75

CHAPTER 4

Horn Clause Problem-Solving

when logic is used to express problems and problem-solving methods,
proof procedures behave as problem-solvers. We shall argue that Horn
clause inference subsumes many of the alternative models of problem-
solving developed in artificial intelligence.

In this chapter we compare Horn clause inference both with the path-
finding model of the Graph Traverser [Doran and Michie 1966] and the
General Problem Solver [Newell and Simon 1963] and with the and-or tree
model of problem-reduction (Gelernter 1963], [Nilsson 1971]. 1In the next
chapter we compare Horn clause inference with problem~solving regarded as
execution of programs. In subsequent chapters we investigate both the use
of non-Horn clauses in problem-solving {(Chapters 7 and 8} as well as more
global problem—solving strategies {(Chapter 9).

The close relaticnship between problem-reduction and top—-down
inference has been observed by several authors, including [Kowalski and
Kuehner 1971], [Loveland and Stickel 1973], [Pople 1973], [Van der Brug
and Minker 1975). Moreover it is already implicit in the Logic Theerist
[1963], The General Problem-Solver and the Geometry Theorem Proving
Machine [Gelernter 1963].

Path-finding
It is possible to express any problem as a path-finding problem.
Given an initial state A, a goal state Z, and operators

which transform one state into another, the problem is to
find a path from & to Z.

The water containers problem

The water-containers problem can be formulated naturally as a path-
finding problem.

Given = Goal E=————=
— [pp—
—l———
7 5 4 don't
litres litres litres care

both empty

76 Chapter 4: Horn Clause Problem-Solving

Given both a seven and a five litre container, initially empty, the goal
is to find a seguence of actions which leaves four litres of liguid in
the seven litre container. There are three kinds of actions which can
alter the state of the containers:

{1} A container can be filled.

{2) A container can be emptied.

(3) Liguid can be poured from one container into the other,
until the first is empty or the second is full.

The water-containers problem has a simple Horn clause formulation.
Interpret

State{u,v) as expressing that there is a state in which
the 7 litre container contains u litres of liquid and the
5 litre container contains v litres.

Assume that the relations
X+y=z and x ¢y

are already defined (by infinitely many variable-free assertions, for
example).

WCl State(@,B8) <—

wC2 <— State(4,y)

WC3 State(7,y) <— State(x,y)

WC4 State(x,5) <— State(x,y)

WC5 State(®,y) < State(x,y)

WC6 State(x,@) <— State(x,y)

WC7 State(@,y} <— State(u,v), utv =y, y <5
WC8 State(x,@8) <— State{u,v), utv = x, x < 7
WC9 State(7,y) <— State{u,v}, utv = w, T+y = w
WwCle State(x,5) <— State(u,v), utv = w, 54X = w

Clauses WCl and WC2 express the given and the goal states respectively.
WC3 and WC4 define the action of filling a container. WC5 and WC6 define
emptying a container. WC7 and WC8 define pouring from one container into
another until the first is empty. WC% and WCl@ define pouring from one
into another until the second is full.

Before investigating the top-down and bottom-up search spaces, it is
useful to define the graph-representation of search spaces. First we
shall consider a simplified version of the path-finding problem and its
Horn clause formulation,

A simplified path-finding problem 71

A simplified path-finding problem

Suppose the problem is to find a path from node A to node Z in the
following graph.

The problem can be formulated with a one-place predicate
Go (%)
which expresses that it is possible to go to node x. Later in the
chapter we shall compare this formulation with the one (suggested by
semantic networks) which employs a two-place predicate

Go* (x,y}

expressing that it is possible to go from node x to node vy.

Go (A) < <— Ge{Z)
Go (B) <— Go{a} Go(C) <— Go(Aa)
Go (D) <— Go({B) Go (F) <— Go(C)
Go (E) < Go{B) Go (X} <— Go(D)
Go(Z) <— Go{X) Go(X) <— Gol(E)

Go(Z) <— Go(Y)

In this formulation the clauses which describe the graph behave as path-
finding procedures which connect adjacent nodes. The top-down and bottom—
up search spaces are both trees.

78 Chapter 4: Horn Clause Problem-Solving

Go{A) <—
Go(B) < Go(C) <=
Go (D) <— , Go(E) <= Go{F) <—
Go (X) <-» Go (X} <
Go(Z) <— ¢ Go(Z} <=
O% |
Bottom-up search space
<— Go(Z)
<— Go (X} <= Go(¥)
<~ Go (D) <— Go (E)
<— Go (B} <= Go (B)
<— Go(Aa) <~ Go(a)
O a

" Top-down search space

In both search spaces there is a one-to-one correspondence between
refutations and solution paths. Both search spaces, however, contain
undesirable redundancies. The bottom—up search space derives the
assertion Go(X) <— in two different ways and then redundantly uses it
twice in the same way to obtain two refutations. The top-down search
space derives the goal statement <— Go(B} in two different ways and then
redundantly solves it twice in the same way. These redundancies can be
eliminated by representing the search spaces as graphs rather than as
trees.

Graph-representation of search spaces 79

Graph-representation of search spaces

The graph-representation of a search space is obtained from the tree-
representation by identifying nodes which have the same label. Thus no
clause occurs in the graph-representation mere than once.

Go (A} <—

Go(B) <— Go(C) <

Go (D) <— Go (E) <— Go(F) <—
Go(X) <—

Go(Z} <

O

Graph-representation of the bottom-up search space

<— Go (2}

<— Go{X) <— Go(Y}

<- Go (D) <= Go(E)
<= Go(B)
<— Go k)

O

Graph-representation of the top-down search space

Use of the graph-representation suggests that whenever a search
strategy generates a clause in the search space, it checks whether the
clause has been generated before. If it has, then only one occurrence of
the clause is retained. Generally, the new occurrence is deleted.

The graph-representation can turn an infinite search space into a
finite one. The top-down search space for the problem of finding a path
from A to 2 in the following graph is a simple example.

