
Softw e Engineering
Artificial Intelligence in New

Generation Computing
SPL Insight, a company of the British SPL consortium devoted to advanced information technology

studies, has given its 1984 Award to Professor Bob Kowalski for his achievements in Fifth Generation
computing. Professor Kowalski delivered an Award Lecture on May 15, 1984 in London. He and SPL

Insight have kindly given permission to reproduce his lecture here.

ROBERT KOWALSKI
Dept. of Computing, Imperial College of Science and Tech-
nology, 180 Queens Gate, London U.K. SW7 2BZ, U.K.

I am especially pleased and honoured to receive this
award because of SPL Insight's concern with practi-
cal matters. I would like to see my work and that of
my colleagues as having not only academic interest,
but also economic and human value.
In this talk I would like to look at the applications of
Artificial Intelligence technology to Software Engi-
neering, and in particular to the systems analysis
stage of software development. I shall argue that
Artificial Intelligence allows us to execute systems
analysis; and in some cases the execution is efficient
enough to remove the need for separate specifica-
tions and programs. I would like to support my case
by looking at the British Nationality Act as a
particular example, which is closely related to data
processing - the execution of rules and regulations
whether they have legal binding authority or they are
simply the rules an organisafion follows for its own
convenience. I would like to mention some of the
other interrelationships between Software Engineer-
ing and AI. And finally I shall tread on ground I
haven't tread on before and discuss some of the
human implications of the technology.
I am afraid that not all o f the consequences of the
Fifth Generation are going to be beneficial; and that
we will not be able to avoid some of the worst of these
consequences, unless we are aware of the potential
dangers.

The Fifth Generation
I would like to start by looking at the Fifth Genera-
tion.
The Japanese have identified the focal importance of
Artificial Intelligence applications (see Fig. 1) They
have identified logic programming as the underlying
software technology; and they have identified new
kinds of computer architectures. Certainly their new
applications can be understood by the person on the
street; and the electronical engineer can understand
the computer architectures. But until the Japanese
drew attention the the logic programming software,
most computer scientists had either rejected it or
knew nothing about it. The computer scientist's view
of computing is conventional (see Fig. 2) not only
with respect to the applications and the hardware,
but also with respect to software methodology:

~icial

Fig. 1. The Japanese View.

North-Holland FGCSP 39

SE and AI

~ '~ Software)
L__Ln 'neer' n0 t /

Fig. 2. Conventional View.

conventional number-crunching, scientific and com-
mercial applications, executed on boring computers
that run sequentially, have to be told every step, and
cannot make any decisions for themselves.
And how do we bridge the gap between the boring
application and the boring computer? By using
boring software engineering techniques.
Feigenbaum has tried to correct our impression of
the Fifth Generation (Fig. 3). Feigenbaum and
McCorduck in their book on the Fifth Generation
emphasize a very valuable, focal part of the Fifth
Generation, that is its novel expert systems applica-
tions. They downplay the new computer architec-
tures and the logic programming software. I do not
want to argue that PROLOG should be regarded as

Y

Fig. 3. The Feigenbaum View.

Fig. 4. Not My View.

the correct substitute for LISP or that PROLOG is
suitable for all applications today (Fig. 4).
I would like to argue, however, that the new
technology associated with logic programming and
other declarative languages supports not only new
applications but old applications as well (see Fig. 5).
Thus I would argue that we must distinguish
between technologies and applications. The new
software technologies, of which logic programming
is the most representative, not only enable new
applications in areas such as expert systems and
natural language processing, but also facilitate the
implementation of old applications as well. They
support various software development methodolo-
gies, not simply old ways of programming but also
new ways of developing programs. I shall concen-
trate in this part of my talk on the application of the
new software technology to the systems analysis
phase of software development that is prior to both
software specification and programming.
So what is this new technology? The new technology
is characterised by the fact that it allows knowledge to
be represented explicitly. You can see what the
knowledge is; and that knowledge is separated from
the way it is used to solve problems. It disentangles
what the computer knows from how the computer
uses it. The computer uses its knowledge to solve
problems by reasonihg deductively in a manner
which simulates human reasoning, and which is
congenial therefore to human thinking and to
human-machine interaction. This means that the
new software lets us see the knowledge and therefore
understand it. This means that~ce can develop
knowledge in an incremental fashion,~because it's not
all tangled together with the way it's used'. And it is
easy to modify, if we've made a mistake or if the
knowledge changes, as it does very frequently~in
applications such as the formalization of legislation:

