure.

Infinite success and incompleteness

Given< {C & C}, {A}, {A A C - false}> and the goal A, the
inference rules generate the non-terminating derivation:

G, A given
G, (C - false) A A by F,
G, (C - false) A A by B,

ad infinitum by B,

This infinite derivation is the only derivation possible.

However, A = {A} is a solution of G,

because the integrity constraint and the initial goal
are both true in the minimal model of P U {A}.
The integrity constraint A A C - false is true, because Ciis false.

Non-constructive completeness can be obtained
by broadening the definition

An abductive derivation G,, G,, ... G,isa
successful derivationof A={A,, ..., A }if and only if:

G, is not false

Gy=(B;2C)r.Ar(B,>C)rAA Ar..r A ,m=0 nz=0where

each A, is an open atom
no further inferences can be performed on the A. and

the conditions B; of the residues are not true
in the minimal model of P U A.

Implementing the last requirement can be done by trying to show that the B,
are true and failing. This is impossible in general, but can be achieved in many
cases by tabling (Sagonas, Swift and Warren, 1994).

Theorem: Given a ground Horn abductive logic program <P, O, IC>,
a ground Horn goal clause G, and a set of ground open atoms A:

If {G,} U ICis true in the minimal model of P U 4,
then there exists a successful derivation of A, such that A’ C A.

Integrity constraints with disjunctive conclusions

To deal with integrity constraints of the form:

C—>D,v..vD,

it suffices to add the inference rule:

Splitting: If G, has the form (D, v... v D) A G,
then there are as many successor nodes G,
of the form D, A G as there are disjuncts D..

Splitting needs to be performed when the conditions of an integrity
constraint are reduced to true, and the disjunctive conclusion is added
to G..

The splitting rule, together with F, and F,, turns the ALP proof procedure
into a model generator for (range-restricted) clausal logic.

The case <P, O, IC> where P is empty and O is the set of all predicates in
the language is equivalent to SATCHMO (Manthey and Bry, 1988).

The Logic of Abductive Logic Programming

* Semantics

* Abductive derivations

e Stable models
 Admissibility semantics

 Argumentation-theoretic interpretation

The stable model semantics

is the special case of the ALP minimal model semantics in which
negations of atoms not a are treated as

positive, open atoms, say non-a

and integrity constraints express that a and non-a are contraries:

Consistency constraints: non-a A a - false

Totality constraints: true - non-a v a

The correspondence with stable models

For every logic program with negation P,
there is a corresponding abductive logic program <P’, O, IC> where

O is the set of positive contraries non-a of the negations of atoms in P,
P’ is the Horn clause program obtained from P

by replacing negative conditions not a with non-a, and

IC is the set of consistency and totality constraints.

With this correspondence the stable models of P
coincide with the minimal models of P’ U A,
where A is a solution of the initial goal true (Eshghi and Kowalski, 1989).

However, there is a problem with the correspondence:
It requires the satisfaction of all the totality constraints
whether they are relevant to the initial goal G, or not.

The case for ignoring the totality constraints

Consider the program P: bob will go €< not john will go.
john will go €< not bob will go.

P’ bob will go < john stays away.
john will go €< bob stays away.
O: {john stays away, bob stays away}
IC: bob will go A bob stays away — false.
john will go A john stays away — false.
G, bob will go
G, john stays away
G, (john will go — false) A john stays away
G, (bob stays away — false) A john stays away

The proof procedure generates only one successfully terminating derivation
with solution A, = {john stays away}:

The result is the same as that obtained with the stable model semantics,
but without totality constraints.

The case for the totality constraints

Consider the program P: john can fly < john is a bird A not(john is abnormal)

john is a bird

In most semantics for default reasoning, it can be shown that
john can fly but not that not(john can fly).

But without totality constraints it can be shown that john is flightless, where:

P/

0]
IC:

(=]

G
Gl
G

N

G;

john can fly < john is a bird A john is normal
john is a bird

{john is flightless, john is normal}

john is flightless A john can fly — false.

john is normal A john is abnormal — false.

john is flightless

(john can fly — false) A john is flightless

(john is a bird A john is normal — false) A john is flightless
(john is normal — false) A john is flightless

This is also a counter-example to replacing totality constraints by the
requirement that P” U A be maximally consistent.

