147

CHAPTER 7

Resolution

We shall extend the Horn clause model of problem-solving to non-Horn
clauses., With non-Horn clauses

(1) goals znd assertions can be negative as well as positive,

(2} the application of procedures to goals can generate
assertions as well as subgoals,

{3) the solution of subgoals can require the analysis of
several alternative cases and

{4) solutions can be disjunctions: x = tj or ty; or ... or tg.

Top-down and bottom-up inference can be extended to non-Horn clauses.
The new rules, as well as the old ones, are all special cases of the
general resolution rule introduced by Robinson [1965a].

Negative goals and assertiocns

In meny cases a set of non-Horn clauses can be reexpressed as Horn
clauses by renaming predicate symbols [Meltzer 1966]. The non-Horn
clause

Fleasant (%), Nightmare(x) <— Dream(x)
for exsmple, can be rewritten as the Horn clause
Nightmare (x) < Dream(x), Unpleasant(x)

by reexpregsing the negative atom not-Pleasant{x} as the positive atom
Unpleasant(x}.

Similarly the non-Horn clause problem of showing that every boletus is
poisonous can be transformed into @ Horn clause problem by eliminating
the predicate symbol "Mushroom" and wusing the new predicate symbol
"Nenmushroom" instead. The unnegated atom, Nonmushrcom({x), means the same
as the negated atom, not-Mushroom(x). The new Horn clause problen
Fung'1l-6 can be solved top-down or bottom-up.



148 Chapter 7: Resolution

Fung'l Toadstool (x) <— Fungus (x}, Nonmushroom(x)
Fung'?2 Poisonous (x) <— Teoadstool (x)

Fung'3 Fungus (x) <— Boletus({x}

Fung'4 Nonmushroom (X} <— Boletus(x}

Fung'5 Boletus (9P ) <—

Fung '6 <— Poisonous(4p )

A bottom-up solution:

Boletus( 9} <~ Boletus ( 4P*) <~

Fung'3

Fungus (9} <- Nonmushroom { 4P } <—

cadstool () <

Fung'Z2

L, Poisonous( Q) <—

Fung'é

A top-down sclution:

» <— Poisonous {9 )

Fung'2

L <— Toadstool ( 9P)
Fung'l

L <— Fungus(ﬁ?), Nonmushroom { T }
Fung'3

h (— Boletus(ﬁ?), Nonmushroom{ﬁ?)
Fung'5

L <— Nonmushroom { 4 )
Fung'4

b <~ Boletus ()
Fung'5

, O




The bottom-

from the Horn

Negative goals and assertions 149

up derivation of the assertion
Nonmushroom ( 4 ) <—

clauses Fung'4 and Fung'5 is equivalent to the derivation

of the negative "assertion"

directly from

Similarly the

from the goal

<— Mushroom ( 4 )
the original clauses Fung 4-5,
<— Boletus(x), Mushroom{x)
Boletus(i?) <— .,
top-down derivation of the positive subgeals
<— Fungus ( 9 )}, Nonmushroom{ T*)
statement

<— Toadstool (9}

by means of the Horn clause Fung'l is equivalent to the direct derivation

of the clause

from the same

Mushroom{x) <— Fungus{x)
goal statement

<— Toadstool ()

by means of the non=-Horn clause

Fungl

Resolution

Toadstool {x) , Mushroom <— Fungus(x).

In general, top-down and bottom-up inference for both Horn clauses and
non-Horn clauses are special cases of the resolution rule: To create a

resolvent of

two clauses it is necessary first to rename variables so

that different clauses contain different variables.

Given & conditicn in one clause and a ceonclusion in the
other, the resolvent exists if the condition and the
conclusion match. The twe clauses are said to be the
parents of the resclvent clause. An atom is a condition of

the

resolvent if it is obtained by applying the matching

substitution to a condition, different from the matched
condition, of one of the parents. Similarly, an atom is a
conclusion of the resclvent if it is obtained by applying
the matching substitution to a conclusion, different from
the matched conclusion, of one of the parent clauses.

