163

CHAPTER 8

The Connection Graph Proof Procedure

The search space determined by unrestricted application of the
resolution rule is highly redundant. Redundancy can be avoided, at the
expense of flexibility, by restricting resolution to top—down or bottom-
up inference. It can also be avoided, however, without the loss of
flexibility by employing the connection graph proof procedure.

Clauses are stored in a graph and occurrences of matching atoms on
opposite sides of the arrow are connected by arcs. Associated with each
arc in the graph is the resoclvent obtained by resolving the c¢lauses
connected by the arc. The main operation of the connection graph proof
procedure is the selection of an arbitrary arc and the incorporation of
the associated resolvent into the connection graph. Top-down inference is
performed by selecting an arc connected to a goal statement; bottom-up
inference, by selecting an arc connected tc a clause which contains no
conditions. Redundancy is avoided by deleting the selected arc and by
restricting the number of new arcs which are added when the resoclvent is
incorporated into the graph.

The initizl connection graph

The first step of the connection graph proof procedure is the
construction of the initial connection graph. In addition to the initial
set of clauses, the initial connection graph contains an arc for every
pair of matching atoms on opposite sides of the arrow in different
clauses. The arc connects the atoms and 1is labelled by the matching
substitution. Later in the chapter we consider the case in which an arc
links atems in the same clause.

The initial connection graph for a simple non-Horn clause problem is
illustrated below.

<— Happy (u}
u =X U= X
Happy {x} <— Playing(x) Happy (x) <— Working{y), x employs ¥
x = Bob y = Bob x = John
y = Bob

Playing (Bob), Working(Bob) <— John employs Bob <—

164 Chapter 8: The Connection Graph Prcocof Procedure

Associated with each arc in the graph is the resolvent obtained by
matching the atoms linked by the arc. Conversely, for every resolvent
which can be generated from different parent clauses there 1is an
associated arc in the graph.

According to Robinson's purity principle [Robinson 1965a}, a clause
which contains an unlinked atom can be deleted from a set of clauses
without affecting its consistency (or inconsistency). Such a clause can
not contribute to a resolution refutation because the unlinked atom can
not be resolved upon.

Deletion of clauses containing unlinked atoms is an important feature
of the connection graph proof procedure. In addition to the clause
itself, all links connected to its atoms must alsc be deleted from the
graph. Deletion of such links, however, may cause atoms in other clauses
to become unlinked. Thus deletion of clauses can c¢reate a chain reaction
in which a succession of clauses is deleted from the graph. Deletion of
clauses simplifies the connection graph, reduces the search space, and
makes it easier to find a2 solution.

The effect of deleting clauses can be illustrated by assuming that Bob
is unemployed and modifving the preceding example.

<~ Happy (u)
u =X u = X
Happy (x) <— Playing (x) Happy{x) <— Working(y), % employs y
x = Bob y = Bobh

Playing (Bob), Working(Bob) <—

We delete the clause which contains the unlinked atom.

<— Happy {u)
u = X
Happy (x} <— Playing{x)
x = Bob
Playing (Bob) , Working(Bob) <—
The new graph contzins a new unlinked atom. Deletion of clauses
continues until we are left with the empty set of clauses. The empty set
of clauses is trivially consistent, because it contains no clauses which

can be false in an interpretation. Therefore the original set of clauses
is consistent as well.

The Resclution of links in connection graphsg 165

The Resolution of links in connection graphs

The basic operation of the proof procedure is the selection of a link
and the generation of the associated resolvent, The link is deleted and
the resolvent is added to the graph. New links are added connecting atoms
in the resolvent to atoms in the rest of the graph. The new links can be
constructed, without searching the graph, from the links which are
already connected to the atoms in the parent clauses.

For example, in the initial connection graph at the beginning of the
chapter, we can reason bottom-up by selecting the link which matches the
two atoms containing the predicate symbel Playing., In the resolvent,
the atom Happy (Bob} descends from the atom Happy{x) in the parent
clause. All new links connected to the new atom descend from the links
connected to the parent atom. In this case the new link connecting
Happy (Bob) to Happy (u) is derived from the 0ld 1link connecting
Happy (x) to Happy (v) . The new connection graph, which results from
selecting the 1link, generating the resolvent, adding new links and
deleting both parent clauses (which now contain unlinked atoms) is
illustrated below.

