
Chapter 1
Assumption-Based Argumentation

Phan Minh Dung, Robert A. Kowalski, and Francesca Toni

1.1 Introduction

Assumption-Based Argumentation (ABA) [4, 3, 27, 9, 12, 20, 22] was developed,
starting in the 90s, as a computational framework to reconcile and generalise most
existing approaches to default reasoning [24, 25, 4, 3, 27, 26]. ABA was inspired
by Dung’s preferred extension semantics for logic programming [10, 7], with its di-
alectical interpretation of the acceptability of negation-as-failure assumptions based
on the notion of “no-evidence-to-the-contrary” [10, 7], by the Kakas, Kowalski and
Toni interpretation of the preferred extension semantics in argumentation-theoretic
terms [24, 25], and by Dung’s abstract argumentation (AA) [6, 8].

Because ABA is an instance of AA, all semantic notions for determining the
“acceptability” of arguments in AA also apply to arguments in ABA. Moreover,
like AA, ABA is a general-purpose argumentation framework that can be instan-
tiated to support various applications and specialised frameworks, including: most
default reasoning frameworks [4, 3, 27, 26] and problems in legal reasoning [27, 13],
game-theory [8], practical reasoning and decision-theory [33, 29, 15, 28, 14]. How-
ever, whereas in AA arguments and attacks between arguments are abstract and
primitive, in ABA arguments are deductions (using inference rules in an underly-
ing logic) supported by assumptions. An attack by one argument against another is
a deduction by the first argument of the contrary of an assumption supporting the
second argument.

Differently from a number of existing approaches to non-abstract argumentation
(e.g. argumentation based on classical logic [2] and DeLP [23]) ABA does not have
explicit rebuttals and does not impose the restriction that arguments have consistent
and minimal supports. However, to a large extent, rebuttals can be obtained “for
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free” [27, 9, 33]. Moreover, ABA arguments are guaranteed to be “relevant” and
largely consistent [34].

ABA is equipped with a computational machinery (in the form of dispute deriva-
tions [9, 12, 19, 20, 22]) to determine the acceptability of claims by building and
exploring a dialectical structure of a proponent’s argument for a claim, an oppo-
nent’s counterarguments attacking the argument, the proponent’s arguments attack-
ing all the opponents’ counterarguments, and so on. This computation style, which
has its roots in logic programming, has several advantages over other computational
mechanisms for argumentation. The advantages are due mainly to the fine level of
granularity afforded by interleaving the construction of arguments and determining
their “acceptability”.

The chapter is organised as follows. In Sections 1.2 and 1.3 we define the ABA
notions of argument and attack (respectively). In Section 1.4, we define “acceptabil-
ity” of sets of arguments, focusing on admissible and grounded sets of arguments.
In Section 1.5 we present the computational machinery for ABA. In Section 1.6 we
outline some applications of ABA. In Section 1.7 we conclude.

1.2 Arguments in ABA

ABA frameworks [3, 9, 12] can be defined for any logic specified by means of
inference rules, by identifying sentences in the underlying language that can be
treated as assumptions (see Section 1.3 for a formal definition of ABA frameworks).
Intuitively, arguments are “deductions” of a conclusion (or claim) supported by a set
of assumptions.

The inference rules may be domain-specific or domain-independent, and may
represent, for example, causal information, argument schemes, or laws and regu-
lations. Assumptions are sentences in the language that are open to challenge, for
example uncertain beliefs (“it will rain”), unsupported beliefs (“I believe X”), or
decisions (“perform action A”). Typically, assumptions can occur as premises of in-
ference rules, but not as conclusions. ABA frameworks, such as logic programming
and default logic, that have this feature are said to be flat [3]. We will focus solely
on flat ABA frameworks. Examples of non-flat frameworks can be found in [3].

As an example, consider the following simplification of the argument scheme
from expert opinion [37]:

Major premise: Source E is an expert about A.
Minor premise: E asserts that A is true.
Conclusion: A may plausibly be taken as true.

This can be represented in ABA by a (domain-independent) inference rule: 1

1 In this chapter, we use inference rule schemata, with variables starting with capital letters, to stand
for the set of all instances obtained by instantiating the variables so that the resulting premises and
conclusions are sentences of the underlying language. For simplicity, we omit the formal definition
of the language underlying our examples.
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h(A)← e(E,A),a(E,A),arguably(A)
with conclusion h(A) (“A holds”) and premises e(E,A) (“E is an expert about A”),
a(E,A) (“E asserts A”), and an assumption arguably(A). This assumption can be
read in several ways, as “there is no reason to doubt that A holds” or “ the com-
plement of A cannot be shown to hold” or “the defeasible rule - that a conclusion
A holds if a person E who is an expert in A asserts that A is the case – should not
apply”. The inference rule can be understood as the representation of this defea-
sible rule as a strict (unchallangable) rule with and extra, defeasible condition –
arguably(A) – that is open to challenge. This transformation of defeasible rules into
strict rules with defeasible conditions is borrowed from Theorist [31]. Within ABA,
defeasible conditions are always assumptions. Different representations of assump-
tions correspond to different frameworks for defeasible reasoning. For example, in
logic programming arguably(A) could be replaced by not ¬h(A) (here not stands
for negation as failure), and in default logic it could become M h(A).

In ABA, attacks are always directed at the assumptions in inference rules. The
transformation of defeasible rules into strict rules with defeasible conditions is also
used to reduce rebuttal attacks to undercutting attacks, as we will see in Section 1.3.