88 Chapter 4: Horn Clause Problem-Solving

<— Go(Z)

<= Go (X) < Go{Y)
< Go ()
<— Go (B)
<= Go (A) <= Go{X)
o <~ Go (D)

<— Go (B)

<— Go(B)

<— Go(B)

Infinite top-down search space in the tree representation

Graph-representation of search spaces 81

<— Go(Z)
<— Go(X) <— Go(Y)
<— Ge (D)
<— Go (B}
<— Go (A)
O

Finite top-down search space in the graph-representation

The Search Spaces for the Water Containers Problem

We can now exhibit the graph representations of the search spaces for
the water containers problem. In order to aveid complicating the
appearance of the search spaces, arcs which lead to nodes labelled by
clauses which already occur elsewhere in the search space are not always
shown.

The top-down search space is more complicated than the bottom-up
search space, Notice, however, that the matching substitutions which are
generated in the first step of both branches of the top-down search space
determine that if the goal

<— State(4,x)}
has a solution, then x must be either @ or 5.

Generally speaking, the conclusiens of clauses WC3-18 will not match
any goal state which cannot have at least one container either full or
empty. For this reason, in the clause

<— State(u,v), utv = 9
it is easier to select the second goal which generates pairs of integers

adding up to 9, and to reject those yielding impossible goal states than
it is to seclve the subgoals in the other sequence.

82 Chapter 4: Horn Clause Problem-Solving

State(@,0) <—

WC4

State(7,8) < b, State(8,5)

WC4 WC16 WC8

State(7,5) <— State(2,5) State(5,8)

WC6 WC4

State (2,8} State(5,5)

WC7 WCS

State (@, 2)

State(7,3)

WC3 WC5

State (7,2} ¥ State (9,3}

WC18 Wes

State{4,5) State(3,8)

WC2 WCH wWC4

State (4,0} State(3,5)

WC9

WC2 WC?

State(®8,4)

State(7,1)

WC3 WC5

State(7,4)

State{d,1)

WC9 wcle WC8

tate(6,5)

State(l, @)
WC4
State(l,5) <

State(6,8) <—

Bottom-up search space for the containers problem

K—

The Search Spaces for the Water Containers Problem

{— State(4,x)

Top~down search space for the containers problem

<= State(u,v), utv <— State({u,v), utv =
<— State(d,4) <— State(7,2)
WC5 WC3
L<— State(y,4) <— State(y,2)
WCO oy =7 WC7 y = 8
<— State(u,v), u+v = 11 <— State(u,v), utv =
h<— State(6,5) <— State(2,8)
WwC4 WCo
h<— State(6,y) <— State(2,y)
WC8 y =190 WCig y = 5
b<— SBtate({u,v), utv =8 L <— State{u,v), urv =
L <— State{l,5) <~ State(7,9)
WC4 WC3
L<— State(l,y) <— State(y, @)
y =9 WCl y = i///t\\
<~ Gtate(d,1)] :
WC5 ’
<— State(y,l}
WCO y =7
L<— State(3,5)
WC4
»<— State(3,y)
WCE y = @
h<— State(?,2)
WC5S
p <— State(y,3)
y =7

83

Search strategies for path-finding

The path-finding model of problem-solving is concerned more with the
development of search strategies than it 1is with the structure of search
spaces and the representation of infermation, Given the task of finding a
path in a graph, the search problem becomes one of devising intelligent

B4 Chapter 4: Horn Clause Problem-Solving

strategies for searching the graph.

Most search strategies for path-finding employ scme form of guidance
by evaluation functions. Given a search space, an evaluation functioen

£ applied to nodes in the space produces real numbers as values. The
value f{N) of a node N is intended to measure the usefulness of
continuing the search from that node. The greater the value of the node
the more promising it is to apply operators to it. heuristic search
strategy, guided by the evaluation function, always searches from the
node of currently greatest value.

Breadth-first and depth-first search can be regarded as special cases
of heuristic search. In depth-first search, the value of a node is its
distance from the start node. In breadth-first search, it jis the inverse
of its distance from the start node. In both cases, the distance between
two nodes is measured simply by the number of arcs contained in the
currently shortest path connecting the nodes.

In a typical path-finding problem, a node in the search space
represents a state of some collection of objects. If there are n objects,
a state can be represented by the n~tuple consisting of the individual
states of the objects. In the water containers problem, for example,
there are two cbjects which can be in one of the eight states 8-7. Such
state-space path-finding problems can easily be represented with Horn
clauses by using a predicate

State(xl,xz,...,xm)
which expresses that the state in which

the lst individual is in state xj
the 2nd individual is in state x3

the mth individual is in state xp
is possible.

Special evaluation functions are useful for such state-space problems.
In the simplest case, given a node

N = State(s},Sp,...,Spy)

(which is either an assertion or a goal, depending on the direction of
the search space) and searching for a node

T = State(tl,tz,...,tm)

the distance between N and T might be estimated by the sum cf the
distances between the individual states.

dist(ty, 57} + dist(ty, 82} + ... t dist(tpy, syl
The value of a node is greater the smaller its estimated distance to T.

More sophisticated evaluation functions might estimate overall distance
by a weighted sum of individuzl distances or by a more cowplex function

Search strategies for path—-finding 85

of individual distances (such as the square root of the weighted sum of
the sguares of the distances).

In many path-finding problems, costs are associated with nodes or arcs
of the graph and the problem is to find the least costly path connecting
the given and goal nodes. In the water-containers problem, for example,
it might be reguired to find the shortest solution. In such cases, the
greater the cost of reaching a node the smaller is its value. Both
evaluation function guided search strategies [Nilsson 1971] and branch-
and-bound [Lawler and Wood 1966] are useful for such problems.

It 1is not always possible or desirable to use a numerical-valued
evaluation function to guide the search strategy. It may be possible,
none the less, to define a merit ordering among nodes in the search
space. The search strategy, guided by the merit ordering, always
searches from a node having the greatest merit.

