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Abstract. It is generally agreed that there are two kinds of if-then rules: logic-

based rules, in which if-then has a logical semantics, and reactive rules, in which 

if-then represents change of state without a logical semantics. I will argue that 

reactive rules have an implicit logical semantics, as goals that need to be satisfied 

by generating a model that makes the goals true.  

The logical semantics of reactive rules can be made explicit by making change 

of state explicit, and by understanding the rules as meaning that if some condi-

tions are true at a time, then some actions are performed at a future time. This is 

the approach taken by the modal logic MetateM. The same approach can be used 

with a non-modal logic, such as the situation calculus or event calculus. However, 

all these logics use frame axioms to reason that if a fact is true in a state, then it 

remains true in the next state, unless it is terminated by the change of state. 

Reasoning by means of frame axioms is intolerably inefficient, compared with 

destructive change of state in conventional reactive systems. I will argue that this 

inefficiency can be avoided in logic-based systems by using destructive change 

of state, with frame axioms becoming an emergent property. 

But giving a logical semantics to reactive rules leaves open the relationship of 

reactive rules with ordinary logic-based rules. I will argue that ordinary logic-

base rules can be understood as beliefs that help an agent satisfy its goals. 
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1 Introduction 

The distinction between two kinds of rules is widely recognized in the AI and Semantic 

Web communities: logic-based rules, which have a logical semantics, and reactive 

rules, which represent change of state without a logical semantics [15]. Despite this 

dissimilarity, the two kinds of rules are often confused with one another. Even when a 

clear distinction is made between them, their relationship can remain unclear.  

In [16-21], we presented a language, LPS (Logic-based Production System), which 

combines logic programs, representing an agent’s beliefs with reactive rules, represent-

ing an agent’s goals. LPS gives a logical semantics to reactive rules, by treating them 

as sentences that need to be satisfied by generating a model that makes them true. This 

semantics of reactive rules in LPS is like the semantics of programs in MetateM [4, 12]. 

However, MetateM does not have a separate representation for logic programs. LPS, 

on the other hand, uses the model-theoretic semantics of logic programs to define the 
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space of candidate models that can be generated to make reactive rules true. The result-

ing combination of reactive rules and logic programs in LPS is similar in spirit to the 

homogeneous Event-Condition-Action Logic Programming language (ECA-LP) [29]. 

The distinction in LPS between goal rules, which are reactive rules, and belief rules, 

which are logic programs, is similar to other distinctions made in other areas. It is re-

lated, for example, to the distinctions between: 

 

• Integrity constraints and derivation rules in database systems [26]; 

• Regulative and constitutive norms in normative systems [5];  

• Operative rules and structural rules in the operation of an enterprise [27];  

• Reactive systems and transformational systems in “software engineering, 

programming languages, and system and hardware design” [13]. 

• Beliefs and desires in the belief-desire-intention (BDI) model of intelligent 

agents [7, 10, 11]. 

 

History. The origins of LPS go back to our work on combining integrity constraints 

with logic programming rules in deductive databases [32]. This contributed to our sub-

sequent work on abductive logic programming (ALP) [14], using logic programs to 

generate abductive explanations and using integrity constraints to eliminate unaccepta-

ble candidate explanations. Later, we embedded ALP into an agent cycle, using integ-

rity constraints both to generate reactive behaviour and to serve as higher-level mainte-

nance goals [16]. We developed LPS, as a scaled-down variant of ALP agents, to com-

bine the functionality of both production rules and logic programming rules, together 

with destructive change of state for the sake of efficiency [17]. 

 During these developments, we were aware of MetateM, but we did not understand 

how it related to our work. We were also aware of the BDI agent model [7]. However, 

in both cases, I was dissuaded by their use of modal logic, which seemed unnecessarily 

complicated and conceptually questionable. 

 In the case of MetateM, I eventually realized that its use of modal logic for repre-

senting time is a relatively minor difference from our use of explicit timestamps. More-

over, I was encouraged to discover that we came to the same conclusion of viewing 

computation as model generation, coming from opposite directions. 

 The relationship between LPS and BDI is more complicated. On the one hand, BDI 

overlaps with LPS and ALP with its distinction and focus on goals and beliefs. But on 

the other hand, the early BDI agent systems were specified in multi-modal logics, with 

separate modal operators for goals, beliefs and intentions. However, the practical im-

plementations of BDI agents bore little resemblance to their logical specifications.  

Following the lead of AgentSpeak [31], most BDI agent implementation languages 

abandoned their modal specifications and their logical semantics, and they represented 

beliefs, desires, and intentions as “data structures” [10, 11, 31]. In AgentSpeak, the 

main data structure is a plan, which has the rule-like form: triggering event: beliefs ← 

goals or actions. The arrow is written in the backward direction because of its resem-

blance to a logic program rule. However, unlike a logic program rule, the invocation of 

a plan can be “both data-directed (using addition/deletion of beliefs) and goal-directed 
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(using addition/deletion of goals)” [31]. As a consequence, plans in BDI languages of 

the AgentSpeak variety do not have a logical semantics. 

