239

CHAPTER 13

Logic, Change and Contradiction

Logic can be used to represent information and to solve problems. But
information changes and its representation needs to change accordingly.
In this chapter we consider the processes by means of which an
information system needs to change in time. The information systems
considered include not only programs and databases but also more complex
systems of the kind invelved in scientific theories and computer—based
natural language understanding. We shall consider in detail the role
that contradiction plays in guiding the direction of change.

Information systems

Throughout this chapter the terminology information system, and
sometimes belief system, is used to refer to any collection of
assumptions (or beliefs) expressed in logic together with a proof
procedure and maintenance procedures, which manage the way the
information system deals with change.

Information systems include both assumptions which are explicit as
well as conseguences which are implicit. In practice whether a sentence
is an implicit consequence is a matter of degree. The accessibility of a
consequence depends upon the complexity of finding a derivation. The more
complex the derivation, the more inaccessible its consequence. If a
derivation is too complex, its conseguence is as inaccessible as if it
were not implied at all. Thus different information systems may entail
the same logical consequences but differ significantly in their pragmatic
value. Useful consequences may be efficiently accessible in one system
but practically inaccessible in another.

Databases can be regarded as simple information systems. A database
might change as the result of internal reorganisation or in response to
incoming data and queries. The proof procedure is used not only to answer
queries but also to assimilate new data into the database. There are
four possibilities:

The new data might already be implied by the database,
imply existing data,

be independent from it, or

inconsistent with it.

It is the last case which is most important., It includes both the case in
which new data violates integrity constraints as well as the one in which
it is an exception to a general rule.

249 Chapter 13: Logic, Change and Contradiction

Programs together with their specifications can also be regarded as
information systems. A program which is inconsistent with its
specification can he made consistent by modifying either the program or
the specification. A program which is consistent with its specification
can be changed by replacing an inefficient procedure with a more
efficient one. It can also be changed by adapting it to a different
purpcse.

In text comprehension, the information system consists of the reader's
understanding of the text which has been read so far. It needs to change
when new information needs to be assimilated. The new information might
be the reader's interpretation of the next sentence 1in the text or it
might be an hypothesis needed to explain information previously obtained
from the text. In both cases the new information might be one among
several alternatives. The new sentence might be ambiguous and admit
alternative interpretations or the previcus information might be
explained by alternative hypotheses. If the new informatieon is
inconsistent with the current information system an alternative to the
new information or to previously assimilated information may need to be
considered.

Scientific theories <can be interpreted as information systems which
organise past experience and predict future ones. A theory may need to
change 1in the light ©f new experience or as the result of a new
hypcthesis. An ambiguous experience can be reported in alternative ways,
and alternative hypotheses might explain the same phenomena, The
alternatives need to be compared by evaluating their effect on the state
of the scientific theory as a whele. If an alternative renders the theory
inconsistent then consistency can be restored by restricting or suitably
modifying any of the premises which contribute to the contradiction. This
includes both the case in which the new sentence is rejected and replaced
by an alternative as well as the one in which the new sentence is
accepted and an old one is rejected instead.

Dynamics of information system change

Both the situation in which an information system records its
interaction with the environment and the situation in which it generates
its own hypotheses result in the need to assimilate new information.
There are four possible deductive relationships between the new
information and the current information system. Each possibility suggests
different candidates for the new system.

(1) The new information can already be derived from the current
information system. The information system successfully anticipates the
new information and the new system is the same as the o0ld one,
Assumptions which participate in the derivation can be identified and
their utility can be evaluated. More generally, assumptions can be
evaluated by assessing the extent to which they contribute to the
derivation of useful conseguehces. The evaluation of assumptions
according to utility can be used later to help determine which
assumptions should be abandoned or modified when a contradicktion occurs.

(2) Part of the informaticn in the current system can be derived from

the new information together with the information in the rest of the

Dynamics of information system change 241

system, The explicit assumptions of the new system consist of the new
information together with the explicit assumptions of the old system
without the part that can be derived. The new system subsumes the old
one. It implies the same consequences and possibly new ones as well, The
assessed utility of the assumptions which participate in the derivations
can be increased by an amount which takes into consideration the number
of derived consequences, the complexity of the derivations and the
utility of the derived consequences themselves.