401 FGCS North-Holland

Fig. 5. Another View.

SE and AI

The New Technology in The
Software Development Life Cycle

Let's look at the place of the new software technology
in the conventional software development life cycle,
as pictured for example by DeMarco (Fig. 6).
I want to draw particular attention to the bottom path
of the diagram which is concerned with software. We
start with the user requirement, namely the problem
the user has or thinks he has. We analyse the
requirement, come up with a functional specification

of a computer-based solution to the problem, and
then design a software system which we eventually
implement as a program in a well structured top-
down manner.
The data flow diagram, which describes the software
development life cycle, is a convenient tool for the
use of systems analysts to interact with users. It's a
language which systems analysts have developed to
communicate better with people. But data flow
diagrams can also be interpreted as an alternative,
graphical syntax for rule-based programming. Take
for example the following rule which expresses

Budget and ~ ~ / ~
Schedule SHs~du~re ~

I Survey k Feasibility | ~ ~ \ / ~ e n t / / Requirements/Physical ~ o _ n

~ Design

Fig. 6. Software Development Life Cycle (according to DeMarco).

North-Holland FGCS I 41

SE and AI

that company x is a potential customer for producty if
x has some type o fwork z and product y is suitable for
z. A systems analyst would express this in terms of
processes and data flow between processes 'and
picture these graphically (Fig. 7).
I would like to argue that the data flow diagram is
different only in syntax from the logic based lan-
guage which has been chosen for the Japanese Fifth
Generation project. It is equivalent in semantics to a
language of rules, a language of conclusions and
conditions.

x is a potential customer for product y
if x has work of type z
and y suitable for z.

The tide. o f the diagram explains the purpose for
which the processes in the diagram are to be used. In
this particular example the purpose is to find
products to sell to customers. This constitutes the
conclusion of the rule, namely that some product y is
suitable for the potential customer x. The processes
which are represented inside the diagram, which are
drawn whithin circles, constitute the conditions that
have to be satisfied for the conclusion of the rule to
hold. The first process finds some type of work z
which the customer has. The second finds a producty
which is suitable for z.
This example shows that rule-based, logic-based
programming is not necessarily programming, or
even formal specification. In this example rule-based
programming is an executable analysis of the user
requirement. Therefore it can assist the conventional
software development life cycle at the earliest pos-
sible stage. The user requirement can be analysed
and executed before we derive a functional specifica-
tion, design, or program. We can execute the analysis
to see whether it conforms to the user's view of the
requirement; and therefore we can eliminate misun-
derstandings at the earliest possible stage, before
they give rise to fur ther misunderstandings.
How is it that we can execute such rules? Rules give
rise to procedures. I f we know the potential customer