Since a top-down refutation can be regarded as a path from an initial
set of goals to the empty clause, the problem of finding a refutation in
a top—down Horn clause search space can be regarded as a path-finding
problem and the theory of heuristic search can be applied. However, it
must be modified when applied to bottom-up search spaces where solutions
are more naturally regarded as trees or graphs [Kowalski 1972]. Even in
the case of top-down search spaces the heuristic search path-finding
model of problem—solving does not address the important problem of
selecting subgoals, These dQeficiencies are remedied by the preblem-—
reduction model of problem-solving and its associated and-or tree
representation.

The and-or tree representation of problem—reduction

In the problem-reduction model of problem—solving the task is to find
a solution to an initially given problem, using a given collection of
assertions and procedures to reduce problems to subproblems. The task is
accomplished by repeatedly applying procedures to unsolved problems,
replacing them by subproblems, until the initial problem has eventually
been replaced by the empty set of subproblems.

In the and-or tree representation of problem-reduction, nodes of the
tree are labelled by problems:

(1) The root node is labelled by the initial problem.

(2) If a problem A labels a node and a procedure reduces A to
the subproblems A;,A,,....A; then the node is connected by a
bundle of directed arcs to nodes labelled by the individual
subproblems. The bundle itself may be labelled by the
procedure.

86 Chapter 4: Horn Clause Problem-Solving

(3) If the problem A labelling a node matches an assertion, then
it is connected by a single arc toc a node labelled by the
empty collection of subproblems,

|

The figure below illustrates beoth the and-or tree representation and
the Horn clause representation for a simple problem-reduction task.

Hzppy {John)

Likes (Mary,John) Rich (John)

Likes(John,Mary) Kind (John) Handsome {Jochn) Strong (John}

Pretty {Mary) O O [
]
Initial Problem <— Happy {John)
Procedures Happy (John} < Rich(John)

Happy (John) <— Likes(Mary,John)
Likes {Mary,John) <— Likes{John,Mary), Kind(John)
Likes {Mary,John) <— Handsome (John}, Strong{(john)
Likes {John,Mary) <— Pretty(Mary)

Assertions Pretty{Mary) <—
Kind (John) <(—
Handsome (John) <—
Strong {Jchn) <—

The problem has two solutions which can be represented as subtrees of
the and-or tree:

The and-or tree representation of problem-reducticn 87

Happy (John} Happy {John)
Likes (Mary,John) Likes (Mary,John)
Likes {John,Mary) Kind (John) Handsome {(Jchn) Strong (John)
Pretty {Mary)] O 0
|
one solution the other solution

The and-or graph representation is cobtained from the and-or tree
representation by identifying all nodes which are labelled by the same
subproblem. In the example below, the and-or graph representation turns
an infinite and-or tree search space into a finite one. The problem has
ne solution.

Happy (John) Happy (John)

Likes (Mary,John) Likes{Mary,John)

Kind (John) Likes (John,Mary Kind {John)
] O
Pretty (Mary) Pretty (Mary}

D |

Likes{Jchn,Mary)

Likes (Mary,John)

and-or tree representation and-or graph representation
Initial Problem <— BHappy (John}
Procedures Happy (John) <— Likes{Mary,Jchn)

Likes{Mary,dohn) <— Likes{John,Mary), Kind(John}
Likes {John Mary) <— Likes{Mary,Jchn), Pretty(Mary}

Assertions Pretty(Mary) <—
Kind(John) <—

Both the and-or tree and and-or graph representations of problem-
reduction focus attention on the structure of the search space and on

88 Chapter 4: Horn Clause Problem—-Solving

search strategies. However, they ignore both the structure of the
problems which 1label the nodes of the search space and the connection
between problems in the form of shared variables. The Horn clause medel
of problem-reduction represents problems by atomic formulae and makes
explicit {in the form of matching substitutions) the information which is
generated when a procedure or assertion is applied to a problem.

The problem—solving interpretation of Horn g¢lauses

The problem-solving interpretation of Horn clauses is basically the
top-down interpretation.

The atoms in a denial Rl PRIy are 1interpreted as problems,
or goals, to be solved. If the denial contains the wvariables XlreeerXg
then it is interpreted as stating the goal:

Find xl,....xk
which solve the problems Aj,...,3p.

and is called a goal statement.

An implication A <~ Al,...,Am is interpreted as a problem-solving
method, or procedure:

To solve a problem of the form &,
solve the subproblems Aj,...,Ap.

Given a problem B which matches A, the procedure reduces the solution of
B to the solution of the subproblems

218,...,8,0

where & is the matching substitution. We say both that the procedure
matches A and that it applies to A.

An assertion A <~ is interpreted as a procedure which solves
problems directly without reducing them to further subproblems,

The empty clause [] is interpreted as the empty goal statement.

The and-or tree and and-or graph representations can be extended to
Horn clause problem—reduction in general. It is necessary to represent
the contribution of a procedure to the values of the variables in the
problem to which the procedure is applied. In the extended and-or tree
representation, each bundle of arcs is labelled by that part of the
matching substitution (called the output component) which affects
variables in the problem under <consideration. The figure below
illustrates the extended and-or tree representation for the fallible
Greek problem of Chapter 1.

The problem-sclving interpretation of Horn clauses 89

Fallible(x) Greek (x)
x = Socrates
(W

Human (x)

X = Socrates

O

x = Turing

In general, the substitution © which matches a problem B with a
procedure A <— Aj,...,Ap can be decomposed intc two parts 6 = eiU eﬂ.

(1) One part 8; affects variables in the procedure. It passes
input from Ehe problem to be solved to the procedure which
tries to solve it. ©; is called the input component of the
matching substitution.

{(2) The other part ©, affects variables in the problem to be
solved. It passes output from the procedure to the problem
whose soluticn is being attempted. eg is called the output
component of the matching substitution.

Thus the procedure reduces the problem B to the collection of subproblems
B18 st BBy

whereas the output component © is the procedure's contribution to
finding the values of the variablgs in B.