Note that, here and in all the examples given in this chapter, we represent condi-
tionals as inference rules. However, as discussed in [9], this is equivalent to repre-
senting them as object language implications together with modus ponens and and-
introduction as more general inference rules. Representing conditionals as inference
rules is useful for default reasoning because it inhibits the automatic application of
modus tollens to object language implications. However, the ABA approach applies
to any logic specified by means of inference rules, and is not restricted in the way
illustrated in our examples in this chapter.

Suppose we wish to apply the inference rule above to the concrete situation in
which a professor of computer science (cs), say jo, advises that a software product
sw meets a customer’s requirements (reqs) for speed (s) and usability (u). Suppose,
moreover, that professors are normally regarded as experts within (w) their field.
This situation can be represented by the additional inference rules:

reqs(sw)← h(ok(sw,s)),h(ok(sw,u));
a( jo,ok(sw,s))←; a( jo,ok(sw,u))←; pro f ( jo,cs)←;
w(cs,ok(sw,s))←; w(cs,ok(sw,u))←;
e(X ,A)← pro f (X ,S),w(S,A),c pro f (X ,S)

Note that all these inference rules except the last are problem-dependent. Note also
that, in general, inference rules may have empty premises.

The potential assumptions in the language underlying all these inference rules are
(instances of) the formulae arguably(A) and c pro f (X ,S) (“X is a credible profes-
sor in S”). Given these inference rules and pool of assumptions, there is an argument
with assumptions {arguably(ok(sw,s)), arguably(ok(sw,u)), c pro f ( jo,cs)} sup-
porting the conclusion (claim) reqs(sw).

In the remainder, for simplicity we drop the assumptions arguably(A) and re-
place the inference rule representing the scheme from expert opinion simply by
h(A)← e(E,A),a(E,A). With this simplification, there is an argument for reqs(sw)
supported by {c pro f ( jo,cs)}.
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Informally, an argument is a deduction of a conclusion (claim) c from a set of as-
sumptions S represented as a tree, with c at the root and S at the leaves. Nodes in this
tree are connected by the inference rules, with sentences matching the conclusion of
an inference rule connected as parent nodes to sentences matching the premises of
the inference rule as children nodes. The leaves are either assumptions or the special
extra-logical symbol τ , standing for an empty set of premises. Formally:

Definition 1. Given a deductive system (L ,R), with language L and set of in-
ference rules R, and a set of assumptions A ⊆ L , an argument for c ∈ L (the
conclusion or claim) supported by S⊆A is a tree with nodes labelled by sentences
in L or by the symbol τ , such that

• the root is labelled by c
• for every node N

– if N is a leaf then N is labelled either by an assumption or by τ;
– if N is not a leaf and lN is the label of N, then there is an inference rule

lN ← b1, . . . ,bm (m≥ 0) and
either m = 0 and the child of N is τ

or m > 0 and N has m children, labelled by b1, . . . ,bm (respectively)

• S is the set of all assumptions labelling the leaves.

Throughout this chapter, we will often use the following notation

• an argument for (claim) c supported by (set of assumptions) S is denoted by S ` c

in situations where we focus only on the claim c and support S of an argument. Note
that our definition of argument allows for one-node arguments. These arguments
consist solely of a single assumption, say α , and are denoted by {α} ` α .

A portion of the argument {c pro f ( jo,cs)} ` reqs(sw) is given in Fig. 1.1. Here,
for simplicity, we omit the right-most sub-tree with root h(ok(sw,u)), as this is
a copy of the left-most sub-tree with root h(ok(sw,s)) but with s replaced by u
throughout.

Arguments, represented as trees, display the structural relationships between
claims and assumptions, justified by the inference rules. The generation of argu-
ments can be performed by means of a proof procedure, which searches the space
of applications of inference rules. This search can be performed in the forward direc-
tion, from assumptions to conclusions, in the backward direction, from conclusions
to assumptions, or even “middle-out”. Our definition of tight arguments in [9] cor-
responds to the backward generation of arguments represented as trees. Backward
generation of arguments is an important feature of dispute derivations, presented in
Section 1.5.2.

Unlike several other authors, e.g. those of [2] (see also Chapter 7) and [23] (see
also Chapter 8), we do not impose the restriction that the support of an argument be
minimal. For example, consider the ABA representation of the scheme from expert
opinion, and suppose that our professor of computer science, jo, is also an engineer
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(eng). Suppose, moreover, that engineers are normally regarded as experts in com-
puter science. These additional “suppositions” can be represented by the inference
rules

eng( jo)←; e(X ,A)← eng(X),w(cs,A),c eng(X)
with (instances of) the formula c eng(X) (“X is a credible engineer”) as additional
assumptions. There are now three, different arguments for the claim reqs(sw):
{c pro f ( jo,cs)} ` reqs(sw), {c eng( jo)} ` reqs(sw), and
{c pro f ( jo,cs),c eng( jo)} ` reqs(sw).

Only the first two arguments have minimal support. However, all three arguments,
including the third, “non-minimal” argument, are relevant, in the sense that their
assumptions contribute to deducing the conclusion. Minimality is one way to ensure
relevance, but comes at a computational cost. ABA arguments are guaranteed to be
relevant without insisting on minimality. Note that the arguments of Chapter 17,
defined as inference graphs, are also constructed to ensure relevance.

Some authors (e.g. again [2] and [23]) impose the restriction that arguments have
consistent support 2. We will see later, in Sections 1.3 and 1.4, that the problems
arising for logics including a notion of (in)consistency can be dealt in ABA by
reducing (in)consistency to the notion of attack and by employing a semantics that
insists that sets of acceptable arguments do not attack themselves.
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Fig. 1.1 An example argument represented as a tree

2 Note that these authors define arguments with respect to an underlying logic with an explicit
negation and hence a notion of consistency, such that inconsistency implies every sentence in the
language. The logic underlying an ABA framework need not have an explicit negation and notion
of inconsistency.