x as in the data fl0 w diagram and we want to find
something to sell him, then the procedure we obtain
by us ing tha t rule backwards in a targetted, goal-
directed fashion reduces the problem to two subpro-
blems: Find what kind of work the customer has and
find something that is suitable for that work. That at
least is one procedure. It is a procedure expressed in
human terms, which reduces problems to sub-
problems until eventually they need no further
reduction. I can communicate such a procedure to a
salesman who might not care about computers at all.
Moreover, as far as computers are concerned, the
two subproblems can be solved sequentially on a yon
Neumann computer or they can be solved in parallel
on a Fifth Generation Computer in the future.
But there is more to it than that; there is more than
one procedure here. The data flow diagram has done
disservice to the knowledge. It's not simply that this is
a procedure which takes a customer and finds
something to sell him. The same knowledge can be
used to find customers to sell particular products. If
we want to find a customer x to sell producty, find out
what type o f work the product can be used for and
find some customer who has that kind of work. The
knowledge can be used more flexibly than the
systems analyst has seen and more flexibly than the
user has required. What's wrong with software
engineering this instance is that there is more
knowledge hidden away in the user than simply his
perception of the user requirement.
Structured systems analysis has its strengths; and the
use of new software technology to execute systems
analysis adds to those strengths. Among its strengths
are the fact that data flow diagrams themselves are a
convenient, graphical language for communicating
with users. They are sufficiently precise for the
systems analyst to express what the user thinks he
requires - so precise in fact that they can be
translated automatically into rules which execute as
procedures. Data flow diagrams also provide a pow-
erful tool for controlling scale and complexity.
DeMarco's rule is that you limit the size of a data flow
diagram to a single sheet o f standard sized paper (A4

Fig. 7. X is Potential Customer for System Y.

42 I FGCS North-Holland

SE and AI

in the metric system). As soon as you need to go
outside the sheet of paper you expand some process
by means of a lower-level data flow diagram on
another sheet of paper. I doubt whether Software
Engineering has any much better solution to the
problem of controlling complexity than that.
What are its weaknesses? Users don't know what they
want; and often, when they do, they don't need what
they want. So we have to determine what is the case by
starting from what users believe to be the case, and
from what problems they think they have, and
abstract to find out what knowledge is locked inside. I
believe that the declarative form in which knowledge
can be expressed using AI software technologies
gives us a way of liberating users from their mistaken
conceptions of their problems and of using the
knowledge they have for bigger and better purposes.
What are some of the solutions for the weaknesses of
structured systems analysis proposed by such critics
as James Martin? Perhaps the most popular is rapid
prototyping. You prototype the solution to your
problem as quickly and early as you can in the
software life cycle. But how do you implement the
prototype? In most cases, with a programming
language, which was designed for the final stage of
software development. The new logic-based software
technology allows us to implement prototypes using
languages designed for systems analysis, the first
stage of software development after the preliminary
feasibility study.
If you don't use a programming language you use
fourth generation program generators. And what
are they? In many cases they are simply generic,
parameterized programs which can be tailored for a
particular application by the user himself selecting a
particular combination of answers to a predeter-
mined menu of options. In other cases they are based
upon the database approach. So let's look at data-
bases.
Increasingly, throughout the international database
research community, the relational approach is
beginning to be subsumed by the logic base ap-
proach, an approach which is very closely related to
rule-base~l, logic-based programming. This can be
illustrated again by our rule relating potential
customers to products. The rule can be regarded as a
query generator. Given a problem of relating cus-
tomers to products, it generates the q u e r y :

"find some type of work z for the customer x
for which the product y is suitable".

In relational database terminology, the two condi-

tions of the rule are joined together by the relational
join operator. But this is not simply a query to a
conventional relational database, where all knowl-
edge is stored explicitly in the form of tables, bu t
rather it is a query whose conditions are evaluated by
other rules (or, equivalently, by other procedures).
Thus rules behave as procedures which generate
queries and those queries are answered by being
targeted to other rules which generate queries in
turn, etc.
Thus rule-based, logic-based software technology
unifies executable systems analysis with data bases
containing rules as well as conventional, explicitly
stored data. But what does this new software
technology have to do with expert systems?

Expert Systems
The following example, which begins very like the
preceding example, shows how well suited this
technology is to expert systems applications. This
example comes from a logical reconstruction by
Peter Hammond at Imperial College of an expert
system originally implemented in the expert system
shell EMYCIN by Peter Alvey at the Imperial Cancer
Research Institute in London. The rule starts out in
exactly the same way as the rule for selling products
to customers, but this time we are concerned with
treating patients. The rule expresses that a patient
should take some treatment if t h e patient has a
complaint which the treatment suppresses. But with
a human patient we are more likely to worry that the
cure is not worse than the disease. In its final form,
therefore, the rule has one conclusion and three
conditions:

x should take y if x has complaint z
and y suppresses z
and not y unsuitable for x.

