193

CHAPTER 18

Comparison of Clausal Form with Standard Form

Clausal form is simpler than the standard form of logic and bears
greater resemblance to other formalisms used for databases and
programming. Moreover, the rescluticn rule resembles conventional rules
for information processing and problem—solving more closely than does
standard form,

Although any problem can be converted from standard form to clausal
form, the standard form is often more economical and more natural than
the resulting collection of clauses. The specification of programs, in
particular, is an area in which the standard form of logic {(or some
appropriate extension of Horn cleuse form) is more suitable than simple
clausal form. Moreover, the derivation of programs from specifications
can be achieved more naturally by reasoning with the standard form of
logic directly. Useful inference systems for the standard form of logic,
however, may be obtained by combining inference rules for <clausal form
with rules for converting from standard form to clausal form.

Introduction to the standard form of logic

We shall present only the informal semantics of the standard form of
legic, by asscciating expressions of English with expressions of the
symbolic language. Such notions as "consistency" for expressions in
standard form can be understood informally in terms of their English
language counterparts.

The standard form of logic provides explicit symbolism for the
propositional connectives "and", "or", "not", "if" and "if and only if"
and for the quantifiers "for all™ and "there exists". The propositional
connectives construct more complex propositions from simpler ones. The
symbol

stands for "and"”

stands for "or"

stands for "not™

> stands for "if... then... " or "impliesg”
<—> stands for "if and only if".

1 <

A clause

Ajv.eourBy <= Byse--,By

not containing variables, is written

194 Chapter 16: Comparison of Clausal Form with Standard Form

[BI&...&Bn] => [AqV...VA]

in standard form. If n=0, the standard form
av..vag

If m=0, the arrow becomes a negation symbol.

A [By&...5B,].

omits the arrow

In standard form the direction of the implication sign —> is opposite to
But like the inequality sign

the one we have been using in clausal form.
< or > of arithmetic the direction of
gignificant. Thus the expressions
A —>B and B <— A
are eqguivalent. But notice that

A ->B and A <— B

are not.

the implication sign

is not

Sentences in standard form can also be constructed by means of the two

guantifiers.

The universal gquantifier

Wx stands for "for all x".

The existential quantifier

dx stands for "there exists an x".

Example Some oysters can be crossed in love.

Clausal Form Oyster(YJ) <—
Crossed-in-Love (Y{) <—

Standard form Jx [Oyster{x) & Crossed-in-Love(x)]

In the clausal formulation, in order to refer

necessary to give it a name, The existential quantifier

individuals to be referred to¢ without being named.
sentences are implicitly connected by "and”.

conjunction & can be written explicitly.

Example Every human has a mother.
Standerd Form ‘¢xJy[Human(x) —> Mother (v,x)]

Clausal Form Mother (mum(x) ,X)} <— Human (x}

te an individual,

In clausal
In standard form the

it is
allows
form

Introduction to the standard form of logic 195

In the clausal form it is necessary to use a function symbol to name the
individual y which exists as a function of x.

Changing the order of the guantifiers changes the meaning. The
sentence

% [Human (x) —> Mother (y,x)]

states there is a single individual who is the mother of us all. The
clausal form uses a constant symbol to name the individual.

Mother ({2}, x} <— Human(x)

For the precise definition of sentence, it is necessary to define the
more general notion of formula. Formulae may contain free (unquantified)
variables, whercas sentences do not., Thus the formula

‘wxJyLoves (x,y)
is a sentence, but the formula

xLoves (X,Y)

is not. It contains the bound (guantified) wvariable x and the free
variable v.

Terms and atomic formulae are defined just as for clausal form.

An expression Z is a formula if and only if it is an atomic formula
or an expression of the form

[R & Y)

[X V Y]

[X —> ¥] or [Y <— X]
[X <—> Y]

= X

Wv X or

Iv x

where X and Y are formulae and v is any variable.

Any formula 2 is a subformula of itself. In the first four cases
above, any subformula of X or Y is a subformula of Z; and in the last
three cases, any subformula of X is a subformula of Z.

An occurrence of a variable v in a formula Z is free (or unbound) if
it belongs to no subformula of % of the form v X or v X. If an
occurrence of v is free in X then it is bound in ‘Ww X and 3v X by the
quantifiers “wv or 3v respectively.

A& formula is a sentence if and only if it contains no free occurrence
of a variable.