An alternative to the totality constraints

The effect of restricting the totality constraints to those that are

locally relevant to the goal can be obtained by adding the
inference rules:

Neg: If G, has the form (hon-CAB—->H)AG
then G,,, is (B>Hv C)AG.

Replace non-C A C by false
Replace false v C by C.

An alternative to the totality constraints

P’ john can fly & john is a bird A john is normal
john is a bird

0] {john is flightless, john is normal}

IC: john is flightless A john can fly — false.

john is normal A john is abnormal — false.

The first three steps are the same as they were before without the totality constraint:

G, john is flightless

G, (john can fly — false) A john is flightless

G, (john is a bird A john is normal — false) A john is flightless
G, (john is normal — false) A john is flightless

Before the derivation terminated successfully with G,
Now negation rewriting applies, and the derivation termlnates unsuccessfully with G

G, john is abnormal x john is flightless
The derivation terminates unsuccessfully,

because the subgoal john is abnormal is not an open atom,
and no further inferences can be applied.

Preventative maintenance

The combination of Neg and Splitting makes it possible to satisfy
maintenance goals by preventing the need to achieve their conclusions

P:
O:

IC:

~ O

A OOGOO
W N

4

G,

you fail the exam < you do not study.

{you have an exam, you study,

you do not study, you retake the exam}

you have an exam A you fail the exam — you retake the exam.
you study A you do not study — false.

you have an exam

you have an exam A (you fail the exam — you retake the exam)
you have an exam A (you do not study — you retake the exam)
you have an exam A (you study v you retake the exam)

you have an exam A you study

you have an exam A you retake the exam

The Logic of Abductive Logic Programming

* Semantics

* Abductive derivations

* Stable models
 Admissibility semantics

 Argumentation-theoretic interpretation

An argumentation-theoretic interpretation

An abductive derivation using Neg can be viewed as constructing an
argument to support and defend an initial claim G:

B, reduces the initial goal to an argument supported by open subgoals
non-a added to A.

When an open atom non-a is added to 4, F, is used with the consistency
constraint to derive a = false, in an attempt to attack non-a.

B,reduces a in a - false to alternative arguments attacking non-a.
Each such attacking argument is ultimately reduced to a conjunction of
open subgoals of the form non-b.

For each such attacking argument, Neg attempts to defeat the attack by
finding a non-b in the attack and showing b.

In a successful derivation, this dialectic process continues until every
attack against the open atoms in A has been counter-attacked.

An argumentation-theoretic semantics

A is an admissible solution of a goal G, if and only if:
* P’”U A supports an argument for G,,.

 No argument supported by P” U A attacks A.

 For every argument supported by P’ U A’ that attacks 4,
P’ U A supports an argument that attacks A”.

In the admissibility semantics
argumentation is self-defence.

An argumentation-theoretic interpretation of the
stable model semantics

Given an abductive logic program <P’, O, IC> corresponding to a
normal logic program P, the stable model semantics can sanctions
a set A of open atoms as a solution of a goal G, if and only if:

 P”U A supports an argument for G,,.
 No argument supported by P’ U A attacks A.

e Forevery non-bnotin A,
P’ U A supports an argument that attacks non-b.

In the stable model semantics

argumentation is all-out warfare:

Every non-b has to take a side, either with or against A.
If non-b is not with A, then A attacks non-b.

Extensions of the abductive proof procedure

The extension to non-ground abductive logic programs
requires mainly just adding unification.
It also requires the range-restriction on variables.

Forward reasoning needs to be generalized, so that the atom A in G; used for
forward reasoning can be a closed atom. This allows the consequences of
hypothetical actions and explanations to be considered without the need to

reduce them to open atoms.
Logic programs need to be generalized to include conditionals in the conditions.

Forward reasoning needs to be generalized, to reason forwards using beliefs, in
addition to integrity constraints. This involves relaxing the restriction that every
integrity constraint contains an atom with an open predicate.

The abductive proof procedure needs to be intergrated with the connection
graph proof procedure. i.e. adding, inheriting and deleting links, subsumption,

etc.

