
ARTICLES

THE BRITISH NATIONALITY ACT
AS A LOGIC PROGRAM

The formalization of legislation and the development of computer systems to
assist with legal problem solving provide a rich domain for developing and
testing artificial-intelligence technology.

M. J. SERGOT, F. SADRI, R. A. KOWALSKI, F. KRIWACZEK, P. HAMMOND, and H. T. CORY

There are essentially two kinds of law, case law, de-
termined by earlier court decisions, and statutes, de-
termined by legislation. Substantial amounts of stat-
utory law are basically definitional in nature and
attempt to define more or less precisely some legal
relationship or concept. The British Nationality Act
1981 [ZO] defines Elritish citizenship and is a good
example of statutory law. The act embodies all the
characteristics of statutes in ,general: syntactic com-
plexity, vagueness, and reference to previously en-
acted legislation.

In the course of this article, we will describe how
the text of a large part of the British Nationality Act
1981 was translated into a simple form of logic, and
we will examine some possible applications of this
translation.

The form of logic used is that on which the pro-
gramming language Prolog is based. Later in the arti-
cle, we will describe how our translation of the act
can be executed as a program by an augmented
Prolog system, so that consequences of the act can
be determined mechanically.

Although Prolog logic is severely restricted, it
proved to be sufficiently high level so that our im-
plementation could resemble the style and structure
of the actual text of the act. Such a resemblance is
important because it helps increase confidence in
This work was supported by the Science and Engineering Research Council.

0 1986 ACM OOOl-0782/86,/0300-0370 75c

the accuracy of the implementation and makes the
implementation easier to maintain as the legislation
changes and as case law evolves to augment the
legislation.

Our implementation of the British Nationality Act
1981 was undertaken as an experiment to test the
suitability of Prolog logic for expressing and applying
legislation. The British Nationality Act 1981 was
chosen for this experiment for a number of reasons.
At the time it was first proposed, the act was a con-
troversial piece of legislation that introduced several
new classes of British citizenship. We hoped that
formalization of the various definitions might illumi-
nate some of the issues causing the controversy.
More importantly, the British Nationality Act is rela-
tively self-contained, and free, for the most part, of
many complicating factors that make the problem of
simulating legal reasoning so much more difficult.
Furthermore, at the time of our original implemen-
tation (summer 1983) the act was free of the compli-
cating influence of case law.

A complication that we anticipated was the pres-
ence of vagueness. The act contains such vague
phrases as “being a good character,” “having reason-
able excuse,” and “having sufficient knowledge of
English.” These concepts are not defined in the act
and occur only at the lowest level of detail. At
higher levels, the question of whether a person is a
British citizen depends primarily on concrete, easily

370 Communications of the .4CM May 1986 Volume 29 Number 5

Articles

understood concepts such as the person’s time and
place of birth, and the citizenship and place of
settlement of the parents. In order to determine
whether an individual is a British citizen, the higher
level defined concepts (such as “place of settlement”)
are repeatedly replaced by lower level ones, until all
defined concepts are eventually reduced to unde-
fined ones. The applicability of undefined, concrete
concepts can be established by obtaining data from
the user or some other source. The simplest way to
handle vagueness is to assume that the vague con-
cepts always apply and to use this assumption to
generate qualified answers. For example,

Peter is a citizen,
if he is of good character.

A more sophisticated approach might combine this
with the use of rules of thumb that reduce vague
concepts to concrete ones, but are not guaranteed to
cover all cases. The rules of thumb arise from the
analysis of previous cases. We deliberately avoided
such complications and chose the simpler alterna-
tive in our implementation of the act. The treatment
of vagueness and case law is the subject of current
investigation in our group [2, 361.

In addition to vagueness, legislation is generally
thought to contain both imprecision and ambiguity.
We will later discuss some examples of imprecision
(such as the lack of any reference to the time at
which an individual actually becomes a British citi-
zen) that came up during the course of our imple-
mentation. In fact, we found fewer such examples
than we originally expected. In practice, where im-
precision or ambiguity did exist, it was usually pos-
sible to identify the intended interpretation with lit-
tle difficulty.

It was never our intention to develop the imple-
mentation of the act into a fully functional system.
Consequently, we have subjected it to only a limited
number of test applications, primarily to test the citi-
zenship of various real and hypothetical individuals.
We discovered, somewhat to our surprise, that our
“declarative” representation of the act, which places
primary emphasis on resemblance to the original
form of the legislation and very little emphasis on
efficiency, actually performed acceptably well in
practice.

Data needed for an individual case are obtained
interactively by using an expert-system shell, APES
[18, 191, implemented in micro-Prolog [a]. APES also
provides explanations when requested by the user.
The quality of this interactive dialogue is sensitive
to the order in which the different rules for acquir-
ing citizenship are written, and to the order of the

conditions within individual rules. Relatively little
effort was put into adjusting these to improve the
interaction.

In theory, mechanical theorem provers can derive
arbitrary logical consequences of legislation ex-
pressed in logical form. In practice, sufficiently effi-
cient theorem provers exist today only for certain
restricted forms of logic, such as that incorporated in
Prolog. Moreover, such theorem provers behave
most effectively when they are restricted to deter-
mining consequences of the act for individual cases.
Even with Prolog, however, we were able to derive a
limited number of more general consequences of the
act. This ability is potentially quite important. It
means that an executable, logic-based representation
of rules and regulations can be used not only to
apply the rules, but to aid the process of drafting and
redrafting the rules in the first place-a point that
was made by Layman Allen [l] as long ago as 1957.
A similar observation was brought to our attention
when we first demonstrated our implementation in
January 1984 to officials from the Home Office who
were involved in drafting the act.

We believe that many of the potential advantages
of representing rules and regulations in computer-
executable logical form are independent of the ac-
tual use of computers, Representation in logical form
helps to identify and eliminate unintended ambigu-
ity and imprecision. It helps clarify and simplify the
natural language statement of the rules themselves.
It can also help to derive logical consequences of the
rules and therefore test them before they are put
into force-again, points that were also made
by Allen [l].

We believe that the formalization of legislation
and legal reasoning offers potential contributions to
computing technology itself. It should help to dis-
criminate, better than other applications, between
different knowledge representation formalisms and
problem-solving schemes in artificial intelligence.
Moreover, the rules and regulations that govern the
management of institutions and organizations have
exactly the same character as legal provisions. This
suggests, therefore, an unconventional approach to
the construction of software for data-processing ap-
plications. A payroll system, for instance, could be
based directly on tax and sick-pay legislation, could
include a representation of the company pension
scheme, the rules that govern holiday allocation,
and promotion regulations. We have already con-
structed a number of experimental systems dealing
with some of these topics.

Finally, we should stress once again that we have
not addressed the broad and much more difficult

May 1986 Volume 29 Number 5 Communications of the ACM 371

Articles

problem of simulating legal reasoning. Rather, we
have concentrated on the limited objective of imple-
menting rules and regulations with the purpose of
applying them mechanically to individual cases. The
British Nationality Act 1981 was chosen because it
best facilitated the accomplishment of this more
limited objective. It is an application for which
Prolog, because of its foundation in logic, proved to
be particularly well suited. However, we do not wish
to imply that no other computer-executable formal-
ism would be capable of achieving similar results.

In the remainder of the article, we illustrate our
approach by showing how Prolog might be used to
represent the very first clause of the act, and then
proceed to describe the general structure of the act.
To describe the methodology by which the formal-
ization was constructed, we examine the first three
clauses of the act in greater detail, discuss some ap-
plications of the formalization, and detail some of
the logical difficulties we encountered. Finally, we
compare and contrast such formalization of legisla-
tion with expert systems and with more conven-
tional software techniques, and indicate how our
work relates to other approaches to the computer
assistance of legal reasoning.

In writing this article, we have assumed no pre-
vious knowledge of law, logic, or Prolog. The next
section introduces the necessary background to
Prolog.

