225

CHAPTER 12

Formalisation of Provability

The meta-language interpretation of "only-if" and its combination with
the object language can be achieved by formalising the meta-language and
amalgamating it with the object language. Such a combination of object
language and meta-language produces a system of logic which is closer to
natural language than the conventional systems which keep the two
languages distinct. In natural language, however, the combination of
object language and meta-language leads to such paradoxes as the self-
teferential sentence:

This sentence is false.

We shall see that the attempt to reconstruct the paradoxes in the
amalgamated formal language leads instead to a true but unprovable
sentence:

This sentence is unprovable.

The construction and proof of unprovability are based _on those in Godel's
proof of the incompleteness of formal arithmetic [Godel 1931]1. Instead
of the incompleteness of arithmetic, however, we have the impessibility
of any attempt to completely formalise the notion of provability. The
proof of incompleteness, moreover, is simpler for provability than it is
for arithmetic.

Our purpose in combining the object language and meta-language,
however, is primarily a practical one. The amalgamated language is more
expressive and has greater problem-sclving power than the object language
alone. It provides essential facilities for such applications of logic
programming as natural language understanding, database management, job
control and editing cf programs.

The amalgamated language combines object language and meta-language
while preserving the normal semantics of logic. Thus all of the theory of
problem-solving, formulated in the previous chapters for the object
language alone, applies without change to the more powerful combination
of object language and meta-language.

The combination of object language and meta-language is a special case
of a more general construction. Given any two languages (i.e. systems of
logic with their associated proof procedures) it may be possible to
simulate the proof procedure of one 1anguage Ly within the other L,. The
simulation is accomplished by defining in L the binary relatlonshlp
which holds when a conclusion can be derive from assumptions in Lj.
Sentences in L) need to be named by terms in Lo and the provability
relation needs tc be named by a binary predicate symbol, say

226 Chapter 12: Formalisation of Provability

"Demonstrate”, and defined by means of sentences Pr in L,. Provided the
definition Pr correctly represents the provability relation of L,
simulation by means of Pr in L is equivalent to direct execution of
the proof procedure of L;. L., the language in which Pr simulates L,
is a meta-language for the object 1 anguage Lj-. To serve as meta-language,

needs to possess sufficient expressive power. For any object language,
tﬁe language of Horn clauses is already adequate.

There are a number of cases of special interest, In the case in which
the meta-language is restricted to the Horn clause subset of logic, but
the object language encompasses the whole standard form, the meta-
language improves its own problem-sclving abilities by simulating the
more powerful object 1language. 1In general, a simple unsophisticated
problem-solver can improve itself by using simulation to behave like a
more sophisticated one.

In the case in which the object language and meta-language are
identical the single language augmented by the definition Pr of its own
provability relation is an amalgamation of an object language with its
meta-~language.

Correct representability

The condition of correct representability is the same in principle for
the definition c¢f the provability relation as it is for the definition of
the addition of natural numbers.

In order to define addition in logic, it is necessary to name numbers
by means of terms. The easiest way to name the non-negative integers, for
example, is by means of a constant symbol @ for zero and a one-place
function symbol s for the successor function.

If t names the integer n
then s(t) names the integer n+l.

The following Horn clause definition correctly represents the addition
relation, named by the predicate symbel "Plus".

Plusl PlUS(H,X,X) <
Plus?2 Plus(s(x),y.s{z)) < Plus(x,y,z)

Plusl-2 correctly repregents the addition relation in the sense that

whenever 1, m and n are non-negative integers named by r,
s and t respectively, the relationship 1+m = n holds if-
and-only-if Plusl-2 implies Plus(r,s,t) <— .

Notice that correct representability does not reguire that

Plusl-2 implies -Plus(r,s,t) <— when 1i+m = n does not
hold.

In order to define provability it is necessary to name sentences and
other expressions by means of terms, This can be accomplished in a
variety of ways and we shall not concern ourselves with the details here.