The Logic of Abductive Logic Programming —
Conclusions

 Semantics in terms of model generation

* Includes the SATCHMO theorem-prover,
i.e range-restricted clauses of FOL

* Includes stable model semantics,
admissibility semantics

Has an argumentation-theoretic interpretation

Computational Logic and Human Thinking —
Psychology Part 2

Robert Kowalski
Imperial College London

Computational Logic and Human Thinking —
Psychology Part 2

e The conditional in the selection task
interpreted as a belief

e The conditional in the selection task
interpreted as a goal

An abstract form of the selection task

Assume that an agent has been told that a sentence having
the logical form:

if P then Q.
ought to be true, but might be false.

Assume, moreover, that P and Q are open predicates that are
directly observable. The abstract form of the selection task is
to determine how the agent should respond to various
observations of the truth values of these predicates.

The abstract form of the selection task

According to classical logic, the correct responses are:

From an observation of P deduce Q. (modus ponens)

From an observation of not Q deduce not P. (modus
tollens)

However, in some variants of the selection task,
including the original card version, most people:

From an observation of P deduce Q. (modus ponens)
From an observation of Q deduce P,
(affirmation of the consequent)

The ALP explanation of the selection task

People interpret :
* Belief conditionals as logic programming clauses:
All the conditionals with the same conclusion are the
only conditionals with that conclusion

(which justifies affirmation of the consequent).

Almost all reasoning is backwards or forwards
(which inhibits modus tollens).

* Goal conditionals as FOL clauses
(which explains reasoning in accordance with classical logic).

A more accurate representation of the selection

task
if X has value u for property p then X has value v for property q.

For example: if a card X has letter d on the letter side
then the card X has number 3 on the number side.

if a person X is drinking alcohol in a bar
then the person X has age at least eighteen years old.

In many cases, the values u and v are a function of X. For example:

if X has value V for property q and X has value W for property q
then V is identical to W.

where is identical to is defined by: X is identical to X.
For example: if a card X has number N on the number side

and the card X has number M on the number side
then N is identical to M.

Computational Logic and Human Thinking —
Psychology Part 2

e The conditional in the selection task
interpreted as a belief

e The conditional in the selection task
interpreted as a goal

The conditional interpreted as a belief.

Modus Ponens is easy.
Affirmation of the Consequent is natural.
Modus Tollens is hard, but possible.

Denial of the Antecedent is hard and hardly ever applied.

The conditional interpreted as a belief —
Modus Tollens is hard

Given the positive observation:
the fourth card has number 7 on the number side.
To perform modus tollens with the belief:

if a card X has letter d on the letter side
then the card X has number 3 on the number side.

it is necessary first to derive the negative conclusion:
it is not the case that the fourth card has number 3 on the number side.
But this derivation is hard to motivate. Why not also derive:
it is not the case that the fourth card has number 1 on the number side.
it is not the case that the fourth card has number 2 on the number side.

it is not the case that the fourth card has number 4 on the number side.

....etc.

The conditional interpreted as a belief —
Modus Tollens is hard

Constraint: if a card X has number N on the number side

v and the card X has number M on the number side
/ then N is identical to M.

Step 1: Step 2: \ Step 3 or 4:
N=7 M=3 N=M
card = fourth card \
\ \ X is identical to X
the fourth card has number a card X has number 3 on the number side
7 on the number side if the card X has letter d on the letter side

T Step 0: l Step 3 or 4:

Observation Active observation

Computational Logic and Human Thinking —
Psychology Part 2

e The conditional in the selection task
interpreted as a belief

e The conditional in the selection task
interpreted as a goal

The conditional interpreted as a goal.

Modus Ponens is easy.
Affirmation of the Consequent has no justification.
Modus Tollens is potentially easier.

Denial of the Antecedent has no justification

The conditional interpreted as a goal —
Modus Tollens is easier, because the link between the
goal and the constraint is stronger.

Goal: if a person X'is drinking alcohol in a bar
then the person X has age at least eighteen years old.

/

Constraint: if a person X has age at least eighteen years old
and the person X has age under eighteen years old

\ then false.

john is drinking alcohol in a bar mary is 12 years old

In general, if the conditional is interpreted as a goal,
then it is natural to compile the goal and constraint
into a more specialized goal

Conditional goal: if P then Q.

Constraint: if Q and Q’ then false.
Compiled goal: if P and Q’ then false.

Or equivalently: it is not the case that P and Q"

This assumption is similar to the argument of (Sperber et al, 1995), that
subjects are likely to perform modus tollens, if they interpret the
conditional if P then Q as a denial:

i.e. it is not the case that P and not Q.
or equivalently if P and not Q then false.