<{— Happy (u}
u = Bob u = x
Happy (Bob) , Working(Rob) <— Happy {x} <+ Working(y), x employs y
y = Bob x = John
y = Bob

John employs Bob <—

The substitution u = Bok which labels the new link can be computed from
the substitution == = Bob which labelled the selected link and the
substitution u = ¥ which labelled the "parent" 1link from which the hew
link descends.

Before continuing with the example we outline the definition of the
proof procedure in general.

The connection graph proof procedure begins with an initial connection
graph and processes it repeatedly until the empty clause is generated. It
processes a connection graph by

(1) repeatedly deleting clauses containing unlinked atoms
and deleting their associated links until all such
clauses have been deleted and then

(2) selecting a link, deleting it and adding the resolvent
and its associated new links to the graph.

This definition of the top-most level of the connection graph proof
procedure is given in the "repeat-until" iterative style of algorithm
description associated with Algol-like programming languages. At the end
of the chapter, we shall reexpress the definition in the Horn clause
logic programming style.

166 Chapter 8: The Connection Graph Proof Procedure

We return to the example. Any link may be selected from the graph. We
shall continue, however, with the bottom-up analysis of the case
Playing(Bob) by selecting the link labelled u =Bob. Deletion of the
selected link leaves one of the parents with an unlinked atom. The parent
is deleted.

<— Happy (u)
u =X
Working(Bobk) <— Happy (x) <— Working(y), x employs y
¥ = Bob x = John
y = Bob

John employs Bob <-—
The goal has now been solved in the first case Playing{Bob). Next we
investigate the remaining case Working(Bob}, also reasoning bottom-up.
When the selected 1link is deleted, both parent clauses contain unlinked
atoms and are deleted as well.
<— Happy (u}
U= X
Happy (%) <— x employs Bob
x = Jdohn

John employs Bob <—

We continue to reason bottom—up and delete both parents because they
contain unlinked atoms.

<— Happy {u)
u = John
Happy (John} <—

The resolvent associated with the remazining 1link is the empty clause and
both parents are deleted.

O
Notice that the proof gives a disjunctive answer to the question:
Is anyone happy?
Yes, Bob or John.
The segquence of successive connection graphs generated by the proof
procedure constitutes both a proof of inconsistency as well as a search
for the proof. In this example, every step in the search contributes to

the proof itself. In the general case, however, according to a theorem of
Ehrenfeucht and Rabin [Bundy 1971] [Meltzer 1972), it is not always

The Resoluticn of links in connection graphs 167

possible to aveoid steps which are not relevant to the proof.

At every stage during the course of searching for a proof, any link
can be selected to generate a resolvent. The selection of different links
leads to the generztion of different search spaces, some of which may be
easier to search than others. In the following sequence of connection
graphs we illustrate a top-down search for a solution to the previous
problem. Selected links are indicated by bocld lines. Several links may be
marked for selection in the same graph when the order of selection does
not matter, in order to reduce the number of separate graphs displayed.
Deleticon of clauses containing unlinked atoms is not exhibited
explicitly.

<— Happy (u)
u o= x u=x
Happy (x)™ <— Playing(x) Happy (x) <— Working(y), x employs ¥y
X = Bob y i/if?/,////, x = John
y = Bob
Playing (Bob), working(Bob) <— John employs Bob <—
{— Playing(u) <— Working(y), u employs ¥
u = Beb v = Bab u = John
¥y = Bob
Playing{Bob), Working (Bob) <— John employs Bob <—

<— Working (Bob)

/

Working (Bob) <—

As in the bottom-up search for a sclution, every step contributes to the
proof.

Notice that unrestricted application of the resolution rule is
redundant in the sense that it determines a search space which contains
many unnecessary clauses including, in particular, all those which belong
to both the top-down and the bottom-up search spaces exhibited above.

