133

CHAPTER 6

Plan-Formation and the Frame Problem

In the plan-formation problem we are given an initial state, a goal
state, and a set of actions which transform one state into another. The
problem is to construct a plan, consisting of an appropriate sequence of
actions, which transforms the initial state into the goal state.

The plan—-fermation problem is identical, therefore, to the state-space
problem. The n-tuple representation of state-space problems is not
feasible, however, when the number n of individuals is large or unknown.
In this chapter, we investigate a version of the binary representation of
state space problems.

The use of legic, in both the n-ary and binary representations, runs
inte the frame problem: how to deal with the fact that almost all
statements which hold true of a given state continue to hold after an
action has been performed. It has often been assumed that such facts
cannot be expressed naturally in logic and cannot be used efficiently.

The supposed inadeguacies of logic have led to the development of
special systems, such as STRIPS [Fikes and Nilsson 1971) and PLANNER
[Hewitt 1969], specifically intended to deal with the frame problem. We
shall argue that an egually satisfactory treatment of the frame problem
can be obtained in logic: by using terms to name statements and by using
the frame axiom, which describes the statements which continue to hold
after an action has been performed, top-down rather than bottom-up.

We shall consider the simple blocks world plan-formation problem
[Sacerdoti 1977] in detail. There are three manipulatable blocks A, B
and € and three unmanipulatable places p, g and r. The location of
objects in the initial and goal states is illustrated below:

A
A B
B C C
P g |3 P q r

Initial state Goal state

134 Chapter 6: Plan-Formation and the Frame Problem

There is a single action
“rans(x,y,z)

which transfers x from y to 2. The action can be performed in a given
state if

is manipulatable,
and z are clear,

is on y, and

is different from z.

E -]

The new statement that

x is on z and
y is clear

holds true of the new state which results when the action has been
performed. All statements which held in the previous state, except that

x is on y and
z is clear,

continue to hold in the new state.

In general, an action is defined by specifying its preconditions and
postconditions. Preconditions are statements which must hold in a state
before an action can be performed; whereas postconditions are statements
which hold in the new state after the action has been performed.
Postconditions are of two kinds: new statements which are added to the
description of the new state and old statements which continue to hold
from the previous state. The old statements are described by means of a
frame axiom which expresses that all statements which held in the old
state, except for those explicitly stated as exceptions to be deleted,
continue tc hold in the new state., The explicit specification for every
action of preconditions, added statements and deleted statements is due
to STRIPS.

B clausal representation of the blocks world problem

In this formulation, both states and statements are regarded as
individuals and are represented by means of terms. That a statement x
holds true in a state v is represented by a binary relationship

Holds(x,y) .
States are named by constant symbols or by composite terms. It is
convenient to let the constant symbol O name the initial state and to let
the term

result(u,v)

name the state which results from applying the action u to the state v.

2 clausal representation of the blocks world problem 135

The representation of statements by means of terms is discussed in
Chapter 12 concerned with formalising part of the meta-language. Here it
is sufficient to let the term

on(x,y)
name the statement that x is on y and
clear (X)
that x is clear. An alternative representation, in which the term

atom (x,vy)

names the atomic formula with predicate symbol x and list of arguments y,
is more flexible but not necessary here.

In the following clauses

Poss (%) expresses that state x is possible,
Manip{x) object x is manipulatable,
Diff (x,y) x is different from y.

Initial state @ (1) Possi{d) <—
{2) Holds{on(A,B), 8) <—
{3) Holds{on(B,p), B) <
{4} Holds{on(C,r), #) <—
{5} Holds{clear({a), @} <—
(6) Holds({clear{g), @) <—
(7) Holds{clear(C), 8) <—

State-independent

assertions (8) Manip(A} <
{9) Manip(B) <-
(18 Manip{C) <—

Goal state {11} <— Holds(cn(A,B),w), Holds(on{(B,C),w),
Helds {on{C,r) ,w}, Poss(w)