PROLOG
The key to our approach is the representation of
knowledge by means of definite Horn clauses, which
are rules of the form

A if B, and B, and . . . B,,

Each such clause has exactly one conclusion A, but
zero or more conditions Bit each of which is an
atomic relationship among individuals. Definite
Horn clauses are i:nvoked or queried by means of
conjunctions of atomic relationships such as

B, and B, and _ _ _ B,,?

These can be regarded as degenerate “rules” that
have no conclusion. (The terminology “Horn
clauses” is used here to cover both definite Horn
clauses and Horn clause queries.)

The Horn clause form of logic is the basis of the
computational paradigm, logic programming, and of
the logic programming langu.age Prolog. Every set of
definite Horn clauses is a Prolog program.

As an example of formalization using Horn
clauses, consider the first clause of the British
Nationality Act:

l.-(l) A person born in the United Kingdom after com-
mencement shall be a British citizen if at the time
of birth his father or mother is

(a) a British citizen; or
(b) settled in the United Kingdom.

The act states that “after commencement” means
after or on the date on which the act comes into
force.

As a first approximation, l.-(l)(a) can be repre-
sented by the rule

x is a British citizen
if x was born in the U.K.
and x was born on date y
and y is after or on commencement
and z is a parent of x
and z is a British citizen on date y

Here x, y, and z are variables, which can have any
values. For example, the common knowledge that a
parent is either a-father or a mother can itself be
expressed by two rules:

z is a parent of x if z is mother of X
z is a parent of x if z is father of X

It is important to note that variables in different
rules are distinct even if they look the same.

Facts such as

Peter was born in the U.K.
William is father of Peter

can be regarded as degenerate rules that have a con-
clusion, but no conditions.

If we introduce the concept of having a parent
who qualifies under l.-(l), defined by the rules

x has a parent who qualifies
under 1.1 on date y

if z is a parent of x
and z is a British citizen on date y

x has a parent who qualifies
under 1.1 on date y

if z is a parent of x
and z is settled in the U.K. on date y

then we can combine rule 1.-l(a) with the corre-
sponding rule 1.-l(b), to obtain a rule that represents
all of subsection l.-(l):

x is a British citizen
if x was born in the U.K.
and x was born on date y

and y is after or on commencement
and x has a parent who qualifies

under 1.1 on date y

We will see later that this formalization of l.-(l) is
inadequate; partly because of the need to determine

372 Communicatiorx of the ACM May 1986 Volume 29 Number 5

Articles

Part 1 British Citizen
Acquisition; entitlement to register/naturalize;
Renunciation and resumption

Part 2 British Dependent Territories Citizen
Acquisition; entitlement to register/naturalize;
Renunciation and resumption

Part 3 British Overseas Territories Citizen
Acquisition; entitlement to register/renunciation

Part 4 British Subject
Acquisition; entitlement to register/renunciation

Part 5 Interpretations and Miscellany

Schedules

The British Nationality Act 1981 consists of five parts and
nine supplementary schedules, summarized above. The first
four parts define four categories of citizenship. The fifth part
and the schedules include definitions needed for the other
four parts. Each of the first four parts deals with automatic
acquisition of citizenship (by birth, for example), entitlement
to register, and provisions for renunciation of citizenship.
Parts 1 and 2, in addition, define entitlement to naturalize
and resume citizenship after renunciation.

FIGURE 1. The Structure of the British Nationality Act 1981

the date on which an individual acquires British
citizenship, and partly because elsewhere in the act
it is necessary to know the section by which an
individual is deemed to be a British citizen. We will
also see that Horn clause logic itself is not entirely
adequate for representing legislation in a natural

manner and that, in many cases, Horn clause logic
must be extended to allow negated conditions in
rules. The resulting fragment of predicate logic will
be called extended Horn clause logic.

THE STRUCTURE OF THE ACT
The structure of the act is not apparent from the
English text. The table of contents at the front of the
text does give an abstract indication of its general
contents, but not of the relationships among the dif-
ferent abstractions (see Figure 1).

We have an independent interest [26] in the rela-
tionship between logic programming and structured
systems analysis [9]. The formalization of the act
provided an opportunity for us to pursue this in-
terest, and we attempted to use the data-flow dia-
grams of structured systems analysis. We were dis-
appointed, however, to discover that data-flow
diagrams were too procedural for our needs. It
proved particularly impossible to identify a clear di-
rection of data flow, and we eventually decided to
use and/or graphs instead.

And/or graphs can be viewed as a graphical syn-
tax for Horn clause logic [N]. Like data-flow dia-
grams, they encourage a structured, top-down view
of information. But, unlike data-flow diagrams, they
focus attention on logical structure rather than on
data. In our use of and/or graphs, we actually ig-
nored many of the data parameters altogether in or-
der to avoid distracting detail (see Figures 2 and 3).

Acquisition by birth, displayed in Figure 3, divides
into two cases depending on whether or not the in-

Acquisition
of

British
CitizenshiD

by by
birth adoption

by
descent

at
commencement

by
registration

by
naturalization

Shown is an and/or graph representation of the top level of
acquisition of British citizenship in Part 1 of the act. Within

this part of the act, it is possible to acquire British citizenship
by six different routes.

FIGURE 2. Six Routes to Acquisition of British Citizenship

May 1986 Volume 29 Number 5 Communications of the ACM 373

Articles

Acquisition of
British citizenship

,/c$< id;

born to a
born born

not known

after
parent who newborn not born not born

in qualified abandoned outside before
that neither

U.K. commencement under 1.1 in U.K. after O.K. commencement
parent

at time commencement
qualified

under 1 .l
of birth at time

of birth

An and/or graph representation of the top level of acquisition vided into two cases, depending on whether or not the indi-
of British citizenship by birth. This section of the act is di- vidual was found abandoned as a newborn infant.

FIGURE 3. Acquisition of British Citizenship by Birth

dividual was found abandoned as a newborn infant.
The left side of Figure 3 is dealt with by Section
l.-(l) of the act, as described above. The right side,
which deals with the case of newborn abandoned
infants, is a reformulation of Section l.-(Z):

(4 A newborn infant who, after commencement, is
found abandoned in the IJnited Kingdom shall, un-
less the contrary is shown. be deemed for the pur-
poses of subsection (1) -

(a) to have been born in the United Kingdom
after commencement and

(b) to have been born to a parent who at the
time of the birth was a British citizen or set-
tled in the United Kingdom.

This can be interpreted as expressing that the condi
tions of Subsection l.-(l) will hold provided that it
cannot be shown that the conditions of l.-(l) do not

hold. In these cikcumstances, the conclusion of
l.-(l)-that the newborn abandoned infant is a Brit-
ish citizen-will also hold.

As a first approximation, Subsection (2) can be
expressed by the rule

x is a British citizen
if x was found as a newborn

infant abandoned in the U.K.
and x was found on date y
and y is after or on commencement
and not[x was not born in the U.K.

after or on commencement]
and not[x was not born to a parent

who qualifies under 1.1 at
time of birth]

The treatment of negation in the last two conditions
above, however, is problematic and will be discussed
later.

FORMALIZATION BY TRIAL AND ERROR
We have already described Sections l.-(l) and l.-(Z)
and a first approximation to their formalization. The
next section of Part 1 of the act, l.-(3), shows that
our previous formalizations of Sections I.-(I) and
1.42) were incomplete. It is insufficient to conclude
only that an individual is a British citizen; it is also
necessary to determine the section under which citi-
zenship is acquired:

(3) A person born in the United Kingdom after com-
mencement who is not a British citizen by virtue of
subsection (I) or (2) shall be entitled to be registered
as a British citizen if, while he is a minor -

(a) his father or mother becomes a British citizen
or becomes settled in the United Kingdom:
and

(b) an application is made for his registration as a
British citizen.

This section also shows that a more explicit treat-
ment of time is necessary.

