179

CHAPTER 9

Global Problem-Solving Strategies

In this chapter we investigate problem~solving strategies which deal
with problems as a wheole rather than with subproblems individually. Goal
transformation deals with the combination of goals in goal statements,
whereas analysis of differences deals with the effect of procedures on
the difference between goals and assertions.

Goal transformation consists of a number of related strategies which
are concerned with the logical relationships among subgoals. It includes
deletion of redundant subgoals, which are implied by other subgoals,
addition of implicit subgoals which are easier and more useful to solve
than those which are explicitly given, rejection of inconsistent
subgocals, which are mutually incompatible, and rejection of subgoals
which are contradicted by an example.

The techniques of goal transformation are similar to those of program
transformation developed for recursion equations by Burstall and
Dariington [1977]. Program transformation transforms programs before
problems are given, whereas goal transformation transforms goals during
the course of attempting to solve them., Goal transformation techniques
have also been used in robot plan—-formation, mathematical programming and
gecmetry thecrem-proving.

Analysis of the differences between goals and assertions invelves an
even more global approach to problem-solving. It attempts to identify
both procedures which reduce differences as well as those which increase
them or leave them invariant. Preference can be given to procedures
which reduce differences over those which do not. Goals can be rejected
as unsolvable if it can be demonstrated that ne procedure reduces
differences at all,

The technigues of difference analysis are similar to o¢nes used in
program-proving. Demonstrating that programs reduce differences is
involved in proving program termination, whereas demonstrating that
programs leave properties invariant is used for proving program
properties. The strategy of selecting procedures for their effectiveness
at reducing differences is the basis, moreover, of the General Problem
Solver developed by Newell, Shaw and Simon [1963].

Although the methods we describe can also be applied to non-Horn
clauses, we shall simplify matters by limiting attention to top—down
problem-solving by Horn clauses alone. Moreover, we shall not concern
ourselves with the heuristics which would be needed for the effective
utilisation of these methods.



189 Chapter 9: Gleobal Problem-Solving Strategies

Deletion of redundant subgoals

A subgoal can be deleted from a goal statement, if the assumption that
the other subgoals have a sclution implies that the redundant subgoal has
a compatible solution as well. According to this critericn, assuming the
transitivity of the < relation,

x{y<—x<z, 2y
the goal statement
—ris,s <t r<t

contains the redundant subgoal r < t. For, assuming that the other
subgoals have a solution, it follows that the assertions

r' < s' <
s' ' <~

hold for appreopriate instances r', s' and t' of the terms r, s and t
respectively. But those assertions together with the transitivity of <
imply the assertion

r' < th o<

which expresses that the third subgoal is compatibly solvable also. It is
unnecessary to solve the redundant subgoal explicitly. It suffices to
know that any sclution of the other subgoals quarantees the existence of
a compatible solution of the third subgoal as well.

The transitivity clause dces not need to be part of the program or
even a logical conseguence of it. To justify deletion of the redundant
subgoal, it suffices that transitivity be a property of the program. This
is the case, for example, if the < relation is defined by the clauses

B <y <
s{x) < s(y} < x < vy.

A statement is a property of a Horn clause program P, if it is consistent
with P and together with P implies no variable—free assertions not
already implied by P. A preogram property, therefcre, adds no solutions to
those which can be obtained by the program itself.

Deleting a duplicate occurrence of a subgoal is a special case of
deleting a redundant subgoal, since any one occurrence of a subgocal
implies any other occurrence. Thus the goal statement

<— P, Q, P

for example, can be replaced by

<— P, Q.



bddition of surrogate subgcals 181

Addition of surrogate subgoals

2lthough it is often useful to delete redundant subgoals, it is
sometimes beneficial to add them instead.

The strategy of deriving additional subgoals is common in mathematical
programming, where subgoals are regarded as constraints to be satisfied.
A surrogate constraint, whose solution is implied by the solution of the
original constraints, can be added and then solved before the others,
This is useful if the surrogate constraint 1is easier to sclve and aids
the solution of the original constraints by determining the wvalues of
some of their wvariables,

Conegider, for example, the initial collection of twc constraints
involving the variables x and y:

{— xty = 2, x~y = D

A sequential, top-down problem—solver would generate pairs of numbers
satisfying one of the constraints and then test whether they solve the
other. A more intelligent problem-solver, programmed by Warren in PROLGG,
ceroutines between the two subgoals solving them simultaneously by
successive appreximatien. The program, a general-purpose, Horn clause
problem-solver, always selects a subgozl which contains fewest variables
at the top-most level.

