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Abstract. In this paper we present an agent language that combines agent functionality 

with an action theory and model-theoretic semantics. The language is based on 

abductive logic programming (ALP), but employs a simplified state-free syntax, with an 

operational semantics that uses destructive assignment to manipulate a database, which 

represents the current state of the environment. The language builds upon the ALP 

combination of logic programs, to represent an agent’s beliefs, and integrity constraints, 

to represent the agent’s goals. Logic programs are used to define macro-actions, 

intensional predicates, and plans to reduce goals to sub-goals including actions. Integrity 

constraints are used to represent reactive rules, which are triggered by the current state 

of the database and recent agent actions and external events. The execution of actions 

and the assimilation of observations generate a sequence of database states. In the case 

of the successful solution of all goals, this sequence, taken as a whole, determines a 

model that makes the agent’s goals and beliefs all true. 

   
 Keywords – abductive logic programming, agent languages, model-theoretic semantics 

1 Introduction 

Practical agent languages, many of which were originally inspired by the use of modal 
logic specifications of an agent’s Beliefs, Desires and Intentions, have largely 
abandoned their original model-theoretic semantics in favour of operational semantics. 
They employ procedural representations and perform destructive assignment on 
“beliefs” that represent the current state of the agent’s environment. 
 ALP (abductive logic programming) agents [12] have both an operational 
semantics and a model-theoretic semantics. However, they represent the agent’s 
observations in a non-destructive database and explicitly represent and reason about 
time or state, using a formal action theory such as the event calculus, with the 
consequent inefficiencies of reasoning with explicit frame axioms. 
 In this paper we present a language, LPS, that combines a declarative semantics 
based on ALP with the features of practical agent languages, including the use of 
destructive assignment and a syntax that does not refer to time or state. The semantics 
of LPS can be viewed in terms of Kripke possible world structures, as in Transaction 
(TR) Logic [2]. However in TR Logic, the truth of sentences is defined along paths of 
possible worlds. In LPS, the possible worlds are combined into a single model with 
state arguments in the spirit of the situation calculus and Golog [14]. 



 

 

 The database is structured as a deductive database, with extensional predicates that 
are represented explicitly and with intentional predicates that are defined by logic 
programs. Actions and observations are structured by means of an action theory that 
defines the preconditions of actions and the effects of actions and external events on 
the extensional predicates of the database. Intentional predicates are modified as 
ramifications of changes to the extensional predicates.  
 The frame problem is avoided by employing destructive change of state, without 
the use of frame axioms. The inefficiencies of planning from first principles are 
avoided, by using plan libraries to achieve intended consequences of actions, and by 
using the action theory only to transform one state of the database to the next, 
implementing consequences of the agent’s actions and external observations.  
  In contrast with many agent languages, TR Logic and Golog, but as in ALP 
agents, LPS highlights the distinction between maintenance goals (or reactive rules), 
represented as integrityconstraints, and beliefs, represented as logic programs. The 
approach is based upon our earlier attempt to combine similar features of production 
systems with the model-theory of ALP [12]. We retain the name LPS, introduced in an 
earlier paper [13], and which stands for Logic-based Production System language, 
because we treat production rules and agent plans in the same way.  

 In the remainder of the paper, we present motivating examples and background, 
and then the syntax, operational semantics and model-theoretic semantics of LPS. We 
assume the reader is familiar with logic programs, SLD resolution and the minimal 
model semantics of Horn clauses. 

1.1 Motivating Examples 

The vocabulary of LPS includes both ordinary stateless predicates, as well as fluents, 
which are extensional and intensional predicates, and actions, which are atomic 
actions, macro-actions, and external events, which are observable by the agent. The 
semantics (or internal syntax) of a fluent P has an additional argument P(T), indicating 
that P holds in the state T (or at the time T). Atomic and macro actions A have two 
additional arguments A(T1, T2), indicating that the action A  takes place from T1  to T2. 
The semantics of atomic actions and events A happening in the transition from state T 
to T+1 is given by A(T, T+1).  
 The surface syntax of LPS does not have explicit state arguments. Instead, as well 
as the ordinary conjunction ∧, it has two other conjunctions whose meaning is defined 
in terms of states.  The formal syntax and semantics will be given in Section 3. But, in 
the meanwhile, the semantics of the two conjunctions in the following examples can be 
understood as follows: 
 

P : Q, where both P and Q are fluents, means P(T) ∧ Q(T). 
P : A, where P is a fluent and A is an action means P(T1) ∧ A(T1, T2). 
A : P, where A is an action and P is a fluent means A(T1, T2) ∧ P(T2). 
P ; Q, where both P and Q are fluents, means P(T1) ∧ Q(T2) ∧ T1 ≤ T2. 
P ; A, where P is a fluent and A is an action means P(T1)∧ A(T2, T3) ∧T1≤T2. 
A ; B, where both A and B are actions, means A(T1, T2) ∧ B(T3, T4) ∧ T2 ≤ T3. 
 

Below we illustrate our approach by giving examples formalized in the LPS language. 
 



 

 

Example 1: We consider an online shopping scenario, similar to the running example 

produced by the W3C RIF Working Group on rule interchange
1
. Reactive rules are 

used to welcome a customer when she logs in, and to take payment and issue 

confirmation when she checks out: 

 

login(X) : customer(X) → welcome(X). 

checkout(X): customer(X): shop-cart(X, ID, Value) → 

take-payment(X, ID, Value) ;  confirm(X, ID, Value). 

 

The goals generated by the reactive rules are solved by macro-actions, in which a 

customer is welcomed with an appropriate offer. A new customer is welcomed by an 

offer of a promotional item. A gold customer is welcomed by an offer of a 

promotional item that is similar to an item recommended by her profile: 

 

welcome(X) ← status(X, new): promotional-item(Y): offer(X, Y). 

welcome(X) ← status(X, gold): promotional-item(Y): profile(X, Z): 

similar(Y, Z): offer(X, Y). 

 

The semantics (i.e. the state-based translation) of the first reactive rule and the first 

macro-action definition are: 

 

login(X, T-1, T) ∧ customer(X, T)  → welcome(X, T1, T2) ∧ T≤T1. 

welcome(X, T, T1) ← status(X, new, T) ∧ promotional-item(Y, T) ∧ 

offer(X, Y, T, T1). 