When the matching substitution makes a variable, say %, in the problem
identical to a variable, say y, in the procedure, then it 1is useful to
treat the substitution as transmitting input and to include vy = x in
the input component of the matching substitution.

Splitting and independent subgeoals

An important characteristic of the and-or tree representation is that
it explicitly exhibits the gplitting of a goal statement into geparate
subgoals. Splitting is especially useful when the subgoals share no
variables. Subgoals which share no variables are independent and can be
solved by different problem—solvers working independently.

In the family relationships example the two subgoals in the initial
goal statement

<— Parent{x,Ares}, Parent(Ares,z)

share no variables and are independent.

98 Chapter 4: Horn Clause Problem-S5clving

Parent {(Ares,z)
Parent (x,Ares)

Mother (Ares,z) Father (Ares,z}

Mother (x,Ares) Father (x,Ares)
z = Harmonia

0

X = Zeus

u

x = Hera

W

Any solution to the problem of finding an x which is a parent of Ares is
compatible with any solution to the problem of finding a z which is a
child of BAres. Problem-solvers could work on the separate problems
simultaneously without danger of interfering with one ancther.

Top-down search spaces whose nodes are labelled by goal statements
contain redundancies when subgoals are independent. This is illustrated
by the goal statement search space for the previous problem. The same
abbreviations are used as in the previous chapter.

<— P(x,Ar), P(Ar,z)

<— M(x,Ar), P(Ar,z) <— F(x,Ar), B{Ar,z)
<— F(x,Ar),M(Ar,z)r <— F(x,Ar) ,F(Ar,z)
<— M(x,Ar} ,M(Ar,z) <— M(x%,Ar),F(Ar,z)
z = Harmecnia z = Harmonia
<— M(x,Ar) P <— F(x,Ar)
*x = Hera ¥ = Zeus
: 0 O

Here the subgoal of finding a child of Ares is redundantly considered
twice, once in the context of the gozl statement <— M(x,Ar}, EB(Ar, 2}
and again in the context of the goal statement <— F(x,Ar}), P{Ar,z}. 1In
the and-or tree search space the subgcel is represented only once.

More generally, given an initial goal statement <— A, B, n ways of
solving A and m ways of solving B, the goal statement top—down search
space contains n*m branches, whereas the and-or tree contains only n-+m.

Dependent subgoals 91

Dependent subgoals

The extended and-or tree representation deces not specify the
relationship between the solution of a goal statement and the solution of
its separate subgoals. 1In particular, the problem-sclving interpretation
leaves open the peossibility that a goal statement

<= Ayreen By

might be sclved by

(1) independently =solving the separate subgoals, obtaining
associated substitutions ©y,...,8, which solve the subgoals
and then

(2} combining the separate substitutions to obtain a scolution of
the goal statement itself.

If the subgcals are independent then it suffices to combine the separate
substitutions by taking their union. If they are dependent then it is
necessary to combine them by finding a most general common instance of
the substitutions. For example, the combined substitution for the
independent subgcals in the goal statement

<— Parent(x,Ares}, Parent{Ares,z}
is simply the union
{x = Hera, =z = Harmonia}

of the individual substitutions. But the combined substitution for the
dependent subgoals

<— 8 <y, Even(y}
given the separate substitutions

iy = s(y")} and {y = s(s{eni,
is obtained by matching the two values for y giving

ly = s(s(8)})}.

Top-down geali-statement search spaces make explicit both the
dependencies among sub-goals and the effect on the size of the search
space of solving different subgoals in different sequences. The and-or
tree search space for the problem of the fallible Greek, for example, is
independent of the order in which the top level goals are solved. The
goal statement search spaces, however, are guite different. Selving goals
in one sequence we obtain a search space containing alternative branches,
whereas solving them in a different sequence generates a search space
consisting only of the solution itself. Notice that, as in the extended
and-or tree representation, it is useful to label arcs by the output
component of the matching substitution.

92 Chapter 4: Horn Clause Problem-Solving

<— Fallible (x), Greek({x}

<— Human (X}, Greek(x)

X = Turing X = Socrates
<{— Greek (Turing) <— Greek (Socrates)
]

One top-down search space

o <— Fallible(x), Greek (x)

L, <— Human (x), Greek (x)
x = Socrates

<— Human (Socrates)

| D

Another search space

For the remainder of the book we shall use goal statement search
spaces (in preference to extended and-or tree spaces), because they make
it easier to show the effect of the subgoal selection strategy on the
size of the search space. In practice, computer implementations of Horn
claugse problem-solving systems use a representation which combines
features cf both and-or tree and goal-statement spaces.

The goal statement search spaces for the fallible Greek problem
illustrate a general principle. When subgoals are dependent, select cne
to which the fewest procedures apply. The aim is to minimise the overall
size of the search space by locally minimising the number of alternative
branches which emanate from any node.

Finding versus showing

Logic does not distinguish between procedures which show that a given
relationship holds and procedures which find individuals for which it
holds. Thus the grandparent procedure, for example, is able not only to
show that one individual is grandparent of another but also to find both
grandpzrents and grandchildren.

Finding versus showing 93

The difference between showing and finding 1is indicated by the
presence or absence of variables, In general, the more variables a
problem contains, the more finding there is to be done.

Any procedure which applies to a showing problem P(t) also applies to
the corresponding finding problem P(x). Thus the search space for a
finding problem is generally larger than it is for a showing problem.
This suggests the principle of selecting a subgoal which invelves least
finding and most showing. This principle is subsumed by the one which
selects the subgoal to which fewest procedures apply, but it is easier to
apply. It reguires only an analysis of the subgoals under consideration
rather than an analysis of all the matching procedures as well.

Applying these principles to the grandparent procedure
Grandparent (x,y) <— Parent(x,z), Parent({z,y)

results in the selection of different subgoals depending on the form of
the problem to be solved:

(1) Given x, to find grandchildren y of x, first find children =z
of %, then find children y of z.