Notice, in this .example, another feature of declara-
tive languages: how easy it is to modify knowledge
when the knowledge is made explicit. Suppose our
first formulation of the rule contained only the first
two conditions and therefore made the mistake of
treating humans the same as companies. I f later we
should decide the rule is too wide-sweeping, for
whatever reason, we can restrict its application by
adding extra conditions. Such changes can be under-
stood and explained in declarative, :human te.rms,
without needing to consider their effect on the
behaviour of a computer.
Notice too that we are only looking at a top-level rule,

North-Holland FGCS I 43

SE and AI

targeted on the g o a l of relating patients with
treatments. We could unravel the conditions of the
rule: what does it mean to say that y suppresses z,
what does it mean to say thaty is not unsuitable for x.
We could unravel the conditions top down in the
same way that structured systems analysis unravels
data flow d iagrams- but time prevents us from doing
more than simply listing some of the lower-level
rules.

y is unsuitable for x if y aggravates u in x
and x has condition u

aspirin suppresses inflammation
aspirin suppresses pain
etc.

aspirin aggravates peptic ulcer in x
lomotil aggravates impaired liver function in x
alcohol aggravates high blood pressure in x

if x is over 40
and x is obese.

Thus we can use the new declarative language
technology both to implement new expert systems
applications as well as to assist the conventional
software development life cycle. Or we can do better.
We can change the nature of computing itself and the
nature of the software methodology which services it.
We can make computers understand knowledge
expressed in human terms and make them use that
knowledge flexibly in different ways for different
purposes.
Such computers will solve problems in a manner
which approximates human problem-solving and
consequently will change the nature of human-
computer interaction. I f the computer needs to solve a
problem, it can use its own knowledge to reduce the
problem to subproblems or it can ask the user. Why
should the computer know everything and do
everything itself?. It needs to do everything itself only
if the human reasons so differently from the
computer that the two cannot naturally interact. But
if the two are working in harmony within the same
problem-solving paradigm, then the human can play
an intimate part in the computer-based problem
solving process.
The system can explain a conclusion by quoting the
rules it used to come to its conclusion. You can accept
the explanation or reject it. You can use the
explanation to reach a different conclusion entirely.
It's a common feature of h u m a n decision making
that we ask peope for advice. We don't simply want

their recommendation, we want to hear their argu-
ment in support of their conclusion. Having heard
that argument, we need to determine whether we
agree with it or not, whether we accept the assump-
tions which justify the conclusion or not. This allows
us to stay in control.

Legislation as a Critical Application
Legislation is a particularly critical application, an
application which illustrates executable analysis,
execution of which is often sufficiently efficient that
none of the later stages of conventional software
development are required. On the other hand
legislation is by no means trivial. It requires complex
knowledge representation and reasoning. It is more
complex than such typical AI applications as under-
standing children's stories and expert system for
fault diagnosis. So in one respect legislation is a
harder domain to tackle, In another respect it is
easier.
In AI we are inundated with problems of ambiguity.
Researchers in natural language processing seem to
welcome ambiguity. In the case of legislation there
may be ambiguities; but it is not, or should not, be the
intention of the legislator, to put them there.
Flexibility, yes; ambiguity, no. For that reason we do
not have as much difficulty with looking at practical
applications as we do with looking at toy AI natural
story understanding problems. It's an ideal domain
therefore for tackling hard problems of knowledge
representation and problem-solving without being
sidetracked by potentially irrelevant issues.
The formalization of legislation also illustrates the
incremental method of software development by
trial and error. If we were writing programs when we
represent the meaning of legislation by trial and
error, then we would be bad programmers. Good
programmers start with rigid, or at least formal,
software specifications and then implement them
correctly first time r o u n d - never get it wrong. So a
PROLOG programmer who is always correcting
errors in his programs is a bad programmer. But for
a person who is using PROLOG not as a program-
ming language, not even as a formal specification
language but as a language for analysing the knowl-
edge that lies behind the user requirement, trial and
error is unavoidable, Even mathematicians prove
theorems and develop axiomatic theories by trial and
error.
But the formalization of rules and regulations is
representative of a much wider class of applications.
It is applicable whenever an organisation uses rules