 

Example 2: The following is a reformulation in LPS of an example given in [4]. 

Reactive Rule: If a room is dirty clean it  

is-dirty(Room) → clean(Room). 

Macro-actions definitions:  

 clean(Room) ← goto(Room); vacuum(Room). 

  goto(Y) ← pos(Y). 

goto(Y) ← pos(X) : different(X, Y) : adjacent(X, Z): step(X, Z); goto(Y).  

 

Here is-dirty and pos are extensional predicates, adjacent and different are state-

independent predicates, vacuum and step are atomic actions, and clean and goto are 

macro-actions. The action step(X,Y) causes a change in location and the action 

vacuum(Room) causes a change in the status of the Room via the action theory: 

 

 terminates(step(X,Y), pos(X)) and   initiates(step(X,Y),  pos(Y)), 

 terminates(vacuum(Room), is-dirty(Room))  and  

 initiates(vacuum(Room), is-clean(Room)). 

 

The semantics of the last macro-action definition is: 

                                                             
1 http://www.w3.org/2005/rules/wiki/RIF_Working_Group visited in July 2009 



 

 

goto(Y, T1, T3) ← pos(X, T1) ∧ different(X, Y) ∧  adjacent(X,Z) ∧ step(X, Z, 

T1, T1+1) ∧ goto(Y, T2, T3) ∧ T1+1≤T2.  

 

The LPS operational semantics (the LPS cycle) works as follows: The condition is-

dirty(Room) of the reactive rule is checked against a database that represents the 

current state of the environment. For all instantiations σ for which the condition is 

true, the goal clean(Room)σ is added to the agent’s goals. Each goal is then planned 

for by planning rules or macro-actions, the resulting atomic actions are executed, and 

each such execution (destructively) updates the database. In general, the planning and 

action executions can be interleaved, provided any ordering dictated by the 

connectives is respected. The predicate pos acts as a guard in the last two macro-

action clauses, checking the agent’s current location and directing the agent towards 

the next action. If all the goals are successfully planned for and the atomic actions are 

successfully executed the agent would have traversed a sequence of states the totality 

of which corresponds to a (minimum) model in which the reactive rule is true.  

 

Example 3: The following is a reformulation in LPS of another example in [4], which 

involves buying a gift. According to the scenario in [4], first the agent checks what 

gifts are available in Harrods, and forms a plan to go to Harrods and purchase the gift. 

Then for some reason this plan does not succeed and a special plan revision rule 

changes the plan to purchasing that same gift from Dell. In LPS the beliefs required 

for this scenario can be formalized without plan revision rules, as follows: 

 

Planning rule: have(Gift) ← sells(harrods, Gift): buy(Gift).      

Macro-action definitions: 

buy(Gift) ← goto(harrods); purchase(Gift, harrods). 

buy(Gift)←online(Store):sells(Store,Gift):goOnline(Store);purchase(Gift, Store). 

The database contains the fact:   online(dell).  

 

 The LPS operational semantics is neutral with respect to the search strategy used 

to explore the search space, and the “conflict resolution strategy” used to select an 

action to execute. To obtain the behavior of the scenario described in [4], these 

strategies would need to try the macro-action rules in the order in which they are 

written, try the first action (goto(harrods)), and if it fails, either re-attempt the action 

later or execute the alternative action (goOnline(dell)). 

 Here is an alternative, more flexible formalization using only planning rules: 

 

have(Gift)←is-Store(Store): sells(Gift, Store): goto(Store); purchase(Gift,Store).  

have(Gift)←online(Store):sells(Gift,Store):goOnline(Store); 

purchase(Gift,Store). 

2 Background   

2.1   Informal comparison of Agent Languages and LPS        

Practical agent languages can be regarded as an extension of production systems, in 
which condition-action rules are generalised to condition-action-and-goal rules. Both 



 

 

production systems and agent languages manipulate a database of facts or beliefs, 
which represents the current state of the environment. The database is updated 
destructively both by the agent’s observations and by the agent’s actions. The agent’s 
goals are represented either as goal facts in the database, or in a separate stack of goals 
and actions, which represents the agent’s intentions.  
 Like condition-action rules in production systems, condition-action-and-goal rules, 
called plans in agent languages, provide two main functions. Arguably their primary 
function is as reactive rules, to react to changes in the database, verifying that the 
condition holds and adding the corresponding goals and actions either to the database 
or the stack of goals. However, in practice they often function as goal-reduction rules,  
to match a current goal with one of the conditions of a plan, verify the other 
conditions of the plan, and add the corresponding goals and actions to the database or 
stack of intentions.  
 LPS borrows from production systems and agent languages their state-free syntax 
and their destructively changing database. It uses the database to represent the current 
state of the environment, and represents goals (or alternative candidate intentions) as a 
set of goal clauses, executing them as in SLD resolution. The search strategy and 
selection function can treat the set as a stack in the same way that Prolog implements a 
restricted version of SLD resolution. Alternatively, it can use the selection function 
more freely to interleave planning with plan execution. 
 The main difference between LPS and more conventional agent languages is that 
LPS interprets and represents reactive plans and goal-reduction plans differently, and 
this difference is exploited to provide LPS with a model-theoretic semantics. It 
interprets goal-reduction plans as beliefs and represents them as logic programs. It 
provides them with a backward reasoning operational semantics and a minimal model 
declarative semantics. It interprets reactive plans as (maintenance) goals (or policies) 
and represents them as integrity constraints (as in abductive logic programming). It 
provides them with a forward reasoning operational semantics and the model-theoretic 
semantics of integrity constraints.  
 Production systems and agent languages typically represent actions performed on 
the internal database as additions or deletions of facts in the database. LPS employs a 
more structured representation of actions in the tradition of the situation calculus and 
event calculus. Additions and deletions are not explicit actions, but are consequences 
of an action theory. It uses destructive change of state to deal with the computational 
aspects of the frame problem. 
 In production systems and agent languages, when the conditions of more than one 
condition-conclusion rule hold, a choice needs to be made between the different 
conclusions. In production systems, this is made by means of a conflict resolution 
strategy. In agent languages, it is made by selecting one of the conclusions as an 
intention, and possibly repairing the resulting plan if it fails. In ALP and LPS, when 
the rules are interpreted as beliefs represented as logic programming clauses, the 
choice is dealt with by the selection function and search strategy. When the rules are 
interpeted as maintenance goals represented by integrity constraints, all maintence 
goals must be made true, by making their conclusions true whenever their conditions 
are true.  
 However in LPS, an analogue of conflict resolution is performed when the agent 
decides which action to execute. In ALP agents, we have explored the use of Decision 
Theory for this purpose. However, in LPS we assume that the choice is made by the 



 

 

selection and search strategies, subject to the constraint that no action is selected if 
there are other actions that need to be executed earlier. 
 
