22

CHAPTER 2

Representation in Clausal Form

In order to construct a mechanical problem-solving system, it is
necessary to express information in an unambiguous language. Moreover,
for the system also to serve as a model of human problem-solving, the
language needs to resemble the natural languages used by human beings.
The language of symbolic logic is both precise enough to be understood
and manipulated by computers and natural enough to be regarded as a
simplified form of natural language.

In this chapter, we shall compare the clausal form of logic with some
of the features of natural language. We shall also compare it with
semantic networks for representing natural language meanings and with
relational databases for representing information in computers. In order

to make the relationship between logic and natural language more
apparent, we introduce the infix notation for predicate symbols.

Infix notation

The informal notation used to introduce clausal form at the beginning
of the first chapter can be given formal status.

Binary (two-place) predicate symbols can be written between their
arguments. Instead of writing atoms in prefix form

= (X,¥), < (x,¥), Father{x,y)
we can write them in infix form

X =y, x <y, x is the father of y

respectively. The expression "is the father of" is regarded as a single
predicate symbel, ‘

Unary (one-place} predicate symbols can be written after their
arguments, without the attendant parentheses. Thus we can write

x is good <— x accomplishes y, y is good

instead of
Good {x} <— Accomplishes(x,y), Good(y}.

Unary predicate symbols written after their arquments are also regarded

Infix notation 23

as infix notation.

For predicate symbols having more than two arguments, infix notation
distributes parts of a predicate symbol between its arguments. Thus we
can write

John gave book to Mary <—
instead of

Gave (John, book, Mary) <—

where "gave" and "to" are regarded as the first and second parts of the
single predicate symbol "Gave™.

Infix notation, though easier to read, increases the possibility of
ambiguity. The expression

John is a student <—

in infix notation can be interpreted as either one of the two clauses
Student (John} <—
Isa{John,student) <—

in prefix notation. To eliminate ambiguity, we underline infix predicate
symbols and their parts. Thus the atom in the clause

John is a student <—
has one argument, whereas the atom in
John is & student <—

has two arquments. Underlining may be omitted, as in the case of the two
binary predicate symbols " = " and " < ", when there is no ambiguity.

Infix notation can also be employed for function symbols. We can write
Xx+y, x*y, x!, x+1, x's dad
for example, instead of
+{x,y), times(x,y), facti(x), s(x), dad(x).

Infix notation for function symbols and associated conventions for
reducing parentheses will be discussed again in Chapter 5.

Variables and types of individualsg

The analogue of variables in logic are such words in English as

"something®, "anything", "everything”,
"nothing", "a thing", "things".

24 Chapter 2: Representation in Clausal Form

For example,

<— x is good, x is bad
Nothing is both good and bad.

X is bad < x accomplishes y, y is bad
Anything which accomplishes something bad is bad itself.

There are many occasions, however, in which logic uses a variable, but
English uses a word which refers to a specific type (or classification)
of individual. It is wusual in logic to name types by means of one-
argument predicate symbols. Thus, the English sentence

All men are animals.
would be expressed by the clause

X is an animal <— x is a man ,
The variable x in the clause is avoided in the English by referring to
the type "men". This is even more obvious if the English sentence is
paraphrased

Men are animals.
The English words "anyone", "everycne", "anywhere", "gomewhere",
"anytime", "sometime" refer to individuals of type "human", "place", and
"time".

Relative pronouns in English, such as "who", "which" and "where" refer
to individuals already mentioned in the same sentence. For example

Anyone who eats animals is a carnivore.
¥ is a carnivore <— x is human,

x eats vy,

v is an animal

The restrictive relative clause

who eats animals

adds two extra conditions concerning the individual x mentioned in the
main sentence

Anyone is a carnivore.
X is a carnivore <~ x is human

The non-restrictive relative clause, however, in the sentence
John, who eats animals, is a carnivore.
John jg g ¢arnivore <—
John eats v <— y 1is an animal

adds an extra sentence to the main sentence.

The words "is a" occur so freguently 1in English that it is natural to
treat them as a single unit and to symbolize them by a binary predicate

Variables and types of individuals 25

symbol. Thus we write

X is a animal <- x is a human
trewting types as individuals rather than as properties of individuals.
The treatment of types as individuals increases expressive power. It
allows us to write clauses which refer ¢to types by means of variables,
for example

X ig ay<—xisaz, zisay

which expresses the transitivity of "is a", Transitivity cannot be
expressed in clausal form if types are treated as properties.