The definition can be expressed by means of Horn clauses. Let



159 Chapter 7: Resolution

res(x,u,y,v} name the resolvent which exists when, after
appropriate renaming of variables, the condition u
in % matches the conclusion v in vy,

cond (x) the collection of conditicons of clause x,
concl (x) the collection of conclusions of clause x,
union{x,y) the union of x and vy,

apply (x,w,x') express that the result of applying to x the
substitution w is x',

Rename (x,y,w} the substitution w applied to clauses x and ¥
results in clauses which contain no wvariables in

cCOmmon ,
Match(u,v,w) substitution w matches the atoms v and v,
Member {u,x) u is a member of x,

Combine(wl,wz,w) the substitution w has the combined effect of
first applying substitution w; and then applying
substitution ws,

Resclves(x,u,y,v,w} the resolvent of x and y on atoms u and v
exists and w 1is the combined substitution which
both renames variables and matches atoms.

Resclves{x,u,y,v,w) <— Rename{x,y,wl),Member(u,cond(x)),Apply(u,wl,u'),
Member(v,concl(y)),Apply(v,wl,v'),Match(u‘,v',wz),
Combine (wy,wy,w)

Member {z, cond{res{x,u,y,v))) <— Resclves(x,u,y,v,w},
Member {z', union(cond(x),cond{y))},
Diff{(z"',u), Apply(z',w,z)

Member (z, concl{res(x,u,y,v}}) <— Resolves(x,u,y,v,w),
Member (z', uniocn(concl{x) ,concl(y})},
Diff (z',v), Apply{z',w,2z)
Member {z, union{x,y)) <— Member(z,x)
Member (z, union(x,y)} <— Member{z,y)
Notice that the definition can be used either top-down or bottom—-up. The
Boyer-Moore structure-sharing implementation of resoclution [1972] can be
regarded as using the definition top-down but saving solved subgoals of

the form Resolves(x,u,y,v,w) as lemmas.

The definition given here is less general than Robinson's which also
incorporates the factoring rule described later in the chapter.

Middle out reasoning with Hotn clauses

In addition to top-down and bottom-out inference, resolution includes
middle-out reasoning with Horn clauses. The resolvent of the two clauses

Fellible (x) <— Human({x)
Mortal (x) <— Fallible(x)

for exswple, is the clause Mortal (x) <— Humsn(x).



Middle out reasoning with Horn clauses 151

Middle-ocut reasoning can also be applied to different copies of the
same clause. From two copies of the definition of ancestor, for example

Ancestor (x,y) <— Ancestor (x,2}, Ancestor(z,y)
Ancestor (u,v) <— Ancestor{u,w), Ancestor (w,v)

we can derive the resolvent

Ancestor (x,y) <— Ancestor (x,w) ,Ancestor (w,z) ,Ancestor (z,y) .

Propositional logic example

The clauses which Qefine the sewmantics of propositional legic provide
instructive examples of the resolution rule. Here if x and y name
propositions x* and y* respectively then

X &Yy names the proposition x* and y*

xVy x* or y*

X2y if x* then y*

Xy x* if and only if y*

- X it is not the case that x*.

where &, V , D, <> and - are infix function symbols, Read True{x)} as
stating that x is true. The following set of clauses cannot be
reexpressed as Horn clauses by renaming predicate symbols,

T1 True (x&Y) <— True(x), True({y}
T2 True (X) <— True {x&y)

T3 True(y) <= True (X&y)

T4 True (®XWy) <— True(x)

TS True (xVy) <— True (v}

Té True (x}, Truely) <— True{xVy)
T7 True (Xay) ,True (x) <—

TS True (x2y) <— True (y)

TY True{y) <— True{x}, True(xay)
Tl True {x<>y) <— True(x y), True{yax)
T11 True{xay} <— True {x<>y)

T12 True(yax) <— True(x<>y)

T13 True (7X), True{x} <—

T14 <— True(7X), True(x)

Clauses T1-3 state that
X &y 1is true if and only if
x is true and vy is true.
Clause T1 is the if-half of the statement and clauses T2-3 are the only-

if-half. Similarly the remaining ¢lauses state that

T4=6 X Vy is true if and only if
x is true or y is true;



152 Chapter 7: Resolution

T7-9 x>y 1is true if and only if
if x is true then vy is true;
TiB-12 X < y 1is true if and only if

X 2y 1is true and y 2 x is true;

T13-14 ~ x 1is true if and only if
X is not true.

This set of clauses is based upon a more general definition of "truth®
for sentences 1in the standard form of logic formulated by Colmerauer
[unpublished].

