CHAPTER 1

Introduction

Logic studies the relationship of implication between assumptions and
conclusions. It tells us, for example, that the assumptions

Bob likes logic. and
Bob likes anyone who likes logic.

imply the conclusion
Bob likes himself.
but not the conclusion
Bob only likes people who like logic.

Logic is concerned not with the truth, falsity or acceptability of
individual sentences, but with the relationships between them. If a
conclusion is implied by true or otherwise acceptable assumptions, then
logic leads us to accept the conclusicon. But if an unacceptable or false
conclusion is implied by given assumptionsg, then logic advises us to
reject at least cne of the assumptions. Thus, if I reject the conclusieon
that Bob 1likes himself then I am logically compelled to abandon either
the assumption that Bob likes logic or the assumption that Bob likes
anyone who likes logic.

To demcnstrate that assumptions imply a conclusion, it is helpful to
construct a procf consisting of inference steps. For the proof to be
convincing, the individual inference steps need to be direct and obvious
and should fit together correctly. For this purpose, it is necessary that
the sentences be unambiguous and it is useful 1If the grammar of the
sentences is as simple as possible. The requirement that the language of
proofs be both unambiguous and grammatically simple motivates the use of
a symbolic language rather than a natural language such as English.

The symbolic language of the clausal form of logic, used in the first
nine chapters of this book, is exceedingly simple. The simplest sentences
are atomic sentences which name relationships between individuals:

Bob likes logic.
John likes Mary.

John is 2 years older than Mary.

{The underlined words are part of the names of relationships. Those not
underlined are names of individuals.) More complex sentences express that

2 Chapter 1: Introduction

atomic conditions imply atomic conclusions:
Mary likes John if John likes Mary.
Bob likes x if x likes logic.

Here % is a vwvariable which names any individuzal. Sentences can have
several joint conditicns or several alternative conclusiocns:

Mary likes John or Mary likes Bob if Mary likes X.
(Mary likes John or Bob if she likes anything at all).

x likes Bob if x is a student of Bob and x likes logic.

Sentences are also called clauses. 1In general, every clause expresses
that & number (possibly zero) of Jjoint conditions imply a number
(possibly zero) of alternative conclusions, Conditions and conclusions
express relationships amcng individuals. The individuals may be fixed and
named by words such as

Bob, John, logic or 2

called (somewhat confusingly, perhaps) constant symbols, or they may be
arbitrary and named by variables such as

U, v, w, X, ¥, 2.

The use of function symbols to construct more complex names such as

ded (John) (i.e. John's dad)
fraction(3,4) {i.e. the fractiocn 3/4)
will be considered later.

This informal outline of the clausal form of logic will be elaborated
and slightly modified in the next section of this chapter. But the great
simplicity of clausal form compared with natural languages should already
be apparent. It is surprising therefore that clausal form has much of
the expressive power of natural language. In the last four chapters of
the book we shall investigate some of the shortcomings of clausal form
and propose ways of overcoming them.

The family relationships example and clausal form

It is convenient to express the atomic formulae which serve as the
conditions and conclusions of clauses in a simplified, if somewhat less
natural, form. The name of the relation is written in front of the atomic
formuls, followed by the sequence of names of individuals to which the
relation applies. Thus we write Father (Zeus,Ares) instead of Zeus is
father of Ares and Fairy-Princess(Harmonia) instead ¢f Harmeonia is a
fairy princess. Here, strictly speaking, "Fairy-princess" names a
property of individuals rather than a relation among individuals.
However, in order to simplify the terminology, we shall include
properties (also called predicates) when we speak of relations.

The family relaticnships example and clausal form 3

Moreover,to mix terminolegy thoroughly we shall refer to names of
relations as predicate symbols.

We use the arrow <—, read "if", to indicate implication, writing, for
example,

Female(x) <— Mother (x,y)
to express that
x is female if x is mother of y.
To simplify notation and the inference rules later on, it 1is
convenient to regard all clauses as implications, even if they have no
conditions or conclusicons, Thus we write
Father (Zeus,Ares) <—

instead of
Father (Zeus,Ares) .

Implications without conclusicns are denials. The clause
<— Female(Zeus)

expresses that Zeus is not female.