Existence
The English word “some" expresses existence. In the standard form of
logic the existence of individuals can be expressed without giving them a
name. But in the clausal form of logic, existence is expressed by naming
individuels, using constant symbols and function symbols. The sentence
Some men are animals.
for example, cen be expressed by means of the clauses
(D is a wan <—
@ is a snimal <
where the constant symbol is not used elsewhere to name a different
individual. Notice, however, that the same clauses can alsc be regarded
25 expressing the English sentence
Some animals are men.
The English words "has" and "have" often express existence. The

sentence

Zeus has a parent who loves him.

for example, can be reexpressed as
Some parent of Zeus loves him.
In clausal form, & constant symbol is needed tc name the loving
parent. The name doesn't matter provided it is not used elsewhere for a

different individual. If the constant symbol ® satisfies this
condition, then the sentence is symholized by means of the clauses

(D is a parent of Zeus <—

(@ loves Zeus <~

26 Chapter 2: Representation in Clausal Form

To express that
everyone has a parent who loves him

the loving parent needs to be named by a function symbol. The simpler
clauses

(;115 a parent of x <— x is a human

[loves x <— x is a human
express the stronger assumption that a single individual, who is a parent
of everyone, loves everyone., We need to express the more modest
assumpt ion that for every human x there is an individual which is a
loving parent of x. Different individuals might have different loving
parents. The loving parent of x is a function of x and its name needs to
be constructed by a function symbol applied to x. Any function symbol can
be used, provided it 1is different from any used elsewhere. If the
function symbol ‘“par" satisfies this condition, then the term par(x)

names the loving parent of x and the sentence can be expressed by the
clauses

par{x) is a parent of x <— x iz a human

par {x} loves x <— x is a human.

In 2 similar manner, the assumptions
Everyone has a mother.
Offices have desks.
Birds have wings.
can be symbolized, using function symbols, by such clauses as
mum(x} is a mother of x <— x is & human
d{x) is a desk <— x is a office
d(x) is in x <— x is a office
w(x) is a wing <— x is a bird
w(x) is part of x <— x is a bird.
Individuals can be named by function symbols having several arguments.
The "English" sentence
For every individual x and every list y
there exists a list whose first element
is % and rest is y.

for example, can be expressed by the clauses

Existence 27

cons(x,y) is a list <— y is a list

x is the first of cons{x,y) <— y is a list

y is the rest of cons(x,y) <— y is a lisﬁ

where the term cons{x,y} names the list

constructed by putting the element x in front of the list y. Although
the infix notation for the clauses is easy to read, the prefix notation
is more compact:

Licons{x,y}) <— L{(y)
First(x, cons(x,y)) <— L{y)

Rest (y, cons(x,y)} <= L{y).

The existence of an individual which is referred to in the conclusions
of a statement needs to be expressed by a constant symbol or function
symbol. However, it needs to be expressed by a variable if the individual
is referred to in the conditions of the statement but not in che
conclusions. For example

Cne person is a grandparent of another if
he has a child who is parent of the other.

X 1s grandparent of y <— x is human,
y is human,
X is parent of =z,
z is parent of y

It is often easier to understand a c¢lause if variables which occur in
conditions but not in conclusions are read as expressing existence. For
example, the clause

Mary likes John <— Mary likes x
can be read as stating that
if there is anything that Mary likes at all,
then Mary likes John,
The clause
x has y <— z gives y to x

expresses that x has y if someone gives y to x.

28 Chapter 2: Representation in Clausal Form

Negation
Negation can be expressed directly in the standard form of logic. In
the clausal form it can only be expressed indirectly. The conclusion-
less clauses
<— Mother (Zeus, x)
<— Mother {x,y}), Father(x,z)
for example, state that
Zeus is not the mother of anyone and
no one is both a father and a mother.
It is a feature of clausal form semantics that a negated condition
can be reexpressed as an unnegated conclusion. The sentence
Robert is at work if he is not at home.
which can be expressed directly with a negative condition

At (Robert,work} <— not—At (Robert,home)

in standard form can be expressed without negation in clausal form by
means of a non-Horn clause

At (Robert,work), At(Robert,home} <— .

The sentence
not-Happy (John) <~ not-Likes(Mary,John)

in standard form can be reexpressed in clausal form
Likes{Mary,John} <— Happy(John}.

Notice that the different English sentences
Every fungus which is not a toadstool is a mushrocom.
Every fungus which is not a mushroom is a toadstool.
Everything which is neither a mushroom nor a
toadstool is not a fungqus.

all have the same clausal form

Toadstoel {x), Mushroom(x) <— Fungus(x).

Denial of conclusions which are implicaticns

In clausal form, to show that assumptions imply a conclusion, it is
necessary to deny that the conclusion holds and to demonstrate

Denial of conclusions which are implications 29

inconsistency. A typical conclusion often has the form of an implication:
211 boleti are poisonous.
Poisonous{x) <— Boletus({x}

for example. In general, an implication is a Horn clause with a single
conclusion and one or more conditions. A Horn clause with a conclusion,
but no condition, is called an asserktion. It is often convenient,
however, to use the terminlogy "implication" in the wider sense which
includes assertions.

To deny an implication it is necessary to assert the existence of
individuals satisfying 211 of the conditions and to deny that they
satisfy the conclusions. In this case, we assert the existence of an
individual, say qp , which is a beletus and deny that it is poisonous.