 

In this paper, I will explore: 

 

• How the logical semantics of LPS and MetateM can be used to give a logical 

semantics to other reactive rule languages; 

• How the use of destructive change of state in LPS can be used to improve 

the efficiency of other logic-based languages;  

• How the incorporation of logic programs in LPS can be used to improve the 

level of abstraction in other reactive rule languages; and 

• How the combination of goal rules and belief rules in LPS can be viewed as 

a scaled-down model of human thinking. 

 

The paper is deliberately written in an informal style, to make it more accessible to 

readers without an extensive background in logic and computing. More rigorous treat-

ments can be found in the references. 

2 Reactive Systems 

Reactive systems include a wide range of programming, database and AI systems [28]. 

Not all these systems are rule-based, but they all treat computation as generating a se-

quence of states to maintain a desired relationship with a changing environment. Pro-

duction systems are possibly the simplest example of such a reactive rule system. 

 

Production systems. A production system [9] consists of: 

 

• A working memory, represented as a set of facts; 

• Production rules of the form if conditions then actions; 

• An “inference engine”, which uses “forward chaining” to match conditions of 

rules with facts in the working memory, and derives candidate actions; 

• Conflict resolution, which selects candidate actions for execution; and 

• Action execution, which adds, deletes or modifies facts, updating the current 

state of the working memory. 

 

As Paul Thagard remarks in his Introduction to Cognitive Science [35], production 

rules “are very similar to” logical conditionals, “but they have different representational 

and computational properties”. In this paper, I will show how LPS reformulates pro-

duction rules as logical conditionals and combines them with logic programs. 

 

MetateM. To a first approximation, computation with reactive rules in LPS is like com-

putation in MetateM. Computation in MetateM uses reactive rules, to maintain a cur-

rent history of states and a current collection of commitments, where: 
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• The current history of states, including the present state and all past states, is 

represented by a set of facts. 

• Reactive rules have the form if antecedent then consequent. 

• Computation uses forward reasoning with reactive rules to generate a com-

plete history of states.  

• Forward reasoning identifies any instances of the antecedents of rules that 

are true in the current history. For each such rule, it derives the consequent of 

the rule as a commitment to be made true in the next state or in the future.  

• Given the complete collection of all previous and new commitments, a choice 

is made between different actions needed to make the commitments true. 

• The chosen commitments and any external events are executed, updating the 

current history by adding facts that are true in the next state. 

 

The logical semantics of the reactive kernel of LPS, KELPS [20], is similar to the log-

ical semantics of MetateM. In both cases, reactive rules represent goals, and computa-

tion generates a complete history to try to make the goals true. 

Reactive rules in MetateM generalize production system rules. Whereas antecedents 

of rules in production systems can only express conditions about the current state of the 

working memory, antecedents in MetateM can refer to any states or events in the cur-

rent history. Whereas consequents of rules in production systems can only refer to ac-

tions to be performed immediately, consequents in MetateM can express commitments 

about any states or actions in the future. 

 As a consequence of this greater generality, MetateM needs to store the complete 

history of previous states, and not only the current state. Moreover, it needs to store the 

complete collection of all present and future commitments, whereas production systems 

do not need to store any commitments at all.1 

MetateM is a modal temporal logic, with a possible world semantics, in which indi-

vidual states are models, and the history of all individual states is itself a model. Unlike 

the sequence of states in production systems, the history is constructed by adding facts, 

without deleting any facts. 

By treating computation as model generation, MetateM provides a simple and ele-

gant, logical interpretation of conflict resolution, as a choice between alternative ways 

of making the goals true. This choice creates a natural opportunity to employ decision 

theory and game theory, to aid in the choice of alternatives [3]. 

 

Example. Given the production rules: 

 

 If hungry then eat. If sleepy then sleep. 

  

and a current state in which hungry and sleepy are both true, a production system would 

need to perform conflict resolution, to decide whether to eat or sleep (and to do so 

immediately), assuming it is not possible to eat and sleep at the same time. This means 

 
1 However, in practice, production systems (and BDI implementations) often add “goal facts” to 

working memory, both to represent future commitments and to simulate goal reduction rules. 
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that the production rules cannot be treated as logical implications, because taken liter-

ally there is no model in which both rules are true. 

In MetateM, the same rules would be written in the form:  

 

If hungry then ◊ eat. If sleepy then ◊ sleep. 

 

where ◊ is a temporal modal operator, which means “at some time in the future”. 

Moreover, it is also necessary to state explicitly the constraint that eat and sleep 

cannot both be true at the same time. This constraint can be expressed by the rule: 

 

  If ● true then not eat or not sleep. 

 

where  ● means “at the last time”, and ● true is always true in the previous state, and 

therefore not eat or not sleep is true in all states. 

To satisfy the rules, MetateM needs to reason with “frame axioms”, which express 

that if a fact is true at a time and the fact is not terminated by an action or external event 

that occurs at the time, then the fact continues to be true at the next time. For example: 

 

If hungry and not eat then ○ hungry.   
If sleepy and not sleep then ○ sleepy. 

 

where ○ is a modal operator, which means “in the next state”. 

Given a current state in which hungry and sleepy are both true, there are infinitely 

many models that satisfy the goals, depending on how far into the future the commit-

ments ◊ eat and ◊ sleep are made true. Among other decision-making strategies, the 

MetateM interpreter chooses models that make commitments true as soon as possible. 