The following clauses describe some of the oproperties and family
relationships of the Greek gods,

Fl Father (Zeus,Ares) <—

F2 Mother (Hera,Ares) <—

F3 Father (Ares,Harmonia) <—
F4 Mother (2phrodite,Harmonia) <—
F5 Father (Cadmus ,Semele) <—
Fé Mother (Hzrmonia,Semele) <—
F7 Father (Zeus,Dionysus) <
F8 Mother (Semele,Dionysus) <—
F9 God (Zeus) <—

F14 God (Hera} <—

Fl1 Ged (Ares} <—

Fl2 God (Aphrodite) <—

F13 Fairy-Princess{Harmonia) <—

4 Chapter 1: Introduction

The intended meaning of the clauses should bhe obvious. The following
clauses constrain, and therefore help to clarify, their meaning.

Fl4 Female(x) <— Mother (x,y}
F15 Male(x) <— Father (x,y)

Flé Parent (x,y) <— Mother (x,y}
F17 Parent (x,y} <— Father (x,y)

These clauses state that, for all x and vy,
X is female if x is mother of y,
X is male if x is father of vy,
X is parent of y if x is mother of vy, and

x is parent of y if x is father of y.

Variables in different clauses are distinct even if they have the same
name. Thus the variable x in clause F14 has no connection with the
variable x in F15. The name of a variable has significance only within
the context of the clause in which it occurs. Twe clauses which differ
only in the names of the variables they contain are equivalent and are
said to be variants of one another.

In the <clausal form, all the conditions of a clause are conjoined
together (i.e. connected by "and"), whereas all the conclusicns are
disjoined (i.e. connected by "or"). Hence the connectives "and" and "or"
can safely be replaced by commas. Commas between conditions, therefore,
are read as "and" and between conclusions are read as "or". Thus
F18 Grandparent (x,y) <— Parent(x,z), Parent(z,y)

F19 Male(x), Female(x) <— Human(x)

where x, y and z are variables, state that for all x, y and z

X is grandparent of y if x is parent of z and
Zz is parent of y,

x is male or x is female if x is human.

If several conclusions are implied by the same conditions then
separate clauses are needed for each conclusion, Similarly if the same
conclusion is implied by alternative conditions then separate clauses are
needed for each condition. For example, the sentence

Female(x) and Parent(x,y) <— Mother {x,vy)

which can be expressed directly in the standard form of logic (defined in
Chapter 1) can be expressed eguivalently by the clauses

The family relationships example and clausal form 5

Female (x) <— Mother (x,y)

Parent (x,y) <— Mother(x,y).
The two clauses are implicitly connected by "and": i.e. x is female if x
ig the mother of y and =x is the parent of y if x is the mother of y.
Similarly, the sentence

Parent (X,y} <— Mother(x,y) or Father(x,y)
can be expressed by the clauses

Parent(x,y) <— Mother {x,v)

Parent(x,y) <— Father (x,y}

X is parent of y if x is mother of y and

x is parent of y if x is father y.

Predicate symbols can name relationships among more than two

individuals. For example, the atomic formula

Parents(x,y,z}
could be used to express that

x is the father of z and y is the mother of z

i,e, Parents{x,y,z) <— Father(x,z), Mother(y,z).

A more precise definition of clausal form

We shall define the syntax (grammar} of clausal form more precisely
and at the same time indicate its correspondence with English,

A clause is an expression of the form

BleeessBy <= Apsuo. Ay

where By,...,Bp,Ay,...,A, are atomic formulae, n > @ and m > . The
atomic %ormulae BAys...shy are the joint conditions of the clause and
Bys--.¢By are the alternative conclusions. If the clause contains

the variables xj,....X then interpret it as stating that

for all XlrpewsrXg
By or ... or By 1f A; and ... and Aj.

If n = @ then interpret it as stating unconditionally that

for all XjreeerXg
By or ... or Bp.

) Chapter 1: Introduction

If m = @ then interpret it as stating that
for all Xysy.us.rXp
it is not the case that
Ayp and ... and A,.

If 1 = n = @ then write it as [0 and interpret it as a sentence which
is always false.

An atom (or atomic feormula) is an expression of the form

P(tl,...,tm)

where P is an m-place predicate symbol, t1e.-.sty are terms and
m > 1. Interpret the atom as asserting that the relation called P
holds among the individuals called Elreeasty.

A term is a variable, a constant symbol or an expression of the
form

f(tl,..-ptm)

where f is an m-place function symbol, t1rseesty are terms and m > 1.

The sets of predicate symbols, function symbols, constant symbols
end variables are any mutually disjoint sets. By convention, we
reserve the lower case letters

U,V,W,X,Y,2,
with or without adormments, for variables. The types of other kinds
of symbols can be identified by the positions they occupy in clauses.

