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CHAPTER 5

The Procedural Interpretation of Horn Clauses

A Horn clause
B <~ Ay,....Aqp m> e
is interpreted as a procedure whose body [Al,...,Am} is a set of
procedure calls Aj. Top-down derivations are computations. Generation of

a new goal statement from an old one by matching the selected procedure
call with the name B of a procedure

B <= Ay, ....B,

is procedure invocation.

A logic program consists of a set of Horn clause procedures and is
activated by an initial goal statement.

Conventional programs mix the logic of the information used in solving
problems together with the c¢ontrol over the manner in which the
information is used. Logic programs are more abstract. They control
neither the order in which different procedures are invoked when several
match a given procedure call, nor the order in which procedure calls are
executed when several belong to the same goal statement.

Logic programs express only the logic of problem-solving methods. They
are easier to understand, easier to verify and easier to change. They
are especially congenial to inexperienced programmers and database users
who do not want to become involved with the details of controlling the
program's behavicur.

The first logic programming system, called PROLOG [Colmerauer et al
1973}, [Roussel 1975] based on the procedural interpretation of Horn
clauses [Kowalski 1974) was designed and implemented in 1972. & PROLOG
compiler written in PROLOG for the PDPl@ was implemented at the
University of Edinburgh by Warren, Pereira and Pereira [1977]. They
showed that the PROLOG compiler executes LISP-like logic programs as
efficiently as compiled LISP [McCarthy et al 1962].

Terms as data structures

Data in logic programs can be represented by means of terms or
relations. The use of terms as data structures gives Horn clause programs
many of the characteristics of a list-processing language like LISP. More
generally, they function as recursive data sStructures of the kind
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advocated by Hoare [1972]. The use of relations in logic programs, on
the other hand, is like the representation of data by relations in
database formalisms [Codd 1978]. Relations are alsc like tables and
arrays in conventicnal programming languages. They wilt be discussed in
more detail later in the chapter.

As in LISP, binary trees can be represented by means of a binary
function symbol;

consi{x,y) names the tree m

which has the subtree x immediately to the left of the root node and the
subtree y immediately to the right, Thus the term

A
cons(A,cons (B,C)) names the tree ’/‘:;h\$

B C
and the program

Tips(x,1) <— Lakel(x)
Tips{cons(x,y}, w) < Tips(x,u), Tips{y,v}, u+v = w

defines the relationship Tips{x,y) which holds when y is the number of
tips in the binaty tree x. Label(x) holds when x is a label:

Label (A} <—
Label {(B) <—
Label(C) <—

for example. The goal statement

<~ Tips(cons{A,cons(B,C)), vy}
expresses the goal of computing the number of tips in the tree pictured
above. The term cons(A,cons(B,C}) names the input and the wvariable y
names the ocutput. The top-down sclution

<— Tips(cons(A,cons(B,C}), v}

<— Tips(A,u), Tips(cons(B,C), v), utv =y

<— Label {A,u), Tips(cons(B,C), v), utv = y
u=1

<— Tips{(cons(B,C), v}, l+v = ¥

<~ Tips(B,u'), Tips{C,v'}, u'+v' = v, l+v = y
u'=1l
v'=1l § < Label(B), Label{C), 1+l = v, 1l+v = ¥
v =2

b <— 142 = y

y =3

0

is a computation of the output y = 3. The search space contains only the
computation,
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Lists can be regarded, as in LISP, as a special kind of binary tree.
The term cons(x,y) names the list

which has first element x followed by the list y. The constant symbol
nil names the empty list. Thus the term cons(A,cons{B,cons{C,nil}})
names the list A,B,C and the program

Ttem(cons{x,y), 1, x) <
Item({cons(x,y), u, z) < Item{y,v,z}, v+l = u

gdefines the relationship Item(x,y,z) which holds when the y-th element of
the list x is z. Notice that the term cons{A,B) does not name the list
A,B because B is not a list. The list consisting of B alone is named by
cons(B,nil) and therefore the list A,B is named by cons(A,cons{B,nil)).

Programs may be easier to read if infix notation is used for functien
symbols and conventions are used for suppressing parentheses. It is
egspecially convenient to use an infix function symbol "." for lists

X.y stands for cons(x,y}
and to reduce parentheses by letting
x.y.z stand for cons(x,cons(y,z)).
Thus the list A,B,C can be represented by the term
A,B.C.nil .

Facilities for defining infix function symbols and for reducing
parentheses are provided in PROLOG. The programmer can further reduce
parentheses by declaring precedence relations among function symbols.
Thus by declaring that the infix function symbel & binds more closely
than the infix function symbol 2, the term

pP&goar &s

can be written instead of

(p & g) o (r & 5).

Computation by successive approximation to output

Horn clause procedures transmit output throughout computation.
Partial outputs accumulate and determine successive approxXimations to the
final output. The approximations are generated whether or not the
computation eventually succeeds.
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The figure below illustrates the computation by successive
approximation of the list which results from appending 3.nil to 2.,1.nil .
< Append{2.1l.nil, 3.nil, x)
¥ = 2.u (2)

{— append {1.nil, 3.nil, u)

(2)

o
I
—

.
=

<— Append{(nil, 3.nil, u'")

u' = 3,nil (1)

]
(1) Append (nil,x,x) <
(2} Append (x.y, 2z, Xx.u} < Append(y,z,u)

Clause (1) states that appending any list x to the empty 1list procduces
the list x, Clause (2) states that appending a list z to a non-empty list
X.y produces a list X.u with the same first element and with a remainder
u which is the result of appending z to y.

The successive steps of the computation determine successive
approximations to the output

-
oo

In general, the gutput of a computation can be regarded as the collection
of all output compenents of matching substitutions performed in the
computation. The output can be compactified, as in the example above, by
applying output components lower in the refutation to the terms of output
components higher in the refutaticn.

The variation of input-output parameters

The distinction between the input and output parameters of a procedure
depends upon the context in which the procedure is invoked., Any subset of
the procedure’'s parameters can be given as input. The remaining
parameters are then computed as output.