Correct representability 227

Given a representation of sentences by means of terms, a definition Pr
in a language L correctly represents the provability relation, named
"Demonstrate" E a language Ly if-and-only-if

whenever X and Y are sentences of L; named by terms X' and
Y' of L2 respectlvely, conclusion Y can be derived from
assumptions X in if~and-only-if conclusion
Demonstrate{X',Y') can be éerlved from assumptions Pr in
Ly.

Correct representability, however, does not reguire that Pr implies
“Demonstrate(X',¥') in L, when X does not imply Y in Lj.

Given a language L,, the construction of a definition which correctly
represents its proof procedure is not a particularly difficult matter.
Since proof procedures can be implemented by mweans of computer programs,
they can be implemented by means of Horn clause programs in particular.
Moreover, any Horn clause program which correctly implements a proof
procedure correctly represents its provability relation.

A simple definition of a provability relation

we shall present the top-level of a Horn c¢lause definition of the
provability relation for a Horn clause language in which assumptions are
regarded as programs and conclusions as collections of geoals. In order to
increase readability, we use lower case character strings, such as

prog, goals, sub,
as variables and ones beginning with an upper case character, such as
NIL, Zeus, B,
as constants.
The first clause of the program states that

any program demonstrates the solvability of an
empty collection of goals.

The second clause, interpreted top-down, says that

to demonstrate the sclvability of a collection of goals:
select a goal;

find an appropriate procedure in the program;

rename the variables in the procedure so that they are
distinct from the variables in the collection of goals;
match the selected goal with the head of the procedure;
add the body of the procedure to the rest of the goals;
apply the matching substitution to obtain a new collection
of goals; and

demonstrate that the program solves the new collection of
goals.

228 Chapter 12: Formalisation of Provability

Dl Demonstrate {prog,goals) <— Empty(goals}

D2 Demonstrate {prog,goals) <- Select(goals,gcal,rest),
Member (procedure,prog},
Renamevar s (procedure,gocals,

procedure'},

Parts({procedure' ,head,body),
Match {goal ,head,sub),
Add (body,rest,intergoals),
Apply (intergoals, sub,newgoals),
Demonstrate (prog,newgoals)

To complete the definition it is necessary te define the lower-level
relations and to settle upon data structures for naming programs, goals,
collections of goals and substitutions. Rather than define these in
general, we shall present only an interface for the top-level with a
simple data structure for the problem of the fallible Greek.

We shall name an atomic formula whose predicate symbol is named P and
list of arguments is named t by the term

atom{P,t).

Bodies of procedures and collections of goals are named by lists of the
names of the atomic formulae they contain. Programs and procedures are
named by constants. The following clauses define the interface between
the top-level of the definition of Demcnstrate and the data structures
for the problem of the fallible Greek.

Member (F1, F} <—

Member (F2, F) <—

Member (F3, F) <—

Member (F4, F)} <—

Parts(Fl, atom(Fallible,X.NIL), atom(Human,X.NIL).NIL) <—
Parts(F2, atom(Human,Turing.NIL), NIL) <—

Parts{F3, atom{Human,Socrates,NIL), NIL} <—

Parts(F4, atom{Greek,Socrates.NIL), NIL) <—

The top-level goal is described by the clause
<— Demonstrate(F, atom{Fallible,X.NIL).atcm(Greek,X.NIL).NIL}.

The constant symbol X names the variable x.

Direct execution versus simulation

Let Pr consist of the c¢lauses Dl-2 together with whatever lower-
level clauses are heeded to complete the definition of Demonstrate.
Suppese thet Pr correctly represents the provability relatien of a
language Ly and is expressed in a language L, (which may be identical to
L,). Corract representability guarantees that direct execution in Lj and
simulation in L, are eguivalent and interchangable:

Direct execution versus simulation 229

Given sentences X and ¥ of L; named by terms X' and Y'
respectively of Lp, direct execution of the proof
procedure of L, to determine whether Y can be derived from
X in Ly is eguivalent to simulation of L; by showing that
Demonstrate(X',Y"') can be derived from Pr in Lj.

The equivalence of direct executicn and simulation is identical to the
reflection principles investigated by Weyhrauch [1978].