6 Phan Minh Dung, Robert A. Kowalski, and Francesca Toni

1.3 Attacks in ABA

In ABA, the notion of attack between arguments is defined in terms of the contrary
of assumptions: one argument S1 ` c1 attacks another (or the same) argument S2 ` c2
if and only if c1 is the contrary of an assumption in S2.

In general, the contrary of an assumption is a sentence representing a challenge
against the assumption. For example, the contrary of the assumption “it will rain”
might be “the sky is clear”. The contrary of the assumption “perform action A”
might be “perform action B” (where the actions A and B are mutually exclusive).
The contrary of the assumption “I believe X” might be “there is evidence against
X”. The contrary of an assumption can also represent critical questions addressed
to an argument scheme. For example, the argument scheme from expert opinion in
Section 1.2 can be challenged by such critical questions as [37]:

CQ1: How credible is E as an expert source?
CQ2: Is E an expert in the field that A is in?
CQ3: Does E’s testimony imply A?
CQ4: Is E reliable?
CQ5: Is A consistent with the testimony of other experts?
CQ6: Is A supported by evidence?

For simplicity, we focus here solely on CQ1, because modelling the other ques-
tions would require introducing additional assumptions to our earlier representation
of the scheme. 3 Providing negative answers to CQ1 can be understood as prov-
ing the contrary ¬c pro f ( jo,cs), ¬c eng( jo,cs) of the assumptions c pro f ( jo,cs),
c eng( jo,cs) respectively.

Contraries may be other assumptions or may be defined by inference rules, e.g.
¬c eng(E,cs)←¬prog(E); ¬prog(E)← theo(E)

where prog stands for “programmer” and theo(E) stands for “E is a theoretician”.
The first rule can be used to challenge the assumption that an engineer is a credible
expert in computer science by arguing that the engineer is not a programmer. The
second rule can be used to show that an engineer is not a programmer by assuming
that he/she is a theoretician (here theo(E) is an additional assumption). Given this
representation, the argument {c eng( jo,cs)} ` reqs(sw) is attacked by the argument
{theo( jo)} ` ¬c eng( jo,cs).

Definition 2. Given a notion of contrary of assumptions 4,

• an argument S1 ` c1 attacks an argument S2 ` c2 if and only if the conclusion c1
of the first argument is the contrary of one of the assumptions in the support S2
of the second argument;

• a set of arguments Arg1 attacks a set of arguments Arg2 if an argument in Arg1
attacks an argument in Arg2.

3 For example, providing negative answers to CQ5 and CQ6 for A can understood as proving the
contrary of the assumption arguably(A) introduced at the beginning of Section 1.2 but ignored
afterwards.
4 See definition 3 for the formal notion of contrary.
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This notion of attack between arguments depends only on attacking (“undercutting”)
assumptions. In many other approaches, however, such as those of Pollock [30]
and Prakken and Sartor [32], an argument can attack (“rebut”) another argument
by deducing the negation of its conclusion. We reduce such “rebuttal” attacks to
“undercutting” attacks, as described in [27, 9, 33, 34]. For example, consider the
inference rules

prog(X)← works f or(X ,micro),nor(X); works f or( jo,micro)←
where micro is the name of some company, nor(X) stands for “X is normal”, and the
first inference rule represents the defeasible rule that “normally individuals working
at micro are programmers”. From these and the earlier inference rule for ¬prog,
we can construct both an argument for prog( jo) supported by {nor( jo)} and an
argument for ¬prog( jo) supported by {theo(ann)}. These arguments “rebut” one
another but neither one undercuts the other. However, let us set the contrary of as-
sumption theo(X) to prog(X) and the contrary of assumption nor(X) to ¬prog(X).
Then, the effect of the rebuttals is obtained by undercutting the assumptions (sup-
porting the arguments for prog( jo) and ¬prog( jo)).

Note that an alternative approach to accommodate rebuttals could be to introduce
an explicit additional notion of rebuttal attack as done in [11] for logic programming
with two kinds of negation.

To complete our earlier definition of argument and attack we need a definition of
ABA framework:

Definition 3. An ABA framework is a tuple 〈L , R, A , 〉 where

• (L ,R) is a deductive system, with a language L and a set of inference rules R,
• A ⊆ L is a (non-empty) set, whose elements are referred to as assumptions,
• is a total mapping from A into L , where α is the contrary of α .

1.4 Acceptability of arguments in ABA

ABA can be used to determine whether a given claim is to be “accepted” by a
rational agent. The claim could be, for example, a potential belief to be justified,
or a goal to be achieved, represented as a sentence in L . In order to determine
the “acceptability” of the claim, the agent needs to find an argument for the claim
that can be defended against attacks from other arguments. To defend an argument,
other arguments may need to be found and they may need to be defended in turn.
As in AA, this informal definition of “acceptability” can be formalised in many
ways, using the notion of attack between arguments. In this chapter we focus on the
following notions of “acceptable” sets of arguments:

• a set of arguments is admissible if and only if it does not attack itself and it
attacks every argument that attacks it;

• an admissible set of arguments is complete if it contains all arguments that it
defends, where a set of arguments Arg defends an argument arg if Arg attacks all
arguments that attack {arg};



8 Phan Minh Dung, Robert A. Kowalski, and Francesca Toni

• the least (with respect to set inclusion) complete set of arguments is grounded.

As for AA (see [8] and Chapter 2), in ABA, given a proposed conclusion c, there
always exists a grounded set of arguments, and this can be constructed bottom-up
[3, 12].

