49

CHAPIER 3

Top-down and Bottom-up Horn {lause Proof Procedures

Introduction

The parsing problem - to show that a string of words forms a sentence
according to given rules cof grammar - can be represented in logic as a
problem of demonstrating the inconsistency of a set of Horn clauses.

Different parsing procedures for determining that a string is a
sentence correspond to different proof procedures for demonstrating
inconsistency. Top-down parsing procedures correspond to goal-directed
proof procedures which work backwards from the conclusion by using
implications to reduce problems to subproblems. The aim is to reduce the
original problem to a set of subproblems each of which has been solved.
Bottom-up parsing procedures correspond to proof procedures which work
forward from the initial set of assumptions, by using implications to
derive conclusions from assumptions. The aim 1is to derive assertions
which directly solve each of the initially given problems.

Top-down and bottom-up proof procedures apply to the solution of any
problem. Top-down inference is the analysis of goals into subgoals;
bottom-up inference 1is the synthesis of new information from old. 1I1n
this chapter we define top-down and bottom-up inference for Horn clauses
only. Later we shall extend their definition te non-Horn clauses and
investigate systems which combine both directions of inference.

The parsing problem

The following description of the parsing problem is based on Foster's
description [Foster 1978] of a formulation by Amarel.
Given a grammar and a string of words such as
"The slithy toves did gyre"

the problem is to demonstrate that the string is a sentence. This can be
done by filling in the triangle

5@ Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

sentence
The slithy toves did g}re
with a parse tree:
sentence

noun phrase verb phrase

determiner verb

The slithy "toves “did gyre

The parse tree is constructed in accordance with a grammar. In this
example, the fcllowing rules of grammar have been used.

(1) A noun phrase followed by a verb phrase is a sentence.

(2) A determiner followed by an adjective followed by a noun
is a noun phrase.

{3) An auxiliary followed by a verb is a verb phrase.

(4) "The" is a determiner.
(5) "slithy" is an adjective.
(6) "toves" is a noun.

(7} "did" is an auxiliary.
(8) T"gyre" is a verb.

Different ways of filling in the triangle determine different parsing
procedures. Top-down procedures are determined by filling in the
triangle from the top downwards. Bottom-up procedures are obtained by
filling in the triangle from the bottom upwards.

& top-down procedure might generate all branches in parallel:

sentence

noun phrase verb phrase

The slithy toves did gyre

The parsing problem 51

or it might generate one branch at a time, say from left to right.

sentence

noun phrase verb phrase

determiner,

The slithy ‘toves did gyre

Similarly, a bottom-up procedure might work on all words in the input
string in parallel:

sentence

determiner

adj noun au§r erb

T

The slithy toves did gyre

or it might work on one word at a time.

sentence

noun phrase

determiner

The slithy toves did gyre

The triangle can be filled in from right to left, bi-directionally
top-down and bottom-up, and even from the middle out. Every systematic
method of filling in the triangle determines a parsing procedure. At this
point, it is important to distinguish mainly between the top-down and

bottom-up procedures.

52 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

A predicate logic representation of the parsing problem

There are many ways to represent the parsing problem in logic. The one
we describe here has the property that different parsing procedures
correspond to different proof procedures for the same representation.

We regard the initial string of words as a graph. A node of the graph
occurs between adjacent words of the initial string and also at the
beginning and end of the string. We regard words in the string as labels
on the arecs connecting adjacent nodes:

2 3 4
— e o o

the slithy toves did gyre

6
~0

¥ o

The nodes are arbitrarily named 1-6. No ordering is implied by the
numbers used to name the nodes.

The rules of grammar can be regarded as statements concerning labelled
graphs:

If there is a path from node x to y labelled "the" then
the path from x to y is also labelled “determiner", i.e.

Det(x,y) <— the(x,y}.

If there is a path from x to u labelled "determiner™ and a
path from u to v labelled "adjective" and a path from v to
y labelled "noun" then there is a path from x toe ¥
labelled "noun phrase", i.e.