The definitions above permit sentences such as

196 Chapter 18: Comparison of Clausal Form with Standard Form

dx [Oyster (x) & Jx Tasty(x))

in which the same variable x 1is bound by different occurrences of a
quantifier. Such sentences create complications which are better
avoided. Consequently we shall restrict formulae Z to those which
satisfy the condition that

for every variable v which occurs in Z, either all
occurrences of v in 2 are free in % or all occurrences of
v in 2 are bound by the same quantifier occurrence.

Any formula Z which viclates the restriction can be transformed into an
equivalent one which satisfies it by renaming variables. This can be
done by applving the eguivalences

Wi X = oy B
Ju X <> Jv X'
where X' is obtained from X by replacing all
occurrences of u by v and v does not occur in X.

to subformulae of Z. Any subformula can be replaced by an eguivalent one
without affecting the meaning of the formula in which it occurs.

Notice alsc that the definitions permit quantification Wv X or Jv X of
a variable v which does not occur in the formula X. Such guantification
is vacuous in the sense that the resulting formula is equivalent to the
unguantified formula X. Deletion of vacuous quantifiers is justified by
the equivelences:

WV X <> X
v X > X
where the variable v does not occur in X.

Several ceonventions can be employed to improve the readability of
formulae by reducing the number of brackets. Qutermost brackets can
always be omitted, writing & ~> B, for example, rather than [A —> B].

The associativity of conjunction justifies omitting brackets when
several formulae are conjoined together. Since the formulae

2 & [(Ba () and
[A & B] &« C

are equivalent, it is permissible to ignore brackets altogether, writing
A & B&C.
Similarly, the associativity of disjunction justifies writing
AVBVC
instead of AV [BVC] or
[V B] V C.
Brackets can be reduced further by establishing precedence rules for

the quantifiers and the propositional connectives. We shall follow the
conventions that

Introduction to the standard form of logic 157

The negation symbol - and the guantifiers 3, % bind more
closely than the other symbols and conjunction & and

disjunction V bind more closely than implication -> and
eguivalence <—>.

Thus we may safely write
AVBVYC<Ds&EG&TF

instead of [[aV [BVYC]] < [[D&E] & F]]J

for example.

Readability can be improved further by omitting universal guantifiers
at the beginning of sentences, writing, for example,

Grandparent{x,y} <— Parent(x,z) & Parent(z,y)
instead of ‘@¥v4rez [Grandparent (x,y) <— Parent(x,z) & Parent(z,y)l
as in clausel form. Such omission of universal gquantifiers can be
performed safely only when the context makes it clear that the expression

is a sentence rather than a €formula containing occurrences of free
variables.

Conversion to clausal form

Any sentence in standard form can be converted to clausal form. The
resulting set of clauses is consistent if and only if the sentence in
standard form is consistent. Thus conversion to clausal form can be used
to demonstrate the inconsistency of a set of sentences in standard form:

A set of sentences in standard form is inconsistent
if and ecnly if the corresponding set of clauses
is inconsistent.

The rules for converting to clausal form can be expressed more simply,
to begin with, if implications and equivalences are reexpressed in terms
of negation, conjunction and disjunction by using the equivalences:

[X —> Y] <> XV ¥

[X <> Y] <> [k —> Y] & [¥ —> X] i.e.
[X <=> Y] <> [X V ¥] & [Y V X]

where X and Y are any formulae.

Cnce implications and eguivalences have been rewritten, the rest of the
conversion consists of

(1) moving negations inside the sentence past
conjunctions, disjunctions and guantifiers, until they
stand only in front of atomic formulae,

198 Chapter 18: Comparison of Clausal Form with Standard Form

(2} moving disjunctions inside the sentence past
conjunctions and quantifiers, until they connect only
atoms or negated atoms,

(3) eliminating existential quantifiers and

(4) reexpressing disjunctions
A V.. VA, V oBy .. VB,
of atoms and their negations as clauses
Al""'Am <= Bl""'Bﬂ°

Negations can be moved in front of atoms by repeatedly applying the
following eguivalences:

(X & ¥] <> X V vy

AV ¥)] <> X g Y

v X —> vy X

Y X <> Jv X

) <—> X

where X and Y are any formulae
and v is any variable,

Disjunctions can be moved inside a sentence until they connect only
atoms and their negations by using the eguivalences:

XV [¥Y &2Z] <> [XV¥] & [XV2Z]

XV vy <—>» Jv [X V Y]

XVivwy <—> Vv [XV Y]

where the variable v does not occur in X.