 

Brief comparison with reactive rules and constraints in LPS. Reactive rules in LPS 

are like rules in MetateM. In both cases, antecedents of reactive rules can refer to any 

states or events in the current history, and consequents can express commitments about 

any states or actions in the future.  

The semantics of reactive rules in LPS is also like the semantics of rules in MetateM. 

In both cases, reactive rules are treated as goals, which need to be made true in the 

complete history of all states and state-changing events. But, whereas MetateM is a 

modal temporal logic, in which a complete history is a collection of models, one for 

each state, LPS is a non-modal logic in which a complete history is a single model in 

which facts whose truth values can change with the passage of time are timestamped. 

In LPS, because all times in the consequent of a reactive rule are later than or equal 

to the latest time in the antecedent, and because the conditions in both the antecedent 

and consequent can be written in temporal order, time variables can often be sup-

pressed, as in: 

 

   if hungry then eat.  if sleepy then sleep.  
 
Written with explicit time variables, these sentences become: 
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If hungry at any time T1 then eat from some time T2, where T1 ≤ T2. 

   If sleepy at any time T1 then sleep from some time T2, where T1 ≤ T2. 
 
Time variables can also be suppressed if a constraint has only one time variable. For 

example, using LPS syntax: 

 
   false if sleep, eat. 
 

which means:  For all times T, it is not the case that: eat from T and sleep from T. 
 

In general, reactive rules generate candidate actions, and constraints eliminate candi-

date actions. This combination of reactive rule goals and constraint goals is like the 

combination of obligations and prohibitions in deontic logic. The possibility that obli-

gations can be violated, resulting in a suboptimal situation can be understood as some 

models being better than others [22]. 

The same combination of reactive rules and constraints is also like the combination 

of liveness and safety properties in model checking of concurrent and distributed sys-

tems. In model checking, liveness and safety need to be verified as emergent properties 

of a program. However, in model generation, as in MetateM and LPS (and potentially 

in production systems), liveness and safety are built into the program, and execution of 

the program is designed to ensure that liveness and safety are true by design. 

In the next section, we will explore the relationship between the use of frame axioms 

to generate state transitions, as in MetateM, with the use of destructive updates, as in 

production systems and LPS. In the following sections, we will: 

 

• present KELPS, which is the reactive kernel of LPS,  

• show how logic programs can be used in conjunction with reactive rules, and  

• discuss the potential of LPS as a scaled-down model of human thinking. 

3 Representing and Reasoning about Change of State 

In production systems and many other reactive rule languages, actions are normally 

bookkeeping operations that add, delete or modify facts in working memory. In logic-

based systems, actions and other events represent events in the problem domain. 

 

Frame axioms. In logic-based systems, the standard approach for dealing with change 

is to use a causal theory [33], in which times, states or situations are reified and are 

represented explicitly as arguments of predicates. Many of these approaches distinguish 

between fluents, which are facts that hold true at time points (or over time intervals), 

and events, which occur between time points. Events include both external events, gen-

erated by the environment, and actions, generated by the system. Change of state can 

be defined by two meta-level axioms, the second of which is a frame axiom: 
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If the events that occur between T and T+1 initiate a fluent,  
then the fluent is true at T+1. 
 

If a fluent is true at T  
and the fluent is not terminated by the events that occur between T and T+1, 
then the fluent is true at T+1. 
 

To apply these axioms in a specific domain, the initiation and termination predicates 

need to be defined by causal laws, such as: 

 

   eat initiates eating.    eat terminates hungry. 
   sleep initiates sleeping. sleep terminates sleepy. 

 

Forward reasoning with such axioms means that, when a state transition occurs from 

time (or state) T to T+1, all the fluents that are initiated and all the fluents that are 

already true at time T, but not terminated, are added to the new state with the new 

timestamp T+1. If a fluent is terminated, it is not deleted, but simply not added to the 

new state with a new timestamp. This approach respects the logic of change of state, 

but it does so at the cost of copying every fluent that is not terminated, from one state 

to the next. This is certainly not practical for even a moderately large number of fluents.  

 

Destructive change of state. Most practical computer languages, including production 

systems, reason with change of state by storing only a single current state, which can 

be regarded as a database of facts that are true in that state. These facts are stored with-

out timestamps, and are updated destructively, by adding any facts that are initiated and 

deleting any facts that are terminated. Any facts that are not terminated are left un-

changed, without reasoning that the facts are unchanged. This practical approach is very 

efficient, but it raises the problem of how to reconcile such destructive change of state 

with logic-based representations that employ frame axioms. 

 

Reconciling frame axioms with destructive change of state. The solution of the prob-

lem can be found in the way that the real world exists only in its current state, changing 

state by destroying its past and unfolding its future. But in its totality, the real world is 

the complete history of all its states and events, past, present and future. The frame 

axiom is true in this history, but it is not used to generate change of state. 

The implementation of LPS employs a similar approach: It maintains a single current 

state in which facts are represented without explicit times or states. As a result, facts 

that are not terminated by a state transition can be left unchanged without using frame 

axioms to reason that they are unchanged. However, in the complete history, fluents 

and events are timestamped, and the frame axiom is true as an emergent property. 