Computational Logic and Human Thinking —
Psychology Part 2
Conclusions

The meaning of natural language conditionals depends on
whether they are interpreted as beliefs or as goals.

* Modus tollens is hard, partly because deriving
negative conclusions from positive observations is hard.

* We need to reason with the equivalence between
goals of the form:

if P and not Q then R.
and if P then R or Q.

But it is not clear when this reasoning should be performed.

Computational Logic and Human Thinking —
ALP agents and BDI agents compared

Robert Kowalski (and Fariba Sadri)
Imperial College London

Computational Logic and Human Thinking —
ALP agents and BDI agents compared

* Three kinds of rules

* Robot room-cleaning example — BDI vs ALP/LPS
 Teleo-reactivity

* LPS syntax and model-theoretic semantics
 LPS operational semantics

 Soundness and Incompleteness

ALP agents and BDI agents compared-
The agent cycle

Production systems, BDI agents and ALP agents
share a similar agent cycle:

repeatedly:
observe
think
decide agent
act
observe act
The World

But in ALP agents the world gives meaning
(semantics) to the agent’s thoughts.

ALP agents and BDI agents compared-
Knowledge representation

Production systems and typical BDI agents
“represent knowledge” by means of a

destructively updated database (or working memory),
which represents the current state of the world
and
rules (in production systems)
if condition then action(s) or

plans (in BDI agents)

(trigger, guard, body) i.e.

If triggering condition and guard conditions

hold in the current state of the database,

then execute body (solving goals and performing actions).

In ALP agents, the database is non-destructive, and observations or
frame axioms are need to access the current state of the world.

Computational Logic and Human Thinking —
ALP agents and BDI agents compared

* Three kinds of rules

* Robot room-cleaning example — BDI vs ALP/LPS
 Teleo-reactivity

* LPS syntax and model-theoretic semantics
 LPS operational semantics

 Soundness and Incompleteness

Production systems and BDI agents —
three kinds of rules/plans

Reactive rules, e.g.

If there is an emergency then get help.
If there is an emergency then run away.

may have implicit/emergent goals, e.g.
deal with the emergency.

In ALP, these are represented by maintenance goals/ integrity constraints, but
expressed declaratively, e.g.

If there is an emergency then | deal with the emergency
| deal with the emergency if | get help
| deal with the emergency if | run away

“equivalently” if there is an emergency then | get help or | run away
not if there is an emergency then | get help and | run away

Production systems and BDI agents —
three kinds of rules/plans

Goal-reduction rules:

If goal G and conditions C
then add H as a subgoal.

e.g. If you want to go home and you have the bus fare,
then you can catch a bus.

from Introduction to Cognitive Science, (Thagard, 2005) page 45.
In ALP: GifCand H
e.g. You go home

if you have the bus fare and you catch a bus
(and maybe other missing/implicit conditions).

Production systems and BDI agents —
three kinds of rules/plans

Forward reasoning rules, e.g.

In ALP:

If X mother of Y
then add X ancestor of Y.

If X ancestor of Y
and Y ancestor of Z
then add X ancestor of Z.

If X mother of Y
then X ancestor of Y.

If X ancestor of Y
and Y ancestor of Z
then X ancestor of Z.

Computational Logic and Human Thinking —
ALP agents and BDI agents compared

* Three kinds of rules

* Robot room-cleaning example — BDI vs ALP/LPS
 Teleo-reactivity

* LPS syntax and model-theoretic semantics
 LPS operational semantics

 Soundness and Incompleteness

Robot example from Dennis, L.A. Farwer, B. Bordini,
R.H. Fisher, M. Wooldridge, M. A. (2008). Common
Semantic Basis for BDI Languages LICS 4908, Springer-
Verlag, 124-139.

PLAN 2: trigger+!Goto(R)

PLAN 1: trigger +!aclean()
prefix [€]

prefix [€]

guard stack dirty(Room) igzrgl stack pos(P)
TRUE LR

body +!aGoto(Room) body -pos(P)
+laVacuum(Room) +pos(R)

+Goto(R)

Robot example in LPS (Logic-based Production
System) -

ALP agents with stateless syntax and destructive
Red@ilbbasé (or maintenance goal) in R:

observe-dirty(Room) — make-clean(Room)
Definitions of intensional predicates (beliefs) in I:
clean(Room) <— - dirty(Room).
Macro-action definitions (beliefs) in Mac:

make-clean(Room) <— clean(Room).

make-clean(Room) <—dirty(Room) : goto(Room); vacuum(Room).
goto(Y) <— pos(Y).

goto(Y) <— - pos(Y) : pos(X) : adjacent(X, Z): enter(X, Z) ; goto(Y).

