
Abstract 

Research in AI has built upon the tools and techniques of 
many different disciplines, including formal logic, probabil-
ity theory, decision theory, management science, linguistics 
and philosophy. However, the application of these disci-
plines in AI has necessitated the development of many en-
hancements and extensions. Among the most powerful of 
these are the methods of computational logic.  

I will argue that computational logic, embedded in an 
agent cycle, combines and improves upon both traditional 
logic and classical decision theory. I will also argue that 
many of its methods can be used, not only in AI, but also in 
ordinary life, to help people improve their own human intel-
ligence without the assistance of computers. 

1 Introduction 

Computational logic, like other kinds of logic, comes in 
many forms. In this paper, I will focus on the abductive 
logic programming (ALP) form of computational logic.  

I will argue that the ALP agent model, which embeds 
ALP in an agent cycle, is a powerful model of both descrip-
tive and normative thinking. As a descriptive model, it in-
cludes production systems as a special case; and as a norma-
tive model, it includes classical logic and is compatible with 
classical decision theory. 

These descriptive and normative properties of the ALP 
agent model make it a dual process theory, which combines 
both intuitive and deliberative thinking. Like most theories, 
dual process theories also come in many forms. But in one 
form, as Kahneman and Frederick [2002] put it, intuitive 
thinking “quickly proposes intuitive answers to judgement 
problems as they arise”, while deliberative thinking “moni-
tors the quality of these proposals, which it may endorse, 
correct, or override”. 

In this paper, I will be concerned mainly with the norma-
tive features of the ALP agent model, and on ways in which 
it can help us to improve our own human thinking and be-
haviour. I will focus, in particular, on ways it can help us 
both to communicate more effectively with other people and 
to make better decisions in our lives. I will argue that it pro-
vides a theoretical underpinning both for such guidelines on 
English writing style as [Williams, 1990, 1995], and for 

such advice on better decision-making as [Hammond et al., 
1999]. This paper is based upon [Kowalski, 2011], which 
contains the technical underpinnings of the ALP agent 
model, as well as references to related work. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The basic ALP agent cycle  

2 A Brief Introduction to ALP Agents 

The ALP agent model can be viewed as a variant of the BDI 
model, in which agents use their beliefs to satisfy their de-
sires by generating intentions, which are selected plans of 
actions. In ALP agents, beliefs and desires (or goals) are 
both represented as conditionals in the clausal form of logic. 
Beliefs are represented as logic programming clauses, and 
goals are represented as more general clauses, with the ex-
pressive power of full first-order logic (FOL). For example, 
the first sentence below expresses a goal, and the other four 
sentences express beliefs: 
 

If there is an emergency  
  then I deal with it myself or I get help or I escape. 

There is an emergency if there is a fire. 
I get help if I am on a train  
and I alert the driver of the train. 
I alert the driver of the train if I am on a train and  
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I press the alarm button. 
I am on a train. 
 

In this paper, goals are written conditions first, because, like 
production rules, they are always used to reason forwards. 
Beliefs are usually written conclusion first, because, like 
logic programs, they are usually used to reason backwards. 
But beliefs are sometimes written conditions first, because 
in ALP they can be used to reason backwards or forwards. 
In the semantics, it does not matter whether conditionals of 
any kind are written forwards or backwards. 

2.1 Model-theoretic and Operational Semantics 

Informally speaking, in the semantics of ALP agents, beliefs 
describe the world as the agent sees it, and goals describe 
the world as the agent would like it to be. In deductive data-
bases, beliefs represent the data, and goals represent data-
base queries and integrity constraints. 

More formally, in the model-theoretic semantics of the 
ALP agent model, the task of an agent having beliefs B, 
goals G and observations O is to generate a set ! of actions 
and assumptions about the world such that: 
 

 G " O is true in the minimal model 
determined by B " !.  

 
In the simple case where B is a set of Horn clauses, B " ! 
always has a unique minimal model. Other cases can be 
reduced to the Horn clause case, but these technicalities are 
not important here. 

In the operational semantics, ALP agents reason forwards 
from observations, and forwards and backwards from be-
liefs, to determine whether some instance of the conditions 
of a goal is true, and to derive the corresponding instance of 
the conclusion of the goal as an achievement goal, to make 
true. Forward reasoning from observations is like forward 
chaining in production systems, but it has the semantics of 
aiming to make the goal true by making its conclusion true 
whenever its conditions become true. Conditional goals 
understood in this way are also called maintenance goals. 

Achievement goals are solved by reasoning backwards, 
searching for a plan of actions whose execution solves the 
goals. Backwards reasoning is a form of goal-reduction, and 
executable actions are a special case of atomic sub-goals. 