Boletus(9) <
<— Poisonous(T)
In Chapter 18, when we investigate the standard form of logic, we
shall formulate a systematic procedure for transforming denials of

sentences into clausal form. Meanwhile, it suffices to use the rule above
for denying conclusions which have the form of implications.

Conditions which are implications

In natural language and in the standard form of logic it is common for
a condition to have the form of an implication. For example, the
implication
211 Bob's students like logic.

which has the structure of a Horn clause

X likes logic <— x is a student of Bob

is the condition of the sentence

{1) Bob is happy if all his students like logic.

Although the sentence can be expressed directly in the standard form
of logic, it needs to be paraphrased before it can be expressed in
clausal form. In Chapter 18 we shall present a systematic wmethod for
trangforming such sentences from standard form into clausal form. Here we
can 1illustrate the method by successively transforming the original
sentence (1) in English:

(2) Not all of Bob's students like logic if Bob is unhappy.

{The unnegated condition and conclusion of (1) become the negated
conclusion and negated condition of (2).)

3e Chapter 2: Representation in Clausal Form

{3 There is a student of Bob, who doesn't like
logic, if Bob is unbappy.

(The conclusion of (2), which 1is the denial of an implication, is
reexpressed by asserting the existence of an individual which satisfies
the condition of being a student of Bob but not the conclusion of liking
logic.)

4) There is a student of Bob, say (@ ,
and & doesn't like logic, if Bob is unhappy.

(The culprit is given a name.)

{5) is a2 student of Bob if Bob is unhappy.
() doesn't like logic if Bob is unhappy.

(The two ceonclusions are expressed by two sentences having the same
condition.}

(6) C) is a student of Bob or Beob is happy.
Bob is happy if C) likes logic.

(The negated condition is reexpressed as an unnegated conclusion and the
negated conclusion as an unnegated condition.)

(7) (@ is a student_of Bob, Bob is happy <—
Bob is happy <— () likes logic
The transformation from English to clausal form can be compressed. In

the simple case where the English sentence has the form

A if B is implied by C.
i.e. A <— [B <= C]
in the standard form of logic, the corresponding clauses have the form

A, C ¢«

A <— B.

Complications arise when, as in the preceding example, the condition
B <—C

contains variables which need to be replaced by constant symbois or terms
involving function symbols.

Although sentences having conditions which are implications may appear
unnatural in clausal form, they have a natural problem-sclving
interpretation, discussed in Chapters 7 and 8. In Chapter 18 we shall
investigate such sentences in greater detail. Until then we shall
concentrate on examples which can be expressed by Horn clauses, whose
conditions are simple atomic formulae.

Definitions and "if-and-only-if" 31

Definitions and "if-and-only-if"

It is normal in mathematics and logic to express definitions by means
of "if-and-only-if":

x is grandparent of y if-and-only-if

there is a z which is child of x and parent of y.
The expression

A if-and-only-if B
is interpreted as meaning

A if B and A only-if B.
"A only-if B" is normally interpreted as

B if A.

This interpretation of "only-if", however, is not the only one. In
Chapter 11 we shall discuss an alternative interpretation.

The expression "if-and-only-if" can be expressed directly in the
standard form of legic. In the clausal form, however, the two halves need
tc be expressed independently. Moreover, the only-if half is often
unnatural. In the case of the only-if half of the grandparent definition

x is parent of rel(x,y) <— x is grandparent of y

rel(x,y) is parent of y <~ x is grandparent of y

a function symbol is necessary to name the relative of x and vy who is a
child of x and a parent of y.

If-and-only~-if definitions and sentences having conditions which are
implications are the two main cases in which clausal form is more awkward
than both natural language and the standard form of logic. Until Chapters
18 and 11 we shall avoid complications by using only the if-halves of

definitions, which is adeguate for most purposes.

Semantic networks

Many researchers in the field of artificial intelligence use semantic
networks, as an alternative to symbolic logic, to represent information
in computers. Semantic networks are used both as models of human memory
organisation and as representation schemes for the meanings of natural
language sentences.

32 Chapter 2: Representation in Clausal Form

A semantic network is a graph whose nodes represent individuals and
whose directed arcs represent binary relationships. Each individual is
represented by only one node, The information in the clauses Fl-6 of
Chapter 1, for example, can be represented by means of the semantic
network.

Hera

Father Father

Zeus Harmonia
Mother Mother
Aphrodite Semele

Cadmus

In general, a semantic network can be regarded as equivalent to the
set of variable-free assertions represented by its arcs. An arc labelled
R directed from node s to node t

R

A
s t

represents the assertion

Ri{s,t} < .

Simple semantic networks have no provision for representing variables,
function symbols, n—ary predicate symbols or clauses having conditions or
alternative conclusions. As we shall see later, the restriction to binary
relations is not an important limitation, because every n-ary
relationship c¢an be reexpressed as the conjunction of n+l binary
relationships. Other restrictions, however, are more serious and have
motivated several investigators to propose extensions [Shapiro 1971,
1972], [Hendrix 1975], [Schubert 1977], all of which treat semantic
networks as an alternative syntax for symbolic logic. The one described
below treats extended semantic networks as a pictorial syntax for clausal
form [Deliyanni and Kowalski 1979].