The following computation illustrates the use of Append to compute the
list x which produces 2.1.3.nil when 3.nil is appended tc it. The search
space contains, in addition to the successfully terminating computation,
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only one other step, which fails because no procedure matches its
procedure call.

<— Append(x, 3.nil, 2.1.3.nil)

¥ = 2.xy
<— Append(xy, 3.nil, 1.3.nil)
¥1= 1.xp
<= Append (%5, 3.nil, 3.nil)

Xy = nil

O

Xy = 3.X3

<— Append(xy, 3.nil, nil)

The ability to execute the same procedure with varicus patterns of
input and output is an important feature of logic programs. It implies,
for example, that the same procedures which compute derivatives of
functions can also be used to compute integrals [Bergman and Kanoul
19713]. Procedures which wverify that a given program meets given
specifications can also be used to generate programs from specifications
[Moss 1977]).

Non-determinism,: several procedures match & procedure call

Compared with normzl programs, Horn clause programs executed top-down
are non-deterministic in two main senses: When several procedures match a
given procedure c¢all, the search strategy by means of which the
a2lternative procedures are tried is not determined;. When several
procedure calls need to be executed in a single goal statement, the order
of execution is not determined,.

In the first case, alternative procedures may compute alternative
outputs. If only one output is needed, it is not determined; which output
will be found. If all outputs are required, it is not determined; in
which order they will be generated.

A procedure, which is deterministic; for one pattern of input and
output parameters may be non-deterministic) for a different pattern. The
Append procedure, for example, is non—deterministicl when it is used to

partition a given list into two parts as in the problem
<— append(x, y, 2.1.3.nil).
The search space of all computations is illustrated below. Notice the
ecanomy which is obtained by structuring the search space as a tree. The
two different partitions

3.nil and
nil

X
X

for exawple, are both obtained from the single initial approximation

X = 2.l.x2
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<— Append(x, y, 2.1.3.nil)

X = nil ¥ = 2.xy
= 2.1.3.nil
O <— append (x}, ¥, 1.3.nil)
Xl nil ) Xl = 1.X2
y = 1.3.nil

<— Append({xy, ¥. 3.nil)
x2 = 3.X3

<— Append (X3, Y. nil)

N

Sequential search regarded as iteraticn

The ability to specify repeated execution of the same command is an
essential feature of all programming languages. Such repetition, also
called iteration* , can be accomplished by executing recursive Horn
clause procedures. It can also be achieved by using backtracking to
search a space of alternativs. The definition of grandparent is a simple
example. Suppose that we are given data about individuals in the
parenthood relationship

Parent {Zeus,Ares) <—

Parent {Hera,Ares) <—

Parent (Ares,Harmonia) <—

Parent {Semele ,Dionysus)<—

Parent (Zeus,Dionysus) <—
etc,

and the problem is to show that Zeus is a grandparent of Harmonia
<{— Grandparent {Zeus,Harmonia)

using the definition of grandparent
Grandparent (x,y) <— Parent(x,z}, Parent(z,y).

In a conventional programming language, the programmer would have to
specify both how the data in the parenthocd relationship is stored and
how it is retrieved. In a logic program, the same decisions are taken by
the program executor instead. In either case, the simplest strategy is to

store and retrieve the data sequentially. The parenthood relationship
might be stored sequentially, either in a two-dimensional array or in a

*Some of the discussion in the next few sections refers to features of
conventional programming languages. The reader who is not familiar with
such languages can ignore these sections without disadvantage.
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linked 1list. The sequential retrieval strategy 1is an iteration,
congisting of a double loop, one nested inside the other. To show Zeus is
a grandparent of Harmonia, the outer lecop searches for a child z of Zeus
and the inner loop tests whether z is a parent of Harmonia. The iterative
algorithm which has to be specified by the programmer in a conventional
programming language 1is identical in  this case to the behaviour
determined; by the backtracking strategy for executing non-deterministic)
programs.

In other cases, as when the Append procedure is used to partition
lists, backtracking is more general than iteration. In general, whereas
iteration searches & tree whose depth is determined by the number of
loops which are nested, backtracking searches an arbitrarily deep tree of
alternatives,

The suitability of & search strategy depends upon the structure in
which the data is stored. Iteration, regarded as sequential search, is
suitable for data stored sequentially. Other search strategies are
appropriate for such data structures as hash tables, binary trees or
semantic networks. Fishman and Minker {1975] for example, Store data in
a manner which facilitates parallel search, whereas Delivanni and
Kowalski {1979] propose a path-fellowing strategy for retrieving data
stored in semantic networks.

"Don't know" versus “"don't care" non-determinismy

Non-determinism does ncot always entail the need to search for a
solution. The definition of Max(x,vy,z) {(the maximum of x and y is z) is
an example.

Max (lerx) <— X 2
Max (X,¥,y¥) <~y >

Both procedures apply when x and y are identical, as in the case
< Max{3,3,2).

Searching for a scluticn, which is unavoidable in the general case,
creates redundancy when it is unnecessary. Backtracking is redundant, for
example, when it is applied to the goal statement

<— Max(3,3,z), EBven(z)

and the procedure calls are executed in the order in which they are
written. The seccnd procedure call Even(z)}, which succeeds when 2 is
even, fails no matter how the £first procedure call 1is executed.
Backtracking after the first failure, to try a different way of executing
the first procedure call, is both unnecessary and redundant.

Searching can be restricted in general whenever the output variables
of a procedure call are a function of the input - for example, when the
variable y is a function of x in the relation F(x,y) and x is given as
input. Backtracking can be suppressed if the first solution of the goal
F(A,y) fails to solve the second goal G(y) in the goal statement
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<— F{a,y), G(y).

When searching for a solution is unnecessary, then the program
executor "doesn't care" which solution is generated nor how it is
obtained. Otherwise, searching is unavoidable when the executor "doesn't
know". Don't care non-determinism; is a dominant feature of Dijkstra's
language of guarded commands [19%6]. The use of don't care non-
determinisml to restrict search is a form of intelligent backtracking.