The commutativity of disjunction

XVY<&>YVX

is needed to justify the similar equivalences

[¥ 8§ Z] V X <> [¥Y V X] & {2 V X]
Jvy v x <> Jv [Y V X]

v Y VX > Vv [Y V X]
where v does not occur in X.

The preceding equivalences are sufficient to transform any sentence
without guantifiers in standard form inte an equivalent one in clausal
form. The elimination of an existential quantifier, however, produces a
sentence which is not equivalent. It introduces a constant or function
gsymbol in order to name an individual which is referred to only
implicitly in the original sentence. The new sentence implies, but is
not implied by, the original sentence. Nevertheless, the elimination of
the existential guantifier does not affect the consistency of the set of
sentences as a whole.

Given a conjunction {or set) of sentences S, in order to eliminate
existential guantifiers from S it is necessary to eliminate them from
gsentences of the form

Conversion to clausal form 199

WIVVZ anw ani‘u X
belonging to S, Such a sentence can‘be replaced by the new sentence

VVIVV P \/vn X!

whére X' is obtained from X by replacing
all free occurrences of u in X by the term
E{vis---,v,) where f is a function symbol
which does not occur in 8.

If n=@ the term f(vl,...,vn) reduces to a constant symbol. Note that the
replacement is not “an equivalence and it only applies to sentences, not
to formulae. The new conjunction {or set of sentences) is consistent (or
inconsistent) if and only if 5 is.

In order to transform sentences belonging to S into the correct form,
it is useful to move universal quantifiers inside conjunctions.

Vv [X & Y] <> W X &' ¥

Repeated application of the preceding rules will convert any
conjunction (or set) of sentences in standard form into a conjunction (or
set) of sentences, each of which has a form

VV]_. . .Wk [AIV L. Amv"BlV. ' 'I'Bn]
which is eguivalent to a clause

BiseassBy <= By,... By,

The preceding rules express the logic of a family of algorithms for
converting from standard form to clausal form. All non-determinismj is
of the don't care variety. An efficient algorithm is obtained by always
applying the rules to an outermost propositional connective or
guantifier, replacing the formula on the left hand side of an equivalence
by the formula on the right hand side. Moreover, it is more convenient
in practice to leave the implication sign intact and to apply derived
equivalences. The following derived equivalences (see exercise 2) are
the most useful.

(¥ —> ¥ & 2] > [X —> ¥] & [X —> Z]
[X VY — 2] <> [X —>] & [¥Y — 2]
X & ¥ — 7] > [X —> YV 2]
[X —> Y V E] <> [X & ¥ —> Z]
X —> [¥Y = 2]] <> [X & ¥ — Z]
[[X —> ¥] > 2) <> [XVv 2] & [¥ —> 2]

X => Vv ¥ >y [X = Y]
X —> Jv ¥ <—>» Jv [X —> Y]
Vv Y > X <> Jv [¥Y => X]
v ¥ —> X —> v [¥ —> X]

where v does not occur in X.

In addition, generalisations of the equivalences:

[Us [XV Y] > 2] <> [U&X->2Z] & [U&Y 2]
U & [X—>Y¥] > 2] <> [U—>XV Z] &« {U&Y —> Z]

208 Chapter 1¢: Compariscn of Clausal Form with Standard Form

for example, are often useful as well. In order to apply them may
require application of the commutativity of conjunction:

X &Y <>Y 5 X

Comparison of clausal form with standard form

Clausal form is a restricted subset of standard form. It has the
advantage that simple, efficient, and reasonably natural rescluticn
theorem provers have been developed for it. Standard form, however,
allows more liberal means of expression. Some kinds of sentences can be
expressed more eccnomically and others more naturally than in clausal
form. The analysis in the next few sections, of the cases in which
standard form provides greater expressive power than clausal form,
suggests that what is needed is not full unrestricted standard form but a
limited extension of clausal form. In most cases it suffices to allow
non—atomic formulae as conditions and conclusions of implications.

Bys..vsBy < By,...4By

It 1is wuseful, in particular, to allow conclusions A; which are
conjunctions of atoms and conditions By which are implications. In
addition it is useful to employ eguivalences <—> for definitions instead
of writing the two halves separately.