168 Chapter 8: The Connection Graph Proof Procedure

Mixed top-down and bottom-up search - the parsing problem

Top~down and bottom-up inference can be mixed, simply by mixing the
selection of links connected to atoms in goal statements with the
selection of links connected to atoms in clauses which contain no
conditions. In general it is useful always to select a link which results
in the least complicated new graph. This strategy applied to a version
of the parsing problem of Chapter 3 results in a mixed top-down, bottom-
up search. As In the preceding example, selected links are indicated by
beld lines. Substitutions, which 1label links, are omitted from the
graph.

<— Sent{l,6)

Sent (x,y) <= VP(Zry)l NP(XrZ

Vp{x,y) <— Aux(x,z), Verb(z,y) Vp(x,y) < Verb(x,y)

verb(x,y) {—,gyre(x,y) Np(x,y) <- Noun(x,y)

gyre(5,6) <— Np(x,y) <— Det{x,u}, Adjl(u,v), NOuIii;il////
Aux(x,y) < dld(x,y)/////////// ///// Nourn (x,y¥) <—toves(x,y)
/////Det(x,y) {— the(x,y) adi(x,y) < Tlithy{x,y)

did(4,5) <— the(l 2) <= slithy{2,3) <— toves(3,4)<—

<— Vp(z,6), Np(l,=z)

Vpix,y) <— Aux(x,z),Verb(z,y) Vpix,y) <— Verb(x,y)
Aux(4,5) <- Verb(5,6) <— Np(%,y) < Noun{x,y)

Np (x,y) <— Det{x,u), 2dj(u,v), Noun(v,y)

Pet (1,2} <— Adj(2,3) <— Noun({3,4) <—

Mixed top-down and bottom-up search - the parsing problem 169

—ddfp_'~—‘;f~d“"’~:;;Tp(z,6), Np(l,z)
Vp(4,y) <— Verb(5,y) Vpix,y) < Verb({x,y)

Verb (5,6} <— Np(l,y)” <— Noun(3,y) Np(x,y} <— Noun(x,y)

Noun{3,4) <—

<~ Vplz,6), Np(l,z)

Vp(4,6) <— Vp(5,6) <— Np(l,4) < Np(3,4) <

— Vpi4,6)

Vp(4,6) < vp(5,6) <

Macro-processing and middle-out reasoning

In conventional programming languages, macro-processing transforms a
program by eliminating all calls to a given procedure, executing them in
advance of the particular problems to be solved, The original procedures
are replaced by the new ones. The analogue of macro-processing in logic
iz middle-cut reasoning combined with deletion of the parent clauses
because they contain unlinked atoms.

Macro-processing has the advantage that procedure calls are executed
once and for all before the problems are given, rather than repeatedly
during the course of trying to solve them.

Macro-processing can be illustrated by eliminating all calls to the Np
and Vp procedures in the parsing problem.

170 Chapter 8: The Connection Graph Proof Procedure

Sentix,y) <= J¥ypl(z,¥), Np(x,z)

Vp(x,y) <

ux(x,z), Verb{z,y} Vpi{x,y} <— Verb(x,y}

Verb (x,y) <— gyre{x,y) <— Noun (X,y)

Np(x,y} <— Det(x,u), Adj(u,v), Noyn(v,y)
Bux (x,y) < did({x,y) Noun (X,y) <— toves(x,y}

Det(x,y} <— the(x,y) Adj (x,y) <— slithy(x,y}

Sent (x,y) <— Noun(x,z},
Verb(z,y)

Sent (x,y) <— Noun({v,w),
adj{u,v),
Det {x,y) <— the{x,y) Det{x,u},
xxkhxh__-___’ﬂﬂ’,,f"Verb(w,y)ﬁk\\\\\&\

Adj (x,y) <— slithy{x,y) Verbix,y) <— gyre(x,y)

Sent {x,y) <= Det(x,u),

Adj (u,v),
Noun (x,y) <— toves{x,y) Noun {v,w) ,
Verb({z,y}4

Aux (W, z)
*\\\\\\

Aux (x,y) <— did(x,y)

Sent (x,¥) <4'Noun(x,ul}/////
Aux{u,v);

Verb{v,y}

Arrow notation for contrelling selection of links

The arrow nhotation, introduced infermally earlier in the book, can be
used to control the celection of 1links in the connection graph proof
procedure. The links of a connection graph can be turned into arrows by
giving them a direction. A clause is regarded as active if all links
connected to its atoms are outgoing. A link may be selected if it is
connected to an atom in an active clause. The new links connected to
atoms in a resolvent inherit their direction from the parent links from
which they descend.