Consider again our formulation of the scheme for expert opinion. The set con-
sisting of the two arguments

arg1={c eng( jo,cs)} ` reqs(sw)
arg2={nor( jo)} ` prog( jo)

is admissible, and as a consequence so is the claim reqs(sw). Indeed, this set does
not attack itself and it attacks the argument

arg3={theo( jo)} ` ¬prog( jo).
However, the set {arg1,arg2} is not (a subset of) the grounded set of arguments. But
the set {arg4} is grounded, where

arg4={c pro f ( jo,cs)} ` reqs(sw).
The notion of admissibility is credulous, in that there can be alternative, conflicting
admissible sets. In the example above, {arg3} is also admissible, but in conflict with
the admissible {arg1,arg2}.

In some applications, it is more appropriate to adopt a sceptical notion of “ac-
ceptability”. The notion of grounded set of arguments is sceptical in the sense that
no argument in the grounded set is attacked by an admissible set of arguments. Other
notions of credulous and sceptical “acceptable” set of arguments can be employed
within ABA [3, 27, 12].

Note that the notions of “acceptable” sets of arguments given here are more struc-
tured than the corresponding notions of “acceptable” sets of assumptions given in
[3, 27, 9, 12]. The correspondence between “acceptability” of arguments and “ac-
ceptability” of assumptions, given in [12], is as follows:

• If a set of assumptions S is admissible/grounded then the union of all arguments
supported by any subset of S is admissible/grounded;

• If a set of arguments S is admissible/grounded then the union of all sets of as-
sumptions supporting the arguments in S is admissible/grounded.

Note that, if the underlying logic has explicit negation and inconsistency, and we
apply the transformation outlined in Section 1.3 (to reduce rebuttals to our under-
cutting attacks), then an argument has an inconsistent support if and only if it attacks
itself. Thus, in such a case, no argument belonging to an “acceptable” set may pos-
sibly contain an argument with an inconsistent support [34].

1.5 Computation of “acceptability”

The notion of “acceptability” provides a non-constructive specification for the “ac-
ceptability” of sets of arguments. In this section we show how to turn the specifica-
tion into a constructive proof procedure. As argued in [6, 8], at a conceptual level,
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a proof procedure for argumentation consists of two tasks, one for generating ar-
guments and one for determining the “acceptability” of the generated arguments.
We have already briefly discussed the computation of arguments in Section 1.2. Be-
low, we first demonstrate how to determine the “acceptability” of arguments that
are already constructed, in the spirit of AA, by means of dispute trees [9, 12]. Then,
we discuss how dispute derivations [9, 12, 20, 22], which interleave constructing
arguments and determining their “acceptability”, can be viewed as generating “ap-
proximations” to “acceptable” dispute trees.

Dispute derivations are inspired by SLDNF, the “EK” procedure of [17, 10, 7],
and the “KT” procedure of [36, 26] for logic programming with negation as failure.
Like SLDNF and EK, dispute derivations interleave two kinds of derivations (one
for “proving” and one for “disproving”). Like EK, they accumulate defence assump-
tions and use them for filtering. Like KT, they accumulate culprit assumptions and
use them for filtering.

1.5.1 Dispute trees

Dispute trees can be seen as a way of representing a winning strategy for a propo-
nent to win a dispute against an opponent. The proponent starts by putting forward
an initial argument (supporting a claim whose “acceptability” is under dispute), and
then the proponent and the opponent alternate in attacking each other’s previously
presented arguments. The proponent wins if he/she has a counter-attack against ev-
ery attacking argument by the opponent.

Definition 4. A dispute tree for an initial argument a is a (possibly infinite) tree T
such that

1. Every node of T is labelled by an argument and is assigned the status of propo-
nent node or opponent node, but not both.

2. The root is a proponent node labelled by a.
3. For every proponent node N labelled by an argument b, and for every argument

c attacking b, there exists a child of N, which is an opponent node labelled by c.
4. For every opponent node N labelled by an argument b, there exists exactly one

child of N which is a proponent node labelled by an argument attacking b.
5. There are no other nodes in T except those given by 1-4 above.

The set of all arguments belonging to the proponent nodes in T is called the defence
set of T .

Note that a branch in a dispute tree may be finite or infinite. A finite branch repre-
sents a winning sequence of arguments (within the overall dispute) that ends with an
argument by the proponent that the opponent is unable to attack. An infinite branch
represents a winning sequence of arguments in which the proponent counter-attacks
every attack of the opponent, ad infinitum. Note that our notion of dispute tree intu-
itively corresponds to the notion of winning strategy in Chapter 5.
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Fig. 1.2 illustrates (our notion of) dispute tree for an extension of our running
example, augmented with the following rules
¬c pro f (X ,S)← ret(X), inact(X); ¬c pro f (X ,S)← admin(X), inact(X);
act(X)← pub(X); ret( jo)←; admin( jo)←; pub( jo)←

Here inact(X) is an assumption with inact(X) = act(X). These additions express
that professors cannot be assumed to be credible (¬c pro f ) if they are retired (ret)
or cover administrative roles (admin) and can be assumed to be inactive (inact).
inact cannot be assumed if its contrary (act) can be shown, and this is so for pro-
fessors with recent publications (pub). The resulting, overall ABA framework is
summarised in Fig. 1.3. Note that the tree in Fig. 1.2 has an infinite (left-most)
branch with
{nor( jo)} ` prog( jo) child of {theo( jo)} ` ¬prog( jo) and
{theo( jo)} ` ¬prog( jo) child of {nor( jo)} ` prog( jo)

ad infinitum. Note also that our intention is to label the opponent nodes in the
middle and right-most branches by two different arguments, but both denoted by
{inact( jo)} ` ¬c pro f ( jo,cs). The two arguments differ with respect to the infer-
ence rules used to obtain them (the first and second inference rule for ¬c pro f in
Fig. 1.3, respectively) and thus have different representations as argument trees (as
in Definition 1).