374 Commur~ications of the ACM May 1986 Volume 29 Number 5

Articles

We can deal with both shortcomings at once by should therefore conclude that such an abandoned
changing the conclusions of rules l.-(l) and l.-(Z) to infant becomes a British citizen at the time of his or

“X acquires British citizenship on
date y by sect. 1.1" and

"x acquires British citizenship on
date y by sect. 1.2."

her birth, since that is what we have assumed for
Section l.-(l).

This is, however, problematic-we cannot expect
that the time of birth of an abandoned infant will be
known exactlv. It is much simuler to assume that an

Sections l.-(l) and l.-(Z) can then be represented by
the rules

x acquires British citizenship on
date y by sect. 1.1

if x was born in the U.K.
and x was born on date y
and y is after or on commencement
and x has a parent who qualifies

under 1.1 on date y
x acquires British citizenship on

date y by sect. 1.2

if x was found as a newborn infant
abandoned in the U.K.

and x was found on date y
and y is after or on commencement
and not[x was not born in the U.K.

abandoned infant becomes a citizen at the time he
or she is found. This is a reasonable approximation,
particularly since an abandoned newborn infant
could not be discovered very long after the time of
his or her birth. On the other hand, it would also be
very easy to change our formalization of I.-(Z) to
cohclude that the individual acquires citizenship at
the time of birth.

The modification of the rules for l.-(l) and I.-@) in
the light of 1.43) illustrates the process of progres-
sively refining the formalization by trial and error.
In addition to adding extra parameters, as described
above, the necessary modifications are sometimes
achieved by adding more rules or conditions to the
definition of a concept formalized earlier. For exam-
ple, it turns out that the earlier formalization of

after or on commencement] "x has a parent who qualifies
and not[x was not born to a parent under 1.1 on date y"

who qualifies under 1.1

at time of birth]

The possession of British citizenship can be re-
lated to its acquisition by the following rule:

x is a British citizen on
date y by sect. z

if x is alive on y
and x acquires British citizenship

on date yl by sect. z
and y is after or on yl

and not[x ceases to be a British
citizen on date y2 and
y2 is between yl and y]

A person can cease to be a citizen by renunciation or
by being deprived of citizenship. The condition

“x is alive on y”

ensures that a person ceases to be a citizen at death.
Notice that this formalization of Sections l.-(l) and

1.42) makes the assumption, not explicitly stated in
the act, that an individual who acquires citizenship
by l.-(l) does so at birth, and one who acquires
citizenship by 1.42) does so at time of discovery.
This assumption means that the formalization of
I.-(Z), in particular, is only an approximation to the
act. The act states that an abandoned infant, under
the appropriate circumstances, should be treated as
if he or she satisfied the conditions for l.-(l). We

is an oversimplification. Section 48 of the act pro-
vides for the case of posthumous children. Under
certain circumstances, a parent of a child qualifies
for 1.1 even if that parent dies before the child is
born. The effect of Section 48 is straightforwardly
incorporated, by adding more rules to the earlier
formalization to cover the case of posthumous
children.

In certain cases, incorporating later sections of the
act requires a more drastic restructuring of the for-
malization. For example, Section 50.-(g) specifies
that a man is the “father” of only his legitimate chil-
dren, whereas a woman is the “mother” of all her
children, legitimate or not. Section 50.-(g) requires
only a minor adjustment of the existing rules. Sec-
tion 47, however, further complicates matters by
allowing illegitimate children to become legitimate
by the subsequent marriage of their parents. Section
47, therefore, suggests that what is important in the
act is not that

"x is a parent of y"

but rather that

"x is a parent of y on date z."

This change in turn requires a modification of all
rules that include the notion of “parent” in their
conditions.

If we were writing a program, such formalization

May 1986 Volume 29 Number 5 Communications of the ACM 375

Arficlas

by trial and error would be regarded as bad pro-
gramming methodology [lo]. Good methodology con-
sists of rigorously deriving correct progratns from
correct program specifications. It can be argued,
however, that the formalization of legislation is
closer to program specification or even td systems
analysis than it is to programming. There is an anal-
ogy here with axiomatic systems in mathematics.
The formalization of legislation results in an axi-
omatic theory that represents the legislation; the
derivation of programs from specifications corre-
sponds to the proof of theorems from axioms. Al-
though we rightly demand that theorems be rigor-
ously derived from axioms and similarly that pro-
grams be rigorously derived from specifications,

there is no correspondingly rigorous way to justify
the axioms themselves. The formulation of such ax-
ioms must inevitably be a trial-and-error process.
The philosopher Imre Lakatos has referred to this as
the “quasi-empirical” nature of mathematics [27].

Ai’PLICATIONS OF THE FORMALIZATiON
Because the formalization of the British Nationality
Act is an axiomatic theory, any logical consequence
of the axiomatization can, in theory, be derived by
means of a complete mechanical theorem prover.
Although Prolog cannot deal with arbitrary sen-
tences of logic, it is a special-purpose theoiem prover
that is very efficient for proving certain kinds of
simple theorems from axioms formulated as ex-

IS Peter a British citizen on date (16 Jan 1984) by sect. Z?
Which .X : Peter was born on date X ? (3 May 1983)

Is It true that Peter died before (16 Jan 1984) ? no
Is it true that Peter was born In the U.K. ? yes
Which .X : X is father of Peter ? why

if X is father of Peter
then X is a parent of Peter

lf X is a parent of Peter
and X is a British citizen on date (3 May 1983)
then Peter has a parent

who qualifies under 1.1 on date (3 May 1983)

Peter was born in the U.K.
Pe;er was born on date (3 May 1983)
(3 May 1983) is after or on commencem&nt, so

if Peter has a parent
who qualifies under 1.1 on date (3 May 1983)

then Peter acquires British citizenship
on date (3 May 1983) by sect. 1.1

Peter is alive on (16 Jan 1984), so
if Peter acquires British citizenship

on date (3 May 1983) by sect. 1.1

and (16 Jan 1984) is after or on (3 May 1983)

and not[Peter ceases to be a British citizen on date Y
and Y is between (3 May 1983) and (16 Jan 1984)]

then Peter is a British %itizen on date (16 Jan 1984) by sect 1.1

Which X : X is fa'ther of Peter ? William
Which X : William was born on date X ? (I March 1952)

Is it true khdt William died before (3 May 1983) ? no
Is it true that William was born in the U.K. ? yes
IS It true that William whs found as a newborn infant

abandoned in the U.K. ? no
Is it true that William was addpted ? no
Is It true that William was a citizen of the U.K. and

Colonies on date (31 Dee 1982) ? yes

FIGURE 4. Extract of an APES Dialogue

376 Coirrrirurlicatiorrs of the ACM May 1986 Volume 29 Number 5

Articles

tended Horn clauses. Because of limitations imposed
for the sake of efficiency, however, Prolog some-
times goes into infinite loops [25] and fails to prove
theorems that are logically implied by the axioms.
Nevertheless, it can still be used to prove a large
class of theorems and can help test a set of axioms
by assisting in the derivation of logical conse-
quences.

An obvious application of the formalization of the
act is to determine whether in a given circumstance
a particular individual is or is not a British citizen.
To do so, one must have access to facts concerning
the individual as well as to other information not
supplied by the act. A convenient way to provide
such information is to supply it dynamically as it is

required by the theorem prover. The augmented
Prolog system, APES, itself implemented in Prolog
and initially developed as an expert-system shell,
generates the appropriate queries to the user. The
answers it produces are logical consequences of the
rules contained in the formalization of the act to-
gether with the information obtained from the user.
In addition, APES can provide explanations for both
zolry a given question is being asked and lrozo a given
solution has been obtained.