The ideal system of logic would combine the advantages of clausal form
with those of standard form. 1In order to do so, it would need both to
reduce to resolution for sentences already in clausal form and to
resemble the natural deduction systems of Bledsoe [1971), Brown [1977],
Bibel and Schreiber [1975), and Nevins [1974]. Such a system might
result from combining the resolution rule with the rules which convert
sentences from standard form to clausal form.

The satisfactory solution of the problem of deriving Horn clause
programs from program specifications in standard form requires such a
proof procedure. The problem has heen investigated by Bibel [1976a,
1876b, 1978], Clark and Sickel [1977], and Hogger [1978a, 1978b, 1979].
Their derivation rules resemble both the rules for converting to clausal
form as well as the resolution rule which behaves as procedure
invocaticn. Proof procedures for the standard form of logic, which have
some of the necessary properties, have been developed by Murray (1978}
and by Manna and Waldinger [1978].

In the following sections we investigate a number of examples which
illustrate the limitations of clausal form and the inadequacy of dealing
with standard form simply by converting to clausal form and applying
resolution. At the end of the chapter we shall consider the problem of
deriving Horn clause pregrams from non-clausal specifications.

Conjunctive conclusions and disjunctive conditions

Standard form is more economical than clausal form when the same
conditions imply several conclusions or when the same conclusion is

Conjunctive conclusions and disjunctive conditions 201

implied by alternative conditions.

Example Everyone makes mistakes.

Standard form “¢x3Jy [Human(x) —> Does{x,y) & Mistake{y)]

Conversion (a) Human{x} —> Does(x, m(x)) & Mistake{m(x))
(b) "Human(x) ¥ [Does{x, m(x}) & Mistake(m(x))]

{c) [-Human(x} V Does(x, m(x})
["Human (x) V¥ Mistake(m(x})

] &

|

Clausal form (d) Does(x, m(x)) <— Human({x)
Mistake{m(x)) <— Human({x)

In the clausal form, the same condition Human(x) needs to be repeated for
each separate conclusion. Notice that using the derived conversion rules
for implication, the conversion from (a) to (d} can be done in one step.

Example One person is an ancestor of ancther if he is a parent of
the other or he is an ancestor of an ancestor of the
other.

Standard Form Anc(x,y) <— Par(x,y} Vv Jz [Anc(x,z) & Anc(z,y}]
Conversicn (a) Anc(x,y) V 7[Par(x,y) V Jz lAnc(x,z) & Anc{z,y)]]
{(b) Bnc{x,y) y [Par(x,y) & 13z [Anc(x,z) & Anciz,y}]]

(c) [Bncix,y) V Par{x,y}] &
{Anc(x,y) Vv 73z [Anc(x,z) & Anc(z,y)]]

{d) [Anc(x,y) V "Par(x,y)] &
[Anc(x,y¥) ¥ ¥z [MAnc(x,z) v TJAnc(z,y)]]

(e) [Anc(x,y) V TPar(x,y)] &
Wz [Anc(xX,y) ¥ MAnc(x,z) vy TAnc{z,y)]

Clausal form (f) Anc{x,y} <— Par (x,y)
Anc{x,y) < Anc(x,z), Anc(z,y)

In the clausal form, the same conclusion needs to be repeated for each
alternative condition. The conversion from standard form is simplified
if the derived equvalences are used:

(a'}) [Anc(x,y) <— Par(x,y)] &
{Anc(x,y) <— Jdz [Bnc(x,z) & Anc(z,y}]]

(b'} [Anc(x,y} < Par(x,y)] &
“z [Anc(x,¥) < Anc(x,z) & Anc(z,vy)]

{(c') Anc{x,¥) <— Par{x,y}
Anc(x,y) < Anc(x,z), Anc(z,y)

For the sake of simplicity we shall use the derived equivalences in the
rest of the chapter.

282 Chapter 18: Comparison of Clausal Form with Standard Form

Disjunctive conclusions

Standard form is both more economical and more intelligible when the
alternatives in a conclusion are conjunctions.