The arrow of clausal form <— is written in the opposite direction to
that normally used in the standard form of logic. Where we write

B <— A (B if &)
it is more usual to write
A—>B (if & then B).

The difference, however, is only superficial. We use the notation B <— A
in order to draw attention to the conclusion of the clause.

The various places of a predicate symbol or function symbol are also
called its arguments. In the atom P(tl,...,tm), the first argument is £t
and the last arqument is tg.

Composite terms are needed in order to refer to infinitely many
individuals using only finitely many c¢lauses. For example, the non-
negative integers can be represented by the terms

B, s(@), s(s(@)), ..., s(s(...8{B}...0}, ...
\—/'——V'—-—-._J

n times

A more precise definition of clausal form 7

where @ is a2 constant symbol and s is a l-place function symbol (s stands
for "successor"). The term s(t) names the number which is cone larger then
the number named by the term t. It 1is the successor of t in the
succession of integers. The clauses

Numl Numb (8) <—
Num2 Numb{s{x)) <— Numb(x)
state that

is a number and

s(x) is & number if x is.

Top—down and bottom-up presentation of definitions

The definition of c¢lausal form has been presented in a top-down
manner., The first definition explains the goal concept of clause in terms
of the concept of atomic formula, (which has not yet been defined). It
becomes the new goal concept, which in the next definition is reduced to
the two =subgoal concepts of predicate symbol and term. The concept of
term is defined recursively and reduces eventually to the ceoncepts of
constant symbol, variable and function symbol. Thus the original concept
finally reduces to the four concepts of predicate symbeol, constant
symbol, variable and function symbol. It does not matter what objects
these symbols &re, provided they can be distinguished from one another
and do not get confused with the "reserved" symbols:

<— , { and)

We assume therefore that the reserved symbols are not contained within
the other symbols.

The top-down presentation of definitions has the advantage of always
being well-motivated. Its disadvantage is that, since goal concepts are
defined in terms of subgoal concepts which are not yet defined,
definitions cannot be completely understood as they are presented.

The beottom—up presentation of definitions is the opposite. It begins
with concepts which are undefined, either because they are "primitive”
and undefinable or else because they are already well understood. Then it
defines new concepts in terms of ones slready given., The definitions
terminate when the goal concept has been defined. Definitions can be
understood as soon as they are given, but the motivation cannot be
appreciated until all the definiticns have been completed.

The distinction between top-down and bottom—up applies not only to the
presentation of definitions, but also to the presentation and discovery
of proofs oand to the writing of computer programs. Proofs can be
presented in the traditional, bottom-up, mathematical manner; reasoning
forward from what 1is given, deriving new conclusions from previous ones
and terminating when the goal has been derived. Alternatively, proofs can
be presented in a top-down manner which reflects the process of their
discovery; reascning backward from the goal, by reducing goals to

8 Chapter 1: Introduction

subgoals and terminating when all the subgoals are recognised as
solvable.

Computer programs alsc can be written bottom-up, starting with
primitive programs already understood by the computer and writing new
programs in terms of old ones. At each stage the programs can be executed
by the computer and can be tested. If the low-level programs already
written cannot be put together into suitable higher-level programs, then
they have to be rewritten, Experience teaches that it is better to write
programs top-down, writing the highest-level programs first in terms of
unwritten lower-level ones. The lower-level programs are written later
and are gquaranteed to fit together properly. Moreover, the lower-level
programs later can be changed and improved without affecting the rest of
the program,

Together with the wutility of using symbolic logic to represent
information, the distinction between top-down and bottom-up reasoning is
one of the major themes of this book. It is the distinction between
analysis (top-down) and synthesis (bottom—up), between teleology (top—
down) and determinism (bottom-up). Moreover, the use of top-down
inference in preference to bottom—up inference reconciles the classical,
logical view of reasoning as it ought to be performed with the
psychological view of reasoning as it is performed by human beings in
practice.

Top-down reasoning relates the human problem-solving strategy of
reducing goals te subgoals to the method of executing computer programs
by replacing procedure calls with procedure bodies. It unifies the study
of logic with both the study of human problem-solving and the study of
computer programming.

Semantics of clausal form

Syntax deals with the grammar of sentences. Historically, it also
deals with inference rules and proofs. Semantics, on the other hand,
deals with meaning. The translation of clauses into English gives only an
informal guide to their semantics.