State space and

preconditions (12) Poss(result(trans(x,y.,2).,w}) <— Poss(w),
Manip{x), Diff (x,z), Hclds(clear (x},w) .
Holds {clear (z) ,w), Holds(on(x,y) ,w}

Added statements (13) Holds(on(x,z), result(trans(x,y,z), w}) <—
{14) Holds(clear(y), result{trans(x,y,z), w})} <—

Frame axiom and deleted
statements {15y Holds(u, result(trans(x,y,z), w)) <—
Holds{u,w), Diff(u, on(x,y¥)),

Diff (u, clear{z))

Clauses (1}-(6) describe the initial state, whereas c¢lauses (7)-(18)
describe the state independent facts about the manipulatability of blocks
and clause (11} describes the goal state. The remaining clauses describe
the action of transferring an object from one location to another. Clause
(12) defines the structure of the state-space search space. It expresses

136 Chapter 6: Plan-Formation and the Frame Problem

the preconditions which need to hold before an action can be applied to a
possible state in order to produce a new one. Clauses (13) and (14)
express the postconditions which are added by the action, whereas (15)
expresses those which hold in the new state because they held in the
previous state and were not destroyed by the action.

The relationship Diff(s,t) holds, £for variable—free terms s and t,
when s and t are syntactically distinct. It 1is useful to imagine that
clauses (1)-{(15) are supplemented by infinitely many clauses of the form

Diff(s,t) <—

for every pair of terms s and t which do not match. Equivalently, the
same relation can be defined by the axioms

Diff(f{xy, ..., 2q) s Qlygr-earyy)) <

for every pair of distinct function symbols f and g, including the cases
m=9 and n = # when £ and g are constant symbels, and

Diff (£(x),enuiXy)s E(Y]reeesYy)) < Diff (x{,¥;)

for every function symbol f and for every argument i of f, excluding the
case m = @ when £ is a constant symbol. In practice, it is more efficient
to define Diff as the negaticn of identity

Diff(x,y) < not-(x = y)
X = X <=

and to determine that not-(x = y) holds by showing that x = y fails to
hold. Such an interpretation of negation as failure and its relationship
to the normal interpretation of negaticnh has been studied by Clark [1978]
and 1is discussed in Chapter 11 which is concerned with definitions
expressed in terms of "if-and-only-if".

This formulation of the plan~formation problem is similar to the one
employed by Green [1969b]), based upon proposals of McCarthy and Hayes
[McCarthy and Hayes 1969). It differs from their formulations, however,
in its use of the Holds relation. They add an extra state parameter to
relations instead, writing, for example, On(x,y,w) tc express that x is
cn y in state w and (lear(x,w) that x is clear in w. The treatment of
statements as individuals, which is implied by the use of the Holds
relation, can be regarded as a formalisation of part of the meta-
language. The advantages of wusing logic as its own meta-language are
discussed later in Chapter 12, Here it suffices to note that treating
sentences as individuals avoids that part of the frame problem which is
concerned with expressing the frame axiom. Instead of employing a
separate frame axiom for every relation, writing, for example,

On(u, v, result(trans{x,y,z), w)} < On{u,v,w), Diff{u,x)
Clear (u, result(trans{x,y,z), w)) < Clear(u,w), Diff{u,z)

it suffices to employ & single frame axiom
Holds(u, result(v,w)) <— Holds{u,w), Preserves(v,u)

where Preserves(v,u) expresses that the action v preserves the truth of

A clausal representation of the blocks world problem 137

statement u. The use of the Preserves relation separates the frame axiom
from the specification of the statements which are deleted by individual
actions. In the case of the trans—action:

Preserves{trans(x,y,z}, u) < Diff (u, on(x,y)).,
Diff (u, clear(z))

As we shall see in the next chapter, clause (15), which combines the
frame axiom and the specification of the deleted statements, can be
obtained by macro-processing the procedure call to the relation
Preserves. Macro-processing executes procedure calls at compile time
before problems are given, rather than at run time during the course of
trying to solve them, It can be regarded as a form of middle-cut
reagoning, which in turn 1is a special case of the resclution rule
[Robinson 1965a). Resolution alsc generalises top-down and bottom-up
inference and applies to non-Horn clauses as well.