2.2   Abductive Logic Programming   
LPS is based on abductive logic programming (ALP) [9] and abductive logic 
programming agents (ALP agents) [12]. ALP extends logic programming (LP) by 
allowing some predicates, Ab, the abducibles, to be undefined, in the sense that they 
do not occur in the conclusions of clauses. Instead, they can be assumed, but are 
constrained directly or indirectly by a set  IC of integrity constraints.  
 Thus an ALP framework <L, Ab, IC> consists of a logic program L, a set of 
abducibles Ab, and a set of integrity constraints IC. The predicates in the conclusions 
of clauses in L are disjoint from the predicates in Ab. An atom whose predicate is in 
Ab is called abducible. In LPS, the abducible atoms represent actions and events, and 
the integrity constraints represent reactive rules (or policies). 
 In LPS, we use integrity constraints for reactive rules and restrict them to the form 
condition → conclusion, where condition and conclusion are conjunctions of atoms, 
and all the variables occurring in condition are universally quantified over the 
implication, and all variables occurring only in the conclusion are existentially 
quantified over the conclusion. For simplicitly, we restrict logic programs to Horn 
clauses [11]. This restriction has the advantage that Horn clauses have a unique 
minimal model [5]. The restriction can be relaxed in various ways, as we will discuss 
later. 
 
Definition 1. Given an ALP framework <L, Ab, IC> and a conjunction of atoms C 
(which can be the empty clause), a solution is a set of atomic sentences ∆∆∆∆ in the 
predicates Ab, such that both C and IC are true in the minimal model of L ∪∪∪∪ ∆∆∆∆.  �  
 
This semantics is one of several that have been proposed for ALP and for integrity 
constraints more generally. It has the advantage that it provides a natural semantics for 
LPS. In LPS, the analogue of the minimal model of L ∪∪∪∪ ∆∆∆∆  is the sequence of database 
states extended by the logic programming component of LPS. The analogue of C and 
IC being true in the minimal model is the truth of the initial goals and reactive rules. 
 The ALP agent model [12] embeds the IFF [8] proof procedure for ALP in an 
observation-thought-decision-action cycle, in which abducible atoms Ab represent an 
agent’s observations and actions, logic programs L  represent the agent’s beliefs, and 
integrity constraints IC represent the agent’s goals. Logic programs give the pro-
active behaviour of goal-reduction procedures, and integrity constraints give the 
reactive behaviour of condition-action-and-goal rules. However, goals and beliefs also 
have a declarative reading, inherited from the semantics of ALP. The ALP agent cycle 
generates a sequence of actions in the attempt to make an initial goal and the integrity 
constraints true in the agent’s environment.  
 In ALP agents, the agent’s environment is an external, destructively changing 
semantic structure. The set ∆∆∆∆, on the other hand, is the agent’s internal representation 
of its interactions with the environment. This internal representation is monotonic in 
ALP, in the sense that observations and actions are time-stamped and state 
representations are derived by an action theory, such as the situation or event calculus. 
In contrast, in production systems, in many agent systems and in LPS, the 
environment is simulated by an internal, destructively changing database. In LPS, this 



 

 

database can be viewed as a Kripke-like model, transformed into a single situation-
calculus-like model. 

3 LPS Language – Informal Description 

In this section we give an informal description of the LPS language, and in the next 
section we define the language and its internal, state-based representation. 

3.1    The Database  

The LPS semantics is defined in terms of a minimal model associated with a sequence 
of databases state transitions W0, Ob0, a0, …, Wi, Obi, ai…where the Wi represent the 
successive states of the database, the Obi represent a set of observations, and the ai 
represent the agent’s actions. 
 The databases Wi represent the agent’s beliefs about the current state of the 
environment. These correspond to the extensional predicates of a deductive database, 
e.g.  customer(john-smith), spent-to-date(john-smith, 500). Because the transition 
from Wi to Wi+1 is implemented by destructive assignment, the facts in Wi are written 
without state arguments. This means that the facts that are not affected by the 
transformation persist without being copied explicitly from one state to the next.  
 In addition to extensional predicates, which represent database states explicitly, 
there are intentional predicates defined by clauses Lram. For example: 
 

status(X, gold) ← spent-to-date (X, V): 500≤V. 

status(X, new) ← spent-to-date (X, V): V <500. 

 

Here spent-to-date is an extensional predicate, which changes directly as the result of 
actions, such as take-payment, and status is an intensional predicate, which changes as 
a ramification of changes to the predicate spent-to-date.  
 The state-independent predicates are defined by ordinary logic programming 
clauses in Lstateless. For example: similar(X, Y) ← cd(X) ∧ dvd(Y).   
 
3.2 The Action Theory 
State transitions are defined by a set of action clauses A. The clauses in A are divided 
into clauses Apre defining the preconditions and Apost defining the post-conditions of 
atomic actions. These have the form: 
  initiates(a, p) ← init-conditions 

terminates(a, p) ← term-conditions 
precondition(a, q) ← pre-conditions 

where a represents an atomic action, p represents an extensional predicate and q 
represents an intensional, extensional or state-independent predicate. The first two 
types of clauses are in Apost, and the last type of clause is in Apre. The conditions init-
conditions and term-conditions are qualifying conditions, and together with pre-
conditions are formulas that are checked in the current state. For example: 

initiates(take-payment(X, ID, Value), spent-to-date(X, New)) ←  

spent-to- date(X, Old) ∧  New = Old + Value. 

terminates(take-payment(X, ID, Value), spent-to-date(X, Old)) ←  

spent-to-date(X, Old). 