The definition of dispute tree incorporates the requirement that the proponent
must counter-attack every attack, but it does not incorporate the requirement that
the proponent does not attack itself. This further requirement is incorporated in the
definition of admissible and grounded dispute trees:

Definition 5. A dispute tree T is

@
@

@
@�

�
�

�

P: {c eng( jo),c pro f ( jo,cs)} ` reqs(sw)

O: {theo( jo)} ` ¬c eng( jo)

O: {inact( jo)} ` ¬c pro f ( jo,cs)

O: {inact( jo)} ` ¬c pro f ( jo,cs)

P: {nor( jo)} ` prog( jo)

O: {theo( jo)} ` ¬prog( jo)......

P: {} ` act( jo)

P: {} ` act( jo)

Fig. 1.2 A dispute tree for argument {c eng( jo),c pro f ( jo,cs)} ` reqs(sw), with respect to the
ABA framework in Fig. 1.3.
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• admissible if and only if no argument labels both a proponent and an opponent
node. 5

• grounded if and only if it is finite.

Note that, by theorem 3.1 in [12], any grounded dispute tree is admissible. The re-
lationship between admissible/grounded dispute tree and admissible/grounded sets
of arguments is as follows:

1. the defence set of an admissible dispute tree is admissible;
2. the defence set of a grounded dispute tree is a subset of the grounded set of

arguments;
3. if an argument a belongs to an admissible set of arguments A then there exists

an admissible dispute tree for a with defence set A′ such that A′ ⊆ A and A′ is
admissible;

4. if an argument a belongs to the grounded set of arguments A (and the set of all
arguments supported by assumptions for the given ABA framework is finite) then
there exists a grounded dispute tree for a with defence set A′ such that A′ ⊆ A and
A′ is admissible.

Results 1. and 3. are proven in [12] (theorem 3.2). Results 2. and 4. follow directly
from theorem 3.7 in [26].

Note that the dispute tree in Fig. 1.2 is admissible but not grounded (since it has
an infinite branch). However, the tree with root {c pro f ( jo,cs)} ` reqs(sw) (arg4
in Section 1.4) and the two right-most subtrees in Fig. 1.2 is grounded.

We can obtain finite trees from infinite admissible dispute trees by using “fil-
tering” to avoid re-defending assumptions that are in the process of being “de-
fended” or that have already successfully been “defended”. For example, for the
tree in Fig. 1.2, only the (proponent) child of argument {theo( jo)} ` ¬prog( jo)
needs to be constructed. Indeed, since this argument is already being “defended”,
the remainder of the (infinite) branch can be ignored.

R : reqs(sw)← h(ok(sw,s)),h(ok(sw,u)); h(A)← e(E,A),a(E,A);
e(X ,A)← eng(X),w(cs,A),c eng(X); e(X ,A)← pro f (X ,S),w(S,A),c pro f (X ,S);
a( jo,ok(sw,s))←; a( jo,ok(sw,u)); eng( jo)←; pro f ( jo,cs)←;
w(cs,ok(sw,s))←; w(cs,ok(sw,u))←;
¬c eng(E,cs)←¬prog(E); ¬prog(X)← theo(X);
prog(X)← works f or(X ,micro),nor(X); works f or(bob,micro)←;
¬c pro f (X ,S)← ret(X), inact(X); ret( jo)←;
¬c pro f (X ,S)← admin(X), inact(X); admin( jo)←;
act(X)← pub(X); pub( jo)←

A : c eng(X); c pro f (X ,S); theo(X); nor(X); inact(X)
: c eng(X) = ¬c eng(X); c pro f (X ,S) = ¬c pro f (X ,S);

theo(X) = prog(X); nor(X) = ¬prog(X); inact(X) = act(X)

Fig. 1.3 ABA framework for the running example.

5 Note that admissible dispute trees are similar to the complete argument trees of [2]. We use the
term “argument tree” for arguments.
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1.5.2 Dispute derivations

Dispute derivations compute (“approximations of) dispute trees top-down, starting
by constructing an argument supporting a given claim. While doing so, they perform
several kinds of “filtering” exploiting the fact that different arguments may share the
same supporting assumptions. Assumptions that are already under attack in the dis-
pute are saved in appropriate data structures (the defence assumptions and culprits),
in order to avoid re-computation. The assumptions used by the proponent (defence
assumptions) are kept separate from the assumptions used by the opponent and at-
tacked by the proponent (culprits). The defence assumptions and culprits for the dis-
pute tree in Fig. 1.2 are {c eng( jo),c pro f ( jo),nor( jo)} and {theo( jo), inact( jo)}
respectively.

Dispute derivations employ the following forms of filtering:

1. of defence assumptions by defence assumptions, e.g. performed on the defence
assumption theo( jo) in the left-most branch of the dispute tree in Fig. 1.2 (this
is analogous to the filtering of arguments we discussed earlier);

2. of culprits by defence assumptions and of defence assumptions by culprits, to
guarantee that no argument labels both a proponent and opponent node in the
tree and thus attacks itself (see Definition 5);

3. of culprits by culprits, for reasons of efficiency; e.g., if the dispute tree in Fig. 1.2
is generated left-to-right, the leaf in the right-most branch does not need to be
generated, as the culprit inact( jo) has already been attacked in the middle branch.

The first form of filtering is employed only for computing admissible sets, whereas
the other two forms are employed for computing grounded as well as admissible
sets.