It is wuseful to classify relations into two kinds: primitive
relations, which are independent of other relations, and defined
relations, which can be defined in terms of the primitives., In the blocks
world, the relationship which holds when one object is above another can
be defined in terms of the primitive relationship which holds when one
cbject is located directly on another.

Holds (above (X,y) , w) <— Holds{oni(x,y), W)
Holds (above {x,y}, w) <— Holds{above(x,z), W},
Holds {above({z,y), w}

It suffices to specify added and deleted statements only for primitive
relations. The effect of actions on defined relationships is determined
by their effect on primitive relationships and by the definition of the
defined relations in terms of the primitives. The classification of
relations and its use in plan-formation was introduced with STRIPS.

We have treated the On and Clear relations as primitive. It would be
more natural, however, to define the Clear relation in terms of the On
relation:

Holds(clear (v}, w} <= for all x not-Holds(on(x,y), w)

We shell discuss this possibility in Chapter 11, which investigates if-
and-only-if definitions and the interpretation of negation as failure.

The logic of the blocks world problem is separate from its use.
Clauses can be used either top-down or bottom-up. They can also be used
in a mixture of directions. If the state space axiom (12) is used bottom-
up, then the problem-solver reasons forward from the initial state,
deriving new states from old ones, until the goal state is generated. If
the axiom is used top-down, then the problem-solver reasons backward from
the goal-state, until the initial state is generated.

The second part of the frame problem arises when the frame axiom (15)
is used bottom-up to derive, from an assertion that a given statement
holds in @ given state, a new assertion that the same statement holds in
a following state. For more realistic plan-formation tasks than the
blocks world problem, a typical state needs to be described by a large
number of assertions, many of which are unrelated to the problem at band.

138 Chapter 6: Plan-Formation and the Frame Problem

In such situations it is not computationally feasible to use the frame
axiom bottom-up to copy preserved facts from state to state.

Both PLANNER and STRIPS deal with the frame problem by abandoning the
frame axiom and using special-purpose procedures instead. Similar results
can be obtained by retaining the frame axiom but interpreting it top-
down:

To determine whether a statement u holds in a state result(v,w)

{i) show u is added by v,
{ii} alternatively, if u is not deleted by v,
determine whether u holds in the previous state w.

Changing the direction of execution of the frame axiom exemplifies the
general strategy of improving an algorithm by improving its control
without changing its logic.

We shall illustrate the different solutions determined for the blocks

world problem by using the state space and frame axioms in different
directions.

Bottom-up execution of the state space axiom {(12)

The following illustration displays part or the search space of states
determined by executing (12) bottom-up.

B
Initial State @
P r

/ |

B I
State 1 State 2 State 3 State 4

/| Wa L A

e 2 [a] p 1 g 4 6 3
%/Stateé

C| Goal State 6

Bottom-up execution of the state space axiom (12} 139

Distinct nodes represent distinct states. However, distinct states
labelled by the same number are characterised by the same statements. In
this case, the redundancy arises because it is never useful to pick up
the same object twice in a row.

The assertions which are generated by bottom—up execution of the state
space axiom describe the search space of states illustrated above and are
independent of the direction of execution of the frame axiom.

The following assertions, c¢oncerning states which belong to the
solution path, are generated by bottom-up execution of the frame axiom.