Example The earth is round and finite or flat and infinite.
Standard form [Round(E) & Finite(E}] ¥ [Flat{(E) & Infinite(E)]

Conversion {a) [[Round(E) & Finite(E)] V Flat(E)] &
[[Round(E} & Finite(E)] V Infinite(E}]

(b} [Round(E) V¥ Flat(E)] &
fFinite(E) ¥ Flat(E)] &
[Round(E} V Infinite(E)} &
[Finite(E} V Infinite(E)]

Clausgsal form Round(E), Flat(E) <—
Finite{(E), Flat(E) <—
Round (E), Infinite(E} <—
Finite(E}, Infinite(E) <—

Only-if halves of definitions

We shall argue in the next chapter that Horn clauses often express
only the if-half of an if-and-only-if definition. The full if-and-only-
if definition can be expressed compactly in the standard form by using
the sign of egquivalence <—>. 1In the <c¢lausal form, the if-half and the
only-if half need to be expressed separately. The only-if half generally
expresses alternative conclusions and can be both uneconomical and
unnatural.

Example The only-if half of the if-and-only-if definition of
ancestor.

Standard form BAncix,y) —> Par(x,y) V JzlAnc{x,z} & Anc(z,y)]
Conversion (a} 3z [Anc(x,y} —> Par(x,y}) V [Anc(x,z) & Anc{z,y)]]

{b) Anc(x,y) —> Par(x,y) V¥
[Anc(x, £(x,y))} & Anc(f(x,y), ¥)i

(c) Ancix,y) —> [Par{x,y) V Anc(x, f(x,y)}] &
[Par{x,y) V Anc(f(er)r Y)]

Clausal form Par (x,y), Anc(x, f(x,¥)} < Ancix,vy)
Par (x,y}), Anc(f(x,y}, y) < Anc{x,y)

Implications as conditions of implications

It is common for sentences of natural language to have conditions
which are themselves implications rather than simple atoms. Such
sentences can be expressed directly and naturally in standard form, but

Implications as conditions of implications 283

may be difficult to understand in clausal form,

Example
Standard form
Clausal form
Example

Standard form

Conversion

Clausgal form

Example

Standard form

Clausal form

Example

Standard form

Clausal form

X2y is true if y is true whenever x is true.
True {x0y) <— [True(y) <— True(x)]

True (xay), True(x) <—
True {x2y) <— True(y)

Bob is happy if all his students like legic.
Happy (Bob} <— ‘% [Studentof (Bob,x) —> Likes(x,legic)]

(2) Jx [Happy(Bob) <— [Studentof (Bob,x) —»
Likes({x,logic)]

(b} Happy(Bob) <— [Studentof (Bob,@) —> Likes((®,logic)]

Happy (Bob) , Studentof (Bob, D) <—
Happy (Bob) <— Likes ((,logic)

A supplier is if all the supplies

arrive on time.

preferred parts he

Preferred(x) <— Supplier(x) &
“Vu [Supplies(x,u) —> Arriveontime(u)]

Preferred(x) <— Supplier(x), Arriveontime(p(x})
Preferred(x), Supplies({x, p{x)) <— Supplier (x)

a2 set is well-ordered if and
subset has a least element. A set is non-empty if and
only if it has at least one element. An element of a set
is a least element if and only if it is less than or equal
to every element of the set.

only 1if every non-empty

Wellordered(x) <~> Wz [Hasleastelmt{z) <— z€x &
Nonempty {z)]

Nonempty(z) <> Ju u€z
Hasleastelmt (z) <—> Ju [u€z & v [vE€z -> uxv]]

Wellorderedi{x), arb(x) € x <—

Wellordered(x), Nonempty(arb(x)) <—

Wellordered(x) <— Hasleastelmt(arb(x})
Hasleastelmt(z) <— Wellordered({x)}, zx, Nonempty(z)
Nonempty {2z} E <— u€z

select(z) € z <— Nonempty(z)

Hasleastelmt(z), el(z,u) € z <— uvEz

Hasleastelmt(z) <— u < el(z,u), u€z

smallest(z) E z <— Hasleastelmt({z)

smallest (z) < u <— Hasleastelmt({z), u€z

204 Chapter 1@: Comparison of Clausal Form with Standard Form

Derivation of programs from specifications

Programs can be expressed more naturally in logic if implications are
allowed as conditions. The definition of subset is a simple example:

Yy <—Vz [®x —> zey]

The condition that "every element of x is an element of y" is neutral
avout the manner in which the elements of x are investigated and shown to
be elements of y. In particular, it is consistent with the possibility
that all elements of x are investigated simultaneocusly, in parallel.
Such high-level specification is not possible in normal programming
languages. It is not even possible with Horn clauses.