The LPS approach can also be used to implement and justify destructive change of 

state in other logic-based languages, such as MetateM. Conversely, the LPS approach 

might be used to give a logical semantics to suitably modified production systems and 

other reactive rule languages. For this purpose, facts need to be associated with the 

times at which they hold, and reactive rules need to be understood as rewritten with 
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explicit times. In addition, constraints need to be written explicitly, and they need to be 

enforced to prevent untimely choice of actions. Moreover, conflict resolution needs to 

be restricted to strategies that have a logical interpretation, such as specifying prefer-

ences between different models. 

4 The Reactive Kernel of LPS (KELPS) 

The kernel of LPS (KELPS), which consists of a current state, reactive rules, constraints 

and causal laws, is a reactive system language in its own right [20]. It combines the 

efficiency of destructive change of state in production systems with the expressive 

power and logical semantics of MetateM. 

 Compared with production systems, the greater expressive power of KELPS and 

MetateM comes from the more general antecedents and consequents of their reactive 

rules. KELPS deals with these more general consequents, in the same way as MetateM, 

by maintaining a separate collection of all present and future commitments. 

 The problem of dealing with more general antecedents is more difficult. MetateM 

deals with this problem by maintaining the entire current history of states and events, 

to identify any instances of antecedents that are true in the current history. But this 

current history is not available in KELPS, which maintains only the current state. 

KELPS deals with the problem by partially evaluating the antecedents of rules in the 

current state, and generating the partially evaluated rules as additional rules to be eval-

uated further in future current states. 

For example, consider a rule expressing that if an item is ordered, and the item is not 

delivered two days later, then the order is cancelled. 

 

 If order(Item, OrderId, Day1),  Day1 + 2 = Day2, not delivered(Item, Day2)  
then cancel(OrderId, Day2). 

 

When an event, say order(newBed, ord0017, 01/04/2026) occurs, LPS unifies the event 

with the first condition of the rule, evaluates the second condition of the rule and adds 

the resolvent as a new reactive rule to be monitored in the future: 

   

 If not delivered(newBed, 03/04/2026) then cancel(ord0017, 03/04/2026). 
 

In general, KELPS uses causal laws and constraints to maintain a current state, a cur-

rent collection of commitments, and a current collection of reactive rules, where: 

 

• The current state is represented by a set of facts, called fluents, which are 

represented without timestamps. 

• Reactive rules have the form if antecedent then consequent, where all varia-

bles (including time variables) in the antecedent are universally quantified 

with scope the entire rule, and all variables in the consequent that are not in 

the antecedent are existentially quantified with scope the consequent of the 
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rule. All times in the consequent are later than or equal to the latest time in 

the antecedent. 

• Causal laws represent the postconditions of events. They have the form events 

initiate fluents and events terminate fluents, where all variables are univer-

sally quantified, and all variables in the fluents occur in the events.2 

• Constraints represent the preconditions of actions. They have the form false 

if actions and conditions, where all variables are universally quantified with 

scope the entire constraint. 

• At any time that any events occur, including any actions that may have been 

chosen to be performed at that time, the causal laws are used to update the 

current state, adding any fluents that are initiated by the events and deleting 

any fluents that are terminated by the events. 

• Forward reasoning identifies any instances of conditions (including events) 

in the antecedents of rules that are true at the current time. For each such rule, 

it derives the resolvent as a new reactive rule to be made true in the future. If 

there are no remaining antecedents in the rule, it derives the instantiated con-

sequent of the rule as an additional commitment. 

• Given the updated collection of all commitments, a choice of actions is made, 

selecting the actions from among alternative ways of making the commit-

ments true. The choice needs to satisfy all the constraints. 

 

In the logical semantics of KELPS, reactive rules and constraints are goals, and com-

putation attempts to make these goals true in the complete history of all states and 

events. For this purpose, all fluents, external events and actions in the history are rep-

resented with timestamps. 

 In generating the history, the causal laws, the external events and the fluents belong-

ing to the initial state all serve as beliefs, which determine the search space of histories 

that can be generated. In addition, as soon as an action is performed and becomes true, 

it also becomes a belief, as do all the fluents that then belong to the resulting state. 

In full LPS, beliefs can be defined more generally by logic programs. 

5 Combining Goals and Beliefs in LPS 

Logic programming (LP). A logic program consists of: 

 

• A set of facts3, represented by atomic sentences; and 

• A set of rules of the form conclusion if conditions, where the conclusion is 

an atomic formula, possibly containing variables, and the conditions are a 

 
2 Note that initiate and terminate are meta-predicates, which express a relationship between or-

dinary object-level predicates. 
3 In this paper, facts do not contain variables. So, for example sleep(P) initiates sleeping(P), where 

P is a variable, would not be a fact, but would be a rule without any conditions. This contrasts 

with the usual convention in LP that rules without conditions are called “facts”. 
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conjunction of atomic formulas and negations of atomic formulas. All var-

iables are universally quantified, with scope the entire rule.4  

 

Negative conditions are interpreted, by negation as failure, where not p means that p 
cannot be shown. Negation as failure can be understood as exploiting the closed world 

assumption that the logic program contains all the information about its subject matter. 