Holds(on{B,p), 1) <— Holds{on(C,r), 1} <~
Holds{on(a,q), 5) <— Holds{on(C,r), 5) <-
Holds({on(B,C), 6} <— Holds (on{C,r}, 6) <~
Holds{clear (a), 1) <— Holds({clear{(C}), 1) <—
Helds(clear (B), 5) <— Holds{clear (A), 5) <—
Holds(clear(a), 6) <— Holds (clear{p), 6) <—

The additiohal assertions

Holds{on(a,q), 1) <— Holds {clear (B}, 1)} <—
Holds{on(B,C), 5) <~ Holds (clear (p), 5) <—
Holds{on(A,BY, 6) <— Holds (clear (q), 6) <—

which are needed for a complete description of the same states are
instances of the clauses (13) and {14) which specify the statements added
by the trans-action. As in the previous illustration,

1 abbreviates result(trans{A,B,q), @),
5 result(trans(B,p,C), 1},
& result{trans(a,q,B), 5).

In the general case, a search strategy might need to generate many
assertions concerning states which are not relevant to the solution as
well as assertions such as

Holds (en (B,p}, resulti{trans{a,C,B), B8)) <—
Holds(on(B,p), result{trans(B,q,C), B)) <-
Holds{on{(B,p}, result({trans(B,B,B), @) <—

which describe impossible states. The generation of such undesirable
assertions is avoided if the frame axiom iz used top-down. It can also be
avoided when the frame axiom is used bottom-up by adding the extra
condition

Poss (result{trans(x,y,z), w))

to the frame axiom.

140 Chapter 6: Plan-Formation and the Frame Problem

Mixed top-down and bottom-up execution of the frame axiom

Top-down execution of the frame axiom may be combined with bottom-up
execution of the state space exiom., This can be pictured in arrow
notation:

3 1 2 2

] { (N

Poss (result{trans(x,y,z}, w)} <— Poss(w), Manip(x), Holds(clear(x}, w),
Holds(clear (z}, w), Holds{on(x,vy), w), Diff (x,z)

l

2 2 2

It can be simulated by top-down execution alone. It suffices to rewrite
clauses (1), (11} and (12) using a predicate symbol Npess which is the
negation of Poss. Clauses (1), (11) and (12} become (1'), (11")y and
{12'} respectively.

(1) <— Nposs(8)

(11") Nposs (w) <— Holds(on(&,B), w}, Holds(on(B,C), w),
Holds{on(C,r}, w)

(12" Nposs (w) <— Nposs(result{trans(x,y,z), w)), Manip(x),

Holds({clear (x), w), Holds{clear(z), W),
Holds{on{x,y}, w), Diff(x,z)

The renaming of predicate symbols, of the kind involved in rewriting
clauses (1}, (11) and {12), has been investigated by Meltzer [1966] and
will be considered again in the next chapter.

A small part of the search space is illustrated below. The mixed top-—
down, bottoem—up execution strategy is equivalent to pure top-down
execution using clauses (1'), {11') and (12') instead of (1), ({(11) and
(12). All arcs which diverge from the solution path are illustrated.
Nodes which are labelled by clauses containing unsclvable subgoals are
darkened to indicate that they are terminal failure nodes. The circled
numbers preceding underlined atoms indicate the order in which they or
their descendants are selected. Unlabelled arcs indicate execution of
procedure calls containing the predicate symbol Diff. Some nodes are left
unlabelled in order to suppress distracting details. t(x,y.z) abbreviates
trans{x,y,2).

Notice that many alternatives to the solution path fail after only a
few steps. The alternatives which do not fail correspend to genuine
alternative actions in the search space of states.

Mixed top—down and bottom-up execution of the frame axiom

b
ll)(//i

{5)

(6)
(11/
(14/
(14/

(7
)

—
A\ o~ o~
—
8]
P Pl
~1

N

(?i},//w
b

141

Poss (@) <—
(12}
Poss {result (t(x,vy,2),0)) <—~(2)Manip (x) ,QHolds {clear (x),0),
(5) olds(clear(z},8),
@ Holds (on(x,y) ,8), Diff(x,z)
(8)
(2)

Poss (result{t(A,B,z),0)} <—@Holds(clear (z},8),(DDiff(a,z2)
(6)

Poss (result(t (A,B,q),B8))
{12}
Poss(result{t(x,v,z),1}} <—@Manip(x) ,@Holds {clear (x) ,1),