These features are illustrated in Figure 4. where
user input is indicated by boldface type. To make
the dialogue easier to follow, the complications of
posthumous and illegitimate children are omitted.
We have included in the program the information

IS it true that on date (31 Dee 1982) William had the
right of abode ln the U.K. under the Immigration Act 1971 as
then III force ? yes

Is It true that Peter has ever renounced British citizenship ? no
Is It true that Peter has ever been deprived of British

citizenship by section 40 ? no

Yes, I can confirm that
Peter 1s a British citizen on date (16 Jan 1984) by sect. 1.1 how

I deduced
Peter 1s a British citizen on date (16 Jan 1984) by sect. 1.1

from the rule

x is a British citizen on date y by sect. z
if x is alive on y
and x acquires British citIzenshIp on date ~1 by sect. z
and y 1s after or on yl

and not[x ceases to be a British citizen on date y2

and y2 is between yl and y]

I can show
1 Peter is alive on (16 Jan 1984)

2 Peter acquires British citizenship
on date (3 May 1983) by sect. 1.1

3 (16 Jan 1984) is after or on (3 May 1983)

4 not[Peter ceased to be a British citizen on date X
and X is between (3 May 1983) and (16 Jan 1984))

how 2

I deduced
Peter acquires Brltlsh citizenshlp
on date (3 May 1983) by sect. 1.1

from the rule

. etc

FIGURE 4. Extract of an APES Dialogue

May 1986 Volurlr~ 29 Nun~ber 5

Articles

that the act came into effect on January 1, 1983.
A consultation of the system can be invoked by

asking, for example, whether a given individual
is a British citizen by any selction of the act on some
given date.

Figure 4 shows bow Prolog proves theorems by
reasoning backwards from conclusion to conditions.
Rules of the for:m

A if B and C *and . . .

are interpreted as procedures::

to show A,
show B and C and

It is this procedural interpretation of rules that
makes Prolog a programming language as well as a
theorem prover.

Viewed as a programming language and compared
with other programming languages, Prolog is espe-
cially well suited for the implementation of legisla-
tion because it is nondeterministic. Different ways of
establishing the same conclusion can be represented
by different rules; the implementation takes respon-
sibility for systematically exploring the alternatives.
In the case of Prolog, this exploration takes the form
of a depth-first search determined by the order in
which the rules are written.

As we have al.ready argued, the main strength of
Prolog for such applications is its foundation in logic.
Statements in Prolog refer directly to the domain of
discourse, not to the state of computer memory as
they do in imperative programming languages.
Moreover, individual statements can be understood
independently of one another. This too contrasts
with the situation in imperative languages, where
because of side effects ihe meaning of individual
program statements depends on the context in
which they occur.

SOLVING SUBPROBLEMS
Prolog tackles the solution of subproblems, “B and
C and'I in the order in which they are writ-
ten. Like the order of clauses, this too is under the
programmer’s control.

Conceptually, such subproblems can be solved in
different ways:

l By means of other rules

For example, the condition

“2 is settl.ed in the U.K.
on date y”

can be established by using rules that formalize
the definition of settlement., given in Section 50 of
the act.

Reasoning backwards from problems to sub-
problems not only facilitates cooperative man:
machine problem solving, but it also encourages top-
down, goal-directed knowledge representation-the
defihition of high-level concepts before lower level
ones. This guarantees that, at every stage in the
knowledge refinement process, the current state of
knowledge is relevant and applicable to the class of
problems to be solved. It also means that high-level
definitions can be tested before the lower level ones
have been defined, by querying the system designer
for the solution to undefined subproblems.

This is a complete reversal of the normal approach
to the development of axiomatic systems. The nor-
mal methodology starts with a primitive set of con-
cepts and axioms. Higher level concepts are defined
bottom up in terms of lower level ones that are
primitive or have already been defined. A major

By accessing data

For example,

“y is a Dependent Territory”

can be determined by matching the condition
against degenerate, conditionless rules that solve
the problem without introducing further sub-
problems.

By querying the user

For example,

“x was born oh date y”

can be determined by posing the problem to the
user for solution. The answer can be stored in rule
form, like any other information used by the
system.

By means of computation

For example,

Wy is after commencement”

can be computed by means of a program. Because
of the procedural interpretation of rules, any such
program can be expressed by means of Horn
clauses. (The extension to allow negative condi-
tions is not strictly necessary, but it is desirable.)

By querying an expert

For example,

“throughout the period from date u
to v, x had the right of abode
in the U.K. under the 1971

Immigration Act."

The solution of this subproblem requires knowl-
edge of previous legislation. It can be provided by
a human expert or by a computerized formaliza-
tion of the Immigration Act 1971.

370 Communications of the .4CM May 1986 Volume 29 Number 5

Articles

problem with this approach is the difficulty of iden-
tifying an appropriate bottom level of primitive,
undefined concepts. In the case of the British Na-
tionality Act 1981, it would be difficult to decide
how to treat the earlier Immigration Act 1971. Even
worse, we would have to decide from the outset
whether concepts such as

“x is a newborn infant”

and vague concepts in general would need to be
treated as primitive or could be defined.

SOME DIFFICULTIES WITH THE
FORMALIZATION OF NEGATION
Horn clause logic is that fragment of full first-order
logic that allows sentences with at most one unne-
gated conclusion and any number of unnegated con-
ditions. Extended Horn clause logic allows some or
all of the conditions to be negated if necessary. This
in turn, as observed by Lloyd and Topor [28], makes
it possible to express arbitrary expressions of first-
order logic in the conditions. Extended Horn clause
logic, however, does not allow disjunctive or nega-
tive conclusions. We did not expect that an inability
to express disjunctive conclusions would be a prob-
lem in formalizing the British Nationality Act. Legis-
lation attempts to be definite, after all, and this ex-
pectation was confirmed. We did, however, expect
to need negative conclusions.

In most places in the act where we needed to deal
with negation, a straightforward interpretation of ne-
gation as failure was adequate (see below). This
proved to be the case, for example, in the treatment
of exceptions. Legislation is often drafted by a gen-
eral rule, followed separately by a list of exceptions
to it. Such rules are also common in the British
Nationality Act.

Sections 11-(l) and ll-(2) of the act, for example,
state that

11-(l) Subject to subsection (Z), a person who immedi-
ately before commencement -

(a) was a citizen of the United Kingdom and
Colonies; and

(b) had the right of abode in the United King-
dom under the Immigration Act 1971 as
then in force,

shall at commencement become a British citizen.
(2) A person who [P] . . . shall not become a Brit-

ish citizen under subsection (1) unless . . . [Q] .

By expressing the details of 11-(2) by means of a new
predicate, viz.
x is prevented by 11.2 from acquiring

British citizenship at commencement
if _.. [PI . . .
and not . . . [Ql --.

Section 11-(l) can be expressed by the rule

x acquires British citizenship on date
y by sect. 11.1

if commencement is on y

and yl is immediately before y

and x was a citizen of the United
Kingdom and Colonies on yl

and on date yl, x had the right of
abode in the U.K. under
the Immigration Act 1971

as then in force
and not[x is prevented by 11.2 from

acquiring British citizen-
ship at commencement]

The negation in the last condition of the rule for
11-(l) is interpreted as negation as failure [7]:

not[Q] holds

when

all ways of showing Q fail.

The treatment of negation as failure is justified
whenever we can make a “Closed World”
Assumption:

Anything which is not known is assumed to be false.

With this assumption, negation as failure is consis-
tent with ordinary, classical negation.

The interpretation of negation as failure is often
appropriate for handling exceptions. If we cannot
show that an individual is excepted, then it is natu-
ral to assume that he or she is not excepted.