Phe if-halves of the statements are useful top-down to reduce problems
concerning the truth of a complex proposition to subproblems concerning
the truth of simpler propositions. The only-if halves, on the other hand,
are useful bottom-up to derive conclusions concerning the truth of simple
propositions from assumptions concerning the truth of more complicated
ones.

For example, to show that

p & 7g is true if p is true and g is not true
it is natural to reason top-down from the goal

<— True(p & ™g)
using the assumptions

Al True (p} <—
Az <— True{q)

and regarding the second assumption AZ as a hegative assertion.

<— True(p & Q)

Tl

, <— True(p), True{7q)
Al

> <= True{7q}
T13

True (g} <—

A2

b O



Propositional logic example 153

Here the clause TI13 can be regarded as reducing the problem of showing
that =g is true to the problem of showing that g is not true, which is
solved directly by assumption A2,*

On the bther hand, to show that
P is true and g is not true if p & g is true
it is more natural to reason bottom-up from the assumption

-True(p & ™) <— .

The clause
G True (g} <— True(p)

can be interpreted as expressing the goal of showing that p is true and g
not true.

True(p & g) <
True{p) <—,

» True (g) <—

<— True{q}

Clause T14 can be regarded as deriving the negative assertion that g is
not true, which solves the negative goal in G. Notice that the bundle of
arcs labelled G represents two successive resclution steps. The order in
which the steps are performed is not significant.

The problem of showing that
p V p is true
illustrates ancther characteristic feature of top-down problem-solving

with non-Horn clauses: No one method adequately solves the problem, but
several alternative methods exhaust all the cases.

*Throughout this chapter only resolution refutations are exhibited.
Search gpaces will be investigated in the next chapter.



154 Chapter 7: Resolution

< True({p V 7p)
T4 T5

<— True (p) <— True (7 p)

n

Methods T4 and T5 reduce the original problem to subproblems which
exhaust the two cases asserted by the non-Horn clause T13.

A bottom-up solution of the same problem would involve reasoning by
cases. Case analysis by bottom—up reasoning can be seen more clearly,
however, for the problem of showing that

r is true if p y g is true,

assuming that

r is true if p is true, and r is true if g is true.

(1 <— True(r)

(2) True (p y g) <—

(3) True{r} <— True{p)
(4) True (r) <— True{qg)

True (p v g) <—

Té
True (p), True(g) <—
(3
True (r), Truef{g) <—
(13
True (g) <—
(4)
4 True{r}) <—
(1)
° 0

Clause T6 derives a non-Horn clause which expresses that there are two
cases. The solution reasons bottom-up, first solving the goal in the
case that p is true and then solving it in the case that q is true. It
"remembers” the second case while it is working on the first one.



Propositional logic example

155

Given @ goal and a Horn clause which reduces the goal to subgoals,
non-Horn clauses can be used to derive assumptions to assist the solution
of the subgoals. Such non-Horn clauses typically arise from non-clausal

sentences of the form

A< [B<C], D

in which a condition is an implication. In the problem—selving

interpretation, the clausal form of such a sentence

A, C <— D
4 <— B, D

can be regarded as stating that

in order to solve A, solve D, and solve B assuming C.

The cliauses T7-8 arise from such a non-clausal sentence:
True (x > y) < [True{y} < True(x)]

To show that x 2 vy is true,
show that y is true assuming that x is true.

In some cases only one of the clauses T7-8 1is needed to solve
problem. If x is not true as in the case

<— True({p & P} > Q@
then only the non-Horn clause T7 which derives the assertion
True(p & —p) <—
is needed. But if y isg true as in the case
< True(g > {p V "p})
then only the Horn clause TB which derives the subgoal
<— True (p ¥ p}

is needed.

the

In most cases, however, both clauses need to be used. The simplest
problem which reguires the coopération of clauses T7-8 is that of showing

that p p is true.
<— Truei{p > p)
™7 T8

True(p) <— <— True(p)



156 Chapter 7: Resolution

The derived subgoal of showing that p is true is solved by the derived
assertion that p is true. The bundle of arcs associated with the
resolution step is unlabelled, because only derived clauses are involved
in the inference.