<—

(14) Holds {clear(z) ,1),
@Holds(on(x,y),l), Diff (x,z)

(9)

(1%)

(3)

Poss (result(t(B,p,z),1)) <-@Holds(clear {(z),1) ,@Diff (B,z)
(15)

(7)

Poss (result (£ (B,p,C),1)) <

(12)

Poss (result(t(x,y,2z},5)) <——(? Manip (x} , @Holds_(glear {(x),5),

{15) olds{clear (z),5),
Holds{on(x,y),5), Diff{(x,z)

(15)

(5)

(8}
Poss (result(t{(A,v,z) ,5})) <— Heolds(clear({(z},5),
(15) Holds (on(A,y),5) ,Diff (A, z)

(13}

142 Chapter 6: Plan-Formation and the Frame Problem

Poss(result(t(h,q,2),5)) <—(:)Holds(clear{z},5),(:)Diff(A,z)
(15}
(14/

(14)

Poss {result(t(A,q,B),5)) <—
(11)

(12))? <~ (D Holds (on (»,B),6),(2) Holds (on(B,C),6), Holds(on(C,r},6}
5

(12)
(15}

(13)
(15)

(15)

<— Holds (on{C,r),6)
{15)

(15)
L (15}
,(4)

4

b

4u

The eventual failure of the alternative attempts to solve the subgoals

Holds(on(A,y) ,5)
Holds({on{(a,B}),6) and
Holds{on(B,C),6)}

can be hastened by strengthening the restrictions on the frame axiom. The
more restrictive version of the frame axiom

Holds{u, result(trans(x,y,z}, w)) <— Holds(u,w),
Diff{u, on(x,v)),
Diff (u, clear(z)),
Diff{u, clear{y})

Mixed top-down and bottom-up execution of the frame axiom 143

in particular, fails immediately whenever cne of the clauses (13) or (14}
succeeds.

Part of the search space of states determined by executing the state
space axiom top-down is illustrated below. As in the case where the state
space axiom is executed bottom-up, redundancy arises when the same object
is picked up twice 1in succession. The variables y and y' name locations
which have not yet been determined.

goal state

Il @] [==] b=

l

m

!

y' r

| AN

’ /‘L

mme mam mE Ee
r y r y ¥

y oy y y'r y
m i

B
Yy

initial state
y'=p

In the following solution all clauses are executed top-down. Subgecals
are considered breadth-first and left to right in the order in which they
are written., Duplicate subgoals are deleted. To save space, steps
involving the solution of subgoals containing the predicate symbol Diff
are not illustrated.

144 Chapter 6: Plan-Formation and the Frame Problem

<— Holds (cn{A,B) ,w), Holds(on(B,C),w),

13 Helds (on(C,r) ,w}, Poss(w)
15
15 w = result(trans(a,y.B) ,wy)
12
L < Holds (on(B,C),wy), Holds{on(C,r),w;), Poss(w)),
13 Manip(d), Holds(clear (A),w;), Holds(clear (B),wy),
15 Holds(on(A,y),wl), Diff (A,B)
12
8
15 | wy = result(trans(B,y",C),wy)
15 [
15
, <— Holds{on(C,r) ,wy), PoSS{wy), Manip(B),
15 Holds (clear (B) ,wo) , Holds(clear (C) ,wp),
12 | Holds (on(B,y') ,wp), DiEf(B,C), Holds(clear (A) ,wp} .,
9] Holds{cleastB}wwy}, Holds(on(A,y),w;)
14,
15]
15 [wo = result(trans(A,B,y),w3)
15
13
<— Holds(on(C,r) ,w3), Poss{w3), Manip(a),
4 Holds {clear (A) ,w3), Holds{clear(y)} w3},
13 Holds{on(A,B),w3), Diff(A,y), Holds{clear (C) ,w3},
8 Holds{on(B,y') W1}, Holdstfeteartfyw3]
5
6
2 w3 =0 y=g9 y =p
-
3

Applications of plan-formation

The principal application of plan-formation has been the construction
of plans for robot-like machinery. Plan-formation has also been applied
to the automatic construction of programs from specifications. The
description of the input and the output statesg constitutes a
specification of a program. The definition of the preconditions and of
the statements added and deleted by actions expresses the semantics of
the machine operations. A plan consists of a sequence of machine
operations and represents a program. More elaborate systems of plan-
formation include procedures for constructing plans with conditional
statements, loops and other operations. Horn clause plan-formation
programs written by Warren {1974, 1976] and Moss [1977] have been applied
to program construction.