: means “immediately afterwards” ; means “afterwards”
dirty, pos, clean and adjacent are database predicates
make-clean is a macro-action, enter and vacuum are atomic actions

observe-dirty is an observation predicate

LPS internal syntax
Reactive rule in R*:
observe-dirty(Room, T-1, T) — make-clean(Room, T1, T2) AT<T1

i. e. YV Room, T-1, T(observe-dirty(Room, T-1, T)
— 9 T1, T2(make-clean(Room, T1, T2) AT<T1))

Intensional predicates in I*: clean(Room) <— - dirty(Room).

Macro-action definitions in Mac*:

make-clean(Room, T, T) <— clean(Room, T).

make-clean(Room, T1, T2) <—dirty(Room, T1) A goto(Room, T1, T)
AT<T ado(vacuum(Room), T, T2).

goto(Y, T, T) <= pos(Y, T).

goto(Y, T1, T2) <— - pos(Y, T1) A pos(X, T1) A adjacent(X, Z)
A do(enter(X, Z), T1, T) AT<T’ A goto(Y, T, T2).

State transitions of the destructive database are
defined by an action theory Act

initiates(observe-dirty(Room), dirty(Room)).
initiates(enter(X,Y), pos(Y)).
terminates(enter(X,Y), pos(X)).
terminates(vacuum(Room), dirty(Room)).

The action theory also includes specifications of
preconditions of the atomic actions:

possible(enter(X,Y)) <— pos(X) A adjacent(X,Y).
possible(vacuum(Room)) <— pos(Room).

There are no frame axioms! The frame axioms are not operational rules,

but emergent properties that are true in the minimal model associated

with the agent’s beliefs and the sequence of database states generated
by the agent cycle.

Given a sequence of observations0=0,, O,, O,,...
and initial state E,, the LPS agent cycle generates a sequence
E,, E, E,.. of database states and actionsA=A, A, A,,...

For simplicity, observations are treated as events/actions.
So abduction is not necessary.

E, = ({pos(room3), adjacent(room3, room1)}

O, = {observe-dirty(rooml1)}

A, = ¢ (the empty set of actions)

E, = {pos(room3), adjacent(room3, room1), dirty(room1)}

The agent records the observation and its effects in the database,
reasons forwards with the reactive rule, and

generates the achievement goal make-clean(room1).

It reasons backwards from the achievement goal

with the macro-action definitions, and

selects the atomic action enter(room3, room1).

Given a sequence of observations, the LPS cycle
generates a sequence of database states and actions

If the action has been executed successfully, then it uses the action
theory and any new observations to update the database:

Ozz{}
A, = {enter(room3, room1)}
E, = {pos(room1), adjacent(room3, room1), dirty(room1)}

It continues to reason backwards to solve the goal make-clean(room1)
and selects the atomic action vacuum(room1):

03:{}
A, ={vacuum(room1)}
E,; = {pos(room1), adjacent(room3, room1)}

It observes the successful execution of vacuum(room1) and deletes
dirty(room1)} from the database. The agent has
achieved the goal make-clean(room1) and
maintained the goal observe-dirty(Room) — make-clean(Room)

Destructive database update and its semantics

The representation of database states without explicit state (or time)
makes it easy to implement destructive updates:

Delete facts that are terminated by an action or observation
Add facts that are initiated.

To obtain a declarative semantics, transform the sequence of database
states into a single database in which state is represented explicitly, e.g.:

E* ={ pos(room3, 0), adjacent(room3, room1), dirty(room1, 1),
pos(room3, 1), enter(room3, room1, 1, 2), dirty(room1, 2),
pos(rooml1, 2), vacuum(room1, 2, 3),
pos(room1, 3)}.