An action a can be executed in state Wi provided that all of its precondions hold. This 
is determined by using the action theory to identify all the predicates q that should 



 

 

hold, and then checking that all such q do indeed hold in the current state Wi extended 
by means of the intensional and stateless predicates, as determined by Lram and 
Lstateless. Not every action needs to initiate or terminate database facts. In particular, the 
LPS agent can execute external actions, which have no impact on the database.  
 For simplicity and uniformity, we treat observations as external events that 

initiate and terminate fluents. Their postconditions are included in Apost. For example: 

 initiates(login(X), logged-on(X))             terminates(logout(X), logged-on(X)). 

Because observations only happen if they can happen, there is no need to include their 
preconditions in Apre. It is important to note that action theories are not used for 
planning, but only to perform the state transitions associated with the agent’s actions 
and external events. We use planning clauses for planning. 
  

3.3    Goals  
In addition to the changing state of the database, the LPS operational semantics 

maintains an associated changing set of goal clauses Gi, each of which can be regarded 

as a partial plan for achieving the initial goals G0 and the additional goals generated by 

the LPS cycle. These additional goals come from the conclusions of reactive rules. 

Both the initial goals and the additional goals are reduced to sub-goals by the logic 

programs used to define intensional predicates, macro-actions, stateless predicates and 

planning rules. Goals coming from different reactive rules can be solved independently 

and concurrently. 

 The intended semantics of goals is that, for every Gi, one of the goal clauses in Gi 

should be true in the model that is generated by the LPS cycle. G0 may contain only the 

empty clause, as is typical of production systems. Informally speaking, the cycle 

succeeds in state n, if Gn contains the empty clause.  However, the cycle does not 

terminate when it succeeds, because future observations may trigger future goals.    

 Initial goal clauses can contain actions, fluents, stateless predicates, and any of the 

logical connectives in the language, but not events. For example the goal clause 

    promotional-offer(Item): discount(Item, 20%, NewPrice); advertise(Item, NewPrice)  

requires that a promotional item is determined and discounted by 20%, and then the 

item and its new price are advertised.  

3.4    Reactive rules 

The set P of reactive rules has the same form condition→ conclusion and the same 
implicit quantification as ALP integrity constraints, where condition is a conjunction 
of atoms and conclusion has the same form as a goal clause. Reactive rules are 
executed by checking whether the condition holds in the current state of the database 
Wi, and if it does, then the conclusion is added to every goal clause in Gi. The 
condition can also include a single atom representing an atomic action executed in the 
last cycle and any number of atoms representing the last set of observations. Thus P 
can include the event-condition-action rules of active databases. For example: 

 take-payment(X, ID, Value) : Value≥50 →issue-sport-voucher(X, ID). 

3.5    Macro-actions 

It would be possible to write agent programs using reactive rules alone, restricting the 
conclusions of reactive rules to atomic actions, and to extensional and intensional 
predicates that are checked in the current state as implicit consequences of the agent’s 
actions or as serendipitous consequences of external events. Such reactive rules would 



 

 

be sufficient for implementing purely reactive agents. However, macro-actions and 
planning rules in LPS make it possible to implement agents with more 
deliberative/proactive capabilities. 
 Macro-actions are complex actions defined in terms of simpler (atomic and 
macro-) actions and fluents. Macro-actions, defined by the set of clauses Lmacro, are 
like transactions in TR Logic and complex actions in Golog. Examples were given in 
section 1.1. 

3.6 Planning clauses 

Agent programs written using only reactive rules and definitions of macro-actions 
achieve fluent goals only emergently and implicitly. Planning clauses allow programs 
to be written to achieve extensional fluent goals explicitly. To ensure that the agent’s 
beliefs are true with respect to the action theory that maintains the database, we impose 
the restriction that the last condition in a planning clause is an atomic action that 
initiates the conclusion fluent, as determined by the action theory. Lplan represents such 
plans for achieving future states of the database. For example: 

have(Gift)←is-Store(Store): sells(Gift,Store): goto(Store); purchase(Gift, Store).  

Note that that the conclusions of plans represent the motivations of the agent’s actions, 
in contrast with the action theory, which represents all the consequences of the agent’s 
actions. For example, here the action theory may include clauses specifying other 
consequences of purchase(Gift, Store), for example that the agent’s financial 
resources will be reduced by the amount of the Gift.  
 Thus the planning clauses, together with the macro-action definitions implement 
planning from second principles, using pre-compiled plan schemata. However, 
planning clauses can also be used to implement planning from first principles, by 
including a planning clause of the form:  
   p ←init-conditions: pre-conditions1: q1: ….: pre-conditionsn: qn: a 
for every set of clauses  
  initiates(a, p) ← init-conditions 
   precondition(a, q1) ← pre-conditions1 
   …. 
   precondition(a, qn) ← pre-conditionsn 
where the qi are all the preconditions of a.  
 Whether the planning clauses are used for planning from first principles or 
planning from second principles, they share with classical planning the repeated 
reduction of fluent goals to fluent and action sub-goals. Because LPS is neutral with 
respect to search and action selection strategies, different strategies for interleaving 
planning and execution can be implemented. At one extreme, as in classical planning, 
plans can be fully generated before they are executed. At the other extreme, actions 
can be executed as soon as they are generated in a partial plan. 
 We now define the LPS language formally. 

4    LPS Language – Formal Description 

The vocabulary of LPS is divided into fluent, action, and auxiliary predicates. The 
fluent predicates consist of extensional and intentional predicates. The action 
predicates consist of atomic, macro-actions, and observations of external events, in the 
sets A, M and Ob respectively. The auxiliary predicates consist of “ordinary” stateless 
predicates and the predicates initiates, terminates, precondition in the action theory. 
All these sets of predicates are mutually exclusive. 