Correct representability of the provability relation means that the
object language and meta-language can cooperate to solve problems., A
problem in the object language can be solved by simulation in the meta-
language. Conversely, a problem of the form

Demonstrate(X',Y"')
in the meta-language can be solved by showing that
Y can be derived from X

in the object language. This has the advantage that direct execution is
generally more efficient than simulation in the meta-language.

Simulation in the meta-language, however, c¢an be more powerful than
direct execution. It may be possible, in particular, to replace several
proofs of different, but similar, theorems in the object language by a
single proof in the meta-language. As a trivial example, all of the
problems below need to be solved separately in the cobject language, but
can be solved once and for all in the meta-language.

Mortal (Socrates) <— can be derived from
Human (Socrates) <— and
Mortal (x) <— Human (x)

Poisonous(ﬁ?) <— can be derived from
Boletus (9P) <~ and

Poisonous (X} <— Boletus(x)

Animal (Puff) <- can be derived from
Dragon (Puff) <— and

Animal (x) <— Dragon(x}
In the meta-lanquage it is possible with a single proof to show that

for any variable x, predicate symbols P and Q,
and term t of the object language,

Q(t) <— can be derived from
P(t) <~ and
Q(x) < P(x}.

The meta-language is more powerful than the object language in ancther
sense. The object-level proof procedure can only show that

X can be derived from Y

when both X and Y are given as input. The meta-level proof procedure,

230 Chapter 12: Formalisation of Provability

however, can solve Demonstrate goals of any pattern of input and output.

Given, for example, an appropriate definition of what constitutes an
interesting sentence, the meta-level gcal statement

<{— Demonstrate(X',y), Interesting(y)

can be used, in theory at least, to generate interesting consequences of
a given set of assumptionz X. Moreover, by solving the twe problems
cooperatively rather than seguentially, it is possible for the criteria
characterising interesting sentences to guide the generation of
consegquences of X,

The goal statement
<— Demonstrate(t,¥'),

where Y' names a given consequence and t is a partially instantiated term
which names a given collection of assumptions X together with unknown
additional assumptions x, can be used to find the missing assumptions x.
The goal statement

<{— Demonstrate(t,Yl‘),Demonstrate(t,Yz'),...,Demonstrate(t,Ym')

moreover, can be used to find missing assumptions which together with the
given assumptions X imply all of the conclusions ¥1.¥3,.0.4¥p. In the
simplest case, if the conclusions are sufficiently similar, tge missing
assumptions may be an inductive generalisation of the conclusions.
Provided the proof procedure is sufficiently constrained it will avoid
generating useless assumptions such as Y &Yo&. . &Yy, which trivially
imply the conclusions.

Addition and suppression of assumptions

Languages in the PLANNER family and most versions of PROLOG achieve
some of the power of the Demonstrate relation by providing facilities for
adding and suppressing statements during the course of a demenstration.
Instead of explicitly trying to sclve a goal of the form

Demonstrate (X',Y')
in these languages it is necessary to
add the statements X to the program,

try to show Y, and then
suppress X afterwards.

Since assumptions change dynamically during the course of a single
demonstration, such programs can be exceedingly dangerous.

Addition and suppression of assumptions can be accomplished more
safely by means of the Demonstrate relation. Moreover, efficiency can be
achieved by directly executing the proof procedure recursively on the
same machine or cooperatively on ancther machine instead of simulating it
with the definition. On the other hand, Demonstrate goals of other

Addition and suppression of assumptions 231

input-output patterns, which can not be solved by addition and
suppression of assumptions, can be solved by using the definition.
Addition and suppression of assumptions can only be used when the object
language and meta-language are the same., But, provided the meta-language
is sufficiently powerful, the Demonstrate relation can be used to connect
any two langquages.

Bootstrapping

The meta-language L, may differ in sophistication from the object
language L;. If it is fess sophisticated to start with, then it can use
its definition Pr of provability in Lj to simulate L; and to increase
its own sophistication. This is bootstrapping: the language Lj pulling
itself up by its own bootstraps, using the definition Pr to solve
problems more intelligently than it would otherwise, acting the way it
thinks a more intelligent proof procedure would behave.