The agent cycle generates a minimal model

If I, Mac and Act are Horn clauses,
then E*U I* UO*UA* U Temp U Mac is also a set of Horn clauses,

where Temp = {0<0, 0<1, 0<2,...1<1, 1<2,.....}

Every set of Horn clauses has a unigue minimal model.
This model can be represented by the set of ground atomic sentences
that are true in the model. In this example, the minimal model is:

M = E* U {observe-dirty(room1, 0, 1)} U
{goto(room3, O, 0), goto(room3, 1, 1),
goto(room1, 1, 2), goto(room1, 2, 2),

goto(room1, 3, 3), goto(room1, 1, 3),
make-clean(room1, 1, 3), make-clean(room1, 2, 3),
make-clean(room1, 3, 3)} U Temp

The agent cycle generates a minimal model
that makes the agent’s maintenance goals all true

The goal V' T-1, T(observe-dirty(Room, T-1, T) —
4T1, T2(make-clean(Room, T1, T2) AT<T1))

is true in the mimimal model:

M = E* U {observe-dirty(room1, 0, 1)} U
{goto(room3, O, 0), goto(room3, 1, 1),
goto(rooml1, 1, 2), goto(room1, 2, 2),

goto(room1, 3, 3), goto(room1, 1, 3),
make-clean(room1, 1, 3), make-clean(rooml1, 2, 3),
make-clean(room1, 3, 3)} U Temp

The minimal model semantics of Horn clauses can be generalised
to the perfect model semantics of extended stratified programs.

Computational Logic and Human Thinking —
ALP agents and BDI agents compared

* Three kinds of rules

* Robot room-cleaning example — BDI vs ALP/LPS
* Teleo-reactivity

* LPS syntax and model-theoretic semantics
 LPS operational semantics

 Soundness and Incompleteness

Teleo-Reactivity [Nilsson, 1994]

[AgentSpeak (BDI) goal-reduction rule in LPS:
quench-thirst <— go-to-fridge; open-fridge; get-drink; open-drink; drink.

A more flexible, teleo-reactive program in LPS:

quench-thirst <— quenched-thirst.
quench-thirst <— do-open-drink ; drink.

do-open-drink <— opened-drink.
do-open-drink <— do-get-drink ; open-drink.

do-get-drink <— have-drink.
do-get-drink <— do-open-fridge ; get-drink.

do-open-fridge <— opened-fridge.
do-open-fridge <— do-go-to-fridge ; open-fridge.

do-go-to-fridge <— at-fridge.
do- go-to-fridge <— do-stand-up : go-to-fridge.

Computational Logic and Human Thinking —
ALP agents and BDI agents compared

* Three kinds of rules

* Robot room-cleaning example — BDI vs ALP/LPS
 Teleo-reactivity

* LPS syntax and model-theoretic semantics
 LPS operational semantics

 Soundness and Incompleteness

LPS syntax — the language and database

The language L of an LPS framework < I, R, Mac, Act> consists of:

e disjoint sets of predicate symbols for:

the extensional and intensional predicates of
the deductive database DBL

macro-action predicates MA

atomic action predicates AA

observation predicates denoted by the set OB

predicates initiates/2, terminates/2 and possible/1 (used in Act),
e fixed set of constant symbols and function symbols.

I is a locally stratified logic program in the language of DBL. I defines intensional
predicates in terms of extensional and other intensional predicates in DBL.

LPS syntax — queries and goal clauses

Definition: A query to a database D is an arbitrary FOL (first-order logic) formula
(possibly containing free variables) in the vocabulary of D.

If the database is a set of atomic sentences (e.g. minimal or perfect model), then a
substitution @ is an answer of a query d, if d6 is true in D.
We also say that d@ holds in D

Definition: Any expression of the form F where F is a query, true or an atomic formula
representing an atomic or macro-action is a goal clause.

If F, is a query, true or an atomic formula representing an atomic or macro-action, and
F,is a goal clause, then F,:F, and F,; F, are also goal clauses.

All variables in a goal clause that are not explicitly quantified are implicitly existentially
quantified with scope the entire goal clause.

Definition: F is an extended goal clause if it is a goal clause, or if it is of the form : F1
where F1 is a goal clause.

LPS syntax — extended stratified programs

Definition: A reactive rule in R is a conditional of the form
conditions — conclusion where conditions is a query in the language of
DBL U OB U AA and conclusion is a goal clause.

All variables that are not explicitly quantified are implicitly universally
quantified with scope the entire conditional, except for variables occurring only
in the conclusion that are existentially quantified with scope the conclusion.
E.g.p(X,Y) —=q(Y, Z) stands for VYV X (p(X, Y) = dZ q(Y, Z)).