 

 

 The LPS framework presented in this paper employs a stateless surface syntax, 
which is syntactic sugar for an underlying internal syntax with explicit state arguments 
(which specify the semantics of the surface syntax). We use the internal syntax when 
describing the operational and the model-theoretic semantics later in the paper. Now 
we describe both the surface syntax and its semantics.   
 The surface syntax of all LPS components is defined in terms of sequences of 
predicates, where consecutive predicates are linked by : or ;. The syntax of sequences is 
defined recursively. We take the base case to be the empty sequence, which is also the 
empty clause, and we write it as true. If P is a predicate and S is a sequence, then P:S 
and P;S are sequences. 
 Below, where it is clear from the context, we use the terminology (fluent, stateless, 
atomic action, macro-action, event, extensional, intentional) predicate to mean an 
atom with such a predicate. The initial goal G0 is a set of goal clauses, each of which 
is a sequence with no events. Other goals Gi, derived in the LPS cycle are sets of 
clauses expressed in the internal syntax with state arguments. They do not appear in 
the surface syntax.  
 In the internal syntax, goal clauses are conjunctions of atoms, and the goals Gi 
represent disjunctions of goal clauses. These goals have a search tree structure, which 
is not apparent in the set representation. As in normal logic programming, other 
representations, including search tree and and-or tree representations are possible. For 
simplicity, we do not explore these other representations in this paper. 
 
 Lstateless clauses have the form:    P ← P1:P2:… :Pn, 0≤n, where P and each Pi are 
stateless predicates.  
 Lram clauses have the form:    P ← P1:P2:… :Pn, 1≤n,  where P is an intensional 
predicate, each Pi is a fluent or stateless predicate and at least one Pi is a fluent.  
 Lmacro  clauses have the form: M ← S, where M is a macro-action predicate and S is 
a sequence containing at least one fluent or action predicate, and no event.  
 Lplan clauses have the form: P ← S where P is an extensional predicate, and S is a 
sequence containing no event, and ending in an atomic action. 
 P reactive rules have the form: [Evt1∧ Evt2∧ …∧ Evtn∧ A]: Q1:Q2:… :Qm → S  
where S is a non-empty sequence, containing no event, and each Qi is a fluent, or 
stateless predicate, A is an atomic action, and each Evti is an event. All Evti and A may 
be absent, in which case 1 ≤ m, otherwise 0 ≤ m.  
 A clauses have the forms : initiates(a, p) ← P1:P2:… :Pn  
   terminates(a, p) ← P1:P2:… :Pn  
   precondition(a, q) ← P1:P2:… :Pn  
where each Pi is a fluent or stateless predicate, and 0≤n. 
 
The semantics of each formula F of LPS, including predicates, goals, rules, clauses and 
sequences, is denoted by F*. Either F is a stateless predicate, or F* can be written in 
the form F*(T1, T2), where T1 and T2 are as explained below. The semantics of an 
atomic formula P is given by: 
 

true is a stateless predicate, true* is true. 
If P is a stateless predicate, then P* also written P*(T)  is P. 
If P is a fluent, then P* also written P*(T, T) is P(T). 
If P is an atomic action or an event  
then P* also written P*(T, T+1) is P(T, T+1). 



 

 

If P is a macro-action, then P* also written P*(T1, T2) is P(T1, T2). 
 

Sequences have a similar semantics to predicates, either as stateless sequences or with 

two state arguments, which can be identical. The semantics of sequences is defined 

recursively, with the empty sequence having the semantics true. 

 

Let P be a predicate and S a sequence, with semantics P* and S* respectively. 

  Let F be P:S, where neither P nor S is stateless. 

Then F*(T1, S2) is P*(T1, T2) ∧ S*(S1, S2) ∧ T2 = S1. 
Let F be P;S where neither P nor S is stateless. 
Then F*(T1, S2) is P*(T1, T2) ∧ S*(S1, S2) ∧ T2 ≤ S1. 
Let F be P:S or P;S. Then: 
If both P and S are stateless, then  F* is P*∧ S* and stateless.  
If P is stateless and S is not, then F*(T1, T2) is P* ∧ S*(T1, T2). 
If S is stateless and P is not, then F*(T1, T2) is P*(T1, T2) ∧ S*. 
 

The semantics of the initial goal G0 is the semantics of its sequences. All the variables 
in G0 (and subsequent Gi) are existentially quantified. 
 
The semantics of Lram clauses    P ← P1:P2:… :Pn is   P(T) ← P1(T)∧P2(T)∧…∧Pn(T). 
The semantics of Lmacro  clauses M ← S is    M(T1, T2) ← S*(T1, T2). 
The semantics of Lplan clauses   P ← S is  P(T2) ← S*(T1, T2). 
 
 Note that these clauses do not contain any analogue of the frame axiom(s) in the 
situation calculus. Persistence (or inertia), which is formalised by frame axioms, is 
obtained in LPS implicitly through the maintenance of the current state of the database, 
without the computational overheads of reasoning with frame axioms.  
 
The semantics of reactive rules [Evt1∧ Ev2∧ …∧ Evtn∧ A]: Q1:Q2:… :Qm → S  is 
 [Evt1(T-1, T) ∧... ∧ Evtn(T-1, T) ∧ A(T-1, T)] ∧ Q1(T) ∧ Q2(T) ∧…∧ Qm(T) → S*  

if S is stateless, and [Evt1(T-1, T) ∧... ∧ Evtn(T-1, T) ∧ A(T-1, T)] ∧ Q1(T) ∧ Q2(T) 
∧…∧ Qm(T) → S*(T1, T2) ∧ T ≤ T1 otherwise. 
 

The conditions of reactive rules do not contain macro-actions, because the sequence of 
states from T1 to T2 associated with the semantics M(T1, T2) of a macro-action M is 
generally not accessible in the current state T of the database. 
 
The semantics of A clauses: 
 
initiates(a, p) ← P1: P2: …: Pn is initiates(a, p, T) ← P1(T) ∧ P2(T) ∧…∧ Pn(T) 
terminates(a, p) ← P1: P2: …: Pn is terminates(a, p, T) ← P1(T) ∧ P2(T) ∧…∧ Pn(T) 
precondition(a, q) ← P1: P2: …: Pn is precondition(a, q, T)←P1(T) ∧ P2(T) ∧...∧ Pn(T) 
 
Finally if S is a set of formulas then S* is the set of all F* for F in S. 
 
Note that these syntax and semantics impose the restriction that no two actions 
(whether from A or M) have the same pair of state arguments. This is because, for 
simplicity, the LPS operational semantics executes at most a single action in each 
cycle/state. Because the operational and model-theoretic semantics of LPS are both 



 

 

defined for the internal semantics, it is possible to define other surface syntaxes and to 
mix state-based and stateless syntaxes. The syntax chosen for this paper can be 
extended in several ways, but has the advantage of simplicity.  
 