Non-determinism can have both don't know and don't care
characteristics. %he path-finding problem is an example., Given the
problem c¢f finding a path from A to N

<— Go (A,N)

for example, the program executor doesn't care which path is found but
normally doesn't know which procedures to apply in order te find it.
Searching is necessary to find one path but is unnecessary and redundant
thereafter.

The path-finding problem is a special case of the general situation in
which a procedure call shares no variables with other calls in the same
goal statement. Any non-determinism; inveolved in executing the procedure
call matters only until the first solution is found. The second
preocedure call in the bedy of the procedure

Happy (Bob} <— Teaches(Bob,x), Attends(yv,x)

Bob is happy if he teaches a course
which someone attends.

is an example. If it is executed after the other procedure call, then
its only variable y occurs in no other procedure call and it suffices to
find only a single solution.

The property that a procedure call contains no variables or that all
its variables occur in no other procedure call is a syntactic property
which the program executor can easily recognise without the aid of the
pregrammer. The situation, however, in which search can be restricted
because a procedure call computes the value of a function is undecidable
in principle. It is easier for the programmer to convey such information
to the program executor as a comment about the program, than it is for
the executor to discover the fact for itself.

Don't care non-determinism; provides a way of adding extra information
to a program without enlarging the search space and even reducing its
size. The new information may solve & problem more directly than the
original procedures, and if the non-determinism; doesn't matter then the
original procedures can be ignored.

Non-determinism,: The scheduling of procedure calls

In conventional programming languages the program controls the
scheduling of procedure calls - wusually in some fixed sequence, but
sometimes timesharing amecng them or executing them in parallel. In logic,
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however, the beody of a procedure specifies only the collection of
procedure calls. The manner in which they are executed is determined; not
by the program but by the execution mechanism. Different strategies for
scheduling procedure calls affect the efficiency of execution but do not
affect the meaning as determined by the relations which are computed.

The definition of sorted lists is a simple example. Assume that the
definition of the < relation is already given.

Sort{x,y) holds when y is a sorted version of list x,
Perm(x,v) y is a permutation of x,
Delete (Xx,y,2) z results from deleting any one

occurrence of x from y.

sl Sort(x,y) <— Perm(x,y), Ord(y}

52 Perm(nil,nil} <—

53 Permi(z, x.y} <— Delete(x,z,z2'), Perm(z',y}
54 Delete(x, x.¥, ¥) <{—

55 Delete(x, y.z, Yy.u) <— Delete(x,z,u)

S6 Crd(nil) <=

57 Ord(x.nil) <—

58 Ord(x.y.z) <— x <y, Ord{y.z)

In principle, the procedure calls in the body of procedure Sl can be
executed in any sequence. Given a list 1, to generate a sorted version ¥
of 1, it is possible firstly to execute the procedure call Ord(y),
generating an ordered list y, and then to execute Perm(l,y), testing
whether y is a permutation of 1. If the test fails, other ordered lists
can be generated until the test succeeds. It is wore effective, of
course, to execute procedure calls in the opposite sequence - first
generating permutations ¢f x and then testing whether they are ordered.
But no matter in which sequence procedure calls are executed and no
matter what the cost in terms of efficiency, the result in terms of the
input-output relatien computed is the same.

Effective scheduling of procedure calls depends upon the pattern of
input and output. Generally it is wore efficient to execute a procedure
call which contains the input in preference to one which does not. Thus,
given the problem

<— Sort (1,y)
I<— Perm(l,y), Ord(y)

of finding a sorted version y of an input list 1 it 1is better to select
for execution the procedure call Perm(l,y) which contains the input than
it is to select Crd(y) which does not. If both 1; and 1, are given
and the problem

I <= Sort(ly,ls)

<47Perm(ll,12), Ord{lsy)

is to test that 1, is & sorted version of 1%, then both procedure calls
contain the input and it does not affect efficiency which procedure call
is executed first. Moreover, since the two procedure calls do not share
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variables and since they are equally good candidates for execution, they
can be executed together - either timesharing between them if only one
processor is available or executing them in parallel if several can be
used.

In general, it is advantageous to execute procedure calls as soon as
sufficient input is available. Given procedures (5i-8) and the goal of
sorting the list 2.1.3.nil, generating permutations before testing them
for orderedness, the test for orderedness c¢an be initiated just as
effectively when the first two elements of the permutation have been
determined as it can when the entire permutaticon has been generated.
Executing procedure calls as soon as possible has the advantage that
failure can be detected as soon as possible. The figure below illustrates
the effectiveness of eagerly executing the orderedness test to reject in
one step all permutations which have first element 2 and second element
1.

<{— Sort(2.1.3.nil, vy}

<— Perm{2.1.3.nil, y)}, Ord(y)

y = XY
<— Delete(x, 2.3.3.nil, z'), Permiz', ¥'), Crd(x.y")
x =2
z' = 1.3.nil
<~ Perm(1.3.nil, y'), Ord(2.y")
y| = X‘.Y"
<— Delete(x', 1.3,nil, z"), Perm(z", y"), Ord(2.x'.y")
x' =1
z" = 3.nil

<— Perm(3.nil, y"), Qrd(2.1.y"}
} <— Perm{3.nil, y"}, 2<1, Ord{l.y")

The behaviour of the admwissible pairs problem is a more dramatic
example, which iz intolerably non-deterministic, if procedure calls are
executed last-in-first-out. A pair (a,b) of 1lists of numbers 1is
admissible if the two lists have the same length and for every i

if a; is the i-th element of a and

i
by is the i-th element of b, then
by = 2*a; and
aj41 = 3*by-

Pictorially:

a: aj a9 sasaes ap Brpleserene
2*J/3* 2*l/ Z*L 3* Z*L/

b by by e ..by bpipreeee-

The following clauses, in which lists are represented by means of terms,
define the desired relaticnship:
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Adm(x,y} <— Double(x,y}, Triple(x,y}

Double(nil,nil) <—

Double(x.y, u.v} < Times{2Z,x,u), Double(y,v)
Triple(x.nil, u.nil) <—

Triple{x.y.z, u.v} <— Times(3,u,y}, Triple(y.z, v}

Consider the problem of generating an admissible pair of lists whose
first list begins with with the number 1:

— Admi{l.y, w)

The program is intolerably non-deterministic; if procedure calls are
executed last-in-first-out, completing the execution of one <call before
initiating another. It becomes virtually deterministicy, however, if
procedure calls are executed as soon as sufficient input is available.
The two procedure calls behave as co-operating sequential processes, As
soon as either one of the two processes, Decuble or Triple, has enough
information about its input it runs until it needs more. By that time it
has produced enough cutput for the other process tc resume execution.

g <—Adm(l.y, u)
<— Double(l.y, u), Triple(l.y, u)}
u=nu'.v
<— Times(2,1l,u'},Double(y,v), Triple(l.y, u'.v)
u' = 2
<— Double(y,v), Triple(l.y, 2.v)
¥y = nil
v = nil y=y'.2
O <— Double(y'.z, v}, Times(3,2,y'}, Triple(y'.z, v)
y' =6
<— Double(6.z, v}, Triple(6.2, v}
v = u".v'
<— Times(2,6,u”), Double(z,v'}, Triple(6.z, u".v')
u" = 12
<— Double{z,v'), Triple(b.z, 12.v")
z = nil
v'= nil
O

Coroutines, which cooperatively produce and consume data, can be
written in programming languages such as SIMULA. Such coroutines,
however, are syntactically and semantically different from normal
procedures. However, more recent schemes, in which procedures are called
by need [Henderson and Morris 1976] and the activation of processes is
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controlled by the flow of data [Kahn 1974] [Friedman and Wise 1978],
reserble the execution of procedures in logic programs. The strategy for
executing procedure calls is not determined by the program but by the
program executor.

Bottom-up execution of programs

The procedural interpretation of Horn clauses is primarily the top~
down interpretation. It is sometimes possible, however, to give a
procedural interpretation to bottom-up inference. Although it is
generally more efficient for computers to interpret Horn clauses top-
down, it is often more natural for people to understand them bottom-up.
Moreover, it is sometimes meore efficient to execute programs bottom-up
rather than top~down.

A student of mathematics, for example, is more likely to understand
the recurgive definition of factorial

The factorial of 6 is 1 <—

The factorial of x is u < y+l = x,
the factorial of vy is v,
X*y = u

bottom-up, as determining the sequence of assertions

The factorial of € is 1 <—
The factorial of 1 is 1 <—
The factorial of 2 is 2 <—
The factorial of 3 is 6 <—
etc.
than he is to understand it top-down, as reducing goals to subgoals. In
this example, bottom-up derivation of factorials has a computationail

flavour. It ©behaves as an iterative computation which accumulates
factorials of successively larger numbers until it derives the cne which
ig desired.

The definition of Fibonacci number can be executed more efficiently
bottom-up then top-down.

The @-th Fibonacci number is 1 <—

The 1-th Fibonacci number is 1 <—

The u+2-th Fibonacci number is x <—
the u+l-th Fibonacci number is vy,
the u-th Fibonacci number is z,
¥tz = X

Here the terms u+2 and v+l are expressions to be evaluated rather than
terms representing data structures. This notation is an abbreviation for
the one which has explicit procedure calls in the body To evaluate u+2
and u+l.

Interpreted top-down, finding the u+l-th Fibonacci number
reintroduces the subproblem of finding the wu-th Fibonacci number. The
top-down computation is an and-tree whose nodes are procedure calls, the



Bottom-up execution of programs 119

number of which is an exponential function of u. The problem of
computing the Fibonacci of 4, for example, determines a tree, which
ignoring additions contains a total of 9 goals and subgoals.

Fib(4,x)

Fib(2,z)

Fib(l,x") Fib(l,2") Fib(@,z")

Fibk{l,vy"') Fib(@,y")

Here Fib(u,x} means the u-th Fibohacci number is x. Executing the same
definition bottom-up generates the sequence of assertions

The #-th Fibonacci number is 1 <—
The 1-th Fibonacci number is 1 <—
The 2Z-th Fibonacci number is 2 <—
The 3-th Fibonacci number is 3 <—

etc.

The number of computation steps for the Fibonacci of u executed bottom-up
is a linear function of u.

In this example, bottom-up execution is also potentially less space-
consuming than top-down execution. Top-down execution uses space which is
proportional to u, whereas bottom-up execution needs to store only two
asserticns and therefore can use a small ccnstant amount of storage. That
only two assertions need te be stored during bottom-up execution 1is a
consequence of the deletion rules for the connection graph proof
procedure (Chapter 8).

Notice that the efficiency of top-down execution approaches that of
bottom-up execution if similar procedure calls {(i.e. the u-th Fibonacci
number is z and the u-th Fibonacci number is z') are executed only once.
Such top-down execution is an extension of Earley's parsing algerithm
[Earley 1978) as described by Warren [unpublished].

Iteration in conventional preogramming languages has three different
interpretations in logic programs. The classical interpretation regards
iteration as z special case of top-down execution of recursive
definitions, The iteration

To do P, repeat Q until R
for example, can be expressed in the form

P{x) <- R{x)
P(x) <— Q(x,x"), P(x'}

where x is an input parameter which contrels the number of iterations
through the loop and R(x) and Q(x,x'} hold for distinct x. The recursion
is a form of iteration if Q(x,x") is executed before P(x'}. Consequently
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each new subgoal P(x') can replace the previous subgoal P(x). Execution,
therefore, reguires only a constant amount of storage for the current
subgoal.

The interpretation of iteration as top-down execution of certain forms
of recursive definitions is the only interpretation of iteration pessible
in the conventional model of computation by recursion. In logic programs,
however, it is also possible to regard iteration either as sequential
search through a space of alternative responses to a procedure call or as
bottom-~up execution of recursive definitions.

The pragmatic content of logic programs

It is a common mistake to treat logic simply as a specification
language whose statements have semantic content without pragmatic value.
Such an attitude is self-fulfilling. To use logic while ignoring its
pragmatic aspects is to make information potentially unusable.

Two different statements can express the same information and
therefore have the same meaning. Bat one might be useful for solving
problems and the other one useless.