Negation as failure can be implemented very eas-
ily and efficiently in a logic programming frame-
work. It is, however, inappropriate in those circum-
stances where it is unreasonable to make a Closed
World Assumption. We could not make an all-
embracing Closed World Assumption, for example, if
we had reason to believe that there is some other
way of acquiring British citizenship that is not cov-
ered by the provisions of the British Nationality Act.
It is notoriously difficult in law to determine all the
legal provisions that might be relevant to deciding a
particular case. In such circumstances, we would be
forced to abandon negation as failure and instead
employ theorem provers that can reason with ordi-
nary negation. The need for such reasoning, how-
ever, potentially entails the need to reason with all
of first-order logic. Theorem provers that can reason
with all of first-order logic are substantially less effi-
cient than those that are restricted to extended Horn
clause form.

We would nevertheless suggest that there are

May 1986 Volume 29 Number 5 Communications of the ACM 379

Articles

many instances where the legislation explicitly spec-
ifies all the cases for which a given predicate is in-
tended to hold, and where the interpretation of ne-
gation as failure can safely be made. This is not the
case, unfortunately, with the use of negation in Sec-
tion 142) of the act, which states the following:

(2) A newborn infant who, after commencement, is
found abandoned in the 1Jnited Kingdom shall, un-
less the contrary is shown, be deemed for the pur-
poses of subsection (1) -

(a) to have been born in the United Kingdom
after commencement, and

(b) to have been born to a parent who at the
time of the birth was a British citizen or
settled in the Unit’ed Kingdom.

Earlier in the article, we formalized this section as
the rule

x acquires British citizenship on
date y by sect. 1.2

if x was found as a newborn infant
abandoned in the U.K.

and x was found on date y
and y is after or on commencement
and not[x was not born in the U.K.

after or on commencement]
and not[x was not born to a parent

who qualifies under 1.1 at
ti.me of birth]

The last two conditions of this rule contain double
negations, which would cancel each other out if
both were interpreted classically:

not[not P] is equivalent to P.

Obviously, this is not what is intended by the act.
Intuitively, it seems clear that the first occurrence of
“not” in both conditions should be interpreted as
negation as failure. We argue, however, that the sec-
ond occurrence, underlined above, should be inter-
preted as ordinary!. classical negation.

Suppose, for example, we attempt to interpret the
second “not” in the last condition also as negation as
failure by adding the Prolog rule:

x was not born to a parent who
qualifies under 1.1 at
time of birth

if not [x was born on date y and
x has a parent who qualifies
under- 1.1 on date y]

Putting aside the problem of determining the ex-
act date of birth of an abandoned infant, suppose
that we know neither the father nor the mother of a
particular abandoned infant. Then the condition

“x has a parent who qualifies
under I. 1 on date y'

will fail for this infant (whether we know the date of
birth or not). Consequently, the condition

“x was not born to a parent who
qualifies under 1.1 at time
of birth”

will succeed, and the negative condition

“not [x was not born to a parent
who qualifies under 1.1 at time
of birth]'

will fail. We fail to conclude that the abandoned infant
acquires citizenship by Section l-(2).

This conclusion is exactly the opposite of what is
intended by the act. If both parents of the infant are
unknown, then we cannot show that they do not
satisfy the conditions specified, and we should con-
clude by Section 14.2) that the infant is a British
citizen.

The last two conditions of Section 142) seem to
involve default reasoning of the general form

infer P if fail to show “‘not P”

combining both failure to prove and classical nega-
tion.

Negation as failure

infer “not P” if fail to show P

is obviously similar, but easier to implement because
we can state precisely what “fail to show” means for
positive conditions in the context of extended Horn
clauses.

The similarity between the two default rules can
often be exploited, however, to get the effect of the
required default reasoning. In the present example,
we can obtain the effect of the first default rule

infer P if fail to show “not P”

by using a rule of the form

infer P if fail to show Q

where the conditions Q are equivalent to “not P” in
the context of the problem we are considering.

Thus, the first of the problematic conditions of
Section l-(2)

'x was not born in the U.K. after or
on commencement"

can be replaced by

"x was not born in the U.K.

or

380 Communications of the .4CM May 1986 Volume 29 Number 5

Articles

x was not born after or on
commencement. V

"x does not qualify under 1.1 at
time of y's birth"

If we further assume that We can define this by writing:

"not born in the U.K." x does not qualify under 1.1 at

is equivalent to

“born outside the U.K."

and that

time of y's birth
if x was not a British citizen at

the time of y's birth
and x was not settled in the U.K. at

the time of y's birth
"not born after or on commencement"

is equivalent to

"born before commencement"

In principle, we could continue with this kind of
analysis, reasoning through the provisions of the act
to construct explicit definitions for the predicates

then we can replace the original condition

"not[x was not born in the U.K. after
or on commencement]"

"x was not a British citizen at the
time of y's birth"

"x was not settled in the U.K. at the
time of y's birth".

in the rule for Section I-(Z) by the two conditions

"not[x was born outside the U.K.]"

and

In practice, however, we could not construct such
definitions; the act is too large, and there are too
many separate possibilities to consider for this to be
a practical solution.

"not[x was born before commencementlW

where all occurrences of “not” are now interpreted as
negation by failure.

In the absence of a better general solution, we
circumvented the problem in practice by treating
the negative information

The other condition with a double negation
"x was not a British citizen at the

time of y's birth"
I'not[x was not born to a parent

who qualifies under 1.1 at time
of birth]"

"x was not settled in the U.K. at the
time of y's birth"

is more problematic. We can remove the second oc-
currence of negation from this condition by defining

"x was not born to a parent
who qualifies under 1.1 at time
of birth."

explicitly as a positive predicate:

x was not born to a parent
who qualifies under 1.1

at time of birth
if zl is father of x
and 22 is mother of x
and zl does not qualify under 1.1 at

time of x's birth
and 22 does not qualify under 1.1 at

time of x's birth

as part of the input that is obtained by querying the
user. This treatment is not entirely satisfactory, but
it does provide a reasonable solution for most practi-
cal purposes. Notice that the user is asked such
questions only after it is established that the new-
born infant was found abandoned in the United
Kingdom, that the discovery occurred after com-
mencement, that the infant was not known to have
been born outside the United Kingdom, that the in-
fant was not known to have been born before com-
mencement, and after both parents have been iden-
tified. Even then, users have the option of invoking
subsidiary consultations of the system to help them
answer questions about citizenship and settlement of
the parents.

This definition makes use of the assumption that an
individual has two parents: a unique father and a
unique mother. Notice that we now establish an
abandoned infant’s citizenship immediately if either
or both of the parents are unknown.

We now have to consider the new predicate

Before briefly discussing other knowledge repre-
sentation problems in the British Nationality Act, we
must make one final remark about negation. The
type of default reasoning that the act prescribes for
dealing with abandoned infants is nonmonotonic [3]:
Conclusions made by default in the absence of infor-
mation to the contrary may have to be withdrawn if
new information is made available later. Thus, in
the British Nationality Act, an abandoned child may

May 1986 Volume 29 Number 5 Communications of the ACM 381

Articles

be a British citizen by Section l-(Z) because the
identity of both his or her parents is unknown. Sup-
pose, however, that the parents are subsequently
identified, and it is determined that neither was a
British citizen nor had settled in the United King-
dom when the child was born. Under these circum-
stances, the earlier conclusion that the child is a
British citizen would have to be withdrawn. This
possibility does not seem to have been anticipated
by the drafters of the act, as there is no provision
for it.

OTHER PROBLEMS IN THE FORMALIZATION
In addition to its problems with negation, extended
Horn clause logic is not adequate for dealing with
counterfactual conditionals. Such conditionals occur
frequently in the Elritish Nationality Act. Clause
l&(l)(e), for example, includes in its conditions the
phrase

. . became a British citizen by descent or would have
done so but for his having died or ceased to be a citizen
. . [by] renunciation.

The treatment of such counterfactual conditions is
notoriously difficult. It is not obvious what factors
need to be taken into account before it can be deter-
mined that a person would have been a citizen if the
person had not died.

It can be argued, however, that, when the drafters
used the counterfactual phrase in this clause, they
did not intend such an open-ended analysis. The
device is used merely for convenience: The drafters
avoid listing a complicated set of conditions explic-
itly by specifying instead a modification to some
other part of the le,gislation.