{2) Given y, to find grandparents x of y, first find parents z
of v, then find parents x of z.

(3 Given both x and y, to show x is grandparent of y, compare
the number n of children of x with the number m ({(two) of
parents of y.

If n < m, first find children z of x then show they are
parents of y.

iIf n > m, first find parents z of y and then show they are
children of x.

If n =m, it doesn't matter which of the two subgoals is
selected first.

(4) Given neither x nor y, to fird individuals in the
grandparent relationship, it doesn't matter which subgoal is
selected first.

The principle of preference for subgoals to which fewest procedures
apply has two aspects. On one hand, it is a principle of procrastination,
which delays as long as possible the selection of explosive subgoals that
can be solved in many ways. On the other hand, it is a principle of eager
consideration of subgoals which can be solved in few ways.

The principle of procrastination can lead to smaller searches in two
ways. When subgoals share variables, delaying the selection of a finding
problem (which can be solved in many ways) can turn it into a more
manageable showing problem which can be solved in fewer ways. Finding the
values of variables may be done more efficiently by selecting other, less
explosive, dependent subgoals. Whether subgoals are dependent or not, it
may be possible to postpone the consideration of explosive subproblems
until after the initial problem has been soclved by alternative methods.
By then, whether or not the explosive subproblem has been instantiated it
can be ignored.

94 Chapter 4: Horn Clause Problem-Sclving

The principle of eager consideration is of particular vutility when a
subgoal can be solved in at most cne way. To solve a goal statement, all
its subgoals have to be soclved. Therefore, if a goal statement contains
an unsclvable subgoal, which matches no procedure, then the selection and
recognition of the unsolvable subgoal demonstrates the unsolvability of
the goal statement as a whole; hence we avoid the unnecessary
consideration of other subgoals in the same goal statement. When only a
single procedure matches a given subgoal, then it must be applied socner
or later, if the goal statement has a solution. Early consideration has
the advantage that any information in the form of values for variables
can be obtained as soon as possible and communicated to other dependent
subgoals. Moreover, 1if the procedure eventually fails to solve the
subgoal, then consideration of other more explosive subgoals in the same
goal statement may be avoided.

The number of procedures (including assertions) which apply to a given
subgoal is only a local appreoximation to the total number of ways the
subgoal can be solved. It can be misleading in some cases. Better
approximaticns can pe obtained by employing look-ahead techniques similar
to the mini-max wethods discussed later in this chapter.

The effect of different strategies for selecting subgoals on the size
of the search space is more pronounced when composite terms, constructed
by means of function symbols, are involved. The effect of composite terms
on the selection of subgoals will be investigated in the next chapter.

Lemmas, duplicate subgoals and lcops

Many features of the extended and-or graph representation can be
incorporated into the top-down goal statement representation by
generating lemmas which record the solution of solved subgoals. When a
subgoal is solved, an assertion can be generated which solves the subgoal
directly in one step. Such assertions are lemmas, which are found by top-
down deduction but could have been generated bottom—up. Thus a lemma
which has been generated when a subgoal is sclved in the context of one
goal statement can be used to solve the same subgoal directly when it
arises again in the context of another gcal statement.

To achieve the problem-solving power of and-or graphs, negative lemmas
also need to be generated when a subgoal is recognised as unseolvable.
Negative lemmas can be used to recognise that the same subgoal is
unsolvable when it arises again in another context.

The generation c¢f positive lemmas was first described by Loveland
[1969] for the top-down model-elimination proof procedure. Both positive
and negative lemma generation are incorporated into the top-down parsing
procedure for context-free grammars devised by Earley [1978]. aAn
equivalent of lemma generation in HBorn clause problem-solving has been
proposed by Warren [unpublished] as an extension of the Earley parsing
procedure.

The simple case, where duplicate subgoals oc¢cur in the same goal
statement, can be dealt with directly - simply by deleting all but one
of the duplicate occurrences. Such merging of duplicate atoms in the same
clause is a special case of the factoring rule described in Chapter 7.

Lemmas, duplicate subgoals and loops 95

It is also a special case of the rule for deleting redundant subgoals,
described in Chapter 9.

Perhaps the most important case of duplicate subgoals arises when a
goal occurs as its own subgoal. This is one of the situations that leads
to loops and to infinite search spaces. Given a goal B and a matching
procedure

A <« AlIAzr---rAm

each of the goals BA18,A8,...,A 0 where © is the matching substitution
is a subgoal of B. Moreover, any subgoal of a subgoal of B is also a
subgoal of B. Thus one goal is subgoal of another if they both occur on
the same branch of the and-or tree search space.

Loop detecticon procedures, which test whether a goal occurs as its own
subgoal, are a feature of Loveland's model elimination procedure and of
Sl-resolution. More general loop detection strategies, which test
whether a goal subsumes a subgoal, have been investigated by Derek Brough
[1979] and have been incorporated into a Horn clause problem-solving
system implemented at Imperial College.

Search strategies for problem-reduction spaces

Search strategies for and-or trees and graphs are extensions of those
for path-finding. They differ primarily because they combine the
evaluation of procedures with the selection of subgoals.

The mini-max and alpha-beta strategies [see Nilsson 71] are commonly
employed when and-or trees represent game playing problems. Individual
subgoals represent states of the game. Alternative procedures which apply
to a given subgoal represent the problem~solver's alternative moves for
the state represented by the subgoal. The bundle of subgoals which
results from the application of a procedure represents the states
associated with all the opponent's alternative responses to the problem
solver's move.

The value of a move (represented by a procedure} for the problem—
solver is only as great as the opponent's strongest response. Thus the
value of applying a procedure is the minimum of the values of the
subgoals in the bundle associated with the procedure. The value of an
individual state of the game (represented by a subgoal) on the other
hand, is as great as the problem-solver's best move. Hence the value of a
subgoal is the maximum of the values of the procedures which apply to the
subgecal.