In natural languages we speak casually of words and sentences as
having meanings. In symbolic logic we are more careful. Any meaning that
might be associated with a predicate symbel, constant symbol, function
symbol or sentence is relative to the collection of sentences which
express all the relevant assumptions. In the family relationships
example, for instance, if F1-19 express all the assumptions, then there
iz nothing to rule out an interpretation in which the assertion

F Mother (Zeus,Ares) <—
holds. Such a possibility is consistent with the stated assumptions

F1-19, which alone determine any meaning that might be associated with
the symbols

"Mother®™, "Father", "Zeus", etc.

Semantics of clausal form g

Tc rule out the possibility F we need some additional assumption such as
F20 <— Male(x}), Female(x).
F is consistent with F1-19 but inconsistent with F1-28.

Given a set of clauses which express all the assumptions concerning a
problem-domain, to understand any individual symbol or clause it is
necessary to determine what is logically implied by the assumptions. The
meaning of a predicate symbol, such as "Mother", might be identified with
the colliection of all sentences which contain the predicate symbol and
are logically implied by the assumptions. Thus the mweaning of "Mother" in
F1-2¢ includes the denial

F* {— Mother (Zeus,Ares)
but the meaning of "Mother" in F1-19 does not.

It follows that it is unnecessary to talk about meaning at all. Alil
talk about meaning can be reexpressed in terms of logical implication.
To define the semantics of the clausal form of logic, therefore, it
suffices to define the notion of logical implication.

In the clausal form of logic, to determine that a set of assumptions
imply a conclusion we deny that the conclusion holds and show that the
denial of the conclusion is inconsistent with the assumptions. The
semantics of clausel form, therefore, reduces to the notion of
inconsistency. To determine, for example, that the conseqguence F* is part
of the meaning of motherhood as determined by the clauses F1-20, we show
that the denial of F*, namely the assertion F, 1is inconsistent with
F1-28. The reduction of semantics to the notion of inconsistency may
seem unnatural, but it has significant computational advantages.

The inconsistency of =a set of clauses can be demonstrated
"semantically” by showing that no interpretation of the set of clauses
makes them all true, or it can be demonstrated "syntactically" by
constructing 2 proof consisting of inference steps. This book is about
the syntactic, proof-theoretic method of demonstrating inconsistency.
But, becasuse clauses can be understood informally by translating them
into English or more formally by considering the interpretations in which
they are true, we shall delay the investigation of inference rules and
proofs until Chapter 3.

The semantics of symbolic logic, based upon the notion of
interpretation, is independent of the inference rules used to manipulate
expressions in the language., This distinguishes logic from the vast
majority of formalisms employed in computing and artificial intelligence.
Programs expressed in normal programming languages need to be understood
in terms of the behaviour they evoke inside a computer. The burden of
communication falls upon the programmer, who needs to express information
in machine-oriented terms. However, when programs are expressed in
symbolic logic, they can be understood in terms of their human-oriented,
natural language eguivalents. The burden of communication then falls upon
the machine, which needs to perform mechanical operations (equivalent to
inference steps} to determine whether the information expressed in a
program logically implies the existence of a solution to a given problem.
The machine needs to be 2 problem-solver. The tasks of constructing

14 Chapter 1: Introduction

proofs, executing programs and solving problems become identical.
Moreover, similar problem-solving strategies apply, whether they are
applied by human-beings to problems posed in natural language or by
machines to problems posed in symbolic logic.

Before presenting the precise, semantic definitions of inconsistency
and interpretation, we shall illustrate by examples scome of the
expressive capabilities of clausal form and some of the characteristics
of its semantics.

The fallible Greek example

To show that the assumpticns

Gl Human (Turing) <—

G2 Human (Socrates) <—

G3 Greek (Socrates) <—

G4 Fallible(x) <— Human(x)

imply the conclusion that there 1is a fallible Greek, we deny the
cenclusion

G5 <— Fallible(u}, Greek(u)

and show that the resulting set of clauses is inconsistent. Moreover, the
demonstration of inconsistency can be analysed to determine the reason
for the inconsistency of G5 with Gl-4, namely the substituticn

u = Socrates

which identifies an individual that is both fallible and Greek. In this
way the clause G5 cen be regarded as expressing the problem of finding an
individual u which is a fallible Greek. The substitution, u = Socrates,
which can be extracted from the proof, can be regarded as a solution te
the problem.

The example of the fallible Greek was first introduced to explain the
behaviour of programs written in the programming language PLANNER [Hewitt
1969]. Our intention here is just the opposite: to show that information
expressed in logic can be understood without understanding the behaviour
it evokes inside a machine.