For example, it is natural to assume that a railway timetable contains all the information 

about train journeys within its geographical area. So, if it cannot be shown that there is 

a train connection between two places at a time, then there is no train connection be-

tween the two places at the time. 

 In LPS, negation needs to be stratified (or locally stratified [30]). This excludes rules, 

such as p if not p, where the conclusion of the rule depends negatively on itself. Logic 

programs conforming to this restriction have a unique minimal model, whose true facts 

coincide with the facts that are true in all the models of the program. This model can be 

understood as the intended model defined by the logic program. 

 

Logic programs in LPS. In LPS, logic programs are used to define: 

 

• Extensional fluents, which are defined by facts and intensional fluents, 

which are defined by rules. 

• Causal laws, in which the fluents that are initiated and terminated by events 

depend on fluents that are true in the current state. 

• Composite events, which include multiple, simpler events, combined in log-

ical and temporal relationships, and which include plans of actions. 

• Timeless auxiliary predicates, including arithmetic predicates, which do 

not depend upon time. 

 

Fluents. In LPS, there are two kinds of fluents: Extensional fluents, which represent 

“ground truths” or concrete facts, are defined by LP facts. Intensional fluents, which 

represent abstract concepts or other consequences of the concrete facts, are defined by 

LP rules. Extensional fluents are stored explicitly in the current state and are updated 

when they are initiated and terminated by events.  Intensional fluents are not stored 

explicitly but are derived as ramifications of changes to the extensional fluents.  

For example, the balance in a bank account might be stored in an extensional fluent, 

and the interest in the account might be represented by an intensional fluent: 

 

balance(bobAccount, 100). 
InterestRate(Account, 0) if balance(Account, Amount), Amount < 1000. 

 

If the balance in bobAccount changes due to any bank transfers, then any necessary 

changes to the interest rate will take place automatically. 

 
4 Or, equivalently, all variables in the conclusion are universally quantified with scope the entire 

rule, and all variables in the conditions that are not in the conclusion are existentially quantified 

with scope the conditions of the rule. 
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 Ironically, the same kind of automatic updating of an intensional fluent as the result 

of updating an extensional fluent is called reactivity in “reactive programming” [2]. 

 

Causal laws.   Causal laws with variables in KELPS are actually LP rules without any 

conditions. They are not expressive enough for realistic examples. Here is an example 

that shows the use of conditions in causal laws: 

 

  transferTo(Account, Amount) initiates balance(Account, NewBalance) 
  if balance(Account, OldBalance), NewBalance = OldBalance + Amount. 
 
  transferTo(Account, Amount) terminates balance(Account, OldBalance). 
  

Composite events. Similarly to the way that intensional fluents provide an abstract, 

higher-level view of concrete, extensional fluents, composite events provide an ab-

stract, higher-level view of simple events, including plans of actions. 

 For example, in formal grammar, a non-terminal symbol can be under-

stood as a composite event, defined in terms of terminal symbols and other non-termi-

nals. Terminal symbols are simple events, which cannot be decomposed into other 

events. For example, here saying is a composite event, and say is a simple event: 

 

saying(Agent, sentence) from T1 to T3 
if saying(Agent, nounphrase) from T1 to T2,  saying(Agent, verbphrase) from T2 to T3. 
 
saying(Agent, nounphrase) from T1 to T2   
if saying(Agent, noun) from T1 to T2. 
 
saying(Agent, verbphrase3) from T1 to T3   
if saying(Agent, verb) from T1 to T2, saying(Agent, nounphrase) from T2 to T3. 
 
saying(Agent, noun) from T1 to T2    if  say(Agent, donna) from T1 to T2. 
saying(Agent, noun) from T1 to T2 if say(Agent, logic) from T1 to T2. 
saying(Agent, verb)  from T1 to T2  if say(Agent, likes) from T1 to T2. 

 

The definition of saying in terms of say can be used both to recognize sentences and to 

generate sentences. A silly example can be found and executed online at 

https://demo.logicalcontracts.com/example/turingTest.pl 

 Important examples of the use of logic programs to define composite events are 

Golog [25], Openlog [8] and Transaction Logic [6]. Golog and Openlog both use frame 

axioms, Golog uses the situation calculus, whereas Openlog employs a procedural syn-

tax with a semantics and interpreter based on abductive logic programming. Transac-

tion Logic uses destructive change of state with a possible world semantics. 

 

The dining philosophers. The problem of the dining philosophers illustrates the com-

bination of logic programs, constraints and reactive rules to solve a classic problem in 

concurrent systems. The solution in LPS presented here can be found and executed 
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online at https://demo.logicalcontracts.com/p/new%20dining%20philosophers.pl. 

Similar solutions can be implemented in other reactive rule languages, such as Me-

tateM, suitably extended with logic programs, as suggested above. 