Np(x,y) <— Det{x,u}, Adj(u,v), Noun(v,y).
A parse of the initial string of words can be regarded as a graph

which is labelled according to rules of grammar and has a path, from the
beginning of the string to the end, labelled "sentence":

sentence

verb phrase-

noun phrase

the slithy toves did gyre

The initial graph is represented by a set of assertions:

A predicate logic representation of the parsing problem 53

Parse 1 the(1,2) <—
Parse 2 slithy(2,3) <
Parse 3 toves(3,4) <—
Parse 4 did(4,5) <
Parse 5 gyre (5,6) <—

The rules of grammar are represented by clauses containing variables:

Parse 6 Sent {x,y) < Np(x,z), Vp{z,y)

Parse 7 Npix,vy) <— Det (x,u), Adj(u,v), Noun(v,y)
Parse 8 Vp(x,y) <— Aux(x,z), Verb(z,y)

Parse 9 Det (x,y¥) <— the(x,y}

Parse 18 Adj (x,¥) <— slithy(x,y)

Parse 11 Noun (x,¥) <— toves(x,y)

Parse 12 Aux(x,y) <— did(x,y)

Parse 13 Verb (x,y) < gyre(x,y}

These are the only rules of grammar needed tc parse the original string
of words. In a more realistic formulation of the problem, we have to
consider the use of other rules of grammar as well. For example:

Parse 14 Np(x,y) <— Det(x,z), Noun{z,y}
Parse 15 Np(x,y) <~ Noun (X,y)

Parse 16 Vp(x,Y) <— Verb(x,y)

Parse 17 Det (x,y) <= a(x,v)

Parse 18 Adj(x,y) < brilligi(x,y)

Parse 19 Noun (X,y) <— wabe(x,y)

Parse 20 Verb (x,y) < gimble{x,y)

To show that the string of words from 1 to 6 is a sentence we show
that the denial of the goal

Parse 21 <— Sent{1,6)

is inconsistent with Parse 1-20.

Bottom-up inference

A bottom-up refutaticn begins with assertions in the input set of
clzuses. It uses implications to derive new assertions from o¢ld ones,
and ends with the derivation of assertions which explictly contradict the
denial of the goal.

A graphical representation of the bottom—up refutation of Parse 1-21
is shown below. It resembles the parse tree turned upside-down. Nodes
are labelled by assertions, The implication used to derive a new
assertion labels the bundle of arcs leading from the old assertions to
the new one.

54 Chapter 3: Top-down and Bottom—up Horn Clause Proof Procedures

the(l,2)<—p slithy(2,3)<—a toves({3,4)<—o did(4,5)<—y gyre(5,6)<—
Parse 9 Parse 16 Parse 11 Parse 12 Parse 13
Det{1,2)<— Adj(2,3)<— Noun(3,4)<=5 Aux(4,5)<—s Verb(5,6)<

Parse
Np{l,4) <
Parse 6
Sent{l,6) <~

Parse 21

o

The assertion
Np(l,4} <—

for example, is obtained from the three assertions
Det{l,2) <—
adj(2,3) «<«—
Noun{3,4) <

by matching them with the three conditions of the clause
Np(x,y) <— Det(x,u), Adj{u,v), Noun(v,y}.

Matching is accomplished by finding a most general substitution, in this
case

{x=1, u=2, v=3, y=4},

which makes the assertions identical to the conditions.

In general, one step of bottom-up inference matches (in the most
general possible manner) a number of assertions with the conditions of a
clause and derives a new assertion. The new assertion consists of the
conclusion of the clause instantiated by the matching substitution. 1f
the clause is a denial (which has no conclusion) then the derived clause
is the empty clause. A more precise definition is given at the end of the
chapter.

Bottom-up inference is a generalisation of instantiation combined with
the classical rule of modus ponens:
From A <~ and B <~ A derive B <— .

Instantiation is restricted to the minimum needed to match assertions
with conditions, so that modus ponens can be applied.

Top-down inference 55

Top-down inference

A top-down refutation begins with a denial in the input set of
clauses. It uses implications and assertions to derive new denials from
o0ld ones and ends with the derivation of the empty clause.

A graphical representation of a top-down refutation of Parse 1-21 is
given below. Nodes are labelled by denials. An arc is labelled by the
input clause which is used to derive the denial at the bottom of the arc.
Selected atoms are underlined.

p <— Sent (1,6)
Parse 6
p <~ Np(1,z), Vp(z,6)
Parse 7
< Det(l,u}, Adj(u,v), Noun(v,z), Vp(z,6)
Parse 9
t <— the(l,u), Adj(u,v), Noun{v,z}, Vp(z,6)
Parse 1
b <— Adj(2,v), Noun{v,z), Vp(z,6}
Parse 14
<— glithy({2,v), Noun(v,z), Vp(z,6)
Parse 2 L
<~ Noun(3,z), Vp(z,6)
Parse 11
} <— toves(3,z), Vplz,6)
Parse 3
P <— Vp(4,6}
Parse 8
P <~ Aux(4,w), Verb(w,8)
Parse 12
b < did(4,w), Verb(w,b)
Parse 4
P <— Verb(5,6)
Parse 13
P <— gyre(5,6)
Parse 5
> 0O

Beginning with the initial denial
<— Sent(1,6)

top-down inference matches the condition of the denial with the
conclugion of the implication

Sent(x,y} <— Np(x,z), Vp(zZ,y}
deriving the new denial
<— Np(l,z), vp(z,6)

which consists of the conditions of the input clause instantiated by the
matching substitution

{x=1, y=61.