The normal, mathematical problem-solving method, however, derives and
solves a surrogate constraint instead. It assumes that the original
constraints have 2 sclution and concludes (by adding the +two equations
together) that the additional constraint

<— 2*x = 2

must also be satisfied by the same solution. The new constraint is
redundant in the new goal statement

<— Xty = 2, -y = @, 2%x = 2

but it can be solved without any search, Moreover, once it has been
solved, the remaining instantiated original constraints

— 14y =2, 1-y =0
can then be solved without search as well. In fact, it suffices tc solve
just one of the remaining constraints, because the other constraint is
now redundant.
The strategy of surrogate subgoals is wuseful for plan-formation
problems. Consider, for example, the problem of finding a state w in
which the robot is in the room and next to the box

{— In(Rob,room,w), Nexttc(Rob,box,w).

Assuming that the box is not in the room initially and that the robot is
more mcbile than the box, it is useful to derive the surrogate subgoal

<~ In(box,room,w)



182 Chapter 9:; Global Problem-Solving Strategies

from the origirnal subgoals using the program properties

In{x,y,w) <— Inf{z,vy,w), Nexttolx,z,w)
Nextto(x,z,w) <— Nextto(z,x,w).

If the surrogate subgoal is added to the original goal statement
<— In{Rob,room,w), Nextto(Rob,box,w), In(box,room,w)
and is selected for solution before the others, then the simplest

solution {where the robot pushes the box into the room) finds a state w
which directly solves the remaining subgoals.

Rejection of inconsistent goal statements

An entire goal statement can be rejected as unsolvable, if the
assumption that it can be solved leads to contradiction.

A simple case 1is the one in which a goal statement is subsumed by a
program property or an integrity constraint. The goal statement

G <— On(A,B,w), Clear(B,w), On(B,C,w)
for example, is subsumed by the clause
C <— On(x,y,z), Clear(y,z)

which expresses that nothing is clear and has something on it at the same
time. In general, one clause C; subsumes another Cj if all the
conditions and conclusions of some instance of C) are contained among the
conditions and conclusions of C, . The subsuming clause is more general
than the subsumed clause and possibly has fewer conditions or fewer
conclusions. In the example above, the instance of the subsuming clause C
(in which x = A, y =B and z = w) contains one fewer condition than the
subsumed clause G.

A clause can be deleted from a set of clauses if it is subsumed by
another clause in the same set. Deletion of the subsumed clause does not
affect the consistency (or inconsistency) of the set of clauses as a
whole., A thorough discussion of the completeness of deleting subsumed
clauses is contained in the book by Loveland [1978].

The strategy of deleting a subsumed gecal statement can be regarded as
a special case of deleting an inconsistent one. In the preceding example,
the assumption

On(ad,B,s) <—
Clear (B,s) <—
on(B,C,s) <—

that there exists a solution w = s of the goal statement G is
inconsistent with C.

Rejection of an inconsistent goal statement, however, is more general
than deletion of a subsumed one. It can involve an arbitrary amount of



Rejection of inconsistent goal statements 183

deduction. The database query
<— Teaches{John,y)

for example, is not subsumed by any of the clauses

Tl Teacher (X} <— Teaches(x,y)
T2 <— Teacher {x}, Student(x)
T3 Student (John) <—

but is unsolvable because the assumption that it is solvable, namely
Teaches (John,A) <—
say, is inconsistent with T1-3.

Similar strategies for rejecting queries which are inconsistent with
type information have been developed by McSkimin and Minker [1977] who
augment a resolution theorem-prover with a semantic network which stores
and processes type information. Subsumption of unsolvable goal statements
is also a feature of plan—-formation systems developed by Dawson and
Siklossy [1977], Hewitt [1975] and, more generally, of the logic
programming system developed by Robinson and Sibert [1978].

Generalising the use of diagrams in geometry

In order to Justify the addition or deletion of a redundant subgoal,
it 1is necessary that the assumptions used to derive the subgoal be
properties of the procedures which can be used to solve it. In order to
justify rejection of an inconsistent goal statement, however, a weaker
condition suffices: The assumptions A used to derive inconsistency need
only be consistent with the procedures P.

For, suppose that

(i) P is consistent with A,

(ii) G* expresses that the goal statement G is solvable,
(iii) G* is inconsistent with P and A, but

{iv) P solves G.

Then, since P solves G, P implies &G* and therefore P together with A
implies G*, But then, since P is consistent with A, G* is consistent with
P and A , contradicting (iii). It follows that

if P is consistent with A, but
G* is inconsistent with P and A, then
P does not solve G.