 There are five philosophers, sitting in a circle around a table with one fork to the left 

and one fork to the right of each philosopher. For simplicity, being a philosopher and 

sitting at the table with a pair of adjacent forks are both represented by timeless predi-

cates. They could equally well be represented by fluents that are true initially and never 

terminated. Here there is only one fluent, representing that a fork is on the table, avail-

able to be picked up by one or other of the two adjacent philosophers: 

 

philosopher(donna).  philosopher(bob).  philosopher(dania).    
philosopher(tania).    philosopher(nina). 
 
adjacent(fork1, donna, fork2).   adjacent(fork2, bob, fork3).  
adjacent(fork3, dania, fork4).    adjacent(fork4, tania, fork5). 
adjacent(fork5, nina, fork1). 
 
initially:  available(fork1),   available(fork2),   available(fork3),  

available(fork4),   available(fork5). 

 

The goal is represented by a reactive rule expressing that all philosophers must eventu-

ally dine, and the constraints that a fork cannot be picked up if it is not available and 

that two philosophers cannot pick up the same fork at the same time: 

 

  if philosopher(P)   then dine(P). 
 

false if pickup(P, F),    not available(F). 
false if pickup(P1, F),  pickup(P2, F),  P1 \= P2. 

 

Dining is defined by an LP rule as a composite event (or plan) of picking up two adja-

cent forks simultaneously, eating, and putting down the two forks simultaneously: 

 

dine(P) from T1 to T4 if   adjacent(F1, P, F2),  pickup(P, F1) from T1 to T2, 
   pickup(P, F2) from T1 to T2, eat(P) from T2 to T3, 
   putdown(P, F1) from T3 to T4,  putdown(P, F2) from T3 to T4. 

 

The causal laws defining change of state, namely that putting down a fork initiates its 

availability, and picking up a fork terminates its availability, are also expressed in LP: 

 

  putdown(P, F) initiates available(F).   pickup(P, F) terminates available(F). 
 

LPS solves the goal by generating the following sequence of actions: 

 
Time 1 to 2: nina and dania pick up their adjacent forks. 
Time 2 to 3: nina and dania eat. 

https://demo.logicalcontracts.com/p/new%20dining%20philosophers.pl
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Time 3 to 4: nina and dania put down their forks. 
Time 4 to 5: tania and donna pick up their adjacent forks. 
Time 5 to 6: tania and donna eat. 
Time 6 to 7: tania and donna put down their forks. 
Time 7 to 8: bob picks up his adjacent forks. 
Time 8 to 9: bob eats. 
Time 9 to 10: bob puts down his forks. 

 

Reasoning with logic programs. In general, logic programs can be used to reason ei-

ther forwards (or bottom-up) to derive new facts from existing facts, or backwards (or 

top-down) to reduce goals to subgoals. Most Datalog systems reason forwards, and all 

Prolog systems reason backwards. Like Prolog, LPS also reasons backwards, both to 

evaluate the truth of conditions in the antecedents of reactive rules, and to reduce goals 

to subgoals in the consequents of reactive rules. 

 However, the logical semantics of LPS is compatible with other reasoning strategies. 

In particular, the integrity checking method of [32] could be used to trigger reactive 

rules by reasoning forwards from updates and deriving facts or new rules whose con-

clusions unify with conditions of reactive rules. 

6 Combining Goals and Beliefs in Human Thinking 

I have argued that the distinction between goals and beliefs is a useful way to look at 

rule-based computer systems. It is also possible to argue that a similar combination of 

goals and beliefs can serve as a cognitive model of human thinking. The plausibility of 

the argument relies in part on the success of production systems in such cognitive mod-

els as Soar [24] and Act-R [1]. 

 The argument is complicated by the fact that it is easy to confuse different kinds of 

rules. The most famous example is probably the confusion about the meaning of con-

ditionals in the Wason selection task. 

  

The Wason selection task. In the standard version of the task, participants are given 

four cards lying on a table, with numbers showing on one side of the cards and letters 

showing on the other side. Participants are also given the rule: 

 

if a card has a vowel on one side, then it has an even number on the other side.  

 

The task is to determine which cards need to be turned over to test whether the rule is 

true or false. Typically, only 10 % of the participants reason correctly with the condi-

tional as a material implication in classical logic [36]. 

Cognitive psychologists have proposed a wide variety of explanations for human 

performance on the Wason task, including the explanation that human reasoning is per-

formed by domain-specific methods as opposed to general-purpose, logical reasoning. 

Arguably, a better explanation is that conditionals can represent goals or beliefs, and 



14  R. Kowalski 

that different logical reasoning methods apply, depending on whether a conditional is 

interpreted as a goal or as a belief [23, 34]. 

Stenning and van Lambalgen [34], in particular, argue that the response of most par-

ticipants in the selection task is consistent with their interpreting the conditional de-

scriptively as a logic program rule: Participants correctly turn over the card showing a 

vowel, to make sure that the card has an even number on the other side. They also turn 

over the card showing an even number, which is consistent with the closed world as-

sumption, but unnecessary with the open world assumption of classical logic. Moreo-

ver, they do not turn over the card showing an odd number, because this involves rea-

soning with negation in ways that are not common with logic program rules, even 

though it is necessary when reasoning with material implications in classical logic.  

Stenning and van Lambalgen argue that most participants in the selection task reason 

in accordance with classical logic if the conditional has a natural interpretation as a 

prescription. For example, given a scenario involving people drinking in a bar, most 

participants in the selection task will interpret the following conditional prescriptively; 

and they will reason with it correctly as a material implication: 

 

 If a person is drinking alcohol in a bar, then the person is over eighteen. 