Given an initial evaluation of subgoazls, mini-max evaluation 1looks
ahead intc the search space and provides a revised, more accurate
evaluation of subgoals. It can be used not only for game playing but for
problem-reduction in general. An appropriately modified version of mini-
max evaluation can be used specifically to improve the criterion for
selecting subgoals. A general method for using 'look-ahead’ to improve
evaluation functions for c¢lausal thecorem-proving has been developed for
the connection graph proof procedure [Kowalski 1974a)l presented in
Chapter 8.

96 Chapter 4: Horn Clause Problem=Solving

For many problem-reduction applications it is more appropriate to use
some form of depth-first search. This is efficient to implement because
only one branch of the top-down search space is considered at any time.
wWhen no untried procedure applies to the selected subgoal in the goal
statement at the end of the branch, the search strategy backtracks to the
next-to-last node of the branch and tries to solve the selected subgoal
there in an alternative way. For this reason depth-first search is also

called backtracking.

Although backtracking is effective in many cases it can be
distressingly unintelligent in others. Both successful and unsuccessful
applicaticns of backtracking are illustrated by the arch recognition
problem.

Consider, for exomple, the problem of recognising an arch in the
following scene:

It is convenient to name an arch by means of a function symbol which
collects together the immediate constituents of the arch. We let the term

aly,x,z)

name the arch

which consists of block x on top of left tower y and right tower z. A
tower c¢an be named by using a function symbel which combines the klock on
top of the tower with the subtower beneath it. We let the term

t(u,v)

name the tower

Search strategies for problem-reduction spaces 97

which consists of block u on top of tower v. Thus t(B,A) names the tower
conprising block B on top of bloeck A; a{t(B,A),D,C}) names the arch in the
scene above. The scene and the definitions of arch and tower are
represented by clauses A31-12.

Al Arch{a(y,x,z)) <— Block(x), Tower(y},
Tower (z), On{x,y), On(x,z)
A2 Tower {x) <— Block {x)
A3 Tower (t{x,v}) <= Block(x), Tower (y}, On(x,y)
Ad On{x, tl(y,z)) < On{x,y)
A5 Block {A) <—
Ab Block (B} <—
A7 Block (C) <—
AB Block (D) <—
a9 Block (E} <~
AlD On(B,A} <—
Ail On{D,B) <—
Al2 On(D,C) <—

Clause A4 reduces the problem of determining whether a block is on a
tower to that of dJdetermining whether the block is on the block which is
on top of the tower.

The definition of arch Al is unsatisfactory for several reasons {see
exercise 5), The problems which arise with backtracking, however, are
independent of them.

Consider the problem
<— Arch(a{t(B,n), D, C)}

of recognising the arch in which block D is both on the tower B on A and
on the tower C. Using Al and solving subproblems in any sequence, the
top-down search space consists of just the single path which solves the
problem. No search strategy, including backtracking, behaves unintelli-
gently.

Suppese, however, that the problem is to find an arch in the scene
<— Arch(w).

Assume that subproblems are selected and procedures are applied in the
order in which they are written. Because such strategies are especially
easy to implement, they are incorperated in many computer—-based problem-
solving systems. The initial problem guickly reduces to an unsolvable
goal statement.

98 Chapter 4: Horn Clause Problem-Solving

o <— Arch(w)
al
w = aly,x,z)
<— Block({x), Tower(y), Tocwer(z), On(x,y), On(x,z)
X =A
A5
<— Tower (y), Tower(z), On{A,y), On(A,z)
A2
4 <— Block(y), Tower(z), On{A,y}, On(A,z)
n5
y =A
4 <— Tower (z), On(A,A), On(A,z)
A2
<— Block(z), On{A,d), On(A,z)
A5
z = A
L <= On(p,pA), On(A,R)

unsclvable

The simple depth-first strategy backtracks to the previous node and
searches for another block z. But changing 2z does not affect the
unsolvability of On(x,y) so long as x and y are both A. The backtracker
goes into an infinite 1loop, trying a potentially infinite sequence of
towers z which do not affect the unsolvability of the subproblem On(x,y).
where x and y are A,

Backtracking can be made more intelligent if, when generating an
unsolvable subgoal, it analyses the substitutions which cause the failure
(in this case x=A and y=A), and backtracks to a node where it can undo
them (in this case to the goal statement containing the selected subgoal
Block{y)). Efficiency can be improved by preserving intermediate solved
subgoals. The backtracker can be made more intelligent still by analysing
the failure, not only to identify the subgoal whose solution should be
undone, but also to determine how it should be done [Schmidt et al 1978].
In this example, when the subgoal On(x,y) with x=A and y=A is recognised
as unsolvable, the assertion Oon{B,n) <— can be identified as the
nearest match. The search strategy can then backtrack to the goal
statement containing the selected subgecal Block(x) with substitution x=A
and test whether Block({x) with x=B can be solved., Such goal-directed
intelligent backtracking has the spirit of Sussman's [1975] model of
problem-solving. Instead of carefully evaluating subgoals and alternative
procedures, the problem-solver picks them arbitrarily. If they fail, he
analyses the mistake in order to find a better method of solution.

Notice, however, that the effect of solving subgoals in an arbitrary
sequence and backtracking intelligently when things go wrong can be
achieved more directly by selecting the correct subgoals in the first
place. In this example, it suffices to select the subgoals

Oonix,y) and Oon{x,z)

before the others in the definition Al of the arch. Similarly, the
subgecal

Search strategies for problem—reduction spaces 99

On(x,y)

should be selected first in the definition A3 of tower. It is necessary,
moreover, to try the assertions Al@-12, which define the location of
blocks resting on blocks, before the procedure A4, which defines the
location of blocks on towers.