56 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

The inference step formalises the reasoning that

if there 1is no sentence from 1 to 6 then there is no z
such that there is a noun phrase from 1 to z followed by a
verb phrase from z to 6.

The same inference step can also be interpreted from a problem-sclving
point of view:

The goal of showing that there is a sentence from 1 to 6
can be solved if a z can be found such that the subgoals
of showing there is 2 noun phrase from 1 to z and a verb
phrase from z to & can be solved.

In the problem-solving interpretation, the original goal is reduced to
two new subgozls.

In general, top—down inference involves matching a selected condition
of a denial with the conclusion of an implication and deriving a new
denial by replacing the selected condition by the conditions of the
implication and applying the matching substitution. If the implication
is an assertion, which has no conditions, then the selected condition is
simply deleted and the matching substitution is applied. If, in addition,
the selected condition is the only condition in the denial then the
derived clause is the empty clause. In the problem-solving
interpretation, a denial 1is interpreted as a collection of goals. Top-
down inference replaces a selected goal (in the context of a collection
of goals) by a set of subgoals. A precise definition of top-down
inference is given at the end of the chapter, while the problem-solving
interpretation is investigated in the next chapter.

Top-down inference is a generalisation of instantiation combined with
modus tollens:

From not-A and A <— B derive not-B.

Instantiation is restricted to the minimum needed tc apply the modus
tollens rule.

Different top-down refutations are determined by selecting different
atoms in denials feor the application of top—down inference. For example,
clause Parse 8 could be applied to the denial

<— Np(l,z), Vp(z,6)
to derive the new denial
<— Np(l,z), Aux{z,u}, Verb(u,6)

If there 1is a refutation for one selection of atoms then there is a
refutation for any other selection.

It is also possible (as in bottom-up inference) to select all
conditions in a denial simultanecusly. The figure below illustrates such
a top-down parallel refutation. Below each selected condition is the name
of the clause used in the derivation of the next denial.

Top-down inference 537

P<— Sent {1,6)
Parse 6

, <— Np(l,z), Vp{z,6)}

Parse 7 Parse 8

<— Det(l,u), Adj(u,v), Noun(v,z), Aux(z,w), Verb(w,6)

Parse 9 Parse 10 Parse 11 Parse 12 Parse 13

L, <— the(l,u), slithy(u,v), toves(v,z), did(z,w), gyre({w,6)

Parse 1 Parse 2 Farse 3 Parse 4 Parse 5

This formulation of the parsing problem was obtained by Alain
Colmerauer with the author by expressing his Q-system [Colmerauer 1973]
in logic. It is significant that, whereas the (-system is a bottom-up
parsing procedure, the Horn clause formulation is more abstract and can
be used either top-down or bottom-up.

Although the example uses only context-free rules of grammar, it is
easy to extend the representation to express context-sensitive grammars
and arbitrary rewriting systems [Chomsky 1957].

The family relationships example

The concepts of top-down and bottom-up inference apply to any set of
Horn clauses. The clauses which define family relationships, F1-19 of
Chapter 1, provide another example.

Given clauses F1-19, the problem of showing that Zeus is a grandparent
of Harmonia can be represented as the problem of filling in the triangle

Grandparent {(Zeus,Harmonia)

Father{Zéhs,Ares) Father (Ares,Harmcnia)

58 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

with a derivation tree:

Grandparent (Zeus ,Harmonia)

Parent (Zeus ,Ares) Parent (Ares,Harmonia}

Father (Zeus,Ares) Father (Ares,Harmonia}

In the clausal form of logic, the problem is to show that the denial
F* <— Grandparent (Zeus,Harmonia)

is inconsistent with the clauses F1-19. The figures below illustrate
bottom-up, top-down, and parallel top-down refutations.