The simplest example is the one in which the new information is an
inductive generalisation of existing information. The situation in which
it is an abductive assumption [Peirce 1931] is more complicated. Suppose,
for example, that the current system already contains the information

(1) A&BG&C<—D
(2) A

Then the new information
D

is an abductive hypothesis. Together with (1) it implies (2). Moreover,
it also implies B and C. In order to justify its incorporation into the
information system, the hypothesis D may need to prove its utility. It
can do so, for example, by showing that B or C is already redundantly
contained in the existing database or by predicting them when they are
introduced as new information later on. Generation ot abductive
hypotheses is similar to reasoning by means of defaults [Minsky 1975],
[Reiter 1978b]. If A is given, then D is assumed by default unless it
leads to contradiction or does not lead to sufficiently many useful
conseguences.

Notice that cases {1) and (2} might both apply. Whether one case is
better than the other depends upon the overall utility of the resulting
information system.

(3) The new information is consistent with the information system but
is independent of i{t. The new information can neither be derived from
the current system nor be used to derive existing information. This is
potentially an undesirable situation which may lead the system to seek an
explanatory hypothesis, which teogether with the information in the rest
of the system implijes the new information. Of course, the hypothesis
itself would alsce be independent and to justify its acceptance would have
to imply other useful consequences in addition to the one which motivated
its generation. The preceding example illustrates the situation. Suppose
the information system contains the assumption

A&B&C <D

and the new information A is independent. If this leads the system to
generate the hypothesis D, then D itself is independent and there is ne
net gain unless at least one of the additional conseguences B or C can be
independently confirmed.

It is not always possible to determine in a reasonable time whether
one or other of the four deductive relationships apply. in such cases,

242 Chapter 13: Logic, Change and Contradiction

whether the new information is logically related to the existing
information system or not, it will need to be treated as independent and
added to it.

{4) The new information is inconsistent with the information system.
A contradiction can be derived when the new information 1is introduced.
The assumptions which contribute to the refutation can be identified, and
consistency can be restored by rejecting or modifying one or more of the
assumptions which lead to the contradiction. The previous record of the
utility of assumptions can be used to help determine which assumptions

should be changed.

It is this last case, in which a contradiction occurs, which is the
most important.

Restoration of consistency

Contradiction and its reconciliation play an important role in
philosophy and in theories of problem-solving. It is the driving force
behind c¢hange (thesis, antithesis and synthesis) in the Hegelian
dialectic and the main instrument for advancing knowledge (conjectures
and refutations [Popper 1963} and proofs and counter-examples [Lakatos
1973}) in the Popperian philosophy of science and mathematics. In
problem-solving, it is an advanced form of intelligent backtracking and
an important component of truth maintenance problem-solving systems
{Doyle 1978], [Stallman and Sussman 1377].

It is a major feature of Quine's [1953] argument against the
distinction between necessary and contingent truths that, when a
contradiction arises, consistency can be restored by rejecting or
modifying any assumption which contributes to the derivation of
contradiction. No belief is immune from possible alteration., Even the
laws of mathematics and logic, to the extent that they are included among
the assumptions of information systems, are subject to critical
assessment and change.

This does not mean that any belief can be altered as easily as any
other. Psychological attachment and even computational commitment may
vary from one belief to another. Nor is it pragmatically desirable to
treat different beliefs the same. Some contribute to the derivation of
useful consequences more often than others; and some participate more
often in the derivation of contradictions. It benefits the well-
functioning of the belief system as a whole, therefore, to abandon, among
the beliefs which lead to contradiction, the one which contributes least
to the derivation of useful consegquences. In the longer term, if
contradictions continue and the assessed utility of beliefs changes, it
may be necessary to backtrack, reinstate a previously abandoned belief
and abandon an alternative instead.

Thus the derivation of inconsistency contributes to the search space
of alternative information systems. For each assumption which contributes
to the derivation of a contradiction there exists at least one
alternative new belief system obtained by abandoning or suitably
modifying the assumption. The gpace can be searched in depth-first
fashion, backtracking when a contradiction arises, or several branches

Restoration of consistency 243

can be investigated in parallel, Parallel exploration of alternatives has
the advantage that the conseguences of abandoning a belief can be
explored before a decision is made. Such parallel exploration of several
internally consistent, but mutually inconsistent, belief systems may, of
course, give an external observer the illusien of a single inconsistent
system.