The sorting problem, studied by van Emden [1977], is a good example
cf the pragmatics of logic. The simple program {S1-8} for sorting lists

Sort (x,y) < Perm{x,vy}, Ord{y}

is a good specification, but a useless program. Even the scheduling of
procedure calls which wuses Ord(y) to monitor the partial output of
Perm(x,y) is hopelessly inefficient {taking time 2Tn in order to sort a
list of length n}. In contrast, even simple sequential execution of
procedure calls produces an efficient algorithm, Quicksort [Hoare 1961],
taking time n*login), from the program:

Sort*(nil,nil) <—
Sort*(x.y, z) <— Partition(x,y,u,v), Sort*(u,u'),
Sort*(v,v'), Append{u', x.v', 2).

Here it is intended that Partition(x,y,u,v) holds when u is the list
of all members of y which are less than or egual to x and v is the list
of all members of y which are greater than x.

Sort and Sort* are eguivalent in the sense that Sort(s,t) and
Sort*({s,t}) hold for the same pairs of terms s, t. Sort is useful as a
specification of sortedness but useless for efficiently sorting lists.
Sort* igs efficient but less cbviously correct.

In general, a given problem can be expressed in many different ways.
The two representations of the path-finding problem (one using the
predicate Go(x), the other using the predicate Go*(x,y}) <can be
generalised to other problems. Even the definition of factorial can be
represented in two ways. The previcus definition corresponds to the one-
place-predicate formulation of path-finding. The definition below
corresponds to the two-place-predicate formulation.
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Fact*{x,y,u,v)

expresses that the factorial of x is y if the facteorial of u is v.
Fact* (u,v,u,v) <—
Fact*(x,y,u,v) <— u+l = u', u'*v = v', Fact*(x,y,u',v")

To £ind the factorial of an integer represented by a term t, a single
goal statement incorporates not only the goal but also the infermation
that the facterial of ¢ is 1.

<{— Fact*(t,y,8,1)

The new formulation of factorial executed top-down behaves in the same
iterative manner as the original formulation executed in a mixed top-
down, bottom-up fashion. The old formulation is more obviously correct,

whereas the new formulation is easier to execute efficiently with more
limjted problem-solving facilities.

Separation of data structures

For a well-structured program, it is desirable that the data
structures be separated from the procedures which interrogate and
manipulate them, Separation of data structures from procedures means
that the representation of the data can be altered without altering the
higher-level procedures. It is easier to improve efficiency, therefore,
by replacing an Iinefficient data structure with a more efficient cne. In
a large complex program the information which needs to be supplied by the
data structures is often completely identified only in the final stages
of the program design. By separating data structures from procedures, it
is possible to write the higher levels of the program before the data
structures have been determined.

Data storage and retrieval are automatically separated from procedures
when data 1is represented by releations, as in the family relaticonships
example. When data is represented instead by terms it is the
programmer's responsibility to separate them in the program.

The arch recognition problem is a simple example. The previous
formulation which mixes procedures and data structures can be replaced by
one which separates them. Mention of the data structures in the top-level
procedures can be replaced by procedure calls which access, compute or
construct the data.

Arch(x) <— Block(v), Tower (u}, Tower (w}, On(v,u),
on(v,w), Left{x,u), Right(x,w), Top{x,v)
Tower (x} <— Block (x}

Tower (x} <— Block (u), Tower(v), On(u,v),
Top{x,u), Bottom({x,v)

On(x,y) < Top(y,u), On{x,u)
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Here the Top, Left, Right and Bottom relations define the interface
between the procedures and the data structures. It is intended that

Top (X,y) helds when the top of x is vy,

Left{x,y) the left subtower of arch x is y,
Right (x,y) the right subtower of arch x is y,
Bottom(x,y} the beottom of tower x is y.

The data structures can be defined separately by defining their
interface with the top-level procedures:

Toplafu,v,w}, V) <—
Top(tiu,v), u) <
Left(a(u,v,w), u) <
Right(a{u,v,w), w) <—
Bottom{t (u,v), v) <

In this case the interfacing procedures are defined simply by means of
assertions. But in other cases they might be defined by more general
kinds of procedures.

Comparing the two formulations of the arches program, we notice
another advantage of separating procedures and data structures: with
infix notation for predicate symbols and with well chosen names for the
interfacing procedures, data-structure-independent programs  are
virtually self-documenting. For conventional programs which mix data
structures and procedures, the programmer needs to provide documentation
which explains the data structures and is external to the program. For
well-structured programs which separate procedures and data structures,
such documentation is provided by the interfacing procedures and is part
of the program.

Despite the arguments for separating procedures and data structures,
programmers mix them for the sake of run time efficiency. One way of
reconciling efficiency with good program structure is to make use of the
macro-processing facilities provided in some programming languages.
Macro-processing flattens the hierarchy of non-recursive procedure calls
by executing them at compile time before a problem is given. It is also a
feature of the program improving transformations developed by Burstall
and Darlington [1977].

The analogue of macro-processing in logic is bottom—up or middle-out
reasoning combined with deletion of clauses. Such macro-procesging is a
special case of more general facilities provided by the connection graph
proof procedure (Chapter 8). In the case of the arches program, the
original formulation can be derived from the new one simply by bottom—up
execution of the interfacing procedure calls.

Terms versus relations as data structures

Data in logic programs can be represented either by means of terms,
as in the Bppend and Arches examples, or by means of relations, as in
the Parsing snd Family Relationships examples.
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Wwhen data is represented by terms, the input to a program is normally
represented by a term in the initial goal statement, Top-down execution
is problem-dependent and behaves like recursive evaluation in
conventicnal programming languages. Bottom-up execution, although it
sometimes behaves like iteration, as in the Factorial and Fibonacci
examples, is more often problem—independent and computationally
explosive, unless it can somehow be guided by a global consideration of
the problem to be solved. Global strategies for problem-solving are
investigated in Chapter 9.

When dats is represented by means of relations (defined by assertions
and procedures) the imput is normally expressed by assertions. Both top-
down and bottom-up execution are problem-dependent. Top-down execution
interrogates the input and bottom-up execution manipulates it, deriving
new data from that which is initially given.