Bootstrapping can be effective even if the more sophisticated language
L, does not have an independent existence of its own. The definition, if
i% is consistent, can serve as a construction which causes the language
L; to come into existence.

Bootstrapping, and more dgenerally, defining an implementation of one
language within another is a common technigue in computing. An
implementation of a language is created by writing a pregram which
functions as a translator or interpreter for it in another existing
language.

The clauses Dl1-2, which define the top-level of a Horn clause proof
procedure L can be used to bootstrap a simple top-down Horn clause proof
procedure L3 which executes procedure calls seguentially in the order in
which they are are written. By means of appropriate definitions of the
rest of the program and of the procedure Select in particular, it is
possible to define a proof procedure which executes procedure calls
cooperatively. Although L, executes procedure calls sequentially, the new
proof procedure 1) executes procedure calls as coroutines according to
the criteria specified in the procedure Select. By appropriate
modification of the definition, other improvements, such as loop
detection, intelligent backtracking and goal transformation, can also be
incorporated in the new proof procedure L;. More modestly, the definition
of Demonstrate might only enhance the input syntax of L, defining infix
notation for predicate symbols and function symbols, for example. More
ambitiously, it might define a proof procedure for a richer version of
logic, full clausal form or standard form, for example.

PROLOG systems and programs have used the bootstrapping technigue
since their first implementation in 1972 in Marseille. They have been
used primarily for improving the input syntax and for coroutining. A
variety of Horn clause programs defining Horn clause provability have
alsc been written at Imperial College. Simple Horn clause programs
typically run about 188 times slower when simulated by using such
definitions than they do when executed directly. PROLOG programs have
also been written for non-Horn clause provability and by Broda for the
standard form of logic. The PROLOG compiler written in PROLOG by
Warren, Pereira, and Pereira [1977) and Colmerauer‘s [1977] interpreter

232 Chapter 12: Pormalisation of Provability

for a restricted subset of natural language c¢an also be regarded as
applications of bootstrapping.

Combining the object language and meta-language

5o far we have assumed an asymmetric relationship between the two
languages Ly and L,. There is no reason in principle, however, why one
lanquage should know more about 1its companion than the other. Beth
languages might possess a definition of the other's proof procedure.
Each language could serve as the other's meta-"=snguage and could simulate
its proof procedure.

There 1s no reason either why the two languages should not be
identical in all respects. It is possible therefore to have a single
language equipped with a definition Pr which is a correct
representation of its own proof procedure. Given a problem of the form

Demonstrate (X',Y")

it can use the definition to simulate itself or equivalently it can show
that

Y can be demonstrated from X

directly., Solving the problem by direct execution is equivalent to the
proof procedure calling itself recursively.

Such a relationship between object language and meta-language 1is
already familiar in the programming language LISP [McCarthy et al 1962].
The function of a LISP interpreter or compiler is

to evaluate an expression y in an environment x, which
defines the values of the symbols occurring in vy,
producing a result =z which is the value of vy in the
environment X.

In functional notation this can be expressed
eval(x,y} = =z,

which is like Demonstrate, except that the additional parameter z names
the output. We shall arque later that it is useful to extend Demonstrate
to a four argument relation

Demonstrate{x,y,u,z)

which holds when
given the assumptions named x,
the conclusion named y and
the control named u,

the proof procedure generates the output named z.

The function eval can be defined 1in LISP, like Demonstrate can be
defined in logic. In the same way that Demonstrate—-goals with appropriate

Combining the object language and meta-language 233

input can be solved either by using the definition or by direct
execution, eval-function calls can be evaluated in LISP either by using
the definition of eval or by recursive invocation of the LISP evaluation
mechanism. Since LISP functions have fixed input parameters, explicit use
of the definition of eval can always be relaced by recursive invocation.
Indeed, it was a study of the analegue in logic of eval in LISP which led
the author and Ken Bowen to propose the amalgamation of object language
and meta-language presented in this chapter.

Incompleteness of the combined object and meta-language

The combination of object language and meta-language avoids the
paradoxes of self-reference in natural language. The attempt to
reconstruct them leads instead to the construction of a true but
unprovable sentence:

D = Demonstrate (Pr',D)

which mentions its own name D. The term Pr' names the definition Pr of
Demonstrate.