The connection graph proof procedure can be restricted to top—down
inference, by directing all arrows from conditions to conclusions. Then a

Arrow notation for contrelling selection of links 171

clause is active if and only if it is a goal statement. The following
seguence of graphg illustrates the use of arrow notation to impose a top-
down problem-solving interpretation on the problem of the fallible Greek.
Despite notational similarities, there 1is no connection between arrow
hotation in connection graphs and arcs in semantic networks.

{— Fallible(x), Greek({x)

Fallible(x) <— Human(x) Greek (Socrates) <—

Human {Turing) <— Human (Socrates) <—

<— Fallible(Socrates)

Fallible (x) <— Human(x)

Human (Turing} <— Human (Socrates) <-—

<= Human (Socrates)

Human (Turing) <-— Buman (Socrates) <—

The proof procedure <¢an be restricted to bottom—up inference, by
directing all arrows from conclusions to conditions. Then a clause is
active if and only if it has no conditions. The use of arrow notation for
bottom—up inference is illustrated below.

<~ Fallible({x}, Greek (x)

Fallible(x) <= Human (x) Greek {(Socrates) <—

Human {Turing) <-— Human (Socrates) <—

172 Chapter B: The Connection Graph Proof Procedure

<— Fallible(Socrates)

Fallible (Turing) <- Fallible{Sccrates) <—

O

The arrow notaticn can be used with non-Horn clauses to control the
generation of assertions for use in the solution of subgoals. The non-
Horn clzuse 1in the connection graph below, for example, generates the
assertion

Studentof (©,Bob) <
to assist the sclution of the subgoal

<— Likes{@),logic).
The two clauses from which the assertion and subgoal are derived,
together with the associated arrow notation, attempt to show that Bob is
happy by asserting that is a student of Bob and showing that
even likes legic. Since nothing else is said about the individual ,
if it can be shown that likes logic, then anyone who is a student of
Bob likes legic. The two clauses, therefore, state in effect that

Bob is happy if all his students like logic.

The arrows in the following connection graph direct the search for a

solution top—down from the top-level goal and the derived subgoal, but
bottom-up from the assertion to be used in solving the subgoal.

Happy (Bob)

— NS

Happy (Bob) <— Likes CD logic) Happy (Bcb) Studentof(CD,Bob) <=

L1kes(xlogl4tudentof{x Bob) '/ -

Studies(x,logic)<—Studentof (x,Bob}

Studies(x, logiiikhxh‘—_—‘dd”’,/;ﬂ

- Likes(@.logiC)/ Studentof (& ,Bob) <—
Likes{x,logic)<—Studentof {x,Bob) , Studies(x,logic)<—Studentcf (x,Bob)

Studies(x, quisl\‘ﬁﬁ—_——d_ﬂf"//;}

Arrow notetion for controlling selection of links 173

<— Studies(C),logic} Studies((),logic) <o

O
Notice that Bob would also be happy if he had no students
<— Btudentof (x,Bob)
or if everyone liked logic unconditionally
Likes(x,logic) <— .
There is no guarantee that every assignment of direction preserves the
solvability of a connection graph. It Seems sensible, moreover, to

regstrict the direction of arrows so that all links connected to the same
atom have the same directicon.

Self-resolving clauses

A self-resolving clause is one which resolves with a copy of itself.
For exsmple, the clause

Append (x.y, Zz, X.¥') <— hppend(y,z,¥y")
resolves with the copy
Append(u.v, w, u.v') <— Append(v,w,v').
For the sake of completeness, it is necessary to connect reselving
atoms in a self-resolving clause by means of a link.
Append (x.y, 2, x.y') < Append(y,z.,y"')

Such & link is a pseudo-link in the sense that is stands for a link
between atoms in different copies of the same clause.

Pseudo-links can be selected for processing, but it is gimpler for the
purposes of exposition to restrict their use to the derivation of new
links. This is illustrated in the following example.