The use of diagrams to reject unsolvable subgoals in Gelernter's
Geometry Theorem Proving Machine [1963] can be regarded as a case of
using assumptions which are consistent with the problem-solving
procedures to reject inconsistent goal statements. The axioms of
geometry function as procedures and the description of the diagram
functions as the additional assumptions. The use of a diagram is
justified, provided its description is consistent with the general axioms



184 Chapter 9: Global Problem=-Solving Strategies

of geometry and with the particular hypotheses of the theorem to be
proved. Gelernter estimated that the use of diagrams reduced the size of
search spaces on the average to 1/280 their original size. The argument
above shows that the use of examples to recognise the unsolvability of
problems need not be restricted to geometry. Examples can be used to
recognise and reject unsolvable subgoals in any problem-domain.

Goals as generalised solutions

It is sometimes useful not to sclve subgoals explicitly but to regard
them instead as standing for the general class of all their solutions.

Consider, for example, an initial goal statement
<— G(x)
which eventually reduces to the subgoal
<— x > @.
Instead of generating an arbitrary positive number x as an explicit
solution, it is more informative to report that any positive number is a
solution. This can be effected by regarding the subgoal x > @ as a
generalised solution which stands for the class of all its individual
solutions.
Solving subgeals by generalised solutions is a feature of Bledsoe's
approach to theorem-proving [1971, 1977]. To be effective, it needs to
be combined with goal transformation. Given a goal statement

— x>0, x>1, G(x)

for example, deletion of the redundant subgoal is necessary to transform
the goal statement to the new cne:

— x> 1, G(x)

Given
<—x <@, x > 1, G{x)

on the other hand, rejection of inconsistent subgoals is necessary to
recognise that the goal statement is unsclvable.

Treating certain kinds of goals as generalised solutions is also
useful for database queries, and is a feature both of Darlington's [1963]
resolution information retrieval system and of McSkimin and Minker's
[1977} semantic network theorem-prover. Given the guery

who teaches programming?
<— Teaches (X,programming)

and the general rule

All professors teach programming.
Teaches {x,programming) <— Professor (x)



Goals as generalised solutions 185

it is better to regard the resulting subgoal as a generalised solution
{— Professor(x)

than it 1s to report one or more of the answers which qualify as
solutions as a result of the assertions

Professor {Mary) <—

Professor (John) <—
Professor (Bob) <— .

Goal transformation and the information explesion

It is a characteristic of human problem-solving that the assimilation
of additicnal information generally improves problem-solving efficiency.
This contrasts with the simple model of problem-solving in which all
knowledge is used as problem-solving procedures. Additional information
only increases the size of the search space and makes problems harder to
solve (except in those cases where only one sclution is required and the
non—determinisml doesn't matter). In the goal transformaticn model,
however, additicnal information can be wused to transform goazl statements
and to reduce the size of the search space.

Loop detection by analysis of differences

Like goal transformetion, analysis of differences adds to the
possiblities of recognising that a procedure goes into a loop.

Consider, for example, the procedure
Numb {x} <— Numb(s(x))
given the goal
<~ Numb({s(s(8)))
znd the assertion
Numb (@} < ,

Repeated top-down execution of the procedure gives rise to the non-
terminating, infinite sequence of subgoals:

<— Numb(s(s{8))}

<— Numb({s{s(g(8)}})

Irn this case the connection graph proof procedure avoids the loop,
because the procedure call Numb{s{x)) has only a pseudo-link to the head
of the procedure. It follows that the procedure is unusable and can be



186 Chapter 9: Global Prcblem-Solving Strategies

deleted from the graph. If the assertion Numb{g) <— is replaced by the
assertion

Numb({s(@)) <—
however, application of the procedure gives rise to the same infinite
loop, but the procedure can no longer be deleted, because its procedure
call has an additional non-pseudo-link to the new assertion. The loop can
be avoided in all these cases, though, if it carn be recognised that
application of the procedure cannot reduce the difference between the
goal and the assertion. The goal differs from the assertion in that it
contains a greater number of occurrences of the function symbol s,

Application of the procedure only increases the difference by generating
subgoals which contain even more occurrences of s.

The global nature of difference analysis becomes apparent if the
assertion is replaced by the new assertion
Numb{s(s(s(s{@8)}}) <— .