Extended semantic networks 33

Extended semantic networks

Ag in simple semantic networks, nodes represent individuals and arcs
represent binary relationships. However, nodes can be constants,
variables or terms constructed using function symbols. Arcs can
represent conditions as well as conclusions and are grouped into clauses.
Conditicns are drawn with two lines and conclusions with one heavy line
as before. Clauses containing more than one atom are delimited by
enclogsing them within subnetworks. The extended semantic network

corresponds to the set of clauses
John likes Mary <—
John is a human <—
Mary likes John, Mary likes Bob <— Mary likes x

Bob likes y <— y likes logic.

Bpart from their pictorial aspect, semantic networks have two other
attractions: They provide a useful scheme for storing information, and
they enforce the discipline of using binary rather than more general n-
ary predicate symbols. The fact that every individual is represented by
a single node means that all information about the individual is directly
accessible from the node. This feature has been exploited in the design
of path-finding problem-solving strategies. In the next two sections,
however, we shall compare the use of binary predicate symbols with that
of more general n-ary predicate symbols,

The representation of information by binary predicate symbols

Every n-ary relationship can be reexpressed as a conjunction of n+l
binary relationships. For example, the assertion

John gave book to Mary <—

can be reexpressed in English:

34 Chapter 2: Representation in Clausal Form

There is an event e
which is an act of giving
by an actor John

of an object book

to a recipient Mary,

In clausal form, ignoring the assertion which describes that e is of
type "event", the single 3-place relationship can be reformulated as 4
binary relationships,

e is an act of giving <—
e has actor John <—

e has object book <—
e has recipient Mary <—

The semantic network representation
giving John

act of

object book

recipient
Mary

of the clauses is similar to the case structure analysis of natural
language employed in linguistics [Fillmore 1968] and artificial
intelligence [Quillian 1968], [Schank 1973, 1975], [Simmcns 1873].

In general, to replace an n—ary relationship by binary relationships
it 1is necessary to treat the n-ary relationship and its relation as
individuals (giving them names such as "e" and "giving" in the preceding
example). It 1is necessary to introduce a binary relationship which
expresses that the n-ary relationship belongs to the n-ary relation: in
this example, the binary relationship

e is an act of giving <— .

For every argument of the n-ary relationship, a binary relationship is
needed to express that the argument belongs to the n-ary relationship.

We shall refer to the representation of information by general n-ary
relationships as the n-ary repregsentation and the corresponding
representation by means of binary relations as the binary representation.

Binary relationships can replace n-ary relationships in both
conditions and conclusions of clauses. For example, the English sentence

A person possesses an object
after it is given to him.

can be expressed in.the form

The representation of information by binary predicate symbols 35

For every event u in which x gives y to z,
there exists & situation, say result{u),
immediately after u, which is a

state of possession by the subject z of the
object y.

The systematic formulation of the sentence in clausal form using
binary predicate symbols ignoring types, produces four Horn clauses all
having the same conditions,.

result(u} is immediately after u <—

result(u) is a state of possession <—

result(u) has subject z <

result(u} has object y <—

is an act of giving,
has actor x,
has object y,

has recipient =z

is an act of giving,
has _actor x,

has object v,

has recipient z

is an act of giving,
has actor x,

has object vy,
has recipient z

is an act of giving,
has actor x,

has object y,

has recipient z

cocco coCcoCc cCcocC

ERFEFEC

In this example, the binary representation is less compact than an n-
ary representation which includes explicit arguments for the act u and

the state result(u).

result(u} is immediately after u <—

u is an act of giving by x of y to z

result(u) is a state of possession by z of y <~

However, if we assume

u is an act of giving by x of y to z

that every act of giving has an actor, object and

recipient then the original binary representation can be reformulated

more compactly.

result (u)

result (u)

is immediately after u <— u is _an act of giving

is a state of possession <— u is an act of giving

result(u) has subject z <~ u has recipient z
result(u) has object ¥y <— u has object y

36 Chapter 2: Representation in Clausal Form

Advantages of the binary representation

The binary representation is generally more expressive than the n-ary
representation. It makes it easier to add new information and to ignore
information that is unknown,
In the binary representation, relations and relationships are treated
as individuals. Consequently it is possible to talk about them in such
sentences as
Mary wants John to give her the book.
Mary wants e <— .

The corresponding expressicn in the n-ary representation
Mary wants (John gave book to Mary) <—

is not a legal sentence of clausal form.

The ability to talk about relationships in the binary representation
also makes it easier to add new information about a relationship. For
example, having expressed that

John gave the book to Mary

to add the new information that he did so in Hyde park requires only the
addition of a new assertion

Hyde park ig the location of e <—

in the binary representation. But, in the n-ary representation, it
reguires replacing the original assertion which used a 3-place predicate
symbol

John gave book to Mary <—
by a new one with a 4-place predicate symbol.