Suppose, for example, that I observe there is a fire. I can 
then reason with the goal and beliefs given above, conclud-
ing by forward reasoning that there is an emergency, and 
deriving the achievement goal I deal with it myself or I get 
help or I escape. These three alternatives represent an initial 
search space. I can solve the achievement goal by reasoning 
backward, reducing the goal I get help to the consecutive 
sub-goals I alert the driver of the train and I press the alarm 
button. If this last sub-goal is an atomic action, then it can 
be executed directly. If the action succeeds, then it makes 
the achievement goal and this instance of the maintenance 
goal both true. 
 In the model-theoretic semantics, the agent needs to gen-
erate, not only actions, but also assumptions about the 

world. These assumptions explain the use of the term ab-
duction in ALP. Abduction is the generation of assumptions 
! to explain observations O. For example, if instead of ob-
serving fire, I observe there is smoke, and I believe: 
 

there is smoke if there is a fire. 
 
then backwards reasoning from the observation generates an 
assumption that there is a fire. Forward and backward rea-
soning then continue as before.  

In the model-theoretic and operational semantics, obser-
vations O and goals G are treated similarly, by reasoning 
forwards and backwards to generate actions and other as-
sumptions !, to make G " O true in the minimal model of 
the world determined by B " !. In the example above, 
given O = {there is smoke}, then ! = {there is a fire, I press 
the alarm button} together with B makes G and O both true. 
 The operational semantics is sound with respect to the 
model-theoretic semantics. With modest assumptions, it is 
also complete. 

2.2 Choosing the Best Solution  

There can be several, alternative ! that, together with B, 
make G and O both true. These ! can have different values, 
and the challenge for an intelligent agent is to find the best 
! possible within the computational resources available.  

In classical decision theory, the value of an action is 
measured by the expected utility of its consequences. In the 
philosophy of science, the value of an explanation is meas-
ured similarly in terms of its probability and explanatory 
power. (The more observations explained the better.) In 
ALP agents, the same measures can be used to evaluate both 
candidate actions and candidate explanations. In both cases, 
candidate assumptions in ! are evaluated by reasoning for-
wards to generate consequences of the assumptions in !.  

In ALP agents, the task of finding the best ! is incorpo-
rated into the search strategy for reasoning backwards to 
generate !, using some form of best-first search, like A* or 
branch-and-bound. This task is analogous to the much sim-
pler problem of conflict resolution in production systems. 

Conventional production systems avoid complex deci-
sion-theory and abductive reasoning mainly by compiling 
higher-level goals, beliefs and decisions into lower-level 
heuristics and stimulus-response associations. For example: 
 

if there is smoke and I am on a train  
then I press the alarm button. 

 
In ALP agents, such lower-level rules and higher-level 
thinking and decision-making can be combined, as in dual 
process theories, to get the best of both worlds.  

Like BDI agents, ALP agents interleave thinking with ob-
serving and acting, and do not need to construct complete 
plans before starting to act. However, whereas most BDI 
agents select and commit to a single plan at a time, ALP 
agents select and commit only to individual actions.  

Unlike most BDI agents, ALP agents can interleave the 
pursuit of several alternative plans, to improve the chances 



of success. For example, in an emergency an agent can both 
press the alarm button and try to escape more or less at the 
same time. Whether an ALP agent works on one plan or 
several alternative plans at a time depends on the search 
strategy. Depth-first search works on one plan at a time, but 
other search strategies are often more desirable. 

The ALP agent model can be used to develop artificial 
agents, but it can also be used as a descriptive model of hu-
man thinking and deciding. However, in the remainder of 
this paper I will argue that it can also be used as a normative 
(or prescriptive) model, which combines and improves upon 
both traditional logic and classical decision theory. 

The argument for basing a better decision theory on the 
ALP agent model depends on the claim that the clausal logic 
of ALP is a plausible model of the language of thought 
(LOT). In the next few sections, I will support this claim by 
comparing clausal logic with natural language. Moreover, I 
will argue that people can use this model to help them 
communicate with other people more clearly and more co-
herently. I will return to the use of the ALP agent model, to 
help people make better choices, in section 6.  

3 Clausal Logic as an Agent’s LOT 

In the philosophy of language, there are three main schools 
of thought regarding the relationship between language and 
thought: 

 
• The LOT is a private, language-like representation, 

which is independent of public, natural languages.  
• The LOT is a form of public language; and the natural 

language that we speak influences the way that we think. 
• Human thinking does not have a language-like structure. 
 