5    The Operational Semantics 
 
The operational semantics manipulates the database by adding and deleting 
extensional predicates. However, the model-theoretic semantics interprets the facts in 
state Wi as containing the implicit state argument i. We use the notation W*i  when we 
need to refer to facts containing explicit state arguments:     W*i = {p(i) : p ∈ Wi}.    
 Actions and events update the database from one state to the next, as specified in 
the LPS cycle below. However, for the execution of an action a to be attempted all of 
its preconditions must hold in the current state of the database Wi.  
 
Definition 2. An action a is executable in state Wi if and only if for every 
precondition(a, q, i) that holds in W*i ∪  A* ∪  Lram* ∪  Lstateless ,   
q holds in W*i ∪ Lram* ∪  Lstateless . �  
 
In the LPS cycle, when an action is chosen for execution, all of its arguments (other 
than state arguments) need to be variable-free (a safety requirement). In addition, the 
selection function and search strategy need to be timely, as defined below.  
 
Definition 3. A selection function is safe if and only if, when it selects an action, the 
action is ground (except possibly for state variables). A selection function is timely if 
and only if, when it selects an action a(t, t+1) in a goal clause C, then C contains no 
other atom which is earlier in the same sequence in C. A search strategy is timely if 
and only if, when it resolves an extensional atom in a goal clause C with the database, 
then C contains no other atom which is earlier in the same sequence in C.   �  
 
Note that the selection function is not restricted to selecting predicates in the sequence 
in which they are written. Predicates can be selected and resolved, so that planning 
and execution are interleaved. However, to ensure the existence of safe selection 
functions, LPS frameworks need to be range-restricted. We define range-restriction 
after the LPS cycle.  
 The operational semantics is a potentially non-terminating cycle in which the 
agent repeatedly observes events in the environment, updates the database to reflect 
the changes brought about by those events, performs a bounded number of inferences, 
and selects an action to execute. If there is no such action that can be executed within 
the bound or if the action is attempted and fails, then an empty action is generated. 
Similarly, if there is no observation available at the beginning of a cycle then the set 
of observations is empty.  
 The internal syntax of LPS clauses and rules includes inequalities (≤) between 
states. For the model-theoretic semantics we need a theory Ltemp that defines the 
inequality relation. However, this theory is not needed for the operational semantics, 
because timeliness and range-restriction ensure that if all other goals in a goal clause 
succeed, then all the inequalities in the goal clause are also true. So for implementation 
purposes we can assume the inequalities are deleted from the clauses and rules. This is 
equivalent to resolving inequalities with clauses in Ltemp, which always succeeds. 
 



 

 

Definition 4. LPS cycle: Let Max be a bound on the number of resolution steps to be 
performed in each iteration of cycle. Given a range-restricted LPS framework <W0 , 
G0,  A,  P, Lram, Lstateless, Lmacro , Lplan >, a safe and timely selection function s, a timely 
search strategy ∑, and a sequence of sets of observations Ob0, Ob1,…., the LPS cycle 
determines a sequence of state transitions <W0, G0>, (Ob0, a0), …, <Wi, Gi>, (Obi, 
ai)…where for all i,  0 ≤ i , Obi,  ai  and <Wi+1, Gi+1> are obtained from Obi-1, ai-1  and 
<Wi, Gi> by the following steps: 
 
LPS0. Let Obi be the set of observations made in this round of cycle. Wi is updated to 

WOi as follows:  WOi = (Wi  – {p: a∈ Obi and  terminates(a, p, i) holds in W*i ∪  
A* ∪  Lram* ∪  Lstateless }) ∪ {p: a∈ Obi and  initiates(a, p, i)  holds in W*i ∪  A* ∪  
Lram* ∪  Lstateless}.     

 
LPS1. For every instance condition σ→ conclusion σ of a rule in P* such that 

condition σ holds in WOi*  ∪ {ai-1*} ∪ Obi-1
*
 ∪Lram* ∪  Lstateless, add conclusion σ 

to every clause in Gi. Let GPi
  be the resulting set of goal clauses.     

 
LPS2. Using the selection function s and search strategy ∑, let GPLi  be a set of goal 

clauses, starting from GPi, derivable by SLD-resolution using the clauses in 
WOi*∪  Lram* ∪ Lplan* ∪ Lmacro* ∪ Lstateless  such that one of the following holds: 

   
 LPS2.1 No goal clause containing an executable action is generated within the 

maximum number, Max, of resolution steps. This includes the case of an empty 
clause being generated. Then Gi+1 = GPLi , Wi+1  = WOi, and ai is the empty action 
φ (an action that will always succeed, but has no effect on the database). Cycle will 
proceed into further rounds because further observations are possible. (An agent 
cycle must be perpetual; it never stops, because there can always be observations.) 

  
LPS2.2  At least one goal clause whose selected literal is an executable action is 
generated within the maximum number, Max,  of resolution steps.  
 
LPS2.2.1 Then one such action a(T,T+1) in a goal clause C in GPLi  is chosen for 
execution by the search strategy ∑. Note that a(T, T+1)  might have been 
generated and selected in an earlier cycle, but not have been executable before. 
Moreover, even if it was selected and executable before, the search strategy might 
have chosen some other action. Moreover, it might have been executed and failed. 
It might even have been executed before and succeeded, but might need to be 
executed again, because later goals, dependent upon it, have failed. Note T can be 
a constant = i or a variable. 
 
LPS2.2.2 The action a(T,T+1) is executed. If the action fails, then Gi+1 = GPLi , 
Wi+1  = WOi, and ai is the empty action φ. If the action succeeds, then ai is a(i, i+1). 

  Gi+1 = GPLi ∪  C’, where C’ is the resolvent of C with a(i, i+1).  
 Wi+1 = (WOi  – delete(a)) ∪ add(a) where 

 delete(a) = {p: terminates(a, p, i) holds in WO*i ∪  A* ∪  Lram* ∪  Lstateless }  
 add(a)    = {p: initiates(a, p, i)    holds in   WO*i ∪  A* ∪  Lram* ∪  Lstateless }.     �  

 
The LPS cycle is an operational semantics, not an efficient proof procedure. However, 
there are many refinements that would make it more efficient. These include the 



 

 

deletion of subsumed clauses (including all other goal clauses, once the empty goal 
clause has been generated), as well as the deletion of clauses containing fluents or 
actions whose state argument is instantiated to a state earlier that the current state. 
 