We decided to trleat counterfactual conditions by
writing additional alternative rules; one set describ-
ing, for example, the conditions for acquisition of
citizenship at commencement for individuals who
were alive on that date, and another set for individ-
uals who had died before that date, but otherwise
met all the other requisite conditions before death.
This treatment of counterfactual conditions is ex-
tremely tedious. It requires a thorough analysis of
the provisions of the act before the implicitly de-
scribed rules can be reconstructed; it also substan-
tially increases the number of rules in the formaliza-
tion. All of this is precisely what the person drafting
the rule was trying to avoid by using the counter-
factual phrase in th,e first place. So, although we
managed to represent the effect of counterfactual
conditions within extended Horn clause logic, this
treatment is not entirely satisfactory.

The main difficulty with counterfactual conditions
of this type lies not in representing them, but in

discovering what it is that the person drafting the
condition actually intended. Assuming that this can
be determined, there are then several techniques
available for implementing the required reasoning.
One approach is to use Prolog’s extralogical primi-
tives to modify the database temporarily by deleting
facts, adding other assumptions in their place, and
restoring the database when the appropriate conclu-
sions have been derived. Although this solution
works in Prolog, it does so by sacrificing the logic of
the knowledge representation. A different and logi-
cally sound approach is to use an amalgamation of
object language and metalanguage [4]. This uses a
proof predicate with explicit parameters for the
knowledge base, which can vary for different condi-
tions of a rule. A Prolog implementation of such an
amalgamation logic has been reported by Bowen and
Weinberg [5].

A number of other phrases in the act seemed
problematic upon first reading, but were not so in
practice. Clause s-(4), for example, states that

If in the special circumstances of a particular case the
Secretary of State thinks fit, he may treat subsection (2)
as if the reference to twelve months were a reference to
six years.

From the Secretary of State’s point of view, Clause
344) grants permission to apply discretion in certain
circumstances. For the purposes of formulating rules
dealing with the acquisition of citizenship, however,
we were able to treat this kind of statement by writ-
ing two separate rules. One rule covered the stan-
dard case; the other covered the discretionary case,
with an extra condition to indicate that the rule
only applies if the Secretary of State decides that it
should. This treatment gives a reasonable represen-
tation of the discretionary clause (for the purpose of
determining citizenship), at the cost of increasing
the number of rules in the formalization.

In addition to the problems discussed above,
knowledge representation problems arose because of
the large scale of the work. We have already stressed
the trial-and-error development of our formalization.
When the system was in its early stages and the
number of rules in the formalization was small, re-
structuring the rules to incorporate the effect of later
sections was relatively simple. As the formalization
developed and there were hundreds of rules and
many tens of predicates to consider, incorporating
even a minor change was not always easy. In fact,
whether a change was easy to incorporate or re-
quired a major restructuring of the rules was largely
a matter of luck, usually depending on whether a
convenient predicate had initially been chosen. We
see no alternative to trial-and-error formalization, at

302 Communications of the ACM May 1986 Volume 29 Number 5

Articles

least when dealing with legislation already in exis-
tence. Therefore, we are developing a programming
environment that will incorporate metalevel data
“dictionaries” and special-purpose editors to assist in
the process.

THE STATE OF THE IMPLEMENTATION
The first four parts of the act, the definitions in Part
5, and the schedules that were needed for Parts l-4
(approximately 50 pages of the 73-page act) were
translated into extended Horn clause logic during
July and August 1983 by a student, Fariba Sadri,
without any expert legal assistance. Those sections
in Part 5 and the schedules not translated into logic
consist mostly of descriptions of amendments to
other acts, repeals, offenses, and proceedings related
to them, and decisions involving exercise of discre-
tion by the Secretary of State.

The entire system, including APES, was imple-
mented in micro-Prolog. At the time formalization
was completed, only a small part of the act could be
loaded, together with APES, into the small Z-80-
based microcomputers on which micro-Prolog was
then available. During October and November 1983,
most of the work on the system was concerned with
overcoming the space limitation. As of December
1983, the system ran a relatively self-contained part
of the act, consisting of approximately 150 rules
dealing with the acquisition of British citizenship,
on a microcomputer with 128 kbytes of memory.
This small demonstration system consists of rules for
the sections of Part 1 that describe the acquisition
of British citizenship, rules that formalize the rele-
vant sections of Part 5 and the schedules, and rules
that express certain general knowledge (such as the
rule that a father or a mother is a parent, and facts
about the lengths of the months). We estimate that
a micro-Prolog system capable of addressing 512
kbytes of memory would be sufficient to run the
complete act, which contains about 500 rules. Such
micro-Prolog systems are now available for micro-
computers and, in the form of sigma-Prolog, for a
range of larger machines. These are recent develop-
ments, however, and at the time of this writing, we
have not transferred the formalization to the larger
systems. We have chosen instead to consolidate our
experience by considering a number of other exam-
ples from the legal domain, some of which are listed
in the concluding section of this article.

THE RELATIONSHIP WITH EXPERT SYSTEMS
The formalization of legislation by means of rules
has almost all the characteristics of an expert sys-
tem. It differs, however, in one important respect:
Before knowledge can be formalized in a classical

expert system, it has to be elicited from the subcon-
scious of an expert. Feigenbaum and McCorduck
[ll] refer to this knowledge elicitation problem as
“the most important of the central problems of artifi-
cial intelligence research” and “the critical bottle-
neck.” The knowledge elicitation problem is almost
entirely absent in the formalization of legislation. By
its very nature, the law is well documented; its pro-
visions are written down, and where they are not,
decisions in previous cases are recorded for future
reference. Even if this documentation is not already
in a form that can be expressed directly in computer-
intelligible terms, it provides a convenient frame-
work around which the knowledge elicitation pro-
cess can proceed.

This does not mean, however, that there are no
knowledge representation problems. As previously
mentioned, early versions of the formalization had
to be refined by trial and error to incorporate the
effects of later sections of the act. Other knowledge
representation problems that arose in the course of
the formalization were described earlier in this arti-
cle. These problems are much less severe than the
knowledge elicitation problem in general.

The advantages claimed for expert systems are
primarily due to the explicit representation and sep-
aration of knowledge from its manipulation by
means of deductive inference procedures. In this
respect, the use of logic for knowledge representa-
tion and of deductive inference for knowledge
processing is the purest form of expert-system tech-
nique. Knowledge expressed in such a form

l is easy for both naive users and experts to under-
stand;

l is easy to modify (e.g., to correct errors, to en-
hance, and to reflect changes that occur over
time);

l allows the inference procedure to interact natu-
rally with the human user and to explain its con-
clusions.

These advantages hold equally for other applica-
tions implemented by the same techniques, and
therefore for Prolog “programs” in general-provided
they are structured according to logic programming
principles.

Logic can also be used to formalize regulations,
rules, and policies that do not have legal authority.
An airline company, for example, might use such
techniques to assist in drafting and applying rules
for refunding tickets or changing reservations. A
bank might use them for rules about banking
charges. A customer might query such a system to
obtain explanations for decisions that would other-
wise be inscrutable. Such applications do not neces-

May 1986 Volume 29 Number 5 Communications of the ACM 383

Articles

sarily qualify as expert systems, because they can be
used to assist in the formulation and debugging of
rules in situations where expertise does not yet
exist.

THE RELATIONSHIP WITH CONVENTIONAL
PROGRAMMING TECHNIQUES
Conventional programming techniques can also be
used for advanced applications such as expert sys-
tems and the formalization of legislation. Decision
tables and decision trees are probably the most ap-
propriate of the conventional techniques.

Figure 5 is an example of a possible decision tree
for the British Nationality Act. Because they sepa-
rate information from the way in which it is pro-
cessed, decision trees share many of the advantages
of rule-based systems in general. Moreover, because
rules corresponding to branches of a decision tree
have an especially simple structure, they can be im-
plemented straightforwardly in conventional pro-
gramming languages such as Cobol or Basic.