John gave book to Mary in Hyde park <—

Notice, however, that it is really the treatment of relationships as

individuals which 1is responsible for the advantages of the binary
representation in the preceding two examples. Both of the sentences

Mary wants e <—

Hyde park is the location of & <—

can be expressed in an n-ary representation with an an explicit argument
which names the relationship e.

e is an act of giving by John of book to Mary <—

The binary representation is alsec more convenient than the n-ary

Advantages of the binary representation 37

representations when components of a relationship are unknown. For
example, to express that

the book was given to John

it suffices in the binary representation simply to state what is known
and to ignore what is unknown.

e' is an act of giving <—
e' has object book <—

e' has recipient John <

In the two n-ary representations, on the other bhand, it is necessary to
give the unknown actor a name.

ﬂ:l gave book to John <—
or e' is an act of giving by fZl of book te John <~

The argument in favour of binary relations is not conclusive. There
are many relationships, such as

times y is =z,

received grade vy for course z,

is the y-th element of sequence z, and
1s a proof that the assumptions x
imply the conclusion y

obtained by the proof procedure u,

< MoM oM

for which an n-ary representation is wore convenient than the binary
representation. The use of general n-ary relations moreover is more
common than the use of binary relations in the field of databases.

Databases

A database is a collection of information to be used for a variety of
purposes. A typical database might contain a firm's personnel records,
details of bank transactions or the police files of convicted criminals.
Increasingly, such databases are represented in a form which can be
processed by computers. These are used to update the databases, to check

the consistency of data, and to answer requests for information.

A single dJdatabase might be used to obtain information by many users
with little computer training. In this case the data need to be
represented in a simple form which is independent of its representation
inside the computer. Consequently, the database query language must be
both simple to learn and easy to use. It is now widely accepted that
these requirements can best be satisfied if data are viewed as relations
[Codd 1974@]).

The relational view of data is equivalent to the representation of
data by tables: The argument positions of a relation can be regarded as
the columns of a table and the relationships which make up the relation
are its rows. Thus the 5-column, 3-row table

38 Chapter 2: Representation in Clausal Form

Birthday club Name Office Dues Birthdate Date joined

Mary | president| 1l@p 4.Mar.77 4. Mar.77
John secretary 19p 2,Mar.78 2.Mar.78
Bob treasurer | 1lép 1.Jan.8@ 1.Jan. 88

represents the S-argument relation which is described by the 3
assertions:

Club(Mary, president, ldp, 4.Mar.77, 4.Mar,77) <—
Club{John, secretary, 1l8p, 2.Mar.78, 2.Mar.78) <—
Club(Bob, treasurer, ldp, l.Jan.88, l.Jan.88) <-

The same information can be described by using binary predicate
symbols. In this example the binary representation can be simplified
because each row of the table can be uniquely identified by the value in
its first column. Accordingly, the value in that column is said to be a
key of the table. In the binary representation of the table, the key can
function as the name of the relationship which it identifies.

Bl Member (Mary, birthday club) <—
B2 Member (John, birthday club) <—
B3 Member (Bob, birthday club) <-
B4 Office (Mary, president) <-

B Office(John, secretary} <-

B6 Office(Bob, treasurer) <—

B7 Dues (Mary, lBp) <

B8 Dues (John, 18p) <

BY Dues (Bob, 10p) <

Bl@ Birthdate (Mary, 4.Mar.77) <—

Bl1l Birthdate (John, 2,Mar.78) <—

Bl2 Birthdate (Bob, 1.Jan, 88) <

Bl3 Datejoined {Mary, 4.Mar.77) <—

B14 Datejoined (John, 2.Mar.78) <—

B15 bDatejoined(Bob, 1.Jan.B@#) <~

Notice that the binary representation of the table, though more
longwinded, is easier to read than the n-ary representation. The names of
the columns, which are necessary for understanding the table, are not
represented in the n-ary representation, but are represented by binary
predicate symbols in the binary representation.

More importantly from a computational point of view, the binary
representation can often express genetral laws which could not be
expressed at all in the n-ary representation. In particular, the general
laws

Dues(x, 1lép) <— Member (X, birthday club)
Datejoined(x,y) <— Member (x, birthday club),
Birthdate {x,y}

can replace the specific assertions B7-3 and B13-15 in the binary
representation, but cannot be formulated in the n-ary representation at
all.

Data guery languages 39

Data guery languages

The relational view of data has been used more for data queries than
for data description.