Definition 5. The cycle succeeds in state n if and only if Gn contains an empty clause 
and  GPn

 =Gn. �    
 
Definition 6. An LPS framework <W0, G0,  A,  P, Lram, Lstateless, Lmacro, Lplan> is range-
restricted if and only if all rules in P and all clauses in A, Lram, Lstateless, Lmacro, Lplan 
and G0 are range-restricted, where: 
 A sequence S is range-restricted if and only if every variable in an atomic action in 
S occurs earlier in the sequence. 
 A clause conclusion ← conditions in Lram, Lstateless, Lmacro , Lplan is range-restricted 
if and only if conditions is range-restricted and every variable in conclusion occurs in 
conditions. 
  A clause conclusion ← conditions in A, where conclusion is initiates(a, p), 
terminates(a, p), or precondition(a, p), is range-restricted if and only if every variable 
in p occurs either in conditions or in a. 
  A rule condition → conclusion in P is range-restricted if and only if every 
variable occurring in an atomic action a in conclusion, occurs either in the condition 
or in an atom earlier than a in the conclusion.    �    
 
6    Model-theoretic Semantics 
The model-theoretic semantics requires a Horn clause definition Ltemp of the inequality 
relations. Any correct definition will serve the purpose including, for example: 

0 ≤ T  S +1 ≤  T +1 ← S ≤  T.  
 

Every set Sn of sentences W0* ∪ …∪ Wn* ∪ {a0*, …, an-1*}∪ Ob0
*
 ∪…∪ Obn-1

*
 ∪ 

Lstateless ∪  Lram* ∪ Ltemp ∪ Lmacro*  is a Horn clause logic program. Therefore, Sn has a 
unique minimal model Mn. This model is like a Kripke structure of possible worlds Mi

 

= Wi ∪ Lstateless ∪  Lram embedded in a single model Mn, where the actions and 
observations {(Ob0, a0), …, (Obn-1, an-1)} determine the transition relation from one 
possible world to another. 
  
6.1 Soundness  
To prove the soundness of the LPS cycle, Lplan needs to be compatible with the action 
theory A. Compatibility ensures that the clauses in Lplan* are true in all Mn. 
 
Definition 7.  Lplan is compatible with A if for every clause in Lplan of the form  p ← S 
there exists an instance of a clause in A of the form initiates(a, p) ← P1: P2: …: Pn 
such that S* ∪ Lstateless ∪  Lram* ∪ Ltemp    entails    (P1: P2: …: Pn)*.                �        
                        
It is easy to satisfy this condition, and all the examples in this paper, if done in full 
will have this property. Note that we can plan to achieve intentional atoms by 
combining such clauses in Lplan with clauses in Lram  and Lmacro. 
  
Theorem. Given a range-restricted LPS framework <W0 , G0,  A,  P, Lram, Lstateless, 
Lmacro, Lplan>, a safe and timely selection function s, a timely search strategy ∑, and a 
sequence of sets of observations Ob0, Ob1,…., Obn-1, if Lplan is compatible with A and 



 

 

the cycle succeeds in state n, then some clause C0 in G0* is true in Mn and all the rules 
in P* are true in Mn.   
 
Sketch of proof: If the cycle succeeds in state n, then Gn contains the empty clause. 
The proof of this empty clause can be traced backwards to a sequence of clauses, 
starting with some C0 in G0* : C0 ,…,Ci, ….,Cm = true, where Ci+1 is obtained from Ci 

in one of two ways: 
 

1. In LPS1, Ci+1 is Ci conjoined with conclusion σ for every instance  
condition σ→ conclusion σ of a rule in P* such that condition σ holds in 
WOi*  ∪ {ai-1*} ∪ Obi-1

*
 ∪ Lram* ∪  Lstateless. 

 
2. Ci+1 is obtained by SLD-resolution between Ci  and some clause C  in WOi*∪  

Lram* ∪ Lplan* ∪ Lmacro* ∪ Lstateless  in LPS2, by resolution with aj* in 
LPS2.2.2, or by implicit resolution of inequalities with clauses in  Ltemp.   
 

It suffices to prove the lemma: All the Ci are true in Mn. The lemma implies that C0 is 
true in Mn. Together with the condition GPn

 =Gn, the lemma also implies that all the 
rules in P* are true in Mn.  
 
 Proof of lemma: The lemma follows by induction, by showing the base case Cm = 
true is true in Mn and the induction step if Ci+1 is true in Mn, then Ci is true in Mn. The 
base case is trivial. For the induction step, there are two cases: In case 1 above, if Ci+1 
is true in Mn, then Ci is true in Mn, because if a conjunction is true then so are all of its 
conjuncts. 
 In case 2 above, the clauses Ci+1 and Ci are actually the negations of clauses in 
ordinary resolution. So, according to the soundness of ordinary resolution, ¬Ci+1 is a 
logical consequence of ¬Ci and C. Therefore, if both C and Ci+1 are true in Mn, then Ci 

is true in M. But any clause C in WOi*  ∪ {ai-1*} ∪  Lram* ∪ Lmacro* ∪ Lstateless ∪  Ltemp 
is true in Mn by the definition of Mn. It suffices to show that all clauses in Lplan* are 
also true in Mn. But this follows from the compatibility of Lplan with A.        �   
   
This theorem is restrictive in two ways. First, it considers only the first n sets of 
observations. Second, it considers only the case in which the actions needed to solve 
all the goals in G0 and introduced by the reaction rules are successfully executed by 
state n. Both of these restrictions can be liberalised, mainly at the expense of 
complicating the statement of the theorem, but the proofs are similar. We omit the 
theorems and their proofs for lack of space. However, it is worth noting that to deal 
with potentially non-terminating sets of observations, we need minimal models Mωωωω 
determined by the potentially infinite Horn clause program W0* ∪ …∪ Wn* ∪ …{a0*, 
…, an*,…}∪ Ob0

*
 ∪…∪ Obn

*∪… Lstateless ∪  Lram* ∪ Ltemp ∪ Lmacro*. 
 Note also that LPS can be extended to include negation in both the conditions and 
conclusions of reaction rules and in the conditions of clauses. The most obvious such 
extension is to the case of locally stratified programs with their perfect models. 
 