It is slways possible to represent data by means of terms, LISP for
example, represents all data by means of constant symbols and a single
binary function symbol "cons", Recursion theory represents all data by
means of natural numbers using a single constant symbol @ and a unaty
function symbel "s". It 1is instructive to compare the previous
formulation of the parsing problem with a formulation which represents
data by means of terms.

Sent (x) <— Np(y), Vp(z), Append({y,z,X)

Np{x) <— Det(y), Adj(z), Noun(v},
Append (y,z,u), Append(u,v,x)

Vp {x} <— Aux{y), Verb(z), Append{y,z,x)

Det (the.nil) <—

Adj(slithy.nil} <—

Noun (toves.nil) <—

Aux{did.nil) <—

Verb{gyre.nil) <—

Both the input string of words and the problem of showing that it is a
sentence are incorporated in the initial goal statement:

<— Sent{the.slithy.toves.did.gyre.nil)

Notice the procedure calls Append, which have no analogue in the
earlier formulation of the parsing problem. wWhen the data is represented
by means of assertions, the program has direct access to the data,
similar to that given by arraye in conventional programming languages.
When the data is represented by terms, then special procedures 1like
append are needed to provide access to the contents of the data
structures.

It is possible to represent data entirely by means of relations as in
relational databases [Codd 197@1. Instead of representing the list

a, ¢, b, a
by the term

cons{a, cons{c, cons{b, cons{a, nil))})
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or a.c.b.a.nil
we can give it a name, say A, and represent it by the assertions

Item(a,l,a) <—
Item{a,2,c) <—
Item({a,3,b) <—
Item(A,4,a) <
Length({a,4) <—

where Item(x,y,z) means that
z is the y-th item of x
and Length{x,y} means that

y 1s the length of x.

Instead of writing an explicitly recursive program for reversing
lists, elther

Reverse(nil,nil) <—
Reverse(x.y, z} <— Reverse(y,u), Append(u, x.nil, z)

or more efficiently

Reverse (x,y¥) <— Rev(x,nil,y}
Rev{nil,y,y) <—
Revi{x.y, Z, u) <— Rev(y, x.z, u)

we can write a non-recursive program:

Item{rev(x), u, ¥) <- Item{x,v,y), Length(x,w),
vy = W', wtl =w'
Length{rev (%), y) <— Length(x,y)

Here the term rev(x) names the list which is the reverse of x.

When data is represented by means of terms, the program needs to
specify how data is stored and retrieved and 1t needs to take
responsibility for the separation of the data from the higher levels of
the program. Data located closer to the surface of a term can be accessed
more directly than data located deeper inside. When data is represented
by relations, the program defines the data at an abstract level which is
independent of the storage and retrieval scheme adopted by the
programming system. When a relation is defined by means of assertions,
the program has direct access to the information.

Database formalisms and programming languages

Conventional database formalisms are different from the formalisms
used for programming languages. Logic, in contrast, is the same whether
it is used for databases, database queries and programs or for database
integrity constraints and program specifications. Indeed, especially
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when relations are used as data structures, the use of logic blurs the
normal distinction between databases and programs. General laws for data
description are indistinguishable from procedures in programs, and
database integrity constraints are the same as program properties.

The conventional distinction between databases and programs is not
reflected by the nature of computational problems. A representation in
logic of the symbolic integration problem, for example, like the one
written in PROLOG by Bergman and Kanoui [1973] can be regarded as both a
database and a program, The relationship of a function to its integral is
defined by means of assertions such as

sin(x) is the integral of cos{x) with respect to x
and by general rules, such as

u+ v is the integral of u' + v' with respect to x
if u is the integral of u' with respect to x
and v is the integral of v' with respect to x.

The definition of the relation can be viewed both as the definition of a
recursive procedure and as the description of a database by a combination
of explicit assertions and implicit rules.

The desirability of combining databases and programs more intimately
than is possible with conventional formalisms is beginning to be
appreciated by the database community. The design of a pregramming
language [Zlocf and delong 1977] based on guery-by-example is a
significant development of this kind.

Algorithm = Logic + Control

Conventional algorithms and programs expressegd in conventional
programming languages combine the logic of the information to be used in
solving problems with the centrol over the manner in which the
information is put to use. This relationship can be expressed
symbolically by the equaticn

Algorithm = Logic + Control (& =L + C}.

Logic programs express only the logic component L of algorithms. The
control compenent C is exercised by the program executor, either
following 1its owrn autonomously determined contrel decisions or else
following control instructions provided by the programmer.

The conceptual separation of logic from contrel has several
advantages:

(1Y Algorithms can be constructed by successive refinement,
designing the logic component before the control component.

(2) Algorithms can be improved by improving their control
component without changing the logic component at all.
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() Algorithms can be generated from specifications, can be
verified and can be transformed into more efficient ones,
without considering the control component, by applying
deductive inference rules to the logic compenent alone.

(4) Inexperienced programmers and database users can restrict
their interaction with the computing system to the
definition of the logic component, leaving the determination
of the control component to the computer.

In the systemetic development of well-structured algerithms it is
appropriate for the logic component te be specified before the contrel
component. The logic component expresses the domain-gpecific part of an
algorithm. It both determines the meaning of the algorithm and influences
the way it behaves. The control component, on the other hand,
determines the general-purpose problem-solving strategy. It affects only
the efficiency of the algorithm without affecting its meaning.

Thus different algerithms Ay and A,, obtained by applying different
control €y and Cp to the same logic L, are eguivalent in the sense that
they solve the same problems with the same results. Symbolically

Ay and A; are equivalent if A
Aj

L +C; and
L+C2.

The egquivalence of different algorithms having the same logic can be
used to improve the efficiency of an algorithm by improwving its control
without changing its logic. In particular, replacing bottom-up by top-
down control often, though not always, Iimproves efficiency, whereas
replacing top-down seguential execution of procedure calls by top~down
consumer—-producer and parallel executiocon almest always improves
efficiency, and never harms it.