44 I FGCS North-Holland

SE and AI

to regulate its affairs, whether or not they have legal,
binding authority.
What function do regulations serve? Having rules
means not having to deal with each problem as it
arises, as if no similar problem had arisen in the past.
It means deciding what the general rules are, so that
different customers are treated equally, applying the
same criteria to one as we do to another.
Indeed, the whole concept of rule-based knowledge
representation has important human implications.
When we extract knowledge from experts in the
form of rules we see, often for the first time, what the
rules really are. The process of eliciting knowledge
from experts can be a painful process. It is difficult to
know what the expert thinks and what he believes.
But this is just as true of normal people. It's hard for
us to know what rules we use ourselves in solving day
to day problems. If we could articulate them, then we
could examine them. Even if our first attempts at
articulation were incorrect, we could improve them
by trial and error. We could see them for what they
are; we could challenge them; and we could see if
they are fair, if they apply to one customer as well as
to another, to ourselves as well as to others.
The formalization of rules and regulations also
illustrates the potential of another application for
expert systems technology, different from simply
applying known expertise, different from applying
the law in individual cases. It illustrates how the trial
and error process of formulating regulations can be
used as an important tool in developing and improv-
ing human expertise - where there is no expert
within a given company, for regulating pension
schemes, for example. One way to start, is to
hypothesize some rules. Instead of trying them out
on people, try them out on the computer, in an
interacuve manner which is based on a common
model of deductive problem-solving which is shared
by the human and the machine.
Let's look at one or two examples from the British
Nationality Act and see to what extent they confirm the
theory. The very first subsection of the Act is
concerned with acquisition by birth:

"A person born in the United Kingdom after
commencement shall be a British citizen if at the time
of birth his father or mother is:
(a) a British citizen; or

Notice how the word "if ' in the English text occurs
almost exactly where it would occur in a rule-based
logical representation.
The conclusion of this very first clause of the British

Nationality Act is that a person is a British citizen.
There are some logical conditions, however, tucked
away inside the syntax of the conclusion. One
condition is that the person be born in the United
Kingdom and the other that he be born after the
commencement of the Act, that is to say after the date
of which the Act takes effect. The other conditions
are explicitly written after the "if". Obviously rule-
based knowledge representation provides us with a
very natural way of representing such knowledge.

x is a British citizen
if x was born in the U.K.
and x was born on date y
and y is after commencement
and z is a parent of x
and z was a British citizen on date y.

My colleagues, Therese Cory, Peter Hammond,
Frank Kriwaczek, Fariba Sadri, Marek Sergot, and I
have investigated the representation o f the British
Nationality Act in PROLOG. About 80% of its
approximately 70 odd pages have been written in
PROLOG. We found the structure of the Act very
difficult to comprehend and so we tried using data
flow diagrams to help. We soon came to the reluctant
conclusion that data flow diagrams were inadequate
for two reasons. First, they required directions on the
flow of data, which as in the customer-products
example unnecessarily restricted the different ways
the rule might be used. Second, it is not easy to
represent the logical connections between different
processes in a diagram. In the end, we decided to use
and-or graphs, a kind of data flow diagram in which
logical connections between processes are made
explicit, but data flow between processes is ignored.
The and-or graph helped to give us an overall view of
the structure of the Act, but it gave us little help in
deciding detailed knowledge representation issues.
Moreover, it soon became clear that there was little
alternative to trial and error refinement of the rules.
The inadequacy of our first attempt to formalize
subsection 1.1.a, in particular, did not come to light
until we came to section 2.1.a which is concerned with
acquisition by descent:

"A person born outside the United Kingdom after
commencement shall be a British citizen if at the time
of birth his father or mother -
(A) is a British citizen otherwise than by descent; or

Notice the disconcerting condition "British citizen

North-Holland FGCS 145

SE and AI

otherwise than by descent". T h i s shows that o u r
earlier assumption that the condusion of 1.1.a is that

"x is a British citizen"

was naive. Moreover, it also ignores the implicit
assumption that x acquires citizenship at the time of
birth. Taking both of these omissions into account,
we can revise our original formalization, obtaining
the next approximation:

X acquires British citizenship by 1.1.a on date y
if x was born in the U.K.
and x was born on date y
and y is after commencement
and z is a parent of x
and z is a British citizen

by w on date y.

Subsection 2.1.a can be represented similarly:
x acquires British citizenship by 2.1.a on date y

if x was born outside U.K.
and x
and y
and z
and z
and v

was born on date y
is after commencement
is a parent o f x
is a British citizen by v on date y
is not by descent.

However in both of these rules there is a mismatch
between the form in which citizenship is expressed in
the conclusion and the form in which it is expressed
in the condition. We need an additional rule which is
not explicitly stated in the Act, but which is taken for
granted:

x is a British citizen by w on date y
i fx acquires British citizenship by w on date z
and y is after z
and x is alive on date y
and x has not renounced British citizenship
before date y
and x has not been deprived of British
citizenship before date y.

In other words, a person is a British citizen of a
particular kind on a particular date if he/she acquired
that citizenship on an earlier date, is alive, has not
renounced it and has not been deprived of it.
The less obvious situation where a person who has
died might b e regarded as a British citizen after
death is dealt with explicitly in subsection 48: A
parent who is no longer alive at the time of birth of his
child is regarded as being a British citizen at the time

of birth, if, h e was a British citizen when he died.
These rules illustrate some of the top level o f the
British Nationality Act. The conditions which occur
in these and other rules can be satisfied in a variety of
ways.
Conditions can be defined by rules. For example, the
condition

"z is setded in the U.K. on date y"

which is a condition of 1.1.b is defined in subsections
50.2, 50.3 and 50.4; and its definition is naturally
represented by means of rules.
Conditions can by defined by data. For example, the
condition

"z is a British dependent territory"

is defined by a list of territories enumerated in
schedule 6. Conceptually, for every territory there is
an assertion, e.g.

"Gibraltar is a British dependent territory."

Each such assertion can be regarded as a trivial rule
having one conclusion and no conditions.
Conditions can be computed by programs. For example,

"yis after commencement."

But any program is a procedure or collection of
procedures which can be represented by rules which
are used backwards to reduce problems to subpro-
blems.
Conditions can be solved by querying the user. For
example,

"x was born on date y"

In general, any condition can be solved either by the
computer or by the human user. The computer can
recognise that it is unable to solve a given problem
and can therefore automatically request a solution
from the user.
Conditions can be solved by querying an expert. For
example, the condi t ion

"x is ordinarily resident in the U.K. on date y"

is not defined in the Act, but is decided by the
Secretary of State. In the absence of access to the
Secretary of State, the system would need to consult

46 I FGCS North-Holland

SE and AI

an expert, either a h u m a n expert or an expert
system.
The rule-based formalization of the British National-
ity Act by trial and error exemplifies the use of
declarative language technology for an application
which has both conventional and novel characteris-
tics. On the one hand, if we restrict ourselves to
problems of determining citizenship, it is not very
different from a complicated data processing appli-
cation.
On the other hand, given appropriate inference
machinery, the same representation can, at least in
theory, be used to generat e and test arbitrary logical
consequences of the Act. In both cases we have short-
circuited the conventional software development life
cycle, completing it without leaving the executable
systems analysis stage.