<— Arch (w)

w = aly,x,z)

<— Block({x), Tower(y}, Tower(z), On(x,y), On{x,z)

X =B
y = A

<— Block (B}, Tower (A), Tower(z), On(B,z)
z = A

<— Block(B), Tower (A), Tower (R)

<— Tower (a)

<~ Block (A)

O

Here the duplicate subgcal Tower (A) has bheen deleted to avoid redundancy.
Notice that the first solution finds the pathological arch:

ath B B

Backtracking is employed in both the PLANNER [Hewitt 1969] programming
language and the PROLOG [Colmerauer et al 1972] [Roussel 1975] top-down,
Horn clause preogramming system. The inefficiencies of backtracking in
PLANNER led to the development of CONNIVER [Sussman and McDermctt 1972a,
1972b}, a PLANNER-like programming language in which the programmer
writes both problem-solving procedures and search strategies. In PROLOG,
the preblem=-sclver provides the backtracking search strategy but the
programmer can control the extent of backtracking.

Various problem-sclvers incorporating intelligent backtracking have
been designed and implemented by Sussman and his colleagues [Sussman
1875], [Stallwan and Sussman 1977], [Doyle 1978]. Intelligent Horn
clause backtracking problem-solvers have alsc been investigated by Cox
and Pietrzvkowski [1976], [Cox 1978] and by Bruynooghe [1378]. Limited
intelligent backtracking strategies have also been implemented in various
Horn clause systems at Imperial College.

Bi~directional problem-solving

The Horn clauses which describe a typical problem-solving task can be
classified into three kinds:

108 Chapter 4: Horn Clause Problem-Solving

(1} general-purpose procedures (including assertions), which
describe the problem-domain,

(2) problem—-specific assertions, which express the hypotheses of
the problem to be solved, and

{3) a goal statement, which expresses the problem itself.

Problem-specific assertions can be absent from a given task
description. But when they are present, it may be useful to combine top—
down reasoning (from the problem to be solved) with bottom-up reasoning
(from the hypotheses of the problem). However, it is important in this
case to avoid bottom—-up reasoning from assertions which are part of the
general description of the problem—domain. This restricted use of
bottom—up reasoning combined with top—-down reasoning is a characteristic
feature of Bledsoe's theorem-proving system [1971].

The majority of bottom-up proof procedures, however, do not
distinguish betwen different types of assertions. As a result, they
generally lead to combinatorially explosive behaviour, generating
assertiong which follow from the general description of the problem-—
domzin, in addition to assertions which follow from the assumptions of
the particular problem at hand.

A useful criterion for combining problem-gpecific bottom—up reascning
with top-down reasoning is a variation of the one proposed by Pohl [1972]
for path-finding problems:

At every step choose the direction of inference which
gives rise to the least number of alternatives.

In the top-down direction, the number of alternatives is the smallest
number of procedures which match the selected subgoal in a goal
statement, In the bottom-up direction, it is the smallest number of
assertions which can be derived from any assertion. The Pohl criterion
is illustrated for a path-finding problem below.

2
2 4
2 2
3 1 N
3 2
The search space generated The search space generated
in one direction in the other direction

The number next to each node indicates the number of successcr nodes.
The Pohl criterion selects the direction associated with generating the

Bi-directional problem-solving 101

successor of N. Given the previous formulation of the path-finding
problem, bi-directional path-finding 1is accomplished by combining top-
down and bottom-up reasoning.

A notation for describing bi-directional problem-solving

The distinction between top-down and bottom-up inference can be
pictured using arrows to indicate the direction of reasoning. For every
pair of matching atoms in the initial set of clauses (of which one is a
condition and the cother a conclusion) an arrow is directed from one atom
to the other.

For top—down inference, arrows are directed f£from conditions to

conclusions. For the grandparent problem, we obtain the following graph.

<— Grandparent (Zeus,Harmonia)

Grandparent (X,¥) <— Parent(x,z), Parent(z,y)

Parent({x,y) <— Father(x'Y):§§t§§=§L Parent (x,y) <— Mother (x,y)
Father {Zeus ,Ares) <— Father (Ares,Harmonia) <~ Mother (Hera,Ares) <-—

Reasoning is guided by the direction of the arrows. It starts with the
initial goal statement, is transferred within procedures from conclusions
to conditions and ends with the assertions.

For bottom-up inference, arrows are directed from conclusions to
conditions.

<— Grandparent (Zeus ,Harmonia)

Grandparent (x,y) < Parent(x,z), Parent(z,y)

Parent (x,y) <— Father(x,y) Parent(x,y)&;;ggfther(x,y)
Father (Zeus ,Ares) <— Father (Ares,Harmonia} <— Mother (Hera ,Ares) <—

Reasoning begins with the assertions, is transferred within procedures
from conditions to conclusions, and ends with the goal statement.

122 Chapter 4: Horn Clause Problem-Solving

The grandparent definition can also be used in a combined top-down,
bottom-up manner. Different combinations can be represented by using
numbers to indicate sequencing. For simplicity, we show only the notation
associated with the grandparent definition. The combination of directions

3

Grandparent (x,y) <— Parent(x,z), Parent (z,y)

represents the algorithm which

1} waits until x is asserted to be parent of z, then
2) finds a child y of z, and finally
3) asserts that x is grandparent of y.

The combination indicated by

1

Grandparent (x,y) <— Parent{x,z), Parent{z,y)

T {

2 3

1} responds to the problem of showing that
x is grandparent of vy,

2) by waiting until x is asserted to be parent of z,
and then

3) attempting to show that z is parent of y.

The arrow notation can also be used for non-Horn clauses. In Chapter 8
it is used to control the behaviour of the connection graph proof
procedure.

Another formulation of the path-finding problem

The effectiveness of a problem-sclving strategy (such as bi-
directional reasoning) depends on the problem—formulation rather than on
the problem itself. This is shewn by comparing the previous formulation
of the path-finding problem with the one suggested by the representation
of semantic networks.

In this representation we employ a predicate Go*(x,y) which expresses
that it is possible to go from node x to node y. Assertions describe the
arcs in the initial graph. The following assertions describe the graph at
the beginning of the chapter.

another formulation of the path-finding problem 183

Go* (A,B) <— Go* (D,X) <—
Go* (A,C) <« Go* (E,X) <—
Go* (B,D) <— Go* (X,%) <—
Go* (B,E) <— Go*(Y,Z2) <—
Go*{(C,F) <—

In additicn to the assertions, a single procedure is necessary for path-
finding

Go*(x,y) <— Go*(x,z}, Go*{z,y).