It is easy to show that, if Pr is consistent and correctly
represents the provability relation, then neither the sentence named D
nor its denial can be derived from Pr.

Consider the two cases:

(1) The sentence named D can be derived from Pr.
(2) Its denial Demonstrate(Pr',D} can be derived from Pr.

Case(l) By the assumption of correct representability, (1)
implies that

Demonstrate(Pr',D) can be derived from Pr. But then
both the sentence and its denizl can be derived from
Pr, ceontradicting the assumption that Pr is
consistent.

Case(2) By the assumption of correct representability (2)
implies that

the sentence named D can be derived from Pr.

Again, both the sentence and its denial can be derived from Pr,
contradicting the assumption that Pr is consistent.

Since both cases lead to contradiction, neither the sentence
named D nor its denial can be derived from Pr,

But the proposition

The sentence named D can be derived from Pr.

234 Chapter 12: Formalisation of Provability

or equivalently (by correct representability)
Demonstrate (Pr',D}

is either true or false of the provability relation. We have just shown
(Case 1) it is not true., Therefore its denial

D a1 Demonstrate (Pr',D)
is true, though unprovable.

The sentence named D is related to negation interpreted as failure.
Given the problem

Demonstrate (Pr',D)

the proof procedure neither succeeds nor fails in finite time., (Finite
failure would imply that

D 1 Pemonstrate(Pr',D)

could be proved from the iff-definition of Pr.) Thus the proof procedure
does not terminate in its attempt to solve the problem, and therefore its
denial

D = Demonstrate(Pr',D)

truly states that the problem cannot be solved.

The sentence named D can be constructed in a variety of ways including
the ope used in Gddel's original incompleteness proof.

More comprehensive form of the Demonstrate relation

To simplify the discussion we have assumed that a proof procedure
determines a two-place relation between assumptions and conclusions. In
reality proof procedures are more complicated. They alsc accept control
specifications which quide the proof strategy and they return output. It
is more realistic, therefore, to regard a proof procedure as determining
a four-place relation

Demonstrate (X,v,u,2z)
which holds when

given the assumptions named x,

the conclusion named y and

control named u,

the proof procedure generates the cutput named z.
The control parameter u might specify, for example,

(1) whether one proof method or another should be applied,

(2) whether one, all or "best" solutions are required, and
(3) whether a proof, trace of the search,

More comprehensive form of the Demonstrate relation 235

substitution for variables in the conclusion, or
simple Yes-No answer is reguired for the output z.

The trace of a proof procedure consists of the sequence of sentences
and other expressions generated by the proof procedure during the course
of searching for a solution. Thus the proof procedure may successfully
return as output the trace of an unsuccessful search for a solution. It
may also return a simple No-answer if it can determine that the search
space contains no solutions,

The more comprehensive form of the Demonstrate relation is useful for
obtaining and processing lists of all solutions. This is especially
useful in database applications to count all answers to a query or to
print the list of all answers as a table. Given a Horn clause database 5
of suppliers and parts, for example, the Demonstrate relation can be used
both to formulate and answer the gquestion

How many suppliers of staticnery are located in London?

<— Demonstrate (S, atom{Supplies,X.Stationery.NIL).
atom (Location,X.London,NIL) .NIL, all({X}),z},
Count{z,w).

Here all(X) specifies that a list of all distinct answers, consisting of
substitutions for the wvariable X, is required for the output =z.
Count(z,w) can be defined by

Count {NIL, @) <—
Count {(u.v, w} < Count(v,w'), Plus{w',l,w}.

Instead of counting the list of all answers, a procedure
Format {z ,w}

cculd rearrange the list 2z, inserting new page, nhew line and space
characters, so that the resulting 1list w, when printed, has the
appearance of a table.

Exercises

1} The top-level Dl1-2 of the definition of the Horn clause provability
relation can be tested for the problem of the Fallible Greek without
defining the lower-level procedures in full. It suffices to supply
assertions which solve the sub-problems which arise during the course of
trying to solve the top-level problem. The following assertions are
sufficient for renaming the procedures F1-4 and for finding the parts of
the resulting procedures.