The ALP agent model belongs to the first school of thought, 
opposes the second school, but is compatible with the third. 
It opposes the second school, partly because the ALP logical 
model of thinking does not require the existence of natural 
languages and partly because, by AI standards, natural lan-
guage is too ambiguous and incoherent to serve as a useful 
model of human thinking. But it supports the third school, 
because, as we will see in section 4, it has a connectionist 
implementation, which conceals its linguistic nature.  

In AI, the notion that some form of logic is an agent’s 
LOT is strongly associated with GOFAI (good old fash-
ioned AI), which has been partly overshadowed in recent 
years by connectionist and Bayesian approaches. I will ar-
gue that the ALP model of thinking potentially reconciles 
the conflict between logic, connectionism and Bayesian 
approaches. This is because the clausal logic of ALP is 
much simpler than standard FOL, has a connectionist im-
plementation that accommodates Bayesian probability, and 
bears a similar relationship to standard FOL as the LOT 
bears to natural language.  

The first step of the argument is based on relevance the-
ory [Sperber and Wilson, 1986], which maintains that peo-
ple understand natural language by attempting to extract the 
most information for the least processing cost. It follows, as 
a corollary of the theory, that, the closer a communication is 

to its intended meaning, the easier it is for a reader (or lis-
tener) to extract that meaning of the communication. 

Thus one way to determine whether there is a LOT, and 
what it might look like, is to look at situations where it can 
be a matter of life or death that readers understand a com-
munication as intended and with as little effort as possible. 
We will see that, in the case of the London underground 
Emergency Notice, the communication is easy to understand 
because its English sentences are structured explicitly or 
implicitly as logical conditionals. 

3.1    What to do in an Emergency 

  Press the alarm signal button to alert the driver. 
  The driver will stop if any part of the train is in a station.  
  If not, the train will continue to the next station, 
  where help can more easily be given. 
  There is a 50 pound penalty for improper use. 
 

The first sentence is a goal-reduction procedure, whose 
underlying logic is a logic programming clause: 

 
the driver is alerted  
if you press the alarm signal button. 

 
The second sentence is explicitly in logic programming 
clausal form, but is ambiguous; and one of its conditions has 
been omitted. Arguably, its intended meaning is: 
 
  the driver will stop the train in a station  
  if the driver is alerted  

and any part of the train is in the station.  
 
The logic of the third sentence is two sentences, say: 
 

the driver will stop the train in the next station 
  if the driver is alerted  

and not any part of the train is in a station.  
 
  help can more easily be given in an emergency 
  if the train is in a station. 
 
Presumably, the relative clause beginning with where adds 
an extra conclusion to the sentence rather than an extra con-
dition. If the relative clause were meant to add an extra con-
dition, then this would mean that the driver will not neces-
sarily stop the train at the next station, but at the next station 
where help can more easily be given. 

The fourth sentence is also a conditional, but in disguise: 
 
  You may be liable to a £50 penalty 
  if you use the alarm signal button improperly. 
 
Arguably, the Emergency Notice is relatively easy to under-
stand, because its expression is relatively close to its in-
tended meaning in the LOT. Moreover, it is coherent, be-
cause the consecutive sentences are logically connected both 
with one another and with the reader’s likely pre-existing 
goals and beliefs about what to do in an emergency. 



One reason the English sentences are not closer to their 
intended meaning is because omitting conditions and other 
details sometimes promotes coherence. Williams [1990, 
1995] emphasizes another way of achieving coherence: by 
placing old, familiar ideas at the beginning of sentences and 
new ideas at their end. In a succession of sentences, a new 
idea at the end of one sentence becomes an old idea that can 
be put at the beginning of the next sentence.  
 The first three sentences of the Emergency Notice il-
lustrate Williams’ advice. Here is another example, which 
incidentally illustrates the kind of reasoning that is catered 
for in the ALP agent model: 
 
   It is raining. 
   If it is raining and you go out without an umbrella, 
    then you will get wet. 
   If you get wet, then you may catch a cold. 
   If you catch a cold, then you will be sorry. 
   You don’t want to be sorry. 
   So you do not want to go out without an umbrella. 
 
I will argue in section 4 that the kind of coherence il-
lustrated in these sentences can be understood in terms of 
logical connections between the conclusions and conditions 
of sentences. 

3.2 Natural Language and the LOT 

In contrast with the problem of understanding communica-
tions that are designed to be as clear and coherent as possi-
ble, the problem of understanding ordinary, every-day natu-
ral language communications is much harder. This harder 
problem has two parts. The first part is to identify the in-
tended meaning of the communication. For example, to un-
derstand the ambiguous English sentence “he gave her the 
book” it is necessary to identify the individuals, say John 
and Mary, referred to by “he” and “her”. 