Father (Zeus,Ares) <— Father (Ares,Harmonia} <—

F17

Parent {Zeus ,Ares) <— Parent (Ares,Harmonia) <—

<=

t

Grandparent (Zeus ,Harmonia)
F¥

A bottom-up refutation of F* and F1-1

<— Grandparent {Zeus,Harmonia)

Fij <— Parent (Zeus,z), Parent(z,Harmonia)
F <— Father {(Zeus,z), Parent(z,Harmonia)
£ <— Father (Zeus, 2z}, Father{z,Harmonia}
:i <— Father (Ares Harmonia)

O

A top-down refutation of F* and F1-18

The family relationships example 59

, <— Grandparent (Zeys,Harmgnia)
F18

| <~ Parent{Zeus,z), Parent (z ,Harmonia)
F17 F17

, < Father (Zeus,z), Father (z ,Harmonia)
Fl F3

L O

A parallel top-down refutation of F* and F1-19.

Because the operation of matching atomic formulae is so general, top-
down and bottom-up inference can be used not only to show that Zeus is a
grandparent of Harmonia but also to find a grandparent of Harmonia or to
find a grandchild of Zeus. This is illustrated in the top-down refutation
which shows the inconsistency of F1-19 with F**,

Fh* <— Grandparent {u,Harmonia)

The grandparent of Harmonia whose existence contradicts F** can be
determined by analysing the watching subgtitutions used in the
refutation. The last step of the refutation matches the variable u from
the initial denial with the constant symbol "Zeus", determining that
u = Zeus is a grandparent of Harmonia.

<— Grandparent (u,Harmonia)

F18
L <— Parent(u,z), Parent (z,Harmonia)l
F17
, <— Parent{u,z}, Father (z,Harmonia}
F3
, <— Parent {u,Ares)
F17
<{— Father (u,Ares)
Fl
u = Zeus

¢ g

Notice that the first step of the refutation matches the condition
Grandparent (u,Harmonia)
with the conclusion
Grandparent (x,y) .

Top-down inference uses & most general substitution which makes the two
atoms identical, in this case

{x = u, y = Harmonial.

Any less general substitutions, such as

6@ Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

{x

or {x

Ares, u

Ares, y = Harmonial
Zeus, u =

Zeus, y = Harmonia}l

on

which alsc makes the two atoms identical, need not be considered.

Given any two atoms, all (most general) matching substitutions differ
only in the names they give to variables and are otherwise equivalent.
Consequently, it is necessary to use only one of them in any inference
step. The matching substitution

{u = x, y = Harmonia}

for example, is eguivalent to the one used in the first step of the
refutation above, It gives rise to the equivalent denial

<— Parent(x,z), Parent(z,Harmonia)
which is a variant of the other.

The possibility of restricting instantiation to the generation of most
general matching substitutions was observed by Prawitz [1966] and
elaborated by Robinson [1965a] who incorporated it into the resolution
rule (Chapter 8), which generalises the top-down and bottom—up inference
rules investigated in this chapter. Unification algorithms for matching
atomic formulae have been the subject of much investigation [Robinson
19711, [Paterson and Wegman 1976}, [Martelli and Montanari 19%77].

Inference rules and search strategies

Inference rules are the building blecks of proof procedures. A proof
progedure is a systematic method for showing that a set of assumptions
imply a cenclusion. proof procedures for the clausal form of logic are
refutation procedures, which show that assumptions imply a conclusion by
demonstrating that the assumptions are inconsistent with the denial of
the conclusioen.

Inference rules specify the form of the individual steps which make up
a proof, All possible ways of applying the inference rules, both to an
initially given set of c¢lauses and to the clauses derived from them,
determine the search gpace for the set of clauses. Specifying a
systematic search strategy for investigating clauses in the search space
determines a proof procedure,

Top-down inference determines search spaces which have the form of a
tree. Individual nodes of the search space are labelled by denials which
contain # selected condition. For each input clause whose conclusion
matches the selected condition there is an arc, labelled by the input
clause, which leads to the denial obtained by applying top-down
inference. b refutation is a path in the search space leading from the
initial denial te the empty clause [.

&4 top-down search space for the problem of finding a grandparent of
Harmonia is illustrated in the figure below. To save space, abbreviations
such as

Inference rules and search strategies 61

Ha for Harmonia
He for Hera
P for Parent etc.

have been used for constant symbols and predicate symbols, and the input
clauses labelling arcs have been omitted. Darkened nodes at the tips of
the search tree contain selected conditions which match the conclusion of
no input clause.