Most relational query languages use the symbolism of symbolic logic or
relational algebra. Relational calculus query languages [Codd 1372] can
be regarded as using a binary representation of relations. Given, for
example, the data contained in the Birthday club and the Address tables

Birthday club Name Office Dues Birthdate Date joined

Address Name Street number Street Town

the guery What Birthday club members live
on Euclid Avenue?

can be formulated in the binary representation

<— Answer (x)
Answer {Xx) <— Member (x, birthday club),
Street (x, Euclid Ave}

in a manner similar to that of the relational calculus. It can also be
formulated in the n-ary representation

<— Answer (%)
Answer {x} < Club{x,¥,2z,0,v),
Address(x, y', Buclid Ave, z')

similar to that of the tabular query-by-example language [Zloof 1%75].
The relationship between queries expressed in the clausal form of
logic and ones expressed in guery-by-example has been investigated by van

Emden [1979]. A classification of relational guery languages, all based
on the standard form of legic, has been made by Pirotte [1978).

Data description

The relational model of data is not concerned with the formalism used
to represent data within the computer. It 1is compatible with any
formalism which can be viewed abstractly in terms of relations.
Nevertheless, the use of symbolic logic is especially attractive. It has
the advantage that the same formalism can be used both for expressing
queries and for defining data. Moreover, when the data can be defined by

49 Chapter 2: Representation in Clausal Form

means of general laws, the data definitions are indistinguishable from
programs., The sentence

Dues (x, 18p) <— Member{x, birthday club)

for example, can be regarded both as a general law and as a program which
computes the dues paid by members of the birthday club.

symbolic logic was used before the relational model of databases to
describe both data and queries in question-answering systems. Among the
first systems were those described by Darlington [1969] and Green [1969%a,
1969b])., The use of the "Answer" predicate symbol, in particular, was
introduced by Green. More recent systems have been developed in
Marseille [Colmerauer et al 1972], [Dahl and Sambuc 1976] and Maryland
[Minker et 21 1973], [McSkimin and Minker 19771, and by Nicolas and Syre
[1974] and Kellogg, Klahr and Travis [1978].

Integrity constraints

Since data often contain errors, integrity constraints are used to
describe properties which the data need to satisfy in order to be
correct. The clause

y is before z <— Today(z),
Member {(x, birthday club),
Birthdate (x,y)

for example, expresses that all members of the birthday club were born
before today. If today were 1.Apr.79

Today (1.Apr.79) <—
then given an appropriate definition of the is before relation, the data

Member (Bob, birthday club) <—
Birthdate (Bob, 1l.Jan.B@) <—

would be inconsistent with the integrity constraint and should be
rejected by an intelligent database management system.

Using symbolic logic as a formalism for describing information blurs
the conventional distinction between databases and programs. Integrity
censtraints for databases are indistinguishable from program properties.
The clause

X < y <= Fact(x,y)

for example, describes a property which needs to be satisfied by a
correct definition of the factorial relation. Like an integrity
constraint, its purpose is not to contribute to the definition of the <
and Fact relations but rather to constrain the definitions from having
unacceptable properties.

Integrity constraints can be used for other purposes. They can be used
to reject inconsistent gueries

Integrity constraints 41

What number is less than 1,308
and is the factorial of 5,200 ?

and to transform difficult goals into easier ones. The use of integrity
constraints to aid problem-solving is investigated in Chapter 9.

A departmental database

The PROLOG [Roussel 1975] Horn clause problem-solving system developed
in Marseille has been used for a variety of tasks which combine features
of both databases and programs. It has been used in Marseille for natural
language question answering {[Colmeraver et al 1972], [Dahl and Sambuc
1976] and symbolic integration {Bergman and Kanoui 1973], in Edinburgh
for plan-formation [Warren 1974, 1976], geometry theorem-proving [Welham
1976], [Ccelho and Pereira 1975], the solution of mechanics problems
expressed in English [Bundy et a2l 1979] and compiler-writing [Warren,
Pereira and Pereira 1977] and in Budapest for computer-aided design
[Markusz 1977]) and drug analysis [Futo, Darvas and Szeredi 1978]. 1In
London we have implemented part of a database which describes the
activities of our department. The following clauses are typical of those
used to describe the data.

X is occupied with Yy <— x teaches y

x 1is occupied with y <— x attends y

X 1is occupied with y <— x is member of committee y
9:38 15 the hour of 384 <~

Fri is the day of 304 <«

3 is the level of 384 <-—
145 is the room of x <— 3 is the level of x
RAK teaches 304 <

145 has capacity 8@ <=

65 people attend 384 <—

X attends vy <— x is a student in year z,
z ig the level of y

Problem-solving is the name of 384 <-—

Here it is assumed that course 304 meets only once a week., If it meets
more often, then composite terms, part(304,1), part(304,2), for example,
might be used to name diferent parts of the course.