The factorial exemple

The fallible CGreek example is not typical of programs written in
conventional programming languages. However, the factorial example is.

The factorial of @ is 1.
The factorial of x+1 is x+1 times the factorial of x.

The factorial example 11

The simplest formulation of the definition uses function symbels:

fact (x) names the factorial of x,
times(x,y) the product of x and vy,
s(x) x+1.

A Z-place predicate symbol expresses eguality. Equal(x,y) holds when x
nigT y.

Equal (fact (8}, 1) <-—
Eqgual (fact(s{x}}, times(s{x}, fact(x))) <—
To complete the definiticn, additional definitiongs are needed to

characterise "times™ and "Equal”. The following clauses are typical of
the ones which are necessary for eguality.

(1) Egual (x,x} <
{2) Equal (%x,y) <— Eqgual(x,z), Egqual(z,y)
(3) Egqual {fact (x), fact(y)) <— Equal(x,y)

To find the factorial of 2, for example, we deny that it exists:
(4) <— Equal (fact(s{s(B))), w)
But {1} and {(4) alone are inconsistent and the substitution

w = fact(s(s{(2))}

can be identified as the reason for inconsistency. Unfortunately, the
substitution is not very informative.

The problem is that the function symbols "fact", "times" and "s" allow
numbers to be referred to by many different names. The variable-free
terms

s(s(®)), s(l), s{fact(®B)), s(fact(times(d, s(@))))
all name the same number 2 and are equal to che another. The problem can
be solved if individuals are given unigue names. In this example it

suffices to employ only the constant symbol @ and the function symbel s.
The factorial and multiplication functions can be treated as relations.

Fact(x,y) holds when the factorial of x is y.
Times (x,y,z) helds when x times y is z.

Then the clauses

Factl Fact(g, s{@)) <—

Fact2 Fact({s(x), u) <— Fact(x,v), Times(s(x), v, u}

completely define the factorial relationship relative to an appropriate

definition of multiplication. The eguality relation does not appear and
its definition is unnecessary. Assume that a definition of

12 Chapter 1: Introduction

multiplication, including such clauses as
Times (@,x,8) <
Times (s{@), v, ¥} <—
etc.

is provided. To solve the problem of finding the factorial of 2, we deny
that it exists.

Fact3 <— Fact{s(s{@})), w)

The resulting set of clauses Factl-3 is inconsistent with any definition
of Times which implies the assertions

Times(s{=s(8)), s(@), s{s(B))) <«
Times (s{B), s(8), s{@)) < .

Given a demonstration of inconsistency it is possible to extract the only
substitution

w = s(s(@))
which solves the problem. In this way the definition of Fact supplemented
by a definition of Times serves as a program which can be used by a

computer to cslculate factorials. The program can be understood without
understanding how the computer works.

The universe of discourse and interpretations

In this section and the next we define the semantics of clausal form.
These sections are more rigorous than the rest of the chapter and may be
safely skimmed through on a first reading.

The two formulations of the factorial definition illustrate a general
principle of clausal writing style. To avoid problems associated with
individuals bhaving more than one name, constant symbols and function
symbols should be used sparingly. If individuals are named by unigue
variable-free terms, then the universe of discourse of a set of clauses,
which intuitively represents the collection of all individuals described
by the clauses, can be identified with the cecllection cof all variable-
free terms which can be constructed from the constant symbols and
function symbols occurring in the set of clauses, A candidate
interpretation for a set of clauses can then be regarded as any
assignment to each nh-place predicate symbol occurring in the set of
clauses of an n-place relation over the universe of discourse.

The assumptions Gl-4 of the fallible Greek problem are a simple
example. They have a small, finite universe of discourse, consisting of
the two constant symbols

"Turing" and "Socrates".

The universe of discourse and interpretations 13

To specify a candidate interpretation is to specify a relation over the
universe of discourse for each of the three predicate symbols in the set
of clauses. Each predicate symbol can be assigned four different
interpretations and therefore the set of clauses as a whole has a total
of

a%4*4 = 64

different candidate interpretations.* But only two of them make all of
the clauses G1-4 true. One of them makes all of the variable-free atoms

Human (Socrates}, Human(Turing),
Fallible(Socrates), Fallible(Turing},
Greek (Socrates), Greek(Turing)

true. The other makes the atoms

Human (Socrates), Human(Turing),
Fallible(Socrates), Fallible(Turing),
Greek (Socrates)

true hut Greek (Turing)
false.