The derivation of inconsistencies plays an important role in the
development of computer programs and databases. Generally, when an
inconsistency arises between a program and its specification or between
data and integrity constraints, it is the program or the data which is
rejected. Indeed, by definition, it is a main function of specifications
and integrity constraints to rule out incorrect programs and data. None
the less there are frequent occasions when it is necessary to abandon or
modify the specification or integrity constraint instead. For example,
given the conflict which arises between the integrity constraint

No vehicles are allowed in the park.

and the need for police and other emergency services to have access to
the park, it is likely that preference will be given to the police and
that the integrity constraint will have to be modified instead:

No unauthorised vehicles are allowed in the park.

Preference is also given to incoming data when it is treated as an
exception to general rules, Early versions of a university department's
timetable, for example, might be described by ambitiously general rules:

All first year lectures are held in room 144.
211 lectures attended by more than
8@ students are held in room 145,

Subsequent additions to the database

The first year logic lectures
are attended by 168 students,

might result in contradiction, Consistency can be restored by treating
the new data as an exception to a general rule, replacing the original
rule by a more restricted one

All first year lectures, except
logic, are held in room 144.

Notice in this last example that the assumption which has been
modified is not necessarily the one which has been least useful in the
past. What matters in general is not simply the utility of a belief but
rather the difference between its utility and that of its replacement.
Treating new data as an exception to a general rule when a contradiction
arises has the advantage of avoiding the contradiction while preserving
most of the useful consequences ¢f the existing information system.

Contradiction also plays an important role in text comprehension. It
helps to disambiguate sentences by rejecting interpretations which are
inconsistent with the current interpretation of the text-so-far, and it
helps to reject inconsistent explanatory hypotheses. If all

244 Chapter 13: Logic, Change and Contradiction

interpretations of a new sentence lead to contradiction, the system may
attempt to restore consistency by altering a previocus hypothesis or an
interpretation of a previous sentence instead.

Perhaps the classical example in which an information system needs to
cope with contradiction is the case in which the report of an empirical
observation or experiment contradicts a gcientific theory. Whether it is
more beneficial to reject the report or a statement of the theory depends
on the overall effect on the information system. It is even possible that
several alternatives might lead to incomparable, equally viazble, but
mutually incompatible, theories.

As Lakatos [1974] argues, in a mature theory with a history of useful
consequences it 1is generally more useful to reject an anomalous
conflicting report than it is to abandon the theory as a whole.

But it is almost never the case that a whole theory needs to be
abandoned anyway. A complex information system is a collection of
cooperating individual beliefs, some of which are more useful and more
firmly held than others. Propositions which reside in the central core of
a theory are more firmly held than those which are located closer to the
periphery, where rival hypotheses may coexist as mutually incompatible
alternatives. Reports of empirical observations can help to accumulate
evidence in favour of one alternative over another.

Even without restoring consistency, an inconsistent system can still
organise useful information. Although in theory inconsistent assumptions
imply any conclusion, in practice efficient proof procedures derive only
relevant conclusions with varying degrees of accessibility. Indeed, it
can be argued that practical provability, acheived by efficient
resolution-based proof procedures, satisfies all of the criteria
necessary for relevant entailment [Anderson and Belnap 1962].

Thus contradiction, far from harming an information system, helps to
indicate areas in which it can be improved. It facilitates the
development of systems by successive approximation -~ daring conjectures
followed by refutation and reconciliation. It favours bold, easily
falsified beliefs, which can be weakened if the need should arise, over
safe, timid beliefs, which are difficult to strenthen later on. Better to
make mistakes and to correct them than to make no progress at all.

A logic program for natural language

As a test of the theory of information systems outlined in this
chapter, a logic program for managing a natural language front-end to a
logic database has been designed by the author with Jaqueline Shane and
Karen Ritchie. A pilot version is being implemented using a theorem-
prover for the standard form of logic written by Krysia Broda.

The top-level of the program
Process (X,¥,Z2,X")

starting with an initial logic database x, processes a list y of natural
language input sentences, producing a ceorrelated list z of output

A logic program for natural language 245

sentences, finishing with a new database x' at the end of the session.