An application of plan-formation to the synthesis of organic compounds
was developed by Fogel, while a high school student, at Imperial College
during the summer of 1977. Chemical compounds, like states in plan-
formation, can be described by assertions concerning the objects (atoms
and bonds) which belong to them. The statement that

Applicaticns of plan-formation 145

pond b of strength s holds between the
atems a; and ap in the compound c

can be expressed by a single n-ary relationship
Bond(b,s,al,az,c) <—
or by several binary relsticnships:

b has strength s <—
b bonds aj <

b bonds a, <«

b belongs to c <—

An initial cempound functions as an initial state and a goal compound as
a goal state, Chemical reactions are actions which transform one compound
into another, They are defined by specifying (1) the preconditions which
must hold before a reaction can take place, (2) the new bonds which the
reaction introduces and {3) the old bonds which the reaction destroys. A
frame axiom states that bonds which are not destroyed by a reaction are
preserved by it. Both the program written by Moss and the one written by
Fogel were implemented as Horn clause programs and run on a PROLOG-like
system developed at Imperial College.

Programs for drug analysis have been written in PROLOG at the Ministry
of Heavy Industry in Budapest [Futo, Darvas and Szeredi 1978]. These use
relaticnal date structures similar to those in the organic synthesis
program. Because many of the properties of a given drug may be unknown,
the drug analysis programs employ binary rather then n-ary relations. The
programs have led to useful discoveries concerning previously unknown
drug interactions and concerning incensistencies in descripticns of drugs
in the pharmaceutical literature.

Limitations

The approach taken in this chapter stores information about the
initial state explicitly and uses the frame axiom to compute information
about later states. It can be argued that this is unnatural and
potentially inefficient. The alternative, when using depth-first search
and reasoning forward from the iInitial state, 1is to store the current
state explicitly and to compute information about earlier states. The two
approaches are intuitively eguivalent. The problem of formally explaining
and justifying the eguivalence, however, has still to be sclved.

The treatment of plans as seguences of actions is ancther limitation,
which creates redundancies when actions do not interact and can be
performed in parallel. Performing the actions in sequence preduces the
same results redundantly in any seguence. Systems for generating plans
which are partially ordered collections of actions have been described by
Sacerdeti [1975] and Tate [1974]. A Horn clause program which generates
partially ordered plans has also been written in PROLOG by Warren. A
survey of plan-formation systems and a comparison with the one presented
in this chapter has been made by Waldinger [1977].

146 Chapter 6: Plan-Formation and the Frame Probklem

Exercises

1) Formulate an n-tuple representation of the blocks world problem.
Let State(x,y,z) hold when it is possible for block A to be on x, Bon y
and C on z simultaneously. Compare problem-solving strategies for the n-—
tuple representation with those for the binary representaticn of the
problem.

2} Reformulate the water container problem investigated in Chapter 4
as a plan-formation problem using the binary representaticn investigated
in this chapter. Compare the problem—-solving strategies needed for
efficient solution of the problem in both the n-ary and binary
representations.

3) The assigment statement of conventional programming languages can
be regarded as an action which transforms one state of a computer into
another, The new state

assign(u,v,w)
differs from the preceding state w in that the locaticn u contains v.

Assume that A, B and C are locations and that in the initjal state 0
they contain a, b and ¢ respectively. The problem is to find a state in
which the initial values of A and B are interchanged.

Formulate and scolve the problem as a plan-formation task.