Dispute derivations are defined in such a way that, by suitably tuning parameters,
they can interleave the construction of arguments and determing “acceptability”.
This interleaving may be very beneficial, in general, as it allows

• abandoning, during their construction, “potential arguments” that cannot be ex-
panded into an actual argument in an “acceptable” set of proponent’s arguments,

• avoiding the expansion of the opponent’s “potential arguments” into actual argu-
ments when a culprit has already been identified and defeated.

Informally speaking, a potential argument of a conclusion c from a set of premises
P can be represented as a tree, with c at the root and P at the leaves. As in the case of
“actual” arguments (as in Definition 1), nodes in the tree are connected by inference
rules. However, whereas the leaves of an argument tree are only assumptions or τ ,
the leaves of a potential argument can also be non-assumption sentences in L −A .
Dispute derivations successively expand potential arguments, using inference rules
backwards to replace a non-assumption premise, e.g. p, that matches the conclusion
of an inference rule, e.g. p←Q, by the premises of the rule, Q. In this case, we also
say that p is expanded to Q.

Fig. 1.1 without the dots is an example of a potential argument for reqs(sw),
supported by assumption c pro f ( jo,cs) and non-assumption h(ok(sw,u)). Fig. 1.4
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shows another example of a potential argument. In general there may be one, many
or no actual arguments that can be obtained from a potential argument. For example,
the potential argument in Fig. 1.1 may give rise to two actual arguments (supported
by {c pro f ( jo,cs)} and {c pro f ( jo,cs), c eng( jo)} respectively), whereas the po-
tential argument in Fig. 1.4 gives rise to exactly one actual argument (supported
by {inact( jo)}). However, if no inference rules were given for ret, then no actual
argument could be generated from the potential argument in Fig. 1.4.

The benefits of interleaving mentioned earlier can be illustrated as follows:

• A proponent’s potential argument is abandoned if it is supported by assumptions
that would make the proponent’s defence of the claim unacceptable. For example,
in Fig. 1.1, if the assumption c pro f ( jo,cs) is “defeated” before h(ok(sw,u)) is
expanded, then the entire potential argument can be abandoned.

• An opponent’s potential argument does not need to be expanded into an actual
argument if a culprit can be selected and defeated already in this potential ar-
gument. For example, by choosing as culprit and “defeating” the assumption
inact( jo) in the potential argument in Fig. 1.4, the proponent “defeats” any ar-
gument that can be obtained by expanding the non-assumption ret( jo).

However, when a potential argument cannot be expanded into an actual argument,
defeating a culprit in the potential argument is wasteful. Nonetheless, dispute deriva-
tions employ a selection function which, given a potential or actual argument, selects
an assumption to attack or a non-assumption to expand. As a special case, the selec-
tion function can be patient [9, 20], always selecting non-assumptions in preference
to assumptions, in which case arguments will be fully constructed before they are
attacked. Even in such a case, dispute derivations still benefit from filtering.

Informally, a dispute derivation is a sequence of transitions steps from one state
of a dispute to another. In each such state, the proponent maintains a set P of
(sentences supporting) potential arguments, representing a single way to defend the
initial claim, and the opponent maintains a set O of potential arguments, represent-
ing all ways to attack the assumptions in P . In addition, the state of the dispute
contains the set D of all defence assumptions and the set C of all culprits already
encountered in the dispute. The sets D and C are used to filter potential arguments,
as we discussed earlier.

A step in a dispute derivation represents either a move by the proponent or a
move by the opponent.

A move by the proponent either expands one of his/her potential arguments in P ,
or it selects an assumption in one of the opponent’s potential arguments in O and

@
@

@
@�

�
�

�

¬c pro f ( jo,cs)

ret( jo) inact( jo)
Fig. 1.4 A potential argument for ¬c pro f ( jo,cs), supported by assumption inact( jo) and non-
assumption ret( jo).
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decides whether or not to attack it. In the first case, it expands the potential argument
in only one way, and adds any new assumptions resulting from the expansion to D,
checking that they are distinct from any assumptions in the culprit set C (filtering
defence assumptions by culprits). In the second case, either the proponent ignores
the assumption, as a non-culprit, or he/she adds the assumption to C (bearing in
mind that, in order to defeat the opponent, he/she needs to counter-attack only one
assumption in each of the opponent’s attacking arguments). In this latter case, he/she
checks that the assumption is distinct from any assumptions in D (filtering culprits
by defence assumptions) and checks that it is distinct from any culprit already in
C (filtering culprits by culprits). If the selected culprit is not already in C, the pro-
ponent adds the contrary of the assumption as the conclusion of a new, one-node
potential argument to P (to construct a counter-attack).

A move by the opponent, similarly, either expands one of his/her potential ar-
guments in O , or it selects an assumption to attack in one of the proponent’s po-
tential arguments in P . In the first case, it expands a non-assumption premise of
the selected potential argument in all possible ways, replacing the selected potential
argument in O by all the new potential arguments. In the second case, the oppo-
nent does not have the proponent’s dilemma of deciding whether or not to attack the
assumption, because the opponent needs to generate all attacks against the propo-
nent. Thus, he/she adds the contrary of the assumption as the conclusion of a new,
one-node potential argument to O . 6

A successful dispute derivation represents a single way for the proponent to sup-
port and defend a claim, but all the ways that the opponent can try to attack the
proponent’s arguments. Thus, although the proponent and opponent can attack one
another before their arguments are fully completed, for a dispute derivation to be
successful, all of proponent’s arguments must be actual arguments. In contrast, the
opponent’s defeated arguments may be only potential. In this sense, dispute deriva-
tions compute only “approximations” of dispute trees. However, for every success-
ful dispute derivation, there exists a dispute tree that can be obtained by expanding
the opponent’s potential arguments and dropping tho potential arguments that can-
not be expanded, as well as any of the proponent’s unnecessary counter-attacks [22].