Various integrity constraints, such as

<— x is the room of y, x has capacity u,
v people attend y, u < v

can be expressed and tested for consistency with the data. Queries can be
answered by denying that they have an answer, proving inconsistency and
extracting from the proof the informaticon needed to construct the answer.
Thus, to determine the activity with which RAK is occupied at 9:38 on
Fridays it suffices to deny that there is such an activity:

<— Answer {X)

Answer (x) <— RARK 1is occupied with x,
9:38 is the hour of x,

Fri 1is the day of x

42 Chapter 2: Representation in Clausal Form

The substitution x = 3@4

which can be extracted from the proof answers the guery. The answer
extraction can be done automatically by the problem-solving system.,

Equality

Mathematical notation normally uses function symbols and the binary
predicate symbol = ({eguality) where we have used other predicate symbols.
It is usual to write

X*y = z instead of Times(x,y,2z)
x! =y instead of Fact(x,y)
x = father {y) instead of Father(x,y}.

Similarly, the relational c¢alculus query language uses function
symbols and equality, writing

instead of Office(x,y)
instead of Dues(x,y)
instead of Birthdate(x,y)
instead of Datejoined(x,y}.

office(x)
dues (x)
birthdate (x)
datejoined (x)

bR G G

Functional notation is coften more compact than relational notation. It
is simpler, for example, to express

The date on which a member of the
birthday club joins the club is the
same as his birth date.
in the functional notation
birthdate{x) = datejoined(x) <— Member (x, birthday club)

than in the relational notation

Birthdate(x,y} <— Member (x, birthday club), Datejoined({x,y)
Datejeined(x,y) <— Member{x, birthday club), Birthdate(x,y).

Fquality is necessary whenever an individual has more than one name.
For example:

Jove = Jupiter <— .

It is also necessary, even in the relational notation, to express that
cne argument of a relation is a Eunction of the others, For example:

x = y < Father(x,z), Father(y,z)

To show that a set of clauses S containing the equality symbol is
inconsistent, the set of clauses needs to contain the following axioms
characterising the equality relation, for every function symbol f and
every predicate symbol P occurring in S, (including the equality symbol).

Equality 43

El X = x <—
E2 P(XjreorrXp) So P{Yylreeee¥p)e X15¥10 eonr Xp=¥p
E3 E(X]veresXy) = E(Y]reeer¥p) <= X1=Y]s +vnr Xp=ym

For example, to demonstrate that the assumptions

J1 Jekyl = Hyde <—
J2 father (John) = Hyde <—
J3 Member {father {(John) , birthday club) <-

imply the conclusion

Member (Jekyl, birthday club} <~
it is necessary to deny the conclusion
J4 <{— Member (Jekyl, birthday club)

and add the appropriate axioms for the equality relation:

J5 X = x <—

J6 Member (x7,%Xp) <— Member(yj,¥3), X3 = ¥1, ¥ = ¥
J7 X] = Xy ST Y] T ¥3e X] T ¥1r X3 T ¥

J8 father{x) = father(y) <~ x =y

The resulting set of clauses J1-8 is inconsistent because J1-3 are
"obvicusly" inconsistent with the instances

Hyde = Hyde <—
birthday club = birthday club <—
Member (Jekyl, birthday c¢lub) <— Member (father (John), birthday club),
Jekyl = father (John},
birthday club = birthday club
Jekyl = father (John) <— Hyde = Hyde, Jekyl = Hyde, father (John) = Hyde

of J5-7. (Clause JB in this example does not contribute o the
inconsistency.

Problem-solving is considerably simplified if individuals have only
one name (distinct variable-free terms naming distinct individuals). Then
the single axiom

El X = X <—

expresses the only situation in which two individuals are the same (if
they have the same names). The infinitely-many axioms

D Diff(s,t) <—

for every pair of distinct variable-free terms s and t, express the only
situations in which individuals are different (if they have different
names). Given a finite set of clauses & the infinitely-many axioms D can
be replaced by finitely many clauses

44 Chapter 2: Representation in Clausal Form

D1 Diff (a,b) <—

for every pair of distinct constants a and b in §
b2 Diff (a, £(Xy,....xp)) <—
D3 DIiff(E(RXysenn,xy), a) <—

for every constant a and function symbol f in S.

D4 Diff (E(xy,vupXyly 9G¥ rensr¥y)) <=
for every pair of distinct function symbols f and g in S.

oS DALE(E{x)s-0vrXp)s Dlyje-ousyp)) <= Diff(x{,yi}
for every function symbol f in S and argument i of f.

Diff(x,y) is the same as not-(x = y). This can be expressed
Diff (x,y) if-and-only~if not-(x = y), i.e.
D*1 Diff (x,¥) <— not-(x = y)
D*2 not-(x = y) <— Diff(x,y)

in the "standard form™ of logic or

Diffi{x,y}, x =y <
< Diff(x,y), x = y

in the clausal form. However, there is another interpretation of
Diff(x,y) only-if not-(x = y}
which is different from D*2, namely

D* D*1 describes the only condition for which the conclusion
Diff (x,y) holds.

D* talks about the sentence D*1. It is a sentence of the metz-language,
talking about individuals which are sentences of the object language.
The relationship between the object language, in which one uses
sentences, and the meta-language, in which one talks about sentences, is
investigated in Chapters 11 and 12.