Now, application of the procedure reduces the difference between the goal
and the assertion and eventually sclves the problem,

<— Numb (s {s(6)))

<— Numb(s{s(s{2))))

<— Numb{s{s(s(s(8)))))
O

A procedure might be needed for a2 solution even if it increases the
difference between the goal and the assertions. Given, for example, the
goal

<= Numb(s{s(s(8})))
and the assertion
Numb (@) <—
the procedure
Numb (s(s{x))) < Numb(x)
decreases the difference, whereas the procedure
Numb (x) <— Numb(s{x))

increases it. But both procedures are necessary to solve the problem.



Loop detection by analysis of differences 187

p (— Numb({s(s(s(@})))

~
|

Numb (s{8) }
¢ <— Numb(s(s(@)))
<— Numb{8)
O
In the preceding examples the application of a procedure which
increases differences either generates a loop or else is essential for a
solution. More often, increasing differences neither contributes to a

solution nor prevents its being found. Such is the case with the pair of
procedures

Numb{s (%)) <— Numb{x)
Numb {x) <— Numb(s{x))}.

If one of them unnecessarily increases differences, the other can be used
to restore them to their previous state. Indeed using one procedure after
the other simply generates the kind of loop which can be avoided in the
connection graph proof procedure by deleting links whose resolvents are
tauteologies.

In all of these examples, the difference between subgoals and
assertions can be measured simply by the number of occurrences of the
function symbol s. In other cases the characterisation of differences is
more complicated.

The factorial example

The definition of factorial is a more realistic example. The non-
clausal sentence

Times(s(x),u,v) —-> [Fact(x,u} <> Pact(s(x),v}]
gives rise to two Horn clause procedures:
(1) Fact (s(x),v}) <— Fact(x,u), Times(s{x),u,v}
(2) Fact{x,u) <— Fact{s(x),v), Times(s{x},u,v)
Given the assertion
Fact(9,s{@)) <—

there is no goal for which the second procedure is necessary. However,
given the assertion

Fact {(19,3628809) <—
instead, the second procedure is necessary for solving the problem

<— Fact{s (@) ,x)



188 Chapter 9: Glecbal Problem—Solving Strategies

and the first procedure is unnecessary. Here the natural number n is
used as an abbreviation for the term

s(si(s(...(8)...)))
n times
containing n occurrences of the function symbel s.
More generally, it may be useful to have several assertions, e.g.

Fact (@,1) <—
Fact (18 ,3628800) <—

and, using analysis of Q@&ifferences, to apply the procedure which most
quickly narrows the gap between the problem and the assertions, using
{1}, for example, for the problem

(-~ Fact(3,x}
and using (2) for

<— Fact(B,x).

Notice that the last example is a case of "don't care"™ non-

determinismy. There are several ways of finding the factorial, all of
which lead to the same result. It doesn't matter which method is chosen.

But, if backtracking is used, then it does matter (for the sake of
efficiency) that only one method is tried.

Invariant properties of procedures

The unsclvability of a problem can be detected not only by analysing
the effect of procedures on differences but alsc by analysing the
properties which procedures leave invariant. & problem can be recognised
as unsolvable if it can be shown that it differs from the assertions in a
property which is not affected by the procedures. A typical property of
this kind is parity.

Suppese we are given the clauses

Even (B) <—
Bven(s(s(x)}) <— Even{x)
Even(x) <— Bven{s(s(x))}
<— Even(1l7)

By analysis of differences, the second procedure can be rejected as
useless. Used gzlone it only increases differences. Used together with
the other procedure it only generates loops. By analysis of invariants
the first procedure can also be reldected. It reduces a proklem of a given
parity tc a subproblem of the same parity. No matter haw.many times the
procedure is usged it cannot change the parity of the original problem.
Since the original problem has an odd numper of cccurrences of "s" and
the assertion has an even number, the procedure cannot be used to solve
the problem. Here parity can be determined by counting occurrences of the



Invariant properties of procedures 189

function symbol "“s". In more realistic cases the invariant property is
more complex.

Such is the case in the following example, where the invariant
property is another form of parity. Given a sequence of six arrows (or
coing) each of which can face up or down, the problem is to transform
them from one state to ancother - for example, from

goubDDnED to vuobDCUU

There is only one action available: it is possible simultaneously to
change the direction of two adjacent arrows.

A simple n-tuple representation in which
State(dl, dz, d3, dq, d5, d6)
expresses that

the first arrow cen have direction dy,
the second arrow can have direction dp,
and in general

the i-th arrow can have direction di

simultaneocusly, is the following.