Although decision tables and trees can be re-
garded as representing rules, they are optimized for
the solution of a predetermined class of problems.
They do not aim to support the derivation of arbi-
trary logical consequences of the rules.

COMPARISON WITH RELATED WORK
There is now a substantial amount of literature con-
cerned with the computer assistance of legal reason-
ing. Much of this deals with retrieval of legal docu-
ments and is not directly related to the work re-
ported here.

Most of the more ambitious approaches are based
on techniques developed in artificial intelligence
ant1 fall primarily into two categories: those that
concentrate on reasoning by means of rules, and
those that cqncentrate on case law and reasoning
from examples. Our work falls within the former
category: as does McCarthy’s TAXMAN I [31], ap-
plied to corporate tax law and implemented in a
version af micro-PLANNER [40], and Waterman and
Peterson’s rule-based analysis of personal injury
claims, implemented in the programming language
ROSIE [42] at the F:and Corporation. McCarthy’s
later work on TAXMAN II [32] has concentrated on
reasoning with case law. Several other projects, in-
cluding Gardner’s treatment of offer and acceptance
in contract law [13, 141 implemented in MRS [15],
and Meldman’s 1331 study of the tort law of assault
and battery represented in OWL [41], attempt
to combine reasoning by rules with reasoning
from previous cases.

Other projects that have recently investigated

Date Place
of of

birth birth

Citizenship
of

parent

British \

Before
commencement

\

British
citizenship

Outside
U.K.

British

Not
British

Yes

Yes, if parent is
1 British - not British citizen

\
Outside /

by descent

U.K.

\ Not /
British \

A decision tree can be regarded as an optimized collection of
rules-each complete branch corresponds to a single rule.

FIGURE 5. The Beginning of a Decision Tree for British Citizenship

the application of Prolog to law include those
of Hustler [Zl], MacRae [30], Hammond [17],
Gordon [16], and Schlobohm [34]. Our project is
similar to theirs, but emphasizes two considerations
that have not always received the same attention in
other Prolog projects:

1. We have concentrated on the formal representa-
tion of already written legislation. This has al-

May 1986 Volume 29 Number 5

2.

lowed us to implement a more substantial appli-
cation than would have been possible if we had
had to deal with the knowledge elicitation prob-
lem.

We have attempted to distinguish as much as
possible between using logic to represent legisla-
tion and using Prolog to implement such repre-
sentations. Our primary commitment has been
to the use of logic, and we have used this com-
mitment to propose and test various extensjons
of Prolog.

Our work on the application of logic programming
in law began with Sergot’s investigation [35] of
Stamper’s LEGOL language and its relationship with
logic programming. The aim of the LEGOL project
was the development of a computer language for
representing legislation and the structure of
regulation-based organizations [38]. In LEGOL,
Stamper developed a method of analysis based on a
semantic model that provided the basis for a com-
puter language in which rules could be written to
simulate the effects of legal provisions. The language
that emerged (in its executable versions at least) was
conceived as an extended relational algebra with
special operators for handling time [23]. Computa-
tion proceeded by executing the control structures
and evaluating expressions of the algebra. A pro-
gram written in the LEGOL language was built by
combining rules using a variety of conventional pro-
gram control structures including sequencing of
rules, if-then-else statements, and iteration [22].

Sergot showed how LEGOL rules and control
structures could be reinterpreted in logic program-
ming terms. Such a translation ignores the emphasis
placed by Stamper on the importance of LEGOL’s
semantic model, but it does suggest a method of
computing with LEGOL rules that is independent of
the semantic considerations. Interpretation of
LEGOL rules as statements of logic gives a description
of legislation as well as a simulation of its effects; it
frees the LEGOL language from the need to be
embedded within an algorithmic programming lan-
guage; and, by executing LEGOL rules backwards in
the spirit of logic programming, it allows recursion
to be expressed directly, a feature missing from the
original LEGOL algebra.

The other main difference between our approach
and Stamper’s is a methodological one. Representa-
tion of a fragment of legislation in LEGOL proceeds
in two distinct steps: First, the LEGOL semantic
model is used to analyze and identify the entities,
concepts, and relationships present in the legislation.
LEGOL rules are then formulated to manipulate the

Articles

concepts identified in the analysis phase. Indeed
Stamper’s primary concern has been the develop-
ment of the LEGOL semantic model; the implemen-
tation of practical applications is a secondary
objective.

In contrast with the LEGOL methodology, we have
stressed in this article the top-down, goal-directed
development of our formalization of the British
Nationality Act. We adopted this approach for
purely practical reasons. It allowed us to delay ad-
dressing the more complex issues of knowledge rep-
resentation until it became unavoidable to do so,
and it enabled us to avoid considering how to repre-
sent the various commonsense knowledge needed to
understand the legislation until we discovered what
knowledge was required.

CONCLUSION
The British Nationality Act experiment has largely
served its purpose, at least for the time being. It has
demonstrated the feasibility and promise of applying
Prolog logic to a potentially large class of applica-
tions dealing with the implementation of rules and
regulations. These applications include not only
cases of statutory law, such as the British Nationality
Act 1981, but also applications normally associated
with advanced data processing.

Following our formalization of the British Nation-
ality Act, a variety of smaller projects have been
completed within the Logic Programming Group at
Imperial College. Those incorporating realistically
sized fragments of legislation include a subset of the
Immigration Act 1971 [39], regulations for govern-
ment grants to industry [29], and a large company’s
pension regulations, with associated tax legislation
[6]. A formalization of Statutory Sick Pay legislation
[37] has also been attempted in collaboration with
the group. Application of logic programming in law,
and some of the more general problems referred to
in this article, is discussed ip more detail in [36].

The British Nationality Act 1981 has also proved
to be a rich source of problems for the use of logic
for knowledge representation. It has highlighted
problems with negation as failure and counterfactual
conditionals in particular. We believe that the for-
malization of legislation and the development of
computer systems to assist with legal problem solv-
ing and decision making provide a rich domain for
developing and testing artificial intelligence technol-
ogy. More tentatively, the accumulated experience
of managing complex systems of law may teach us
something about the maintenance of large bodies of
complex software.

May 1986 Volume 29 Number 5 Communications of the ACM 385

Articles

Acknowledgment:;. We are grateful to Chris Moss
for suggesting the formalization of the British Na-
tionality Act 1081 and to Ronald Stamper and other
members of the LEGOL project for their early inter-
actions with ou.r work, and for their comments and
their encouragement.

REFERENCES 32.
Reference [12] is not cited in text.

1. Allen, L.E. Symbolic logic: A razor-edged tool for drafting and inter-
preting legal documents. Yale Law I, 66 (May 1957). 833-879.

2. Bench-Cauon. T.. and Seraot. M.1. Towards a rule-based reoresenta-

3

4.

5.

6.

7.

8.

9.

IO.

11.

12.

13.

14.