<— Append (A.C.nil, B.nil, w)

Append(x.¥, z, X.¥'} <- BAppend(y,z,y") Append (nil,x,x} <—

The single atom in the resolvent descends from an atom having two links,
one of which is a pseudo-link. The pseudo-link gives rise to a descendant
which is & normzl link. The other 1link connected to the assertion has no
descendant. The original goal statement contains an unlinked atom and
therefore is discerded when the resolvent is added to the graph.

174 Chapter 8: The Connecticn Graph Proof Procedure

<— Append(C.nil, B.nil, w')

~ TN

Append (x.¥, z, X.y'} < Append(y,z,y") Append (nil,x,x) <—

The new graph is similar to the initial connection graph. However, this
time, when the resolvent is generated, it is the pseudo-link which has no
descendant and the link to the assertion which has.

<— Append(nil, B.nil, w")

Append(x.y, 2z, x.y') <— Append(y,z,y') Append{nil,x,x} <—

The resolvent of the new 1link is the empty clause. Independently, the
recursive clause can be deleted because its conclusion has only a pseudo-
link. Once the recursive clause has been deleted, the assertion can be
deleted as well. The resulting connection graph consists of the empty
clause alone.

O

In generazl, a self-resolving clause can be deleted if one of its atoms
has no normzl (non-pseudo-) links. The inheritance of links and pseudo-
links in connection graphs has been studied by Bruynooghe [1977]. Note
that, although in all of the preceeding examples the final connection
graph contains only the empty clause, in the general case it may contain
other clauses as well.

Deletion of links whose resolvents are tautologies

A clause is & tautology if it contains the same atom both as a
condition and as a conclusion. The use of tautologies in top—down
problem-sclving leads to loops in which a goal reoccurs as its own
subgoal. For that reason, because they do not positively contribute to
the sclution of problems, tautologies can be deleted from a set of
clauses without affecting inconsistency [Robinson 1965a]. In the
connection graph proof procedure, the effect of deleting tautologies can
be obtained by deleting links whose resolvents are tautologies.

The set of clsuses describing the concept of even number is an
example,

Even(s{s(x))}._ <— Even(x) Even(®) <—
Even(x) <— Bven(s{s(x)))

The two links connecting the two recursive clauses have resclvents which
are tautologies. The links are deleted from the graph:

Deletion of links whose resolvents are tautologies 175

~ TN

Even(s(s(x))) <— Even(x) Even (@) <—

Even(x) <— Even(s(s{x)})

The collection of three clauses is consistent because it contains no
goal statement. The two recursive clauses can be deleted because they
contain atoms with only pseudo-links. The basis assertion can then be
deleted as well. Given the goal statement

<~ Even(s(s(s(s(@}))))
moreover, the condition of the second recursive clause still has no non-

pseudo-link. Consequently, the clause can be deleted, leaving the
simpler graph:

<— Even(s(s{s(s(d)))))
Even{e{s(x))) < Even(x} Even (@) <

In more complex examples it is not so easy to recognhise that a clause
cannot contribute to a solution. In such cases a more global analysis may
be useful. Global! problem-solving strategies are investigated in the next
chapter.

The connection graph proof procedure

We summarise here the definition of the connection graph proof
procedure in a style of English which corresponds to the procedural
interpretation of Horn clauses.

Tc demonstrate the inconsistency of a set of clauses by the
connection graph proof procedure, generate and solve its initial
connection graph.

The initial connection graph for a set of clauses contains all
clauses in the set, a (non-pseudo-} link connecting each pair of
matching atoms on opposite sides of the arrow in different clauses,
and a pseudo-link connecting atoms on opposite sides of the arrow in
the same clsuse if the atoms match in different copies of the clause.

A connection graph is solved if it contains the empty clause.

To scolve a connection graph which does not contain the empty
clause,

176 Chapter 8: The Connection Graph Procof Procedure

either delete a link whose resclvent is a tautology, and
solve the resulting connection graph,

or delete a clause containing an unlinked atom, together
with its associated 1links, and soclve the resulting
connection graph,

or select a link which is not a pseudo-link, delete it,
add the resclvent together with its new links to the
graph, and solve the resulting connection graph.