We give an informal dispute derivation for the running example:

P: I want to determine the “acceptability” of claim reqs(sw) (D = {} and C = {}
initially).

P: I generate a potential argument for reqs(sw) supported by {h(ok(sw,s)),
h(ok(sw,u))}, and then expand it (through several steps) to one supported by
{c pro f ( jo,cs), h(ok(sw,u))} (c pro f ( jo,cs) is added to D).

O: I attack the assumption c pro f ( jo,cs) in this potential argument by looking
for arguments for its contrary ¬c pro f ( jo,cs).

O: I generate two potential arguments for¬c pro f ( jo,cs), supported by {ret( jo),
inact( jo)} and {admin( jo), inact( jo)} respectively.

6 If computing admissibility, however, the opponent would not attack assumptions that already
belong to D (filtering defence assumptions by defence assumptions).
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P: I choose inact( jo) as culprit in the first potential argument by O (inact( jo)
is added to C), and generate (through several steps) an argument for its contrary
act( jo), supported by the empty set.

O: There is no point for me to expand this potential argument then. But I still
have the attacking argument for ¬c pro f ( jo,cs), supported by {admin( jo),
inact( jo)}.

P: I again choose inact( jo) as culprit, which I have already defeated (inact( jo)∈
C).

P: There is no attacking argument that I still need to deal with: let me go back to
expand the argument for reqs(sw).

P: I need to expand h(ok(sw,u)), I can do so and generate (through several steps)
an argument for reqs(sw) supported by {c pro f ( jo,cs),c eng( jo)} (c eng( jo) is
added to D).

O: I can attack this argument by generating (through several steps) an argument
for the contrary ¬c eng( jo) of c eng( jo): this argument is supported by assump-
tion theo( jo).

P: I can attack this argument by generating (through several steps) a potential
argument for the contrary of theo( jo).
. . .

This dispute corresponds to the top-down and right-to-left construction of (an ap-
proximation of) the dispute tree in Fig. 1.2. The dispute ends successfully for com-
puting admissible sets of arguments, but does not terminate for computing grounded
sets of arguments. Note that dispute derivations are defined in terms of several pa-
rameters: the selection function, the choice of “player” at any specific step in the
derivation, the choice of potential arguments for the proponent/opponent to expand
etc (see [20, 22]). Concrete choices for some of these parameters (e.g. the choice
of the proponent’s arguments) correspond to concrete search strategies for finding
dispute derivations and computing dispute trees. Concrete choices for other param-
eters (e.g. the choice of “player”) determine how the dispute tree is constructed in a
linear manner.

Several notions of dispute derivations have been proposed, differing in the no-
tion of “acceptability” and in the presentation of the computed set of “acceptable”
arguments. More specifically, the dispute derivations of [9, 20, 22] compute admis-
sible sets of arguments whereas the dispute derivations of [12] compute grounded
and ideal (another notion of sceptical “acceptability”) sets of arguments. Moreover,
the dispute derivations of [9, 12] compute the union of all sets of assumptions sup-
porting the “acceptable” sets of arguments for the given claim, whereas the dispute
derivations of [20, 22] also return explicitly the computed set of “acceptable” argu-
ments and the attacking (potential) arguments, as well as an indication of the attack
relationships amongst these arguments.
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1.6 Applications

In this section, we illustrate recent applications of ABA for dispute resolution (Sec-
tion 1.6.1, adapted from [20]) and decision-making (Section 1.6.2, adapted from
[15]). For simplicity, the description of these applications is kept short here. For
more detail see [13] (for dispute resolution applied to contracts) and [33, 16, 29]
(for decision-making in service-oriented architectures). We also show how ABA
can be used to model the stable marriage problem (Section 1.6.3, building upon
[8]).

1.6.1 ABA for dispute resolution

Consider the following situation, inspired by a real-life court case on contract dis-
pute. A judge is tasked with resolving a disagreement between a software house and
a customer refusing to pay for a product developed by the software house. Suppose
that this product is the software sw in the running example of Fig. 1.3. The judge
uses information agree upon by both parties, and evaluates the claim by the software
house that payment should be made to them.

All parties agree that payment should be made if the product is delivered on
time (del) and is a good product (goodProd). They also agree that a product is
not good (badProd) if it is late (lateProd) or does not meet its requirements. As
before, we assume that these requirements are speed and usability. There is also the
indisputable fact that the software was indeed delivered (del(sw)). This situation
can be modelled by extending the framework of Fig. 1.3 with inference rules

payment(sw)← del(sw),goodProd(sw); badProd(sw)← lateProd(sw);
badProd(sw)←¬reqs(sw); del(sw)←

and assumptions goodProd(sw), ¬reqs(sw), with contraries:
goodProduct(sw) = badProduct(sw); ¬reqs(sw) = reqs(sw)

Given the expert opinions of jo (see Section 1.2), the claim that payment should be
made is grounded (and thus admissible).

1.6.2 ABA for decision-making

We use a concrete “home-buying” example, in which a buyer is looking for a prop-
erty and has a number of goals including “structural” features of the property, such
as its location and the number of rooms, and “contractual” features, such as the
price, the completion date for the sale, etc. The buyer needs to decide both on a
property, taking into account the features of the properties (Ri below), and general
“norms” about structural properties (Rn below). The buyer also needs to decide and
agree on a contract, taking into account norms about contractual issues (Rc below).
A simple example of buyer is given by the ABA framework 〈L , R, A , 〉 with:
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• R = Ri∪Rn∪Rc and
Ri : number o f rooms = 5← house1;

number o f rooms = 4← house2; price = £400K← house2
Rn : sa f e← council approval,a1; ¬sa f e← weak f oundations,a2;

council approval← completion certi f icate,a3
Rc : seller moves abroad← house2;

quick completion← seller moves abroad
• A = Ad ∪Au∪Ac and

Ad = {house1,house2}; Ac = {a1,a2,a3}; Au = {¬council approval }
• house1 = house2, house2 = house1,

a1 = ¬sa f e, a2 = sa f e, a3 = ¬council approval,
¬council approval = council approval.