The larger set of clauses Gl-5 has the same universe of discourse and
the same collection of 64 candidate interpretations. However, none of the
64 interpretations make all five clauses Gl-5 simultaneously true. The
two interpretations which make Gl-4 all true make G5 false. In particular
the instance

G'S <— Fallible(Socrates), Greek(Socrates)

of G5, in which u = Socrates, 1is false in both interpretations, because
the two conditions

Fallible (Socrates) and Greek (Socrates)

denied by G'5 are true in both interpretations, Since G'5 is false in
both interpretations, G5 is false also (because a clause containing
variables is true in an interpretation if and only if all its instances
are true and is false if one of its instances 1is false). Therefore G1-5
is inconsistent because there is no interpretation which makes all of its
clauses true. By analysing the proof of inconsistency it is possible to
identify the individual

u = Socrates
whose existence is inconsistently denied by the clause G5.
The semantic method of showing the inconsistency of a set of clauses,

by demonstrating that no interpretation makes all of its clauses true,
is a general method which can he used for any set of clauses. Moreover,

* The symbol "*" is used throughout this book for multiplication.

14 Chapter l1: Introduction

the interpretations which need to be considered can always be restricted
to those whose domain of individuals consists of the universe of
discourse, If the set of clauses contains no constant symbols, then it
is necessary to include in the universe of discourse a single, arbitrary
constant symbol. In this case the universe of discourse consists of all
varisble-free terms which can be constructed from the given constant
symbol symbel and any function symbols which mwight oceur in the set of
clauses,

The inclusion of an arbitrary constant symbol in the universe of
discourse, if there is none in the set of clauses, formalises the
assumption that at least one individual exists. Because of this
assumption, the clause

(1) Good (x) <—

which expresses that everything is good, implies that at least one thing
is good. Tt is inconsistent with the assumption that nothing is good

(2} <— Good(y) .

The universe of discourse consists of some single, arbitrary constant
symbol, say 4} . There are only twe candidate interpretations - one in
which

Good (-~) is true
the other in which
Good(%}) is false.

The first interpretation falsifies (2}. The second interpretation
falsifies (l). So (1) and (2) are, therefore, simultaneously true in no
interpretation and are inconsistent. Notice that the demonstration of
inconsistency does not depend on the name of the arbitrary member of the
universe of discourse. The argument is the same no matter what constant
symbol is used.

The notion of interpretation itself can be simplified. To specify an
interpretation it suffices to specify its effect on the truth or falsity
of variable-free atomic formulae. &n interpretation of a set of clauses,
therefore, can be regarded as any assignment of either one of the two
truth values

true or false
to every every variable-free atom which can be constructed from the

universe of discourse and the predicate symbols occurring in the set of
clauses.

A more precise definition of inconsistency

We are now in a position to present a more precise definition of
inconsistency.

A more precise definition of inconsistency 15

A set of clauses S 1is inconsistent if and only if it is not
censistent., It is consistent if and only if all its clauses are true
in some interpretation of S.

A clause is true in an interpretation of a set of clauses S if and
only 1if every variable-free instance of the c¢lause, obtained by
replacing variables by terms from the universe of discourse of §, is
true in the interpretation. Otherwise the clause is false in the
interpretation,

A variable-free clause is true in an interpretation I if and only
if whenever all of its conditions are true in I, at least one of its
conclusions is true in I. Eguivalently, the clause is true in I if
and only if at least one of its conditions ig false in I or at least
one of its conclusions is true in I. Otherwise, the clause is false

in I.

The precise definition of inconsistency clarifies the semantics of the
empty clause, O. Since the empty clause has neither conditions nor
conclusions it canncot possibly be true in any interpretation. It is the
only clause which is self-inconsistent. To demonstrate the inconsistency
of a set of clauses it suffices to demonstrate that it logically implies
the obviously inconsistent empty c¢lause. The empty set of clauses,
however, is conmsistent., BAll clauses which belong to it are true in all
interpretations, since it contains no clauses which can be false.

The noticns of instantiation and substitution are important not only
tor defining the semantics of clausal form but also for defining the
inference rules later on. An instance of a clause is obtained by applying
a substitution to the clause. A gubstitution iz an assignment of terms to
variables. Only one term is assigned to any given wvariable. It is
convenient to represent a substitution as a collection of independent
substitution components:

{Xl=t1, X2=t2, IEERN; xm=tm}

Bach component x; = t; of the substitution assigns a term t; to a
variable x;. The result of applying a substitution ¢ to an expression E
is a new expression E¢ which is just like E except that, wherever @
contains a substitution component x; = t; and E contains an occurrence of
the variable x;, the new expression contains an occurrence of t;. The
application of & to E replaces all occurrences of the same variable by
the same term. The expression E can be any term, atom, c¢lause or set of
clauses. Different variables may be replaced by the same term.