Other Applications of Artificial
Intelligence to Software Engineering
So far I have concentrated attention on those
relationships between Artificial Intelligence and
Software Engineering which appeal to me most -
applications of AI technology which revolutionize
the software life cycle, which in many cases altogether
do away with program implementation, and even
system specification. There are of course other
applications of AI technology, and they are the ones
the software engineer might prefer to draw to our
attention: intelligent tools which help to preserve the
conventional software engineering process; intelli-
gent front-ends to otherwise inscrutible conventional
computer programs; knowledge bases to support the
conventional software process; expert systems which
incorporate the conventional software engineering
expertise. Don't worry about the way the software
engineer ought to work; see how he does work and
develop intelligent tools which help him to do what
he already does better. In my opinion, cognitive
psychology makes a similar mistake. Don't worry
about developing better ways to do better things.
Take people the way they are; and design computers
to simulate them.
Such applications of Artificial Intelligence technolo-
gy have their place, especially if they are the only way
we can convince the Software Engineer to experi-
ment with AI technology. But let's not devote all of
our resources to helping the old software methodolo-
gy live longer.
There are other applications of AI to SE, which I
have not talked about, but which have great present

value and future potential. The formal, computer-
assisted derivation of programs from specifications,
in particular, is an area which'stradd~les the fields of
Artificial Intelligence and Software Engineering. It is
needed if an executable system analysis does not
perform efficiently enough to meet the user's per-
formance targets. This was not the case, for the most
part, with our formalization of the British Nationality
Act, although even there we used program transfor-
mation techniques, by hand, to eliminate certain
loops.
In many other cases, such as sorting files for
example, executing an analysis of the user's problem
domain isn't sufficient. We need to improve efficien-
cy by-restricting the class of problems to be solved and
restricting knowledge so that it is directed to that
class. This changes the systems analysis into an
executable system specification, stilt written in the
same logic-based language. But now the specification
has an appearance of formality and rigour, which is
more apparent than real, because syntactically there
is no difference between it and the empirically
derived systems analysis.
If the executable logic-based specification is still not
sufficiently efficient, it can be transformed further
into a more efficient program. I f necessary, the
program can be written in a conventional program-
ming language. But given adequate software and
hardware resources, it can also be transformed into a
program expressed in the same rule-based, logic-
based language. Using the same language for all
stages of the software development process greatly
simplifies the problems of maintaining consistency
between the different stages. Moreover, transforma-
tion and derivation techniques which are guaranteed
to preserve correctness can be used to pass from one
stage to t h e n e x t . Such techniques have been
developed within the community of declarative
language researchers who live within the intersection
of AI and SE.
I have talked about the applications of AI to SE. What
are the applications of SE to AI? Certainly the
Software Engineer has three major concerns which
do not always attract sufficient attention in AI:

correctness,
scale and
complexity.

I have already argued that many AI applications are
better thought of as executable analyses or execut-
able specifications. To the extent that that is the case,
such applications are as correct as any conventional

North-Holland FGCSI 47

SE and AI

systems analysis or specification. However, many AI
applications go beyond analysis and specification in
the extent to which they are concerned with matters
of efficiency. In such cases, the resulting programs
are as much in need of validation and verification as
any conventional program. The Software Engineer is
right to criticize the AI programmer who uses AI
techniques which do not have logical foundations,
and are not amenable to proof.
This is an area in which logic-based approaches to
knowledge representation and programming in AI
have a distinct advantage over other approaches such
as frames and object-oriented programming. Knowl-
edge representations and programs expressed in
logic are expressed in the same formalism as the
software engineer uses for expressing formal specifi-
cations. Using the same logic-based language for
both programs and specifications significantly sim-
plifies the problems of proving correctness.
What about scale and complexity? I wonder whether
there is very much more to be said other than to
repeat deMarco's advice about not using more than a
single sheet of paper for a single data flow diagram
(or the equivalent collection of rules, whether they
represent an analysis, specification or program). It
may be, however, that frames and object-oriented
programming have some useful contributions to
make here. I f so, then I believe they would need to be
integrated with logic-based approaches, probably
along the lines suggested by Pat Hayes in his paper on
the Logic of Frames.