The arquments for separating logic from control are like the arguments
for separating procedures from data structures. When procedures are
separated from data structures, it is possible to distinguish what
functions the data structures perform from the manner in which they
perform them. An algorithm can be improved by replacing an inefficient
data structure by a more efficient one, provided that the new data
structure performs the same functions as the old cone. Similarly, when
logic is separated from contrel, it is possible to distinguish what the
algorithm dces, as determined by the logic component, from the manner
in which it is done, as determined by the control component. An
algorithm can be improved by replacing an inefficient control strategy by
2 more efficient one, provided that the logic component is unaltered. In
both cases, it is easier to determine the meaning of the algorithm and
to improve efficiency without affecting meaning.

The separation of logic from control simplifies the problem of
relating programs to specifications. By ignoring the contreol component
entirely, it ig possible to use rules o¢f deduction to show, for
example, that the logic component of an algerithm is correct, because
it is implied by its specification. The same techniques of deduction can
also be used to generate a logic program from its specification or to
transform an inefficient program into @ more efficient one. These
techniques have been developed by Bibel [1976a, 1976b, 1978], Clark and
Tarnlund [1977] Clark and Sickel [1978], <Clark and Darlington [1978] and
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Hogger [1979] for logic programs and are similar to ones developed for
recursion equations by Burstall and Darlington [1977] and for LISP by
Manna and Waldinger [1978]. A brief introduction to these methods is
presented in Chapter 18, which deals with the standard form of logic and
its relationship to clausal form.

The analysis of algorithms into logic and control components provides
two distinct methods for improving the efficiency of an algorithm. Given
a fixed control component, incorporated in a program executor with
limited problem-solving capabilities, efficiency can be improved by
changing the representation of the problem in the logic component; or,
given a fixed 1logic component, it can be improved by improving the
problem-solving capabilities of the program executor. Changing the logic
component is a useful short-term strategy, since the representation of
the problem is generally easier to change than the problem—-solver.
Changing the contrcl compeonent, on the other hand, is a better long-term
sclution, since improving the problem—solver improves its performance
for many different problems.

Specification of the control component

The control component can be expressed by the programmer in a separate
control language; or it can be determined by the program executor itself.
The provision o<f a separate control language allcws the programmer to
advise the problem-sclver about program execution and is suitable for the
more experienced programmer, The determination of contrel by the program
executor, on the other hand, relieves the programmer of the need to
specify control altogether and is more useful for the inexperienced
programmer, the casual database user, and even the expert programmer
during the early stages of program development.

A completely satisfactery, autcnomous control strategy, however,
has not yet beern designed. The problem of designing an efficient
algorithm for scheduling procedure calls, in particular, has still to be
solved. The principle of procrastination, which delays execution when a
procedure c¢all can be executed in many ways, and the complementary
principle, which initiates execution as soon as a procedure call can be
executed in no more than one way, work efficiently in a large number of
cases. But they are inadeguate when all procedure calls are non-
deterministic). Annctations for controlling the execution of procedure
calls as coroutines have been provided in the PROLOG system [Clark and
McCabe 1979] at Imperial College. They are similar to the annotations for
recursion equations proposed by Schwarz [1977].

Autonomous search strategies have been designed for both top-down and
bottom~up search spaces in theorem-proving. These strategies use merit
orderings or evaluation functions to guide the generation of clauses in
the search space. Arguments against such search strategies have been
advanced by Hayes [1973]. He argues that the kind of information they
provide is not adeguate for effective problem-solving and proposes that
more suitable information can be supplied by the programmer in an
auxiliary control language. That a given relation is a function of
certain zrguments is an example of such information.



128 Chapter 5: The Procedural Interpretation of Heorn Clauses

Contreol primitives for guiding search strategies have been provided in
programming languages like PLANNER [Hewitt 1969)], MICROPLANNER [Sussman,
Winograd and Charniak 1971], CONNIVER [Sussman and McDermott 1972],
POPLER [Davies 1973], SAIL [Feldman et al 1972), QA4 [Rulifson et al
1973] and QLISP [Rebch and Sacerdoti 1973]. The recommendation lists of
PLANNER and MICROPLANNER in particular enable the programmer to specify
the order in which procedures should be tried in order to execute a given
procedure call, Such informetion might be useful in fault diagnosis
programs, for example, when the programmer knows that a symptom P is
more likely to be caused by Q than by R. This might be indicated to the
preblem-selver by the recommendation that the procedure

P < Q
be tried before P <—R .

Both autconomous and user—-specified control over the direction of
execution have been provided in theorem—-proving and in artificial
intelligence programming languages., In programming languages of the
PLANNER family, the direction in which procedures are executed is
specified in advance by the types associated with procedure declarations
(consequent theorem type 1if the direction is top-down, antecedent
theorem type 1if it is bottom-up). Moreover each procedure call is
assigned the type of the procedures which it is allowed to invcke.
ARutonomous, system~determined strategies for controlling direction of
execution are more common in operational research and theorem-proving.
Few strategies have been investigated, however, other than the one
which chooses the direction having the current 1least branching rate.
Both system-determined and user-specified control over direction are
investigated in Chapter 8, which describes the connection graph proct
procedure.

Despite the difficulties involved, the desirability of separating
locgic from control and of allocating responsibility for exercising
control to the problem—solver is generally accepted in the field of
databases. Given, for example, a data base which defines the relations

Supplier(x,y,z} supplier number x has name y and status z,

Part (x,vy,2) part number x has name y and unit cost =z,

Supply(x,y,2) supplier number x supplies part number y
in quantity z.

the query Who supplies hbooks?

<— Answer (y}

Answer (y) <— Supplies(x,y.z)., Supply(x,u,v), Part(u,book,w)
specifies only the logic component of the problem., The data retrieval
system needs to determine that, for the sake of efficiency, cthe
procedure call Part(u,book,w} {(containing the input) should be executed
first. Given the structurally similar guery

What parts are supplied by John?

<— Answer (y)
Answer (y) <— Supplier(x,John,z), Supply(x,u,v), Part{u,y,w)
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however, it needs to recognise that Supplier(x,John,z) should be executed
first.