The problem of finding a path from A to Z is described by a single goal
statement

<— Go*(A,Z).

Here the assertions are specific to the graph, whereas the path-
finding procedure is general-purpose. However, only the goal statement is
specific to the particular path in the graph. Bottom-up inference
generates assertions about paths which are unmotivated by the particular
path to be found, Both forward and backward search, as well as bi-~
directional search, can be accomplished by top-down inference alone. The
direction of search depends on the choice of subgoal in the path-finding
procedure. Selecting Go*(x,z) before Go*(z,y) 1is forward search.
Selecting the two subgoals in parzllel or timesharing between them gives
rise to bi-directional search.

The path-finding problem can be formulated in different ways; the same
problem-solving behaviour can be obtained from different formulations by
applying different problem-solving strategies. Even the specific
behaviour determined by the bi-directional path-finding strategy which at
every step chooses the direction which grows least rapidly can be
accomplished with both formulations. In the first formulation it is
obtained by applying the Pohl criterion for combining top-down and
bottom-up inference. In the second formulation it is accomplished by top-
down inference alone, applying the strategy of selecting the subgoal to
which fewest procedures (including assertions) apply.

Other aspects of problem-solving

Problem-solving can be classified into three main stages.

1) The first stage identifies the problem-domain and formulates
problem-solving procedures.

2) The second stage applies the procedures tc the sclution of
problems.

3} The third stage improves the problem problem-solving
strategies and procedures.

This chapter has been restricted to a discussion of the second stage. It
has not considered the other stages which are concerned with learning.
In this respect we have followed the advice of McCarthy [1968] and Minsky
[1968] to explore the adequacy of the representation language before
dealing with the problems of formulating and improving the representation
of the problem domain.

184 Chapter 4: Horn Clause Problem-Solving

In the next chapter we investigate the interpretation of the Horn
clause subset of logic as a programming language. This unifies problem—
solving with programming. The first stage of problem-solving is the
initial stage of problem formulation and specification. The second stage
runs the specification as a program, and the third identifies
inefficiencies and remedies them by improving the procedures and
tailoring the problem-solving strategies to the problems to be solved.

In subsequent chapters we investigate the role of non-Horn clauses in
problem-selving and the use of global problem-solving strategies. In the
last chapter we compare the interpretation of logic as a model for
problem-solving with the role of logic in philosophy as a model for
representing beliefs and formalising arguments.

However, nowhere in this book do we investigate the problems of
learning. Nor do we investigate such important strategies as problem-
solving by example and by analogy.

Exercises

1) a) Express the arrow-inversion problem by means of Horn clauses
without function symbols:

Given three arrows in a row D U D, pointed down, up,
down respectively, the goal is to reach the state D D D in
which all arrows point down, The only action possible is
to invert a pair of adjacent arrows, changing both their
directions simultaneously.

Hint : Let State(x,y,z) express that there is a possible state in which
the first, second and third arrows point in directions x, y and =z
respectively.

k) Show that the problem is unsolvable by generating the
graph representation of the top-down search space and
showing that it contains no solutions.

c) Describe how the clausal formulation of the problem can be
modified in order to

i) invert adjacent arrows only when they have opposite
directions,

ii) add an action which interchanges adjacent arrows,

iii) deal with a row of four arrows instead of three.

2) a) Express the farmer, wolf, goat and cabbage problem by means
of Horn clauses:

The farmer, wolf, goat and cabbage are all on the north
bank of a river and the problem is to transfer them tc the
south bank. The farmer has a beat which he can row taking
at most one passenger at a time. The goat cannot be left
with the wolf unless the farmer is present. The cabbage,

Exercises 185

which counts as a passenger, cannot be left with the goat
unless the farmer is present,

b) Compare the graph representations c¢f both the top-down and
bottom-up search spaces.

c) Can you find useful evaluation functions to guide the
search for a solution?
3) Given the two different representations of the path-finding

problem, compare the problem-solving strategies needed

a) to recognise that there is no path from A to B if there is
no arc leading from A or no arc leading to B and

b) to show that it is possible to go from A to A.

4) Let seguences be cheracterised by means of two relations
Item{i,j,k) which holds when i; = k 1i.e.
the j—th element in the seguence i is k and
Length({i,u) which heclds when the length of seguence i is u.

Thus the sequence
A a1rdgre.. sl

can be characterised by means of the assertions:

Item(A,l,al) <=
Item(Ad,2,a,) <—

Item({A,n,a,) <
Length{&,n}) <—

Assume thset Plus(x,v,z) holds when x+y = z,
al Define by means of Horn c¢lauses the relation Sum(x,v)
which holds when v 1is the sum of the numbers in the

seguence X.

b) Use the clauses of part (a) to find top~down the sum of
the numbers in the sequence B; 3,4,10.

c) Can Sum(x,v) be defined in such a manner that, given X to
find v, the search space contains only the solution?
9) a) List 21l the soluticns te the problem
<~ Arch{w)

implied by the definition of arch and the description of the scene given

186 Chapter 4: Horn Clause Problem-Solving

by clauses aAl-12.

b) Reformulate the definition of arch and tower by means of
Horn clauses 1in order to eliminate as many patholegical
arches and towers as possible. (This proklem can be

solved more easily later using negation as failure,
investigated in Chapter 11.)

6) Consider the problem
<— Numb{u), Numb{v}, u > v
given the clauses

Numb (@} <—
Numb({s (x))} <— Numb(x)
s(x) » 8 <
s{x) > sly) <— x > v.

Analyse the behaviour of the backtracking search strateqy for solving the
problem. Assume that the solution of subgoals is attempted in the order

in which they are written and that alternative clauses also are tried in
the order given.