It follows that distinct wvariables de not necessarily refer to
distinct individuals. The assumptions

Ll Likes (Bob,logic) <—
L2 Likes{Bob,x} <— Likes(x,logic)
L3 <— Likes(x,y), Likes(y,y)

No one likes anyone who likes himself.

16 Chapter 1: Introduction

for example, are inconsistent because L1 and L2 are inconsistent with the
instance

<— Likes(Bob,Bob), Likes{Bob,Bob)

of L3 in which both x = Bob and y = Bob.

The semantics of alternative conclusions

The precise definition of inconsistency clarifies the semantics of
alternative conclusions. If a clause has several conclusions, then it
should be interpreted as stating that if all its conditions hold then at
least cne (but possibly more) of its conclusions hold. This inclusive
interpretation of "or" contrasts with the exclusive interpretation in
which "A or B" is interpreted as expressing that either one or other of A
and B holds, but not both,

The inclusive interpretation of "or" implies, for example, that the
set of assumptions

Bl Animal (x), Mineral({x), Vegetable(x) <—
B2 animal (x) <— Oyster (x)

B3 Mineral (x) <— Brick(x)

B4 Vegetable (x) <— Cabbage (x)

is consistent with the possibility that something is both an animal and a
vegetable:

B5 Animal {x) <— Bacterium(x)
B& Vegetable(x) <— Bacterium(x)
B7 Bacterium{ &) <—

The exclusive sense of "or" can be captured by means c¢f inclusive "or"
and denial. To express, for example, that every human is either male or
female but not both, requires two clauses:

Female(x), Male(x) <— Human{x}

<— Female(x), Male(x), Human(x)

Horn clauses

For many applications of logic, it is sufficient to restrict the form
of clauses to those containing at most one conclusion. Clauses containing
at most one conclusion are called Horn clauses, because they were first
investigated by the logician alfred Horn [1951]. It can be shown, in
fact, {exercise 5 in Chapter 12} that any problem which can be expressed

Horn clauses 17

in logic can be reexpressed by means of Horn clauses.

The majority of formalisms for computer programming bear dgreater
resemblence to Horn c¢lauses than they do to "non-Hern" clauses. In
addition, most of the models of problem-solving which have been developed
in artificial intelligence can be regarded as models for problems
expressed by means of Horn clauses.

Because Horn clauses are such an important subset of clausal form,
and because inference mwethods for Horn clauses have a simple problem-
solving and computer programming interpretation, we shall investigate
them in detail (in Chapters 3-6) before investigating the £full clausal
form 1in general (in Chapters 7-8). It is important to appreciate,
however, that although non-BHorn clauses might be dispensible in theory
they are indispensible in practice. Moreover, the extension of Horn
clause problem-solving wethods to clausal form in general is a
significant extension of the simpler models of problem-solving which are
more popular today.

Mushrooms and toadstools

A simple example which can be expressed naturally only by means of
non-Horn clauses is cne which expresses some typical beliefs concerning
mushrooms and toadstocls. Suppose I believe

(1) Every funqus is a mushroom or a toadstool.
(2) Every boletus is a fungus.

(3 All toadstools are poisonous. and

(4) No boletus is a mushroom,

Symbolically,

Fungl Mushroom (x), Toadstool(x) <~ Fungus(x)
Fung2 Funqus (¥) <— Boletus(X)

Fung3 Poiscnous (X} <— Toadstool (X)

Fungd <~ Boletus(x), Mushroomix)

then I should also believe at least the more obvious of the logical
congequences of my beliefs. In particular I should believe that

All boleti are poisonous.
Fung5 Poiscnous {x} <— Boletus (x)

But every collector of edible fungi knows that few boleti are
poisonous and most are guite tasty. If I reject the conclusion Fungb and
maintain my belief in logic then I must reject at least one of my initial
assumptions Fungl-4. It 1is surprising how many people abandon logic
instead.

18 Chapter 1: Introduction

Exercises

1) Using the same vocabulary (i.e. predicate symbols, constants and
function symbols) as in F1-19, express the fellowing sentences in clausal
form:

a) x is a mother of y if
¥ is a female and x is a parent of vy.

b} x is a father of y if
X is a male parent of y.