For inexperienced database users it is desirable that queries be
expressed in a formalism as close to natural language as possible. Since
logic originates from the analysis of natural language, it is not
surprising that database guery languages express only the logic component
of algerithms, Restricting query languages to the lcgic component has
other advantages. It has the consecuence that storage and retrieval
schemes can be changed and improved in the control component without
affecting the user's view of the data as defined by the logic component.
In general, the higher the 1level of the programming language and the
less advanced the level of the programmer, the more the system needs to
assume responsibility for efficiency and to exercise centrol over the use
of the information it is given.

The notion that
computation = controlled deduction

was first proposed by Hayes [1973] and more recently by Bibel [1978],
Kowalski [1976], Pratt [1977] and Schwarz [1977]. The similar thesis
that database systems be decomposed into a relaticnal component which
defines the logic of the data, and a control component which manages data
storage and retrieval, has been advocated by Codd [197€]. Hewitt's
argument [1969] for the programming language PLANNER, though generally
regarded as an argument against logic, can be regarded more positively
as an argument for the thesis that algorithms consist of both logic and
control components.

Natural Language = Logic + Control

The procedural interpretation of Horn clauses reconciles the classical
role of logic in the analysis of language with the interpretation of
natural language statements as programs [Winograd 1972]. Like
algorithms, natural language combines logic with control. The sentence

If you want Mary to like you then give her presents and
be kind to animals.

combines the declarative information

Mary likes you if you give her presents and
are kind to animals.

with the advice that it be used top-down to solve problems of being liked
by Mary to subproblems of giving her presents and being kind to animals.

Exercises

1) Let the Delete relation be defined by the procedures
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Dl Delete(x, x.y, y) <—
ol Delete{x, z.y, w) < Delete(x,y,w)

a) Use DI1-2 top-down to delete 1 from the list 2.1.nil .
Exhibit the entire top-down search space.

b) Use D1-2 top-down to add 1 to the list 2.nil . Exhibit
the entire search space.

c) Assume that Diff(x,y} holds when x and y are not
identical. Define the relation Delallocc(x,y,w) which
holds when w is the list which results from deleting all
occurrences of x from the list y.

2) Describe a representation of the path-finding problem which makes
it possible to find the 1list of all nodes in a path from cne node to
another.

3) Reformulate the water containers problem of Chapter 4 to
incorporate loop checking into the program, so that it can be executed
efficiently even if the problem—solver does not recognise and delete
loops.

4) Let Partitionix,y,u,v) be defined by

Partition{x,y,u,v}) < Shuffle{u,v,y), Small(x,u), Big(x,v)
Shuffle(nil, v, v) <=

Shuffle(v, nil, v) <—

Shuffle(x.y, z, x.u) <= Shuffle{y,z,u}

shuffle({y, x.z, x.u) <= Shufflel(y,z,u)

where Small (x,u) holds when x < all members of u,
Big (x,u) x > all members of u,
Shuffle(u,v,y) the lists v and v can

be shuffled together
to obtain the list y.

Consider the problem <— Partition(s,t,u,v) where s and t are given as
input and v and v are desired as output.

a) Define Small{x,u) and Big(x,u} recursively in terms of the
relations < and > .

b) Describe the behaviour of the procedures given above and
in part a) when backtracking is used to solve the problem
top-down, executing procedure calls sequentially, left-to-
right.

[<}} Describe a more deterministic way of executing procedure
calls for the same problem.
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Redefine Partition(x,y,u,v) 50 that behaviour similar to
that of part c) is achieved by simple left-to-right
execution of procedure calls.

5) Let the relation Is(x,y) which holds when x is an initial sublist

of y

be defined by

Is(x,y) < Append(x,z,y)

a) Define Isi(x,y} recursively without using Append.
b) The relation 51(x,y) which holds when x is a sublist of y
u X v
r-—a\_-—‘(-_._/;.’-),-...n.—.
¥
can be specified by
51 (x,y) < Append(u,x,w), Append(w,v,Y)
Define Sl{x,y) recursively in terms of Is without using
Append.

c) Describe an execution strategy for the two procedure calls
in the specification of Sl above which behaves in the same
way as top-down seguential execution of the recursive
definition of S1.

n a) Express the B-queens problem by means of Horn clauses:

Given an 8 by 8 checker board, find a list of eight
gueen positions such that no gueen can take another. One
gueen can take another if both are located on the same
row, same cclumn or same diagonal of the checker board.
Assume that the Plus relation

Plus(x,y.z) {x+y = 2)
is already defined by variable free assertions.
b} Modify the 8-gueens problem and show that the Z2-queens

problem (placing 2 queens on a 2 by 2 checker board) is
unsolvable by generating the entire top-down search space.
Execute procedure c¢zlls in a manner which minimises the
size of the search space.
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8) Any binary tree can be regqgarded as representing a list. For
example, the tree

‘/g<:/h\:>p\h named by the term
cons (cons (tip(A), tip{B)}), cons(tip{{), tip(D})}

A B

In general the

D represents the list A.B.C.D.nil .

relationship Represents(x,y) which holds when the tree x

represents list y can be defined by the clauses:

R1
R2
R3
R4

a)

)

c)

Represents(nil,nil) <—
Represents(tip(x}), x.nil) <—
Represents(cons(tip{x}, y), x.z) <— Represents{y,z)
Represents{cons(cens(x,y), z), w) <—
Represents{cons{x, consi{y,z)), w)

Define the relationship Samelists(x,y) which holds when
the trees x and y represent the same lists.

Use procedures Rl-4 and ({a) to reduce the problem of
showing the two trees

and
A
A B B

represent the same lists te the problem of showing that
the subtrees named by s and t represent the same lists.

Use procedures Rl-4 and (a) to show that the problem of
showing the two trees

and
A
B A C

represent the same lists, where t and s name any subtrees,
is not solvable.

Generalise the execution strategies employed in (b} and
{c} and describe an efficient general strategy for
executing the procedure calls in R1-4 and {a)
cooperatively rather than sequentially.