<—

G(u,Ha)
<~ P(u,z), B{z,Ha)
<~ P(u,z), F{z,Ha)

<— P(u,z), M(z,Ha}

<- P (u,Ar) <~ P(u,Aph)

<— F(u,Ar) <~ M{u,Ar) <— F(u,Aph) <— M({u,Aph)
u = %e u = He
a O

The search space is finite and can be searched completely in a finite
amount of time. The two main kinds of search strategy are breadth-first
and depth-first search. Breadth-first search explores all branches of
the search tree to the seme depth, n steps away from the root of the
tree, before exploring them to the next depth, n+l steps away from the
root. Pictorially, breadth-first search explores the search space above
in the following sequence:

DeEth E o

Depth 1

Iro

Depth

Depth 3

62 Chapter 3: Top-down and Bottom—up Horn Clause Proof Procedures

lun

Depth

Depth-first search explores one branch of the search space at a time.
When it reaches a tip of the tree it backtracks and tries an alternative

branch as close to the tip as possible.

Branch 1 Branch 2

Branch 3 Branch 4

o
[+2]

9 9
1@ 11

The numbers next to arcs indicate the sequence in which the arcs are
generated, Here the first branch already contains a solution of the
problem. If only one solution is reqguired, then the rest of the search
space need not be generated. The whole search space has to be generated,
however, if all solutions are desired. In this case there are two

Inference rules and search strategies 63

refutations, each of which determines a different answer to the guestion

Who is a grandparent u of Harmonia?
u = Zeus, u = Hera.

The search space for top-down inference is affected by the selection
of conditions in denials. 1In the search space above, conditions were
deliberately chosen with the intention of minimising the size of the
search space. In the search space below, the selection of conditions
maximises its size.

<— G(u,Ha)

<— P(u,z), P(z,Ha)

<— F(u,z}, P(z,Ha) £~ M(u,z), P(z,Ha)

<—P (Ar ,Ha) <-P(5,Ha) <-P (Ha,Ha)

<—P (D, Ha} <—P (D,Ha)

O+

Both top-down search spaces are complete in the sense that they
contain a refutation if the set of clauses is inconsistent. It suffices,
therefore, to search either one search space or the other. In general,
other things being equal, the larger the search space the more difficult
it is for the search strategy to find a refutation.

In the problem-solving interpretation of top-down inference, the
selection of a condition in a denial is the selection for solution of a
subgoal from a set of subgeals., It is one of the most important
considerations of problem-solving strategy and a major topic of the next
two chapters.

The structure of bottom-up search spaces is more complex than that of
top-down search spaces. Conseguently, they are more difficult to search.
The figure below illustrates the bottom—up search space for the family
relationships example, Nodes are labelled by assertions. A bundle of arcs
connects the assertions which match the conditions of an input clause
with the new assertion derived by bottom-up inference. The input clause
which ought to label the bundle is omitted to save space. Darkened nodes
indicate assertions to which no bottom-up inference step applies. The
same abbreviations are used as before. In addition, we use

Ml for Male and
Fl1 for Female.

64 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

F{zZe Ar) <— F(Ar,Ha) <— M(He,Ar) <3 F(Ze,D) <—

P{Ze,Ar)<-%_ M1l (Ar}<— P (Ar ,Ha) <=A._F1 (He) <— P(He,Ar)<? Ml(Ze)<—

Ml (Ze) <— P (Ze,D)<—
G(Ze,Ha)<— G(He,Ha)«
gc O
.. M(Aph,Ha) <— M(Ha,S) <— M{8,D) << F(C,8) <—,

P (Aph,Ha)<—\ Fl(Ha)<~ P(Ha,S)<zRJ F1(5)<— P(5,D)<=R M1{C}<—
F1l(Aph)<— P{C,5}<—

’ \N
G{aph,s5)<—%" G (ar,s)<¥ G{Ha,D)<— G(C,D)<—

Not included in the figure are the input assertions, such as
God({Zeus) <— and Feiry-Princess(Harmonia) <—
which match no conditions. Notice that the assertion
Male(Zeus) <—

is derived in two different ways, giving rise to two nodes labelled by
the same assertion. In the next chapter, we consider representations of
search spaces in which different nodes are labelled by different clauses.

In practice, few strategies other than breadth-first search have been
applied to bottom~up search spaces. Bs in top-down search spaces,
bresdth-first search explores all assertions of depth n before generating
any of depth n+l. The depth of an assertion is one greater than the
maximum of the depths of its parent assertions.

Search strategies are an important part of all problem-solving systems
and are investigated in greater detail in the next chapter.