<) X is humen if
Yy is a parent of x and v is human.

d) An individual is human if
his (or her) mother is human and
his (or her) father is human.
e) If a person is human
then his (or her) mother is human or
his (or her} father is human.

£) No one is his ({or her} own parent.

2) Given clauses which define the relationships

Father(x,y) (x is father of y)
Mother (x,y) (x is mother of y)

Male (x) (x is male)

Female (x) {x is female}

Parent (x,y) {x is parent of y)

Diff (x,y) {x is different from y)

define the following additional relationships:

M{x} {x is a mother)

F{x} (x is a father)

S(x,y} (x is a son of y)

D(x,y} (X is a daughter of y)

Gf (x,¥) (x is a grandfather of y)
Sib{x,y) (x is a sibling of y)

For example the clause
Aunt (x,y) <— Female(x), Sib(x,z), Parent(z,y)

defines the relationship Aunt(x,y) {x is an aunt of y) in terms of
the Female, Sib and Parent relations.

3) Let the intended interpretaticn cof

Exercises 19

He (x) be x 1% a heavenly creature
Wd (x) x is worth discussing
Star (x) x is a star
Comet (x) X is & comet
Planet (x) X is a planet
Near (x,¥y) X is near y
Ht {x) x has a tail.
a) Express in clausal form the assumpticns:

Every heavenly creature worth discussing is a star, planet
or comet.

Venus is a heavenly creature, which is not a star.

Comets near the sun have tails.

Venus is near the sun but does not have a tail.

b) What "obvious" missing assumption needs to be added to the
clauses above for them to imply the conclusion

Venus is a planet ?

4) Using only the predicate symbols, Numb, 0dd and Even, the functicn
symbel =, and the constant B, express in clausal form

a) the conditions under which a number is even,

b} the conditions under which z number is odd,

c) that no number is both odd and ewven,

d) that 2 number is odd if its successor is even,

e) that & number is even if its successor is odd,

£ that the successor of a number is odd if the number is

even and that the successor is even if the number is oda.

5) Let the intended interpretation of

Parity (x,odd) be x is odd
Parity (x,even) be X is even.

Let the notion of opposite parities he expressed by the two clauses

Opp (odd,even) <—
Opp (even,odd) <—

Define the notion of a number being o0dd or even using only three
additional clauses, two of them variable-free assertions.

6) Inventing your own predicate symbols, express the following
assumptions in clausal form. Use only two constants, one to name my cat,
the other to name me,

20 Chapter 1: Introduction

Birds like worms.

Cats like fish.

Friends like each other.

My cat is my friend.

My cat eats everything it likes.

What do these assumptions imply that my cat eats?

7} Assume that arcs in a directed graph, e.q.

are described by assertions of the form

Distance({r,s,t) <
(the length of the arch from r to s is t).

Thus the asserticn
Distance(a,B,3) <—

describes the arc from A to B. Assume also that the relationship
Plus(x,vy,z),

which holds when x+y = z, is already given. Using only one clause,

extend the definition of the relationship Dist(x,y,z) so that it
expresses that there is a path of length z from x to y.

8) Assume that the relationships

Empty (x) (the list x is empty)
First(x,u) {the first element of list x is u)
Rest (x,v) {the rest of the list x following

the first element, is the 1list v)

are already given. Pictorially, the relationship

u v

holds when both of the conditions First(x,u) and Rest(x,v) hold.
a) Define the new relationship
Memb (z,x) (element z is a member of list x)

in terms of the First and Rest relations. Two clauses are

Exercises 21

necessary.
b) Define the relationship

Sub (x,y) {211 elements of list x
are elements of list y)

in terms of the Empty, First, Rest and Memb relations.
<) Assume

Plus(x,y,Z) (x +y = 2}

is given. Define the relationship

sum(x,w} {the sum of all elements in
the list of numbers X is w)

in terms of the Empty, First, Rest and Plus relations.

9) Uging predicate symbols of your own invention, but no function
symbols or constants, express the following sentences in clausal form:

No dragon whe lives in a zoo is happy.

Any animal who meets kind people is happy.

People who visit zoos are kind.

animals who live in zoos meet the people who visit zoos.

What two missing additiopal assumptions are needed to Jjustify the
conclusion

No dragon lives in a zoo. 7

18} There are four different variable-free atoms which can be
constructed from the vocabulary of clauses L1-3. Consequently there are
16 different interpretations of L1-3. How many of these interpretations
make both L] and L2 true? How many make L3 true? How many make all of
L1-3 true?