Renamevars(Fl, goals, Fl1') <
Renamevars(F2, goals, F2) <
Renamevars (F3, goals, F3) <
Renamevars (F4, goals, F4) <—
Parts{Fl', atom{Fallible,Y), atom{Human,Y}.NIL) <—

236 Chapter 12: Formalisation of Provability

al Supply assertions or simple procedures for the remaining
conditions in D1-2,

b) Using the assertions and simple procedures from {(a), test
Dl-2 for the problem of the Fallible Greek by using top-
down inference and backtracking to find a solution,

2) Complete the definition DI1-2 of the Demonstrate relation by
defining the lower-level procedures in full. For this purpose it is
useful to employ a different data structure for naming expressions of the
cbject language:

a) Predicate symbols and function symbols can be named by
constant symbols.

b) Constant symbols c¢an be named by terms const(t} where t
names a number, e.g. @, s{#), ... etc.

c) Variables can be named by terms var(t) where t names a
number .

d) Composite terms can be named by terms of the form

term(s,t) where s names a function symbol and t names a
list of terms.

e) Atoms and lists of atoms in goal statements and procedure
bodies can be named as before.

£) Procedures can be named by terms procis,t} where s names
the head and t the body of the procedure.

g) Programs can be named by lists of the procedures they
contain.
h) Substitutions can be named by 1lists of substitution

components of the form subi{s,t) where s names a variable
and t names a term.

Notice that a simple way to rename the variables in a procedure is to

i) find T the maximum ¢ such that var(t) occurs in the goals
and

ii) replace every occurrence of a variable var(s) in the
procedure by an occurrence of the variable var(r) where
r = s+T.

The simple definition of the Match relation

Match (exprl,expr2,sub) <— Apply(exprl,sub,expr3),
Apply (expr2,sub,expr3)

is liable to go into a loop when the two expressions do not match., A
safer definitien is the one which employs twe substitution parameters,
one for the current substitution which matches the parts of the two
expressions which have been examined s=so far and another for the final

Exercises 237

matching substitution.

3} Modify the definition of the Demcnstrate relation, defining the
relationship

Demonstrate (prog,goals,sub)

which holds when the program solves the goals and dgenerates a
substitution of terms for the variables occutring in the goal as a
solution.

This can be done at the top-level simply by adding extra conditions to
D2. The substitution reguired in the head of the clause can be obtained
by appropriately combining the substitution obtained by the recursive
call to the Demonstrate procedure in the body of the clause together with
the output component .f the substitution which matches the selected goal
with the head of the procedure.

4} Define the top-level of a deterministicy Horn clause interpreter
for Horn clause programs. The interpreter can be made deterministic by
explicitly managing the search through the top-down search space one
branch at a time.

Branches of a search space can be represented by lists of nodes. Each
node consists of

i) the list of goals at the node,
ii) the selected goal, and

iii) the list of untried procedures which have not yet been
applied to the goal.

To solve the initial coliect of goals, process the branch whose only
node consists of the initial goal statement, selected goal and the
appropriate list of untried procedures.

Any program successfully processes a branch whose tip contains the
empty list of goals.

To process a branch whose tip node contains a non-empty list of
untried procedures for the selected gozl try to match the goal with the
head of the first untried procedure.

1) If the match fails, remove the procedure from the list of
untried procedures and process the new branch.

ii) If the match succeeds, remove the procedure from the list
of untried procedures, add a new tip containing the new
goal statement obtained by applying the successful
procedure, and process the new branch.

Tc process a branch whose tip node has an empty list of untried
procedures for its selected goal, backtrack by deleting the tip from the
branch and processing the new branch.

238 Chapter 12: Formalisation of Provability

5) show that for any set of clauses S there exists a corresponding set
of Horn clauses S* such that S is consistent (or inconsistent) if and
only if S* is, Thus any problem which can be expressed in clausal form
can be expressed by means of Horn clauses using the correspondence *.

The correspondence can be established by showing that the provability
relation for clauses in general can be defined by means of Horn clauses.