Suppose that sets are represented by finite lists. Then the notions
of both membership and subset can be defined recursively by means of Horn
clauses:

z € z.v <

z € u.v <— ZEV
ntlg y <—

u.vg y <— ugy, vgy

The Horn clause program is less natural and closer to the level of the
computer than the specification in standard form. It expresses details
which are left to the initiative of the theorem prover in the standard
form specification. It works, moreover, only for finite sets represented
by means of lists. The standard form specification, on the other hand,
works for both finite and infinite 1lists. Exercise (6b) demonstrates
this for the notion of ordered list.

The use of logic is more widely accepted as a specification language
than it is as a programming language. Methods for verifying conventional
programs relative to logic specifications are complicated therefore by
the need to relate two different languages. The methods of Floyd [1967],
Manna [1969], Hoare [196%9] and Dijkstra [1976] express specifications in
logic and relate them to programs by defining the semantics of preograms
in logic.

Verification of programs is significantly easier when programs and
specifications are expressed in the same language. This is confirmed by
the results of Boyer and Moore [1975] who use LISP for both programs and
specifications, Manna and Waldinger [1977], who use LISP for programs and
LISP augmented with universally quantified implications for
specifications, and Burstall and Darlingten [1977], who use recursion
equaticns for both programs and specifications. More recently, using the
procedural interpretation of Horn clauses, deduction strategies for
deriving logic programs from logic specifications have been developed by
Clark and Tarnlund [1977], Bibel [1976a, 1976b, 1978], <Clark and Sickel
[1977], Hogger [1978a, 1978b, 1979] and Clark and Darlington [1978]. 1In
addition, Manna and Waldinger [1978] have developed an extension of
resolution for deriving LISP programs from logic specifications,

The derivation of logic programs from logic specifications has the
special characteristic that deduction is used both to run programs and to
derive programs from specifications. Programs can be regarded as

Derivation of programs from specifications 205

computationally useful logical consequences of the specifications.

We shall illustrate the general method by deriving the Horn clause
program for subset from the standerd form specification The inference
steps can be thought of as combining reselution with conversion to
clausal form. We start with the if-and-only-if specifications of the
subset and membership relations.

sl xy <> ez [z€x —> zey]
52 Wz [(z&nil) (i.e. <— zgnil)
83 z € u,v <~> z=u Y zEv

The basis of the recursive Horn clause program

[nilg y <— I

can be obtained directly by resolving the clausal form of S2 with the
first of the two clauses

*xcy, arb(x,y) € x <—
xcy < arb{x,y) & ¥y

obtained by converting S1 into clausal form.

The recursive clause of the program can be derived more naturally by
reasoning with the specifications in standard form. By matching the
underlined atoms in $1 and 53 we obtain

sS4 u.vg v —W%ez [lz=uV zEv] —> z&yl.

It suffices, in this case, to use only the if-half of the definition of
subset, We «can think of 54 as obtained by letting x be u.v in 81 and
then using the equivalence 53 to replace z € u.v by z=u ¥ z€v. Next, we
begin to convert 54 to clausal form,

S5 u.vg v < e [z=u —> zey] &
%z [zev —> zEy]

Any further conversion would result in non-Horn clauses. Fortunately the
two non-atomic conditions in S5 can be replaced by equivalent atomic
cnes.

s6 Yz [z=u —> zE€y] <> uey
57 Wz [zE€v —> z€y] <> vgy

Applying the two eguivalences to 55 we obtain the rest of the program

u.vEg vy <— uey, wy

It remains to demonstrate the equivalences 56 and S7. The second one
§7 is easy; it is an instance of 51, The first equivalence is a special
case of a more general eguivalence

ez [z=u —> X] <> X!
where X' 1is obtained from X by
replacing all occurrences of z by u.

286 Chapter 18: Comparison of Clausal Form with Standard Form

which is useful in general.

The derivation of the subset program illustrates the use of inference
rules which apply directly to the standard form and which resemble both
resolution and the rules for converting from standard to clausal form.

Exercises

1) Express the following sentences in standard form and transform them
into clausal form.

al A number is the maximum of a set of numbers if it belongs
to the set and is > all numbers which belong to the set.
(Hint: Define an auxiliary relationship Dominates(x,y)
which holds when x > all numbers which belong to the set
of numbers y.)

b) A list of numbers is ordered if it is empty or its first
number is < all numbers in the rest of the list and the
rest of the list is ordered.

c) A number is the greatest commen divisor of numbers x and y
if it divides x and y and 1is > all numbers which divide x
and y.