 

They will not only check whether a person drinking alcohol is over eighteen, but they 

will also check whether a person who is under eighteen is drinking alcohol. They will 

not check what a person over eighteen is drinking. Nor will they check the age of a 

person drinking tap water.  

 

LPS as a cognitive model. These arguments about the two interpretations of condi-

tionals in psychological experiments support the view of LPS as a cognitive model, 

which combines beliefs, which are descriptive, with goals, which are prescriptive. 

However, they also show that LPS does not fully support the complete range of human 

thinking associated with satisfying goals as material implications. 

 LPS and other reactive rule languages can only make goals of the form if p then q 
true reactively, by making q true when p becomes true. They cannot make goals true 

proactively, by making q true before p becomes true. Nor can they make goals true 

preventatively, by making p false. For example, consider the goal: 

 

  If you leave home then the front door is locked. 

 

Given LP rules that initiate the fact that the door is locked by generating an action of 

locking the front door, LPS will make the goal true reactively, by performing the action 

of locking the door when leaving home. However, LPS will not attempt to make the 

goal true proactively, by locking the door before leaving home. Nor will it attempt to 

make the goal true preventatively, by not leaving home.  

LPS has been deliberately scaled down to eliminate these kinds of reasoning, to 

make it more efficient for routine computational activities. However, routine computa-

tion and other kinds of more intelligent reasoning are possible in abductive logic pro-

gramming (ALP) agents [17]. 
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ALP agents. ALP agents perform abductive reasoning, to generate hypotheses to make 

goals true in a model determined by the agents’ beliefs. Abductive reasoning in ALP 

includes both the generation of hypothetical actions, as in LPS, as well as the generation 

of hypothetical events, to explain observations of facts that are true in the environment. 

Beliefs in ALP are used reason backwards to reduce goals to subgoals. They are also 

used to reason forwards to derive logical consequences, both from given facts and from 

hypothetical facts. In particular, more generally than in LPS, beliefs are used to reason 

forwards from hypothetical actions to determine their logical consequences, and to de-

termine whether they might violate constraints or have other noteworthy side effects. 

This use of forward reasoning, together with estimates of the probability of circum-

stances that are outside the agent’s control, can help an agent to make better decisions 

and obtain better solutions for its goals. 

7 Conclusions 

The web-based implementation of LPS on SWISH [37] at https://demo.logicalcon-

tracts.com/ includes a variety of runnable and editable examples. These include the 

dining philosophers, the prisoner’s dilemma, rock-paper-scissors, sorting, map colour-

ing, toy blocks worlds, Conway’s game of life, self-driving cars and bank account trans-

actions. The implementation includes a declarative Prolog-based sublanguage for asso-

ciating images with fluents, animating the history computed by the program. 

 The implementation is still only a proof of concept, which needs to be developed 

further to make it viable for realistic applications. In particular, further work is needed 

to improve the strategy for choosing between alternatives, when there is a choice of 

different actions to satisfy the same goals. 

Improving the current implementation is only one direction for future work. It might 

also be useful to explore other directions, including how to use some of the features of 

LPS in other computer languages. For example, the way in which LPS (and MetateM) 

gives a logical semantics to reactive rules could also be used to give a logical semantics 

to suitably modified versions of other reactive rule languages. Moreover, the combina-

tion of goals and beliefs in LPS might also suggest ways in which reactive languages 

can be extended to include logic program beliefs, and ways in which LP languages 

might be extended to include constraint goals and reactive rule goals. 

Acknowledgments. Although the opinions expressed in this paper are my own, Fariba Sadri was 

an equal contributor to all the technical work. Miguel Calejo and Jacinto Dávila also made im-

portant contributions. Fariba, Veronica Dahl, Dov Gabbay, Daniel Harris, Aidan Hogan, Ken 

Satoh and Mario Wenzel made helpful comments on an early draft of the paper. The implemen-

tation of LPS at https://demo.logicalcontracts.com/ was supported by an EPSRC Pathways to 

Impact research grant. 

Disclosure of Interests. The author has no competing interests to declare that are relevant to the 

content of this article.  

https://demo.logicalcontracts.com/
https://demo.logicalcontracts.com/
https://demo.logicalcontracts.com/


16  R. Kowalski 

References 

1. Anderson, J.R.: The architecture of cognition. Psychology Press (2013) 

2. Bainomugisha, E., Carreton, A.L., Cutsem, T.V., Mostinckx, S., Meuter, W.D.: A survey on 

reactive programming. ACM Computing Surveys (CSUR) (2013) 

3. Baron, J.: Thinking and Deciding. Cambridge University Press (2023) 

4. Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M. (eds.): The Imperative Fu-

ture: Principles of Executable Temporal Logic. John Wiley & Sons, Inc. (1996) 

5. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative multiagent 

systems. In: Ninth international conference principles of knowledge representation and rea-

soning, pp. 255-265. Whistler, Canada (2004)  

6. Bonner, A.J., Kifer, M.: An overview of transaction logic. Theoretical Computer Science, 

133(2), 205-265 (1994) 