6.2 Completeness 
Because of the completeness result for the IFF proof procedure [8] for ALP, it might 
be expected that a similar completeness result would hold for LPS: Given a minimal 
model M of some clause C0 in G0 and of all the rules in P, it might be hoped that there 



 

 

would exist some search strategy ∑ that together with the LPS cycle could generate 
some related model M’, possibly determined by a subsequence of the actions of M. 
Unfortunately this is not always possible. The LPS cycle will not generate models that 
make rules true by making their conditions false. For example: 
 P: q → a  A: terminates(b, q) W0 : {q} 
 
Here a and b are actions. There is a minimal model corresponding to the sequence of 
actions b, a, but the LPS cycle can only generate the non-terminating sequence a, a, …  
 This problem can be dealt with in the manner of the IFF proof procedure, by 
replacing every reactive rule of the form p : q → a with  rules of the form  p: q → a ∨ 
b∨ c, where b and c are atomic actions such that terminates(b, q) and terminates(c, p). 
We do not consider completeness further here for lack of space.  
 
6.3 Relationship with the situation calculus and event calculus 
The minimal model M generated by LPS is both like a modal possible worlds 
semantic structure and like a minimal model of the situation calculus represented as a 
logic program. Ignoring observations and simplifying the situation calculus 
representation, the frame axioms have the form: 
 
  P(T+1) ← P(T) ∧ A(T, T+1) ∧ ¬ terminates(A, P, T) 
 
for every extensional predicate P. In LPS, these axioms are true in M, but are not used 
to generate M. Instead of reasoning explicitly that most fluents P that hold in state T 
continue to hold in T+1, destructive assignment is used to update only those fluents 
explicitly affected by A. 
 The use of destructive assignment, as in LPS, to implement the frame axiom, can be 
exploited for other applications, such as planning, provided only one state is explored 
at a time. In particular, for classical planning applications, the LPS approach can be 
generalised to store the complete history of actions and events leading up to a current 
database state. The database can be rolled back to reproduce previous states, and rolled 
forward to generate alternative databases states. However, these possibilities are topics 
of research for the future. 
 
7 Related and Future Work  
 
LPS provides an agent framework that combines a model-theoretic semantics with a 
state-free syntax and a database maintained by destructive assignment. To the best of 
our knowledge, this combination is novel. Most agent frameworks have an operational 
semantics, but no declarative semantics. Some logic-based frameworks like Golog, 
ALP agents and KGP [10] have a model-theoretic semantics, but represent the 
environment using time or state and manipulate the representation using the situation 
or event calculus. Metatem [6], on the other hand, is a logic-based agent language 
with a Kripke semantics for modal logic sentences resembling production rules. 
Because of the Kripke-like semantics of LPS, it would be interesting to explore a 
similar modal syntax for LPS. 
 Costantini and Tocchio [3] also employ a logic programming approach with a 
similar model-theoretic semantics, in which external and internal events transform an 
initial agent program into a sequence of agent programs. The semantics of this 



 

 

evolutionary sequence is given by the associated sequence of models of the sequence 
of  programs. In LPS, this sequence is represented by a single model. 
 FLUX [15] is a logic programming agent language with several features similar to 
LPS, including the use of destructive assignment to update states. In FLUX, these 
states are not stored in a database as in LPS, but in a reified, list-like structure. FLUX 
employs a sensing and acting cycle, which it uses to plan and execute plans for 
achievement goals.  
 Thielscher [17] provides a declarative semantics for AgentSpeak by defining its 
cycle and procedures by means of a meta-interpreter represented as a logic program. 
Like LPS, the resulting agent language incorporates a formal action theory. However, 
unlike LPS, the language does not distinguish between different kinds of procedures, 
according to their different functionalities. LPS, in contrast, distinguishes between 
reactive rules, planning rules, macro-actions and ramifications, representing different 
kinds of AgentSpeak-like procedures in different ways. On the other hand, the agent 
architecture of Hayashi et al. [18] separates the representation of reactive rules and 
planning rules, as in LPS. 
 There is also related work, combining destructive assignment and model-theoretic 
semantics in other fields, not directly associated with agent programming languages. 
EVOLP [1], in particular, gives a model-theoretic semantics to evolving logic 
programs that change state destructively over the course of their execution. Several 
other authors, including [7, 16] obtain a model-theoretic semantics for event-
condition-action rules in active database systems, by translating such rules into logic 
programs with their associated model theory.  
 Perhaps the system closest to LPS is Transaction Logic [2], which gives a Kripke-
like semantics for transactions (which are similar to macro-actions), represented in a 
state-free syntax. TR Logic also gives a semantics to reactive rules, which involves 
translating them into transactions. In LPS, the Kripke-like semantics is transformed 
into a single situation-calculus-like model, in the spirit of Golog. This transformation 
makes it possible to apply the general-purpose semantics of ALP to the resulting 
minimal model. In contrast, the semantics of TR Logic and Golog are defined 
specifically for those languages. 
 Because LPS is based on the ALP agent model and the ALP model is more 
powerful than LPS, it would be interesting to extend LPS with some additional ALP 
agent features. These features include: partially ordered plans, more complex 
constraints on when actions should be performed and when fluent goals should be 
achieved, concurrent actions, conditionals in the conditions of clauses, active 
observations, a historical database of past actions and observations, abduction to 
explain observations that are fluents rather than events, and integrity constraints that 
prohibit actions rather than generate actions. 
 It would also be useful to study more closely the relationship between LPS and 
other agent models with a view to using the LPS approach to provide those languages 
with model-theoretic semantics. In addition, because the LPS cycle can be viewed as a 
model generator, which makes the reactive rules true, it would be valuable to explore 
the relationship with model checking and model generation in other branches of 
computing.  
 In this paper we have focused on the theoretical framework of LPS. However, the 
ultimate test of the framework is its value as a practical agent language. For this 
purpose, we are developing further enhancements and are experimenting with an 
implementation. 
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