Infinite search spaces: natural numbers

The search spaces for the parsing problem and the family relationships
problems are both finite. Infinite search spaces are normally associated
with clauses containing function symbols. The definition of natural
number using the successor function symbol is a simple example.

Infinite search spaces: natural numbers 65

Numb (B) <—

Numb (s{x)) <— Numb (x)
Suppose the problem is to show that three is a number.
<— Numb(s(s(s{8})))
The top-down search space is finite
s < Numb(s(s{s(@))))
<— Numb{s{s(8))}
<— Numb({s (@))

<— Numb (@)

and contains only the solution of the problem. The bottom-up search
space, however, is infinite.

Numb (@) <—

, Numb(s{(8)} <—

L, Numb (s(s(B})) <=

Numb {s{s(s(8)))} <=

O Numb{s(s(s(s(@)}))} <

Numb (s(s(s{s{s(B8)))}))} <

For the problem of finding & number, however, both search spaces are
infinite. Moreover, both spaces contain an infinite number of sclutions.

66 Chapter 3: Top-down and Bottom—up Horn Clause Proof Procedures

y <— Numb (u)
u==4ea u = s(u'}
] L <— Numb(u')

u' =4d u'= s(u'")
J0 <— Numb(u'')
u'=4a u''= s(u''")
0 < Numb(u''')

Here each arc of the top—down search space is labelled by that part of
the matching substitution which 1is needed to find the number u whose
existence is denied in the initial statement of the problem.

Numb (B) <—
O Numb (s (6)) <—
O Numb({s(s(@))) <—
0 NMumb(s(s(s(8}))} <—

When search spaces are infinite, depth-first search strategies are
subject to the possibility of following the wrong branch of the search
space and thus failing to find a2 refutation. In the present example, this
happens in the top-down search space if the clause
Numb (s {x)} <— Numb(x)

is always used before the assertion
Numb (@) <—

and in the bottom-up search space if
Numb{s{x)) <— Numb (x)

is always used before the denial
<— Namb{u) .

To guarantee the completeness of a proof procedure, not only must the

search space be complete, but the search strategy must be exhaustive:
eventually investigating every node of the search space.

Definitions 67

Definitions

Some of the concepts introduced in this chapter are defined more
precisely below:

Let S be a set of Hornm clauses and let there be given a selecticon
strategy which picks a condition from any denial. A sequence of denials

Cl, Cz, “s ey Cn
is & top-down derivation of ¢, from S if
1) the first clause C; belongs to S and
2) every denial in the sequence, other than the first, is
obtained from the preceding denial by an application of
top-down inference, using a clause in S.

A derivation of the empty clause from § is a refutation of S.

Given a denial

|
[

Sl L PR SRR Y TR LS P U RS- N m
with selected atom A; and an implication

B <~ Bj,..., By n>#9
which shares no variables with the denial, a new denial can be obtained
by top-down inference if the selected atom Aj matches the conclusion B of
the implication. The new denial consists ¢ all the conditions of the

original denial (except for the selected condition) together with all the
conditions of the implication, with the matching substitution © applied:

L= (Al,. . o,Ai_l'Bl'- ..,Bn,Ai+lr-- . rAm)Q

If the denial and the implication contain variables in common, then
they have to be renamed, giving eguivalent clauses which share no
variables, before top-down inference is attempted. Thus to apply top-down
inference tc the denial

<= Npty,u), Vpiu,z}
using the clause
Np({x,y} <— Det(x,u), Noun(u,y)

it is necessary to rename variables first, using, for example, the
variant implication

Np(x',y") < Det(x',u'}), Noun(u',y')
to obtain the new denial

<— Det(y,u'), Noun(u',u}, Vp(u,z)

68 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

where the matching substitution is

In general, any condition can be selected in a denial. The selection
strategy is of the last-in-first-out kind if the selected condition is
always one of the conditions most recently introduced into the denial, in
particular one of the conditions

Ble,...,BnG
in the new denial
<— A18,...,2; 18,B18,...,B,8,A;,18,...,A,0.

& top-down derivation can be represented as a graph by &associating a
node with every denial C; in the derivation and by inserting an arc,
from it to the next denial Cienr labelled by the implication used in the
inference step.

The definition of matching substitution is needed to define both top-
down and bottom-up inference and will be presented after the top-level of
the definition of bottom-up inference.