Here, there are two properties for sale, house1 and house2. The first has 5 rooms, the
second has 4 rooms and costs £ 400K (Ri). The buyer believes that a property ap-
proved by the council is normally safe, a completion certificate normally indicates
council approval, and a property with weak foundations is normally unsafe (Rn).
The buyer also believes that the seller of the second property is moving overseas,
and this means that the seller aims at a quick completion of the sale (Rc). Some
of the assumptions in the example have a defeasible nature (Ac), others amount to
mutually exclusive decisions (Ad) and finally others correspond to genuine uncer-
tainties of the buyer (Au).

This example combines default reasoning, epistemic reasoning and practical rea-
soning. An example of “pure” practical reasoning in ABA applied to a problem
described in [1] can be found in [35].

1.6.3 ABA for the stable marriage problem

Given two sets M, W of n men and n women respectively, the stable marriage prob-
lem (SMP) is the problem of pairing the men and women in M and W in such a way
that no two people of opposite sex prefer to be with each other rather than with the
person they are paired with. The SMP can be viewed as a problem of finding stable
extensions in an abstract argumentation framework [8].

Here we show that the problem can be naturally represented in an ABA frame-
work 〈L , R, A , 〉 with:

• A = {pair(A,B) | A ∈M,B ∈W}
• pair(A,B) = contrary pair(A,B)
• R consists of inference rules

contrary pair(A,B)← pre f ers(A,D,B), pair(A,D);
contrary pair(A,B)← pre f ers(B,E,A), pair(E,B)

together with a set P of inference rules of the form pre f er(X ,Y,Z)← such
that for each person A and for each two different people of the opposite sex
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B and C, either pre f er(A,B,C)← or pre f er(A,C,B)← belongs to P , where
pre f er(X ,Y,Z) stands for X prefers Y to Z.

The standard formulation of the stable marriage problem combines the rules, as-
sumptions and contraries of this framework with the notion that a set of argu-
ments/assumptions is “acceptable” if and only if it is stable, where

• A set of arguments/assumptions is stable if and only if it does not attack itself,
but attacks all arguments/assumptions not in the set.

In SMP, the semantics of stable sets forces solutions to be total, pairing all men and
women in the sets M and W . The semantics of admissible sets is more flexible. It
does not impose totality, and it can be used when the sets M and W have different
cardinalities. Consider for example the situation in which two men, a and b, and two
women, c and d have the following preferences:

pre f er(a,d,c)←; pre f er(b,c,d)←; pre f er(c,a,b)←; pre f er(d,b,a)←
Although there is no stable solution in which all people are paired with their highest
preference, there exist two alternative stable solutions: {pair(a,c), pair(b,d)} and
{pair(a,d), pair(b,c)}. However, suppose a third woman, e, enters the scene, turns
the heads of a and b, and expresses a preference for a over b, in effect adding to P:

pre f er(a,e,d)←; pre f er(a,e,c)←;
pre f er(b,e,c)←; pre f er(b,e,d)←; pre f er(e,a,b)←

This destroys both stable solutions of the earlier SMP, but has a single maximally
admissible solution: {pair(a,e), pair(b,c)}.

Thus, by using admissibility we can drop the requirement that the number of men
and women is the same. Similarly, we can drop the requirement that preferences are
total, namely all preferences between pairs of the opposite sex are given.

1.7 Conclusions

In this chapter, we have reviewed assumption-based argumentation (ABA), focusing
on relationships with other approaches to argumentation, computation, and applica-
tions. In contrast with a number of other approaches, ABA makes use of under-
cutting as the only way in which one argument can attack another. The effect of
rebuttal attacks is obtained in ABA by adding appropriate assumptions to rules and
by attacking those assumptions instead. The extent to which such undercutting is
an adequate replacement for rebuttals has been explored elsewhere [34], but merits
further investigation. Also, again in contrast with some other approaches, we do not
insist that the support of an argument in ABA be minimal and consistent. Instead of
insisting on minimality, we guarantee that the support of an argument is relevant, as
a side-effect of representing arguments as deduction trees. Instead of insisting that
the support of an argument is consistent, we obtain a similar effect by imposing the
restriction that “acceptable” sets of arguments do not attack themselves.

ABA is an instance of abstract argumentation (AA), and consequently it inherits
its various notions of “acceptable” sets of arguments. ABA also shares with AA the
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computational machinery of dispute trees, in which a proponent and an opponent
alternate in attacking each other’s arguments. However, ABA also admits the com-
putation of dispute derivations, in which the proponent and opponent can attack and
defeat each other’s potential arguments before they are completed. We believe that
this feature of dispute derivations is both computationally attractive and psycholog-
ically plausible when viewed as a model of human argumentation.

The computational complexity of ABA has been investigated for several of its in-
stances [5] (see also Chapter 6). The computational machinery of dispute derivations
and dispute trees is the basis of the CaSAPI argumentation system 7 [19, 20, 22].

Although ABA was originally developed for default reasoning, it has recently
been used for several other applications, including dispute resolution and decision-
making. ABA is currently being used in the ARGUGRID project 8 to support ser-
vice selection and composition of services in the Grid and Service-Oriented Ar-
chitectures. ABA is also being used for several applications in multi-agent systems
[21, 18] and e-procurement [29].
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