2} The derived eguivalences on page 199 can be justified by converting
each half of an equivalence to the same formula, by replacing subformulae
by egquivalent subformulae. For example, both halves of the eguivalence

X—> {Y &§ Z] <> [X > ¥] & [X — 2]
convert to the same formula

" Xv Y]l & DXV zl.
Derive the remaining egquivalences on page 199.

3) @) Express the following assumptions in standard form and
transform them into clausal form.

A dragon is happy if all its children can fly.

Green dragons can fly.

A dragon is green if at least one of its parents is green
and is pink otherwise.

b) Use resolution (and factoring if necessary) to show:

(i} Green dragons are happy.
{ii) Childless dragons are happy.

You will need to supply some “ocbvious” missing
assumptions.

Exercises 287

c) What should a pink dragon do to be happy?

4) This exercise is an extension of exercise 8 of Chapter 2. Given
data in the Supplier, Part and Supply tables, express the following
gueries in standard form. Use both the binary and n-ary representations.

5)
transform

6}
transform

a) What are the numbers of suppliers who supply all parts?

b) What are the names of suppliers who do not supply books?

<) What are the numbers of those suppliers who supply at
least all parts supplied by John?

a) Express the following assumption in standard form and

it into clausal form.

A logician is happy if all his arguments are sound.

b) Use resolution to show that the following conclusions are
implied by the assumption.

(i) A Logician is happy if everyone's arguments are sound.
(ii) A logician is happy if he doesn't argue.
a) Express the following assumptions in standard form and
them into clausal form.
(i) A sequence z is ordered if for every x, y, i and j,
% is the i-th element of z,
¥ is the j-th element of z and
i <3 imply x < y.
(ii} If i < j then u*i < u*j, for all i, j and u.
(iii)The i-th element of sequence S is 3*i for all i.

b) Use resolution to show that the sequence § is ordered.
Notice that S might have infinitely many elements.

7) Assume that the following relations are already defined:

x_

X

Empty {x) the tree x contains no nodes.

Split{x,y,u,v) the tree x has root node labelled by item y,
left subtree u and right subtree v.

<y
>y

4
lit

Y

208 Chapter 18: Compariscn of Clausal Form with Standard Form

a) Express the following definition of the relation Ord(x) in
standard form:

The tree x is ordered if for every non-empty subtree z of
X

i) all items which belong tc the left subtree of 2z are < the
item at the root of z and

ii} all items which belong to the right subtree of z are > the
item at the root of =z.

You ghould define the following relations for this

purpose,
Subtree(z,x) z is a subtree of x
Belongs{y,x) the item y belongs to tree x.

b) Transform the definition of Ord(x) into clausal form.

8) The relationship Sl{x,y), i.e. x is a sublist of y, can be
specified by:

S1{x,vy) <—> Juijv3w[Append(u,x,v) & Append{v,w,y}]
Append (x,y,z}) <> [x=nil & y=z]v¥
AudvIwix=u.v & z=u.w & Appendiv,y,w)]

Derive a recursive program for 51(x,y), not involving Append, using the
following assumptions about equality if necessary:

Y = U.v <> x=u & y=V
Sudv u.v = nil
= x

L -

9) The relationship Fact*{x,y,u,v) can be specified by

Fact* (x,v,u,v) <> [Fact(x,y) —> Fact(u,v)]
Fact (x,Y) <> [Zero{x) & Succ(x,y}] V
Ju3v[Succ(u,x} & Fact'(u,v)
& Times(x,v,vy)]
Zero (@) <—
Succ (X, s(x)) <—

a) Derive a recursive program for Fact* {x,y,u,v), hot
invelving Fact.

b) Show that Fact{u,v) <> Fact*{@,s({@},u,v).

1p) Given the specification

Ord(x) <—> Vilvwv[Consec(u,v,x) —> ugv]

Exercises 289

derive a Horn clguse program for Ord(x}, using the following assumptions:

= Consec(u, v, nil)
- Consec{u, v, x.nil)
Consec(u, v, X.y) <> Consec(u,v,y} V 32[u~x & y=v.z]