Human Implications
I Would now like to address some of the h u m a n
implications of new technology.
I don't believe that technology for technology's sake
will always be good. I believe that the technology of
knowledge-based software is going to make life
better on the average. But, unless we are aware of
some of the potential dangers and take suitable
precautions, there may be some spectacular undesir-
able results.
It is all too easy to let computers take over. It's all too
easy to let the computer decide. We've done it before.

W e do it with humans, with professional advisors.
"Let the doctor tell me what to do." "Let the
accountant decide how to run my financial affairs."
The human expert can intimidate u s by knowing
more than we do and by having greater expertise. I f
humans can do that with humans, then computers
will be able to do that with humans too; and they will

do it, if we allow the enthusiastic technologist to have
his way. The enthusiastic technologist will inevitably
design computers to do more and more of our
thinking and decision-making for us. They have
done it with television already. We can't entertain
ourselves without technology any more. We enjoy
ourselves more sitting in front of the television than
we do interacting with live people. The same will
happen with computers unless we are determined to
prevent it.
Computers are possibly the most useful of all
technologies for aiding.the disabled. They can help
people who are handicapped and significantly im-
prove their ability to deal with the world. But those
same facilities which can assist the handicapped can
also assist and potentially disable the able-bodied
person, whether he needs assistance or not.
I see real dangers, but on the average I see great
potential benefits. The new computing technology
has some obvious uses for implementing intelligent
front-ends, not just for conventional software, but
for any kind of unfriendly machinery - my oven, for
example. I hate my oven. I don't know how to use it
properly and it doesn't know how to take advantage
of my ability to cook food. The intermediary of
something which is more machine-like than me and
therefore more sympathetic to my oven than me, yet
which understands the world more like I do than
computers do today, can make the world of machin-
ery more friendly and more understandable.
The new rule-based, logic-based languages allow us
to get rid of the "take it or leave it" attitude of
computers today. They make it possible for compu-
ters to explain their conclusions, and therefore easier
for us to decide for ourselves whether to accept their
conclusions. Only when computer programs are
expressed in declarative, explicit form, can we
identify what assumptions they use, can we decide
whether to accept their assumptions and therefore
whether to accept their conclusions.
Obviously such computers will increase human
productivity. Every economic activity can be per-
formed more productively.
Such computers can also increase human knowledge
and expertise. Computerised encyclopaedias have
already begun to give us ready access to everything
that is already known. Through the technique of
knowledge elicitation, things that are only known
unconsciously can begin to be articulated and
brought out into the open. In the same way that an
expert system might give us a better understanding
of a medical expert's previously unconscious knowl-
edge and beliefs, knowledge elicitation can give us a

481 FGCS North-Holland

SE and AI

better understanding not only of experts, but of
common people.
Not only knowledge but also human reasoning and
human rationality can be enhanced. Once knowledge
is made explicit, we can see more clearly what we
believe. We can begin to see what others believe. We
can begin to see the individual steps that explain and
justify knowledge and belief. We can begin to think
more rationally, because we can better understand
ourselves and others. We can suspend our beliefs
because we know what they are. We can temporarily
assume another's beliefs because we can have a
hypothesis about what they may be; and we can
reason with those assumptions to see where they lead.
I believe that, on the average, this will lead to a better
world.

In conclusion then, let me summarise. I believe that
the mechanisation of logic, the same dream that
Leibniz had, logic machines, will make computing
better, and is therefore the key to new generation
computing. It is the link also between knowledge
representation languages in Artificial Intelligence
and systems analysis languages, program specifica-
tion languages, and database languages in Software
Engineering.
But in the end what matters is not computers, or
Software Engineering, or Artificial Intelligence, but
people. And, provided we take the right precautions,
I believe the new technology will help us to be more
human, to understand ourselves, and to understand
others.

North-Holland FGCSI 49