It is convenient +to define a graph-representation of bottom-up
inference from the outset. Let 5 be a set of Horn clauses. A graph D with
nodes labelled by assertions is a bottom-up derivation of a clause C from
5 if

1) D consists of a single node labelled by C, belonging to
S and C is either an assertion or the empty clause, or

2) D consists of subderivations,

Dy of Ay < from S,
D2 of A; < from S,

b, of A, <— from s,
whose root nodes are connected by arcs to a new node
labelled by C and C is obtained from A) <—, Ap < ...,
A, <— by bottom-up inference using a clause C' in S.

Definitions 69

The clause C' labels the bundle of arcs associated with
the inference step.

It is convenient to define the bottom-up inference of clause C from m
assertions

Ay <=, Ay <=, weey Ap

using clause C' by decomposing the inference into a sequence of m simpler
inference steps. Suppose that C' has the form

B <—-B1, 82, «++¢ By or
<= Bl' Bz, “sey Bm.

The clause C is obtained by bottom-up inference using C' from

By <, Ay <, ..., By <=

1) by selecting a condition, say B, of C', matching it
with an assertion, say A1 <, and deriving the
intermediate clause C"

(B <~ Bp, ..., Byl® or
{ <= By, ..., B)®

where © is the matching substitution and

2} deriving C by bottom—up inference from

By <=y «uuy By & using C".

3) If m=1 then C = C",

4} In step (1) the variables in A) <— need to be distinct

from those in ('. If necessary, variables need to be
rengmed to make them distinct,

It can be shown that the conditions in C' can be selected in any order
without affecting the clause C which is finally derived.

The asserticns Ay <y Ay &= any A, <— to which bottom-up
inference is applied need not all be distinct. For example, the assertion

Friends (Narcissus, Narcissus) <—

can be derived in one step of bottom-up inference from two copies of the
assertion

Likes{Narcissus, Narcissus} <—
using the clause

Friends(x,y) <— Likes(x,y), Likes(y,x).

78 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

Substitution and matching

It remains to define the notions of substitution and matching.
A substitution

{x1=tl, o ey Xm=tm}

is a set of substitution components of the form

where x; is a variable and t; is a term. Distinct substitution components
of a suéstitution

X = ti and Xj = tj ‘
have distinct variables x; and x:. Thus a substitution can be regarded as

a function which maps variables anto terms. If E is an expression (term,
atom, or clause) then the result of applying the substitution

@ = [x)=ty, ..., xp=tp}
to E is a new expression
EQ
which is identical to E except that for every component xj=t; which

belongs to 9, wherever E contains an occurtence of x;, E8 contains an

occurrence of t;. The new expression E® is said to be an instance of E.

A substitution o unifies the two expressions E; and E, if it makes
them identical, i.e.
Elcr = Ezc.

E,o is the common instance of E; and E; determined by 0. A substitution
8 matches E; and E, {is a most general unifier of Ej and Ej) if

1) ® unifies Ej and E; and
2) the common instance

E 0
determined éy any other unifier & of Ej and Ej is an
instance of the common instance
Eq©
determined b% ©. Thus
Ejo = (E10))\
for some substitution A.

Every pair of expressions which can be unified can also be matched.
Moreover, all matching substitutions are equivalent, in the sense that
the common instances they determine are variants.

Correctness and completeness of inference systems 71

Correctness and completeness of inference systems

A system of inference rules is correct (or sound) if every set of
clauses which has a refutation constructed in accordance with the
inference rules is inconsistent. The system is complete if every
inconsistent set has a refutation. The notions of correctness and
completeness connect semantics with the part of syntax concerned with
proof theory. An inference system which is both correct and complete is
one for which the semantic notion of inconsistency coincides with the
proof theoretic notion of refutability. The correctness of top-down and
bottom—up inference is easy to verify.

Bottom-up inference is a special case of the hyper-resclution rule
defined and proved complete by Robinson [1965b]. Top-down inference is a
form of the model elimination rule introduced and proved by Loveland
{1968, 196%]). Like hyper-resclution, model elimination applies to
arbitrary sets of c¢lauses. In both cases for non-Horn clauses, however,
an additional rule of inference, the factoring rule, discussed in Chapter
7, is needed for completeness.

Many forms of top-down inference have been developed, notably linear
resolution [Loveland 1978], [Luckham 1978], ordered linear resolution
[Reiter 1971], SL-resolution [Kowalski and Kuehner 1971], G-deduction
[Michie et al 1972), inter-connectivity graph resolution [Sickel 1976]
and analytic resolution [Brand 1976]. Linear resclution employs no
restriction on the selection of atoms for top-down inference. Given a
denial containing n atoms it potentially investigates the nl! redundant
seguences in which the atoms can be selected. The other systems,
including model elimination, employ last-in—-first-out selection
procedures. The importance of selecting atoms in a more flexible manner
will be studied in the next two chapters. Completeness for top-down
inference systems employing arbitrary selection procedures has been
proved by several authors including Brown [1973] and Hill [1974].