The problem of showing that

P o> g is true if p or is true and r > g is true
is more interesting. Here it is natural to reason bi-directionally, both
forward from the two assumptions and backward from the conclusion.
Moreover, when reasoning backward from the conclusion

< True(p 2 g)
it is natural to reason forward from the derived assertion

True (p} <—
and backward from the derived subgoal

<— True {q)
The following resolution proof formalises the argument.

o True(p o> r} <— s True(r > gq) <—

<— True{p > q)

T9

TS

A True(r) n<— True(g) 4 True{q) <— True(r)

<— True (p)

True(r) <—/° <— True (r)

Arrow notation for non-Horn clauses

The arrow notation used earlier for Horn clauses, to indicate the
combination of top-down and bottom—up inference, can also be used for
non-Horn clauses. The problem=solving interpretation, in particular, of
sentences of the form

A <— [B <— (]

can be indicated by arrows associated with the corresponding clauses



Arrow notation for non-Horn clauses 157

v

e
o — X

-

<— B
J
2

The notation associated with the first c¢lause indicates that it should
wait for a subgoal of the form A and then derive the assertion ¢ <- . The
notation associated with the second clause indicateg that it should wait
for a subgoal of the form A and then derive the subgoal B.

The use of arrow notation to control the behaviour of a problem-solver
will be investigated in the next chapter.

Disjunctive solutions to nen—Horn clause problems

Plan-formation tasks, described by means of non-Horn clauses, may
require the construction of conditional plans from disjunctive solutions.

Consider, for example, the problem of putting the maximum of two
numbers A and B in a location L:

M1 <— Holds(val(L,x), w), Max{A,B,x)
M2 Numb {A) <

M3 Numb (B) <—

M4 Location(L) <—

M5 u < v, v £u < Numb(u}, Numb(v)
Mb Max(u,v,u) <— v < u

M7 Max (u,v,v) <—u v

Suppose that the only action available is the assignment operation. Given
a state w, it generates the new state

assign(u,v,w)

which results from w by putting v in location u. The "semantics” of the
action are described by specifying its preconditions and the statements
which are added and deleted when the action is performed. To simplify
matters, the single precondition, that u be a 1location, c¢an be
incorporated into the clauses which specify the added (M8) and deleted
(M9) statements:

M8 Holds (val(u,v), assign(u,v,w)) <— Location(u)
M9 Holds (x, assign{u,v,w}) <— Holds(x,w), Diff(x, val(u,y)},
Location (u)

Before sclving the problem top-down it is convenient to reason one
step bottom-up:



158 Chapter 7: Resolution

M2 M3
M5
M1p A<B, B<A <

The top-down solution wusing the derived lemma M19 requires that the two
procedures Mé and M7 cooperate to solve the single subgoal Max(A,B,x).

<— Holds(val (L,Xx} ,w), Max(A,B,x)

w=assign(L,x,w") M8
<— Location(L}, Max(A,B,x)

M4

<— Max (A,B,x)

X=A x=B

<—B <A STALE

O

The solution is a disjunction of two possibilities
w = assign(L,A,w') or assign(L,B,w'), for any w'.

A solution exists, but it is not. determined3 which of the two
possibilities it is.
Non-determinism; contrasts with non-determinism;. A problem is non-
deterministic3 if its solution
X =1t) or ty; or ... or tp

is underspecified. It is non-deterministic; if its solution is
overspecified

X =t] and ty and ... and t.

The treatment of program construction as an application of plan-
formation was first proposed by Green [196%b] and Lee and Waldinger
[1969]). Lee and Waldinger, in particular, present an algorithm for
extracting conditional preograms, such as

If A ¢ B then w = assign(C,B,w'}
else w = assign(C,A,w")

from disjunctive solutions, The relationship between plan-formation and
axiomatic semantics of programming languages has been investigated by
Moss [1977].



Factering 159

Factoring

The resclution rule alone is complete for demeonstrating the -
inconsistency of Horn clauses. Moreover, it 1is alsc adequate for many,
but not all, non-Horn clause problems. The combination of factoring and
resclution, first described in Robinson's original, unpublished paper is
equivalent to the published version of the resolution rule [Robinson
1965a]. Consequently, the completeness proof  in the published paper
establishes completeness of resolution and factoring combined,

The barber paradox 1is a simple example which reguires the use of
factoring.

Suppose that all barbers shave all people who do not shave
themselves and no barber shaves anyone who shaves himself.
Then there are no barbers.

To establish the conclusion we assert that there is a barber and
attempt to derive a contradiction.