State(Uu,u,u,D,D,D) <—

<— State(,U0,D,D,U,U)
State(x,y,z,u,v,w) <— State(x'pylrzrulvrw)l OPP(er')r Cpply,v')
State(x,y,z,u,v,w} <— State(x,y"',2z',u,v,w), Opply,¥'}, Oppiz,z")
Statelx,y,z,u,v,w) <— State(x,y,z',u',v,w), Opplz,z'), Opp(u,u’)
State(x,y,z,a,v,w} <— State(x,y,z,u',v',w), Opp(u,u'), Oppiv,v")
State(x,y,Z,u,v,w) <— State(x,y,z,u,v',w'), Oppiv,v'), Opp(w,w")

Opp (U,D) <—

Opp (D,U) <—

The problem is unsclvable, because, whereas the procedures leave
invariant the parity of the number of arrows in either direction, in the
assertion there is an odd number of arrows in both directions and in the
gcal there is &an even number, Tc show that the procedures leave parity
invariant it is necessary to consider the two cases: Either the two
inverted arrows have the same direction before inversion or they have
different directions. If they have the same direction, then inversion
increases the number of arrows in one direction by two and decreases the
number in the other by two, but leaves the parity the same. If they have
different directicns, then inversion leaves the number of arrows in both

directions unchanged and therefore does not affect the parity. In both
cases parity is an invariant property of the procedures.



198 Chapter 9: Global Problem-Solving Strategies

The mutilated checker board problem is similar. Given a checker-board
with two opposite corners removed,

/W,
7 % . 7,
/BN,
7. % Y. 7. |
N/m//B/B
% % % 7,
a/n//8/m
7. 7 7 7

the problem is to cover it with dominoes, each one of which covers two
adjacent squares. Since adjacent squares have different colours, the
procedures leave invariant the difference between the number of uncovered
squares of different colours. The problem is unsolvable, therefore,
because in the goal state the difference is zero, but in the initial
state it is two.

There is an obvious relationship between proving that logic procedures
leave a property invariant and proving a property of a flowchart program
using invariants. In both cases the objective is to show that if a
property holds at the beginning of a2 repetitive process then it holds at
the end. This is done by showing that if it holds at the beginning of one
step of the process then it holds at the end of the step. The desired
result then holds by induction.

Exercises

1) Suppose y is a function of x in the relation F(x,¥), i.e.
y = z <~ F{x,y}, Fix,z)
where the only clause defining equality is
X =x <— .

Show how goal transformation can be used to eliminate redundancy when a
goal statement contains a pair of subgoals of the form

F(r,s) and F(r,t)
where v, s and t are terms.
2) Show that "goal transformation" can be used to justify transforming
the c¢lause

Tower {t (X,y)} < Block(x}, Tower(y), On(x,y)



Exercises 191

into the clause
Tower (L (X,y)) <— Tower(y), Oni(x,y).
What property of the On relation is needed for the transformation?

3) In Chapter 6, the precondition Diff(x,z) can be eliminated from
the definition of the action trans(x,v,z) and its use can be replaced by
that of the integrity constraint

<— Holds({on(x,x), w)
instead. Compare the problem-solving behaviour needed for these two
alternative formulations of the plan-formation task.

4) Analyse the English sentence

sl Reject stealing as a way of having something if you alsec
want to be virtuous.

as a recommendation concerning the use of the procedure
Have (u,x) <— Steal {(u,x)

applied to goal statements containing twe subgoals of the form
Have{r,s) and Virtuous({r).

Can the notions of goal transformation be used to establish a logical
relationship between the sentences 51, 82 and §37

52 Do not steal if you want to be virtuous.
53 Anyone who steals is not virtuous.

5) Discuss the formalisation of the following problems and the
problem-solving strategies needed to solve them intelligently.

a) Find an assignment of digits 1,2,3,...,9 to the cells of a
3 by 3 matrix such that:

row 1

row 2

row 3

(i) Exectly one digit is assigned to each cell.
(ii) No digit is assigned to more than one cell.

{ii) The three digit number in row 3 is the sum of the three



1582

Chapter 9: Global Problem-Solving Strategies

digit numbers in rows 1 and 2.

(iv) If the digit i is assigned to a cell then the digit i+l is
assigned to a cell which is horizontally or vertically
adjacent.

bl Find an assignment of digits 1,2,3,...,9 to letters in the
names such that:

DONALD
+GERALD
ROBERT
(1) Exactly one digit is assigned to each letter.
{ii) No digit is assigned to more than one letter.
{iii)The 6 digit number assigned to the word "ROBERT" is the
sum of the 6 digit numbers assigned to "DONALD" and
"GERALD".

(iv) 5 is assigned to "D".