To simplify matters for the remainder of the book we shall, whenever
possible, refer te individuals by unigque names, using the equality and
Ciff predicate symbols only in conditions of clauses, except for their
"definitions":

El X = x <— and
D Diff(s,t) <—
for all pairs of distinct variable-free terms s and t.

In practice the Diff relation is defined by more efficient means.

Exercises

1) Express the following sentences in clausal form. Some of them are
ambiguocus.

Exercises 45

a) Everyone likes someone.

b) Everyone likes everyone.

c) Someone likes everyone.

d) No one likes anyone.

e) No one likes someone.

£} Someone likes no one.

gl John and Mary like themselves.

h} A teacher is happy if he belongs to no committees.
(Paraphrase the sentence first: It is not the case that a
teacher is happy and belongs to some committee.)

i) Anyone who Knows anything about logic likes logic.

2) In each of the following arguments the assumptions imply the
conclusion. Express the assumptions and the denial of the conclusion in
clausal form, so that the resulting set of clauses is inconsistent.
Demonstrate inconsistency by showing that the set of clauses is true in

no interpretation.

a) Assumption There is a single individual who is a loving parent of
everyone.

Conclusion Everyone has a parent who loves him.
b) Assumptions All easterners like all westerners.
All westerners like all easterners who like some
westerner.

Conclusion All westerners like all easterners without exception.

c) Assumptions Canaries are birds.
All birds bave wings.

Conclusion Canaries have wings.

d) Assumptions Anything which accomplishes something good is good itself.
Anything which accomplishes something bad is bad itself.
War accomplishes both peace and suffering.
Peace is good and suffering is bad.
Conclusion Some things are both good and bad.

e} Assumptions x is a member of cons(x,y}.
X is a member of cons{u,y} if x is a member of y.

Conclusion A is a member of cons(C, cons(aA, cons(C, nil))).

f) Assumption Bob is happy if all his students like logic.

46 Chapter 2:; Representation in Clausal Form

Conclusion Bob is happy if he has no students.

3} The word "like" in exercise (6) of Chapter 1 disguises two
different meanings. Redo exercise (6) distinguishing between the notions

x likes to eat y and
x likes to be with y.

You ¢an do so either by using two completely distinct predicate symbols,
Likel and Likez, or by using a single three argument predicate symbol,
one of which is the name of an event (eating) or of a state (being with).

4) Express in clausal form the information represented in the
following semantic network and English sentences:

Subject-of

fire Prometheus forbid

Object Actor Act

humans

Recipient
e e'

The object of e' is any act of giving fire to humans.
If a ruler forbids an act which is performed by one of his
subjects then there is another event in which the ruler
punishes the subject.

5) This exercise is based on Schank's [1973, 1975] conceptual analysis
of actions. Let the intended interpretation of

Act (x,y} be x is an act of type y,

Possess(x,y.,u) ¥ possesses y in state u,
Actor (x,y) the acter of act x is vy,
Object (x,y) the object of act x is vy,
Donor {x,y) the doner of act x is y,
Recipient {x,y} the recipient of act x is y.

Let the terms

ATRANS name the type of all acts of abstract

transactions,
GIVE the type of all acts of giving,
TAKE the type of all acts of taking,
result (u} the state immediately after the act u,
prior {(u) the state immediately prior to the act u.

Express the following sentences in clausal form:

Exercises 47

a) In the state immediately after any act of type ATRANS, the
recipient of the act possesses the object of the act.

b) In the state immediately prior to any act of the type
ATRANS, the donor possesses the object of the act.

c} An act of type ATRANS is an act of giving if the actor is
the donor.

d) An act of type ATRANS is an act of taking if the actor is
the recipient,

6) Rede exercise (5) using equality and function symbols. Let

act {x) name the type of act x,
actor (x) the actor of x,
object(x) the object of x,
donor (x) the donor of x,
recipient {x) the recipient of x.

7) Let Parents(x,¥,z) hold when x is the father and y the mother of z.
Formulate a set of clauses whose only variable—free assertions concern

the Parents relation but which imply the variable-free assertions F1-8 of
Chapter 1.
8) Assume that data is given in the Supplier, Part and Supply tables:

Supplier Supplier-Number Name Status City

Part Part-Number Name Colour Weight

Supply Supplier—-Number Part-Number Quantity

Formulate the following queries in clausal form. Use both the binary and
the n-ary representations, taking advantage of the fact that Supplier-
Number is a key of the Supplier table and@ Part-Number is a key of the
Part table. Assume that the relationship

x <y {x is less than y)

48

Chapter 2: Representation in Clausal Form

is already given.

a)
b)
c)

d)

e)

f)

q9)

What are the numbers of suppliers of nuts?
What are the names of suppliers of bolts?
What are the locations of suppliers of nuts and boles?

What are the names of parts supplied by the supplier named
John?

What are the names of suppliers located in London who
supply nuts weighing more than one ounce?

What are the names of suppliers of both nuts and bolts?

What are the names of suppliers of nuts or bolts?