Bl Shave (x,y), Shave(y,y) <— Barber (x})
B2 <— Shave(x,y), Shave(y,vy}, Barber {x}
B3 Barber ((2)) <—

That the three clauses are inconsistent c¢an be demonstrated by
instantiating the first twe clauses

Shave(CD,CD), Shave(CD,C)) <— Barber(CD)
<— shave (3,)), shave((D,@). Barber ()

deleting duplicate atoms

shave (©,Q)) < Barber (&)
< Shave (@,@), Barber ()

and applying reseclution.

Shave(CD,QD) <— Barber(C)) Barber(@D) <— <— Shave(cg,cg), Barber(C})

shave (@ ,©) <« <— Shave (@,@)

a

That resolution alcne is inadequate for demonstrating inconsistency
can be seen more clearly by considering a simpler example:

s1 S{x), S(y) <
52 <— S(u}, 5{v)

The two clauses are inconsistent because they have instances

S{x), S(x) <
<— S{u}, S(u}



168 Chapter 7: Resolution

which, after removal of duplicate atoms, are directly contradictory:

S5({x) <
<— S{u)

However, no matter how many times resolution is applied to clauses 51-2
and their descendants, every resolvent contains exactly two atoms, and
consequently no resolvent is the ewpty clause (which contains no atoms).

The factoring rule, which needs to supplement resclution in these
examples, generates instances of clauses in order to delete duplicate
atoms. The instantiating substitution can be restricted so that it
matches the two atoms which become duplicates. Applied to the two
clauses Bl and B2, factoring generates instances which are more general
than the two instances considered before.

Bl Shave (x,y), Shave(y,y) <— Barber (x)
(match underlined atoms)

Shave (x,x), Shawe{x7XT <— Barber (x)
(delete duplicates)

B'l Shave (x,x) <— Barber (x)
B'l is the only factor of Bl. Similarly B'2 is the only factor of B2:
B'2 <— Shave (x,x), Barber (x)

Application of factoring and the combined reseolution and factoring
refutation can be exhibited in a graph.

Shave(x,y),Shave{y,y) <— Barber (x) <— Shave(x,y) ,Shave(y,y} Barber (x)

factoring factoring

Shave{x,x) <— Barber (x) Barber {((Z) <— <— Shave (x,x}, Barber (x)

Shave (D, ) <« <~ Shave (D,©)

O
Factoring is only necessary infrequently and it creates redundancy if
it is applied too often. Perhaps the most restrictive constraint on the

use of factoring, without affecting completeness, is the one incorporated
in the model elimination proof procedure [Loveland 1968, 1969, 1978].

Exercises

1} Use resoluticn and factoring to show that the assumptions

John likes anyone who doesn't like himself.
John likes no one who likes himself.



Exercises

are inconsistent.

2) Suppose I believe:

(a} There exists a dragon.

161

(b} The dragon either sleeps i1 its cave or hunts in

the forest.

(c} If the dragon is hungry then it cannot sleep.

(d} If the dragon is tired then it cannct hunt.
Use resolution to answer the fellowing guestions:
What does the dragon do when it is hungry?

wWhat does the dragon do when it is tired?
What does the dragon do when it is hungry and tired?

To answer the guestions it is necessary to make explicit the assumption:

If x cannot do y then x does not do y.

3) Express the following azssumptions in clausal form:

Everyone admires a hero.
A failure admires everyone.
Anyone who is not a2 hero is a failure.

Use resolution and factoring to €ind a pair of individuals
necessarily distinct) who admire one another.

4) This problem is discussed by Moore [1975]. Suppose there are
blocks A, B and C.

A is on B which is on C.
A is green, C is blue and
the colour of B is unknown.

Use resclution (and factoring if necessary) to find a green block
block which is not green. You must assume that blue is not green.
block does the proof find?

(not

three

on a
What

5) Using resolution and factoring, show that the following conclusions

follow from assumptions T1-14.

{a) If polr & q) is true
then (p or) & (p > g) is true.

(by If p og is true
then there is an r such that (p2> r) & (r 2 qg).
What r does the proof find?



162
6)

using

where
solve

Chapter 7: Resolution

The relation Plus{x,y,z)} which holds when =x+y = z can be defined
non-Horn clauses

Plus(x,y,z), Add(2,y) <
Plus (x,y,z) <— Bdd(x,z)
Add(s{x},s{z)) <— Add(x,z)

s(X) names the successor of x. Use resolution and factoring to
the problem

< Plus{x,y,s(y)), Plus{x,x,vy}.