Definition: A macro-action definition in Mac has the syntactic form
mac <— conditions, where mac is an atomic formula whose predicate symbol is
a macro-action predicate, and conditions are a goal clause.

All variables that are not explicitly quantified are implicitly universally
quantified with scope the entire clause. However, any such universally
quantified variable that is not in the conclusion can be treated as existentially
quantified with scope the conditions.

E.g.p(Y) <= VXq(X, Y, Z) can be understood as VY (p(Y) < dZ VX q(X Y, Z)).

LPS syntax — the action theory

Definition:The action theory Act consists of clauses of the form:

conclusion & conditions where
conclusion is one of the predicates initiates, terminates or possible and
conditions is any query.

If event is an action that is executed successfully

or an external event is observed,

then all the extensional facts

that are terminated by event are deleted from the database,
and all the extensional facts

that are initiated by event are added to the database

The “extensions” of the intensional predicates are updated implicitly as
ramifications of explicit changes to the extensional predicates.

LPS syntax is similar to that of Transaction Logic (TR logic, Bonner and
Kifer), but with a different model-theoretic and operational semantics.

Extended perfect model

Definition: Let [be a locally stratified program, with perfect model D.
Let M be a program of the form: m & nad

where n is a conjunction of atomic formulas, and

d is a query formula in the language of D regarded as a database.

Let the predicates of L be disjoint from the predicates in m and n.

The set of clauses M is said to be stratified
(at a higher level) with respect to L.

Then the extended perfect model of L U M
is the minimal model of the set of Horn clauses
DU{mO& nB | mé&nad&EMand 6 is an answer of the query d}.

Computational Logic and Human Thinking —
ALP agents and BDI agents compared

* Three kinds of rules

* Robot room-cleaning example — BDI vs ALP/LPS
 Teleo-reactivity

* LPS syntax and model-theoretic semantics
 LPS operational semantics

 Soundness and Incompleteness

Soundness.

Given an LPS framework </, R, Mac, Act> with a timely selection
function, an initial state <E,, G,> and an input stream of externally
generated observations O, , ..., O, , O,,,, let

<E, G,>, A, O, <E,, G,>, .., <E, G>, A, O,
be generated by the operational semantics, and let M be the
extended perfect model of E* U |* U O* U A* U Temp U Mac*.

If for every goal tree in every goal state G; there exists a goal state
G;, where i <j in which some branch of that goal tree has a leaf
node labelled by true,

then G*, U R*is true in M.

The following variant of the situation calculus
IS an emergent property

The following axioms are all true
in the extended perfect model of
EXUI* UOb*UA* U Temp U Act*:

P(S’) & initiates(E, P. S) A E(S, S’)
P(S’) & P(S) A =dE (E(S, S°) A terminates(E, P, S))

where P is any intentional or extensional database
predicate,

and E(S, S’) means that the atomic event E

takes place between the successive states S and S”.

Computational Logic and Human Thinking —
ALP agents and BDI agents compared

* Three kinds of rules

* Robot room-cleaning example — BDI vs ALP/LPS
 Teleo-reactivity

* LPS syntax and model-theoretic semantics
 LPS operational semantics

 Soundness and Incompleteness

The LPS operational semantics - goal states G;

E,. {q, s} I={} Act = {} O={}
G,: p
R: q—m. Rule 1
al —n. Rule 2
Mac: p <—al. Defn 1
m<—r:a2. Defn 2
m <—s. Defn 3

Because Act={}, E,=E,=E,=E,.

Cycle 1: Rulel fires and adds m to the goal state,
and a solution for p is found using Defn 1
G, =(p val)am.

Cycle 2: Two alternative solutions for m are found using Defn 2 and Defn 3.
al is selected for execution.
G, =(p val)a(mv(r:a2)vs).

Cycle 3: a1l is successfully executed, and resolved with a1 in the goal state,
s in the goal state is resolved with the database,
and a new top level goal n is generated by Rule 2.
G; =(p valv true)a(mv(r:a2)vs vtrue) an
=n

Goal states have the structure of an SLD
resolution-like search tree

GO G1 GZ G3
p pAM p AM p AMAN
al al r:a2 s al r:a2 S

true true

A selection function is timely if the selected subgoal is

a macro-action subgoal anywhere in a goal clause,

or a query subgoal or atomic action at the beginning of a goal clause.