15.

tion of opkn texture in La<. Rep.. Dept. of Computing, Imperial
College, London. 1965. Also presented at the 2nd International Con-
ference on Computers and Law, Houston. Tex.. June 1985.
Bobrow, D.G., Ed. Non-monotonic logic. Special issue on. Altif. Infell.
13 (1980).
Bowen. K.A., and Kowalski. R.A. Amalgamating language and meta-
language in logic programming. In Logic Programming. K.L. Clark and
S.A. Tarnlund. Eds. APIC Studies in Data Processing, vol. 16. Aca-
demic Press. New York, 1982. pp. 153-172.
Bowen. K.A., and Weinberg, T. A meta-level extension of PROLOG.
In Symposium on Logic Programming (Boston. Mass.). IEEE Computer
Society Press, 1985, pp. 48-53.
Ghan, D. A logic based legal expert. M.S. thesis. Dept. of Computing,
Imperial College, London. 1984.
Clark, K.L. Negation as failure. In Logic and Data Bases, H. Callaire
and J. Minker, Eds. Plenum, New York, 1978. pp. 293-322.
Clark, K.L., and McCabe. F.G. Micro-PROLOG: Programming in Logic.
Prentice-Hall. Englewood Cliffs, N.J.. 1984.
de Marco, T. Strucfured Analysis and System Specific&w?. Prentice-
Hall, Englewood Cliffs, N.J.. 1979.
Dijkstra, E.W. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, N.J.. 1976.
Feigenbaum, E.A.. and McCorduck, P. The Fiffh Generation. Addison-
Wesley, Reading. Mass., 1983.
Fuchi. K. The direction the FGCS project will take. New Generation
Comput. I (1983). 3-9.
Gardner. A.V.D.L. An artificial intelligence approach to legal reason-
ing. Rep. STAN-CS-85-1045. Dept. of Computing Science, Stanford
Univ., 1984. To be published by Bradford Books/MIT Press.
Gardner, A.V.D.L. Overview of an artificial intelligence approach to
legal reasoning. In Computing Power nnd Legal Reasoning, C. Walter,
Ed. West. St. Paul. Minn.. 1985. pp. 247-274.
Genesereth. M.R., Greiner, R., Grinberg, M.R., and Smith. D.E. The
MRS dictionary. Memo HPP-80.24, Stanford Heuristic Programming
Project. Stanford IJniv., Calif., Dec. 1980: revised Jan. 1984.

16. Gordon, T.F. Object-oriented predicate logic and its role in repre-
senting legal knowledge. In Computing Power and Legal Reasoning,
C. Walter. Ed. West, St. Paul. Minn.. 1985. pp. 163-203.

17. Hammond. P. Representation of DHSS regulations as a logic pro-
gram. Rep. 82/X, Dept. of Computing, Imperial College, London.
1982. pp. 225-235. Also in Proceedings offhe 3rd KS Expert Systems
Conference, British Computer Society, Cambridge, Dec. 1983.
pp. 225-235.

18. Hammond. P., and Sergot. M.J. A PROLOG shell for logic based
expert systems. In Proceedings of the 3rd BCS Experf Systems Confer-
once. British Computer Society. Cambridge, Dec. 1983, pp. 95-104.

19. Hammond, J’., and Sergot, M.J. APES Rejerence Manual. Logic Based
Systems. Richmond, Surrey. England, 1984.

20. Her Majesty’s Stationery Office. The British Nationality Act 1981.
Chapter 61, London, 1981.

21. Hustler, A. ProgrammIng law in logic. Res. Rep. CS-82-13, Dept. of
Computer Science, Univ. of Waterloo. Canada, 1982.

22. Jones, S. Control structures in legislation. In Compufer Science and
Law, 8. Niblett. Ed. Cambridge University Press, New York, 1980.
pp. 157-l 69.

23. Jones, S.. Mason, P., and Stamper. R. LEGOL 2.0: A relational specifi-
cation language for co,mplex rules. Inf Sysf. 4, 4 (Dec. 1979). 293-
305.

24. Kowalski. R.A. Logic for Problem Solving. Elsevier North-Holland,
New York, 1979.

25. Kowalski, R.A. Logic programming. In Proceedings ZNP-83 Congress.
Elsevier North-Holland. New York, 1983. pp. 133-145.

28. Kowalski, R.A. Software engineering and knowledge-based systems
in new generation computing. Future Generation Compuf. Sysf. 1. 1
(1984), 39-49.

27.

28.

29.

30.

31.

33.

Lakatos, 1. Proofs and refutations. Br. J. Philos. Sci. 14 (1963). l-25,
120-139. 221-243. 296-342.
Lloyd. J.W., and Topor, R.W. Making Prolog more expressive. /. Logic
Program. I. 3 (Oct. 1984). 225-240.
Lowes. D. Assistance to industry: A logical approach. MS. thesis.
Dept. of Computing. Imperial College. London, 1984.
MacRae, C.D. User control knowledge in a tax consulting system. In
2nd Infernational Conference on Computers and Law (Houston. Tex..
June). 1985.
McCarthy. L.T. Reflections on TAXMAN: An experiment in artifi-
cial intelligence and legal reasoning. Harvard Law Rev. 90 (1977).
837-893.
McCarthy, L.T.. and Sridharan. N.S. The representation of an evolv-
ing system of legal concepts: I. Logical templates. In Proceedings, 3rd
Biennial Conference of fhe Canadian Society for Compufafional Studies of
lnfelligence (Victoria. B.C.). Canadian Society for Computational
Studies of Intelligence, 1980. pp. 304-311.
Meldman. J.A. A siructural model for computer-aided legal analysis.
Rufgers 1. Compuf. Law 6 (1977). 27-71.

34. Schlobohm, D.A. A Prolog program which analyzes income tax is-
sues under Section 318(a) of the internal revenue code. In Computing
Power and Legal Reasoning, C. Walter. Ed. West, St. Paul. Minn.,
1985. pp. 765-815.

35. Sergot, M.J. Programming law: LEGOL as a logic programming lan-
guage. Rep., Dept. of Computing, Imperial Collage, London, 1980.

38. Sergot. M.J. Representing legislation as logic programs. Rep.. Dept. of
Computing. Imperial College. Aug. 1985. To be published in
Machine Infelligence 17.

37. Sharpe, W.P. Logic programming for the law. In Research and Dew-
opmenf in Experf Systems: Proceedings of the 4th Technical Conference of
fhe British Compufer Society Specialisf Group on Experf Systems, War-
wick, M.A. Braines, Ed. Cambridge University Press, New York, Dec.
1985.

38. Stamper, R. LEGOL: Modelling legal rules by computer. In Computer
Science and Law, B. Niblett. Ed. Cambridge University Press, New
York, 1980, pp. 45-71.

39. Suphamongkhon. K. Towards an expert system op immigration leg-
islation. M.S. thesis, Dept. of Computing. Imperial College, London,
1984.

40. Sussman. G.. Winograd. T.. and Charniak, E. Micro-Planner refer-
ence manual (revised). A.I. Memo 203A, Artificial Intelligence Labo-
ratory. M.I.T.. Cambridge. Mass.. 1971.

41. Szolovits, P.. Hawkinson. L.B., and Martin, W.A. An overview of
OWL, a language for knowledge representation. MlT/LCS/TM-86.
Laboratory for Computer Science, M&T., Cambridge. Mass.. 1977.

42. Waterman, D.A., and Peterson. M.A. Models of legal decisionmak-
ing. Rep. R-2717-ICJ, Institute for Civil Justice, Rand Corporation.
Santa Barbara, Calif.. 1981.

CR Categories and Subject Descriptors: 12.1 [Artificial Intelligence]:
Applications and Expert Systems--law; 12.3 [Artificial Intelligence]:
Deduction and Theorem Proving-logic programming; 1.2.4 [Artificial In-
telligence]: Knowledge Representation Formalisms and Methods-predi-
cafe logic; 1.2.5 [Artificial Intelligence]: Programming Lqnguages and
Software-Prolog. APES: I.1 [Computer Applications]: Administrative
Data Processing--law; K.6.3 [Management of Computing and Informa-
tion Systems]: Software Management-softwar: development

General Terms: Design, Experimentation. Human Factors, Languages,
Reliability. Theory

Additional Key Words and Phrases: British citizenship, legislation.
rule-based systems

Authors’ Present Address: M.J. Sergot, F. Sadri, R.A. Kowalski,
F. Kriwaczek, P. Hammond. and H.T. Gory. Dept. of Computing. Impe-
rial College, University of London, 180 Queens Gate. London, SW7 2BZ,
England.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish, requires a fee and/or specific permission.

386 Communications of the ACM May 1986 Volume 29 Number 5