Top-down and bottom-up inference are special cases of the resolution
rule [Robinson 1965a]. A system which mixes top-down and bottom-up
inference for Horn clauses has been described by Kuehner [1972]). The
connection graph proof procedure [Kowalski 1974a) investigated in Chapter
8 combines both directions of inference for non-Horn clauses as well. A
non-resolution system which uses the standard form of 1logic rather than
clausal form has been developed for applications in mathematical theorem-
proving by Bledsoe and his cclleagues [1971, 1977]. His system also
combines bottom-up reasoning forwards from assumptions together with
top-down reasoning backwards from conclusions.

Exercises

1) A string of items can be regarded as a directed graph whose nodes
are spaces and whose arcs are labelled by items connecting one space to
the next, An arc labelled by an item connecting space x to space y

w

< V¥

72 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

can be represented by means of a three place relationship
Conn(x,w,y).
Thus the assertions
Conn(4,D,2) <—
Conn(2,A,3) <—
Conn(3,D,£) <—
represent the string

DAD

whose spaces are arbitrarily named

A string is a palindrome if it reads the same backwards as it does
forwards. Express the following more precise definition by means of Horn
clauses.

a) A string from space x to space y is a palindrome if the
item from x to x' is the same as the item from y' to y and
the string from x' to y' is a palindrome.

b} A string from x to y is a palindrome if there is an item
from x to y.

c) A string from x to x is a palindrome.

Construct both top-down and bottom-up scluticns for the problem of
showing that the string D A D is a palindrome.

2) Let strings be represented by means of the three place Conn
relation as in exercise (1).

a) Define by means of Horn clauses the relationships

Identical(w,x,u,v) which holds when the string from u to v
consists of w copies of the same item x,

i.e.
X b3 X
; PV °
w times
admissible{u,v) which holds when, for some i, the string

from u to v consists of 1 copies of item a
followed by i copies of item b followed by
i copies of ¢, i.e. has the form

b}

Exercises

a a b b c c
- . - s s s g e —
u || 1 v
i times i times i times

73

Exhibit the entire top-down and bottom-up search spaces
for the problem of showing that the string a b ¢ is

admissible. In the case of the top-down search

space

select conditions in a manner which minimises the size of

the search space.

3) Using the c¢lause

Distance(x,y,w)

and any assertions such as

Plus(3,2,5) <
Plus(5,4,9) <

{— Distance(x,z,u), Distance{z,y,v), Plus(u,v,w}

which ezre necessary for the Plus relation, construct top-down and bottom-
up solutions to the problem

for the graph
solutions does

solveble?

<— Distance(A,M,w)

shown in exercise (7) of Chapter 1. How many distinct

the top-down search space contain? Is the problem

<~ Distance{x,x,w)

4) The relation x < v can ke defined by the Horn clauses

G < x <
s{x) < s(y) <— x <vV.

Generate the top-down and bottom-up search spaces (where they are finite)
for the following problems.

a)
b)
c)
d)

e)

<— s{s(0)) < s(s(s{B)})
< s{s(@))) < w

<~ w < s(s{@})

<~ s(s(w)} < s{w)

<— s(s(w))

| A

s(#)

5) Define the relation Plus(x,y,z) which holds when x+y = z. You can
use two clauses, one for the case x is @, the other for the case

s{x"'}.

x is

74 Chapter 3: Top-down and Bottom—up Horn Clause Proof Procedures

6} Assume that the relations

Plus{x,y,z) and Times(u,v,w)

are defined by variable-free assertions and heold whenever x+y = z and
u*y = w respectively.

a)

o)

Let Exp(x,y,z} stand for the relation x to the exponent y
is z, written xTy = z. Express the following sentences in
clausal form, without using function symbols.

xTl = x for all x.
xT{utv) = y*z if xTu = y and xTv = z.
xTu = = if xT{u+v) = w and xTv = y and y*z = w.

Using the <clauses from part (a) solve the following
problems by means of both top-down and bottom—up
refutations.

If 2Ta = 19 and a+a = b, then find w such that 2Tb = w.
If 3Tc = 12 and b+l = ¢ then find w such that 3tb = w.
Show that for every x there is a z such that x18 = =z.

You may need to assume such obvious facts about
multiplication as Times{l,x,x} < .