An instance aoc of an action a is executable if the query possible(a)

has answer o in the current state of the database (given by E;U I U Act)

Extended resolution

Given an (extended) goal clause C with selected subgoal:

If the selected subgoal is a macro-action m and there is a definition

m’ <— conditions, such that m and m” have a most general unifier (mgu) 6,
then the resolvent is CO with m6@ replaced by conditionsé.

The old subgoals in the resolvent inherit their order from the parent
clauses, and the new subgoals conditions 6 have the same relative order to
the old subgoals as m has to the other subgoals in C.

Example: The resolvent of q(X) : m(X, Y) ; n(Y) and m(c, Z) <—al(c); a2(Z2),
is g(c):al(c);a2(Y); n(Y).

If the selected subgoal is a query or atomic action then it must be the first
subgoal G, in C. If G, succeeds with mgu 6, then the resolvent is:

:G,0 ifCisG;:G, orCis :G;:G,
G,0 ifCisG;; G, orCis :G;; G,
true if Cis G, orCis : G,

The Operational Semantics

Given an LPS framework </, R, Mac, Act> with a timely selection
function, an initial state <E,, G,> and an input stream of externally
generated observations O, , ..., O, O,,,, the agent cycle generates
a sequence:

<E, Gy>, A, O, <E, G,>, .., <E, G> A, O,

Let Max; be a bound on the number of resolutions performed in
each cycle.

It suffices to specify the transition from one state
<E, G>, A, O;to the next<E;,,, G;,,>, A,

The Operational Semantics

LPSO. Update the database: Let Events; = O,U A..
E.,=E; - {p:terminates(e, p) holds in E;U I U Act and e & Events,; } U
{p : initiates(e, p) holds in E;U I U Act and e € Events, }.

LPS1. Generate new goals: For every conditions — conclusion in R
such that conditions o holds in E;,; U I U Events,

a new goal tree is added to G; with root conclusion o.

Let GR be the resulting intermediate goal state.

LPS3. Plan and execute: Let GRR be the goal state starting from GR
derivable by resolving with Mac UE;,; U I U A; within the bound Max..

LPS3.1 If GRR does not contain a goal clause with a selected, executable
action, then A, is an empty set of actions.

LPS3.2 Otherwise, let A be a selected set of executable actions chosen by
the search strategy. Then A,,={ao: a €A and ao is executable}.

LPS4. Prune the goal trees: All goal clauses in GRR prefixed by : not selected in
this cycle are deleted, resulting in the goal state G,,,.

Computational Logic and Human Thinking —
ALP agents and BDI agents compared

* Three kinds of rules

* Robot room-cleaning example — BDI vs ALP/LPS
 Teleo-reactivity

* LPS syntax and model-theoretic semantics
 LPS operational semantics

* Soundness and Incompleteness

Incompleteness — two sources

No preventative maintenance:

R:g —al . Act:terminates(a2, q). E,:{q}

where al and a2 are atomic actions. There is a minimal model
corresponding to the sequence of actions a2, al, but the LPS cycle
can only generate the non-terminating sequence a1, al.
Inadequate macro-action program:

R:q —p . Act:initiates(a, p). E,:{q}

There is a minimal model containing action a, but the LPS cycle
cannot generate it.

Computational Logic and Human Thinking —
ALP agents and BDI agents compared - Conclusions

* Production systems and BDI agents have a state-free
syntax, destructive database, and no declarative semantics

 ALP agents have a syntax with time or state, a model-theoretic
semantics, and a database without destructive updates

 LPS has a model-theoretic semantics, a state-free syntax, and a
destructive database

 LPSisrelated to Nilsson’s Teleo-reactive production systems,
and Bonner and Kifer’s TR logic.

e LPSissound, butincomplete

Computational Logic and Human Thinking —
Conclusions

The ALP agent model

e provides a descriptive and normative model of
human thinking and deciding

* explains psychological experiments that
claim to show that people are illogical

* includes a model of The Language of Thought (LOT)

* is compatible with classical logic
but also has a minimal model semantics

e iscompatible with the use of a destructive database
and a state-free syntax

Computational Logic and Human Thinking -
Conclusions

Al tools and techniques
e can be reconciled and be combined
 improve those of existing academic disciplines

 can be used by ordinary people