Process (db, nil, nil, db) <—
Process (db, input.restin, output.restout, newdb) <—
Represents (input, logic, control),
Assimilate (db, logic, control, output, interdb},
Process {(interdb, restin, restout, newdb)
Here as in the previous chapter, lower case character strings (e.g. "db",
"input", "restin") are variables.

Represents{input, logic, contrel) holds when the natural language input
can be interpreted as «consisting of a logic
statement together with a control component.

Assimilate(db, legic, control, output, interdb}) holds when assimilating
the logic statement and associated control into
the logic database results in an appropriate
output and a new intermediate database.

At the simplest level, control simply indicates whether a sentence is
a declerative statement or a guestion. Here clause (1) deals with the
case that the input is a question. The result of attempting tc answer the
question may or may not be a proof. (2) deals with the case that the
input is a declarative sentence already implicitly contained in the
database. In both cases, (1) and (2), assimilation of the new information
does not change the database, In the case A3, the next database consists
of the new information together with part (stay}) of the existing
database. The new database implies all the dats in the part (go) of the
0ld database which is no longer explicitly contained in the new database.
A4 adds the new information to the database if it cannot be derived or be
used to derive existing information. A5 deals with the case in which the
new informstion 1is inconsistent with the current database. The new
database results from asnalysing the proof of contradiction and restoring
consistency.

A1 Assimilate(db,logic,control,output,db) <— Question{control),
Demonstrate {(db,logic,control ,,result),
ExtractOutput (result,output}

A2 BAssimilate(db,logic,control,output,db} <— Declarative{control),
Demonstrate (db,logic,control ,,result},
Preof (result), IAlreadyKnowThat (output)

A3 Assimilate(db,logic,control,cutput,nextdb) <— Declarative(control),
db = stay v go,
nextdk = stay u {logici,
“Ydata[data € go —>
Jresult {Demonstrate (nextdb,data,control,result) &
Proof (result)]],
ThanksForTell ingMe (output)

R4 BAssimilate(db,logic,control,output,nextdb) <— Declarative(control),
Independent {db,logic,control},
nextdb = db v {logici,
Acknowledge {output}

246 Chapter 13: Logic, Change and Contradiction

A5 Assimilate(db,logic,control,output,nextdb) <— Declarative(control),
incon = db V {logici,
Demonstrate {incon,[},control, cesult),
Procof (result),
AnalyseFailureRestoreConsistency{incon,result,cutput,nextdb)

This 1is only a2 top-level sketch of part of the natural language
program. Important lower level procedures need to be defined and
specifications, such as A3, need to be transformed into efficient
procedures.

Our intention has been to deal with a restricted subset of natural
language suitable for untrained database users. However we do not insist
that input sentences be completely unambiguous, Certain ambiguities can
be dealt with by allowing Represents to be non-deterministic;; others,
such as those resulting from anaphora ("he","she","it",etc.), by adding
extra parameters to the Represents relation in order to deal with the
context of the previous natural language input.

For users interacting with a database it can be required that all
information included in the database be described explicitly. Implicit
assumptions, however, cannot be avoided in normal conversation and text
comprehension, where hypothesis generation schemes, such as frames
(Minsky 1975] and scripts {Schank 1975] are needed to fit sentences into
a coherent framework. The natural language program can be extended, in
theory at least, to accommodate the abductive generation of assumptions
by adding extra procedures. Here, in the case that the input is
independent from the existing database, clause A6 generates and adds to
the database a new assumption which together with the rest of the
database implies the new information. To be worth the effort, the new
information must be sufficiently more useful than the incoming
information itself,

A6 Assimilate(db,logic,control,output,nextdb) <— Declarative (control),
Independent {(db,logic,contrel),
nextdb = db U {newassumpl,
Demonstrate (nextdb,logic,control ,,result),
Proof (result),
newassump is more useful in db than logic,
Iassume (newassump,output)

Conclusicn

The theory of information systems attempts to combine the traditional
role which logic plays in epistemology and the philosophy of science with
its new role in computing. It attempts to reconcile the use of logic
without computational considerations with the use of complex, computer-
based computational systems without logical foundations. By exploiting
the computational interpretation of logic, it hopes to contribute to a
more useful communication of technigues between logic and computing.