7. Bratman, M. E.: Intentions, Plans, and Practical Reason. Harvard University Press (1987) 

8. Dávila, J.A.: Openlog: A logic programming language based on abduction. In: International 

Conference on Principles and Practice of Declarative Programming, pp. 278-293. Springer, 

Berlin Heidelberg (1999) 

9. Davis, R., King, J.: An overview of production systems. Technical Report, STAN-CS-75-

524, AIM-27, Stanford University (1975) 

10. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A common semantic 

basis for BDI languages. In: International Workshop on Programming Multi-Agent Sys-

tems, pp. 124-139. Springer, Berlin Heidelberg (2007) 

11. De Silva, L., Meneguzzi, F.R., Logan, B.: BDI agent architectures: A survey. In: Proceed-

ings of the 29th International Joint Conference on Artificial Intelligence (IJCAI) (2020) 

12. Gabbay, D.: The declarative past and imperative future. In: Barringer, H. (ed.)  Proceedings 

of the Colloquium on Temporal Logic and Specifications, pp. 409-448. Vol. 398 of LNCS, 

Springer Verlag (1989)  

13. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Program-

ming 8, 231-274 (1987) 

14. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. Journal of logic and 

computation, 2(6), 719-770 (1992) 

15. Kifer, M.: Rule interchange format: The framework. In: International Conference on Web 

Reasoning and Rule Systems, pp. 1-11. Springer, Berlin Heidelberg (2008) 

16. Kowalski, R., Sadri, F.: Towards a unified agent architecture that combines rationality with 

reactivity. In: Proceedings of International Workshop  on Logic in Databases, pp. 131-150. 

Springer-Verlag,  LNCS 1154, (1996) 

17. Kowalski, R., Sadri, F.: Abductive logic programming agents with destructive data-

bases. Annals of Mathematics and Artificial Intelligence, 62(1), 129-158 (2011) 

18. Kowalski, R., Sadri, F.: A logic-based framework for reactive systems. In: RuleML 2012, 

LNCS 7438, pp. 1-15. Springer, Heidelberg (2012) 

19. Kowalski, R., Sadri, F.: Reactive computing as model generation. New Generation Compu-

ting, 33, 1, 33-67 (2015) 

20. Kowalski, R., Sadri, F.: Programming in logic without logic programming. TPLP, 16, 269-

295 (2016) 

21. Kowalski, R., Sadri, F., Calejo, M., Dávila, J.: Combining logic programming and impera-

tive programming in LPS. In: Prolog: The Next 50 Years, pp. 210-223. Cham: Springer Na-

ture, Switzerland (2023) 

22. Kowalski, R., Satoh, K.: Obligations as optimal goal satisfaction, Journal of Philosophical 

Logic, 47(4), 579-609 (2018) 



 Two Kinds of Rules: Goal Rules and Belief Rules 17 

23. Kowalski, R.: Computational Logic and Human Thinking: How to be Artificially Intelligent. 

Cambridge University Press (2011) 

24. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelligence. Ar-

tificial intelligence, 33(1), 1-64 (1987) 

25. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic program-

ming language for dynamic domains. The Journal of Logic Programming, 31(1), 59-83 

(1997) 

26. Nicolas, J.M., Gallaire, H.: Database: theory vs. interpretation. In: Gallaire, H., Minker, J. 

(eds.) Logic and Databases, Plenum, New York (1978) 

27. Object Management Group: Semantics of Business Vocabulary and Business Rules 

SBVR™ 1.5  2019 https://www.omg.org/spec/SBVR 

28. Paschke, A., Kozlenkov, A.: November. Rule-based event processing and reaction rules. 

In: International Workshop on Rules and Rule Markup Languages for the Semantic 

Web, pp. 53-66. Springer, Berlin Heidelberg (2009) 

29. Paschke, A.: ECA-LP / ECA-RuleML: A homogeneous event-condition-action logic pro-

gramming language, In: Int. Conf. on Rules and Rule Markup Languages for the Semantic 

Web (RuleML’06) (2006) 

30. Przymusinski, T.: On the declarative semantics of stratified deductive databases and logic 

programs. In: Foundations of Deductive Databases and Logic Programming, Morgan Kauf-

mann, J. Minker (Ed.) 193 – 216. (1987) 

31. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computable language. In: Eu-

ropean workshop on modelling autonomous agents in a multi-agent world, pp. 42-55 

Springer, Berlin Heidelberg (1996) 

32. Sadri, F., Kowalski, R.: A theorem-proving approach to database integrity. In: Foundations 

of deductive databases and logic programming, pp. 313-362. Morgan Kaufmann (1988) 

33. Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the Common 

Sense Law of Inertia. MIT Press (1997) 

34. Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT Press 

(2012)  

35. Thagard, P.: Mind: Introduction to Cognitive Science. Second Edition. MIT Press (2005) 

36. Wason, P.C.: Reasoning about a rule. The Quarterly Journal of Experimental Psychology, 

20:3, 273-281 (1968) 

37. Wielemaker, J., Riguzzi, F., Kowalski, R.A., Lager, T., Sadri, F., Calejo, M.: Using SWISH 

to realize interactive web-based tutorials for logic-based languages. Theory and Practice of 

Logic Programming, 19(2), 229-261 (2019)  

https://www.omg.org/spec/SBVR