A (non-pseudo-) 1ink connects an occurrence L of an atom in a
resolvent to an occurrence K of an atom in another c¢lause if L and K
match, L descends from an occurrence L' of an atom in a parent
clause, and there is a link (possibly a pseudo-link) between L' and

K.
Py AN
parent L' C' K parent c' L' KD

or -

resolvent L'C resclvent CL

A pseudo-link connects L and K in a resolvent if L and K match, L
and K descend from L' and K' in the (same or different) parent
clauses, and there is a link between L' and K'.

TN TN
parent L' c' K parents cr L' K' D
—— or ———
resolvent LCEK resolvent L CK

The four different ways of solving a conhection graph correspond to
four clauses having the same conclusion. Ignering the deletion of links
whose resclvents are tautologies, the resulting three procedures express
the logic and top-down control of the iterative algerithm described at
the beginning of the chapter. The earlier algorithm can be cbtained from
the new cne by further specifying the contrel over the use of the
procedures given here. In particular,

(1) the alternative ways of solving a connection draph
should be tried one at a time in the order in which they
are written above and

(2} backtracking should not be employed, as the non-
determinism; of the procedures doesn’'t matter.

The proof procedure which has been described is incomplete as it
stands, because the factering operation has been omitted. In order to
avoid redundancy, Severe restrictions need to be imposed on its use.
Since adequate restricticns have not yet been devised, and since it
simplifies the description of the proof procedure, we have decided to
ignore the factoring operation altogether. A definition of the proof
procedure including factoring can be found in the original publicatien
[Kowalski 1%74a].

The completeness of the connection graph proof procedure cannot be
assured if the selection of links which are needed for a proof is
postponed indefinitely. Such indefinite postponement might arise, for

The connection graph proof procedure 177

example, when the selection strategy carries out a depth-first search
along a non-terminating path of 2 top-down search space. The requirement
that every link eventually be scheduled for selection is the analogue of
the exhaustiveness of search strategies for more conventional proof
procedures.

A completeness proof for a variant of the connection graph proof
procedure has been constructed by Brown [unpublished]. 1In the case of
Horn clauses, his proof applies also to the proof procedure which has
been described here. Other completeness proofs for the general case have
been anncunced by Siekmann and Stephan [1976] and by Bibel [1979].

A number of proof procedures employ connection graphs but process them

in a manner different from the one described here. Noteworthy among
these are those of Sickel [1976] and Kellogg, Klahr and Travis [1978]).
Clcser to the connection graph procedure, however, is the unpublished
cancellaticn system of Colmerauer.

Exercises

1) Express the top-level of the definition of the connection graph
proof procedure by means of Horn clauses.

2) Using the methods described later in Chapter 184 for transforming
sentences from the standard form of logic into clausal form, the
definition of subset «c¢an be expressed by means of the following two
clauses:

’ arb(x,y) € x <—

Y
€y <~ erbi{x,y) € ¥y

X
X
Used top-down these clauses behave as procedures which given a subgoal of

the form x g vy,

assert that some arbitry individual, say arb(x,y), belongs
to x and try toc show that it belongs to y.

Use the connecticn graph proof procedure to prove the following theorems.
a) The empty set ¢ defined by
<—xe@
is a subset of any set S.
b) Every set S ic a subset of the universal set defined by
xg U«
c} Every set is a subset of itself.

d) The set A such that

178 Chapter B: The Connection Graph Proof Procedure

af{x), b(x) <— x € A

is a subset of the set B such that

Xx € B <— a(x)
X E B < b{x)
xE B <— ¢c(x),

This is a formulation without equality of the problem of
showing that

{a'b} o {arblcr}-
3) Verify the clezim made in Chapter 5 that, using the connection graph
proof procedure, bottom—up execution of the definition

Fib(@, s(B)) <—
Fib(s{s{x)), w} < Fib(s(x), w), Fib{x,v}, Plus(u,v,w)

of Fibonacci number reqguires only a constant amount of storage. Assume
that the Plus relation is defined by means of variable-free assertions
and ignore the space that would be needed to store them,