The second part is to represent the intended meaning in a 
canonical form, so that equivalent communications are rep-
resented in the same way. For example, the following Eng-
lish sentences all have the same meaning: 

 
John gave Mary the book. 
John gave the book to Mary.  

 Mary received the book from John. 
 The book was given to Mary by John. 
 
The use of a canonical form in a mental representation 
makes it easier to reason with the representation later. In this 
case, the common meaning of the different sentences could 
be represented either in the logical form give(john, mary, 
book) or in the more precise form: 
 
 event(e1000).     act(e1000, giving).    

agent(e1000, john).   recipient(e1000, mary).  
object(e1000, book21).   isa(book21, book). 

 
The more precise form is one way of distinguishing between 
similar events and similar books. 

It follows from the tenets of relevance theory that, if you 
want your communications to be easy to understand, then 
you should express them in a form that is close to their men-
tal representations. They should be clear, so that extracting 
their meaning is easy, and they should be simple, so that 
their meaning is close to the canonical form in which they 
are represented. 

For example, don’t say  “Every bird which belongs to 
class aves has feathers ”. But say: 
 
  every bird has feathers. 
  every bird belongs to class aves. 
or     a bird has feathers if the bird belongs to class aves. 
 
depending on what you mean. In written English, the differ-
ent meanings can be signaled by the presence or absence of 
commas before and after the relative clause beginning with 
the word “which”. In clausal logic, they are represented by 
the difference between conclusions and conditions.  

Examples such as these suggest that the difference and 
the relationship between conditions and conclusions are a 
fundamental feature of the LOT, and they add further sup-
port to the thesis that something like the conditional form of 
clausal logic is a plausible candidate for the LOT. 

3.3 Standard FOL and Clausal Logic 

Various forms of logic have been used for knowledge repre-
sentation in AI, and rival clausal logic as a candidate for the 
LOT. But compared with standard FOL, not only does 
clausal logic stand out because of its simple, conditional 
form, but it is just as powerful. It compensates for the lack 
of explicit existential quantifiers by employing Skolemiza-
tion to give individuals that are supposed to exist a name, 
like the names e1000 and book21 above. In another respect, 
it is also more powerful than FOL, when it is used in con-
junction with the minimal model semantics. 

Reasoning is also much simpler in clausal logic than in 
standard FOL, and for the most part can be reduced to just 
forward and backward reasoning. In conjunction with the 
minimal model semantics, reasoning in clausal logic also 
includes default reasoning with negation as failure.  
 Arguably, the relationship between standard FOL and 
clausal form is similar to the relationship between natural 
language and the LOT. In both cases, inferences can be par-
titioned into two kinds, performed in two stages. The first 
kind converts sentences into canonical form, and the second 
kind reasons with the resulting canonical form. 

In FOL, the first kind of inference rule (including both 
Skolemization and the replacement of not(A or B) by not A 
and not B)  can be viewed as converting sentences into 
clausal form. The second kind (including the inference of 
P(t) from !XP(X) ) can be viewed as reasoning with clausal 
form, and is built into forward and backward reasoning.  

As we have seen, in natural language, there are many 
ways of expressing the same information. Similarly in FOL, 
there are infinitely many, arbitrarily complex ways of ex-
pressing information equivalently.  For example, to express 



that all birds have feathers and john is a bird, we can write, 
not only !X(bird(X)"feathers(X)) # bird(john), but also:  
 
¬($X((¬feathers(X)%¬bird(john))#(bird(X)%¬bird(john)))). 
 
In clausal form there is only one way of expressing the same 
information canonically, in this example in the form of two 
clauses: feathers(X) if bird(X) and bird(john). 

Thus clausal logic stands in relation to standard FOL, as 
the LOT stands in relation to natural language. In the same 
way that the LOT can be regarded as a simplified and ca-
nonical form of unambiguous sentences in natural language, 
clausal logic is a simplified, canonical form of FOL. This 
analogy further supports the argument for viewing clausal 
logic as a formalisation of the LOT.  

Certainly in the case of artificial agents in AI, clausal 
logic has proved to be a practical knowledge representation 
language, independent from any language an agent might 
use for communicating with other agents. In the case of hu-
man agents, clausal logic can also help people communicate 
more effectively, by expressing their communications in a 
form that is closer to the LOT. 

Clausal logic can help people communicate more coher-
ently, by helping them to link new information with old 
information. This model of coherence exploits the fact that 
clausal logic lends itself to a connectionist representation, in 
which information is stored in a connection graph of goals 
and beliefs [Kowalski, 1975, 1979, 2011]. 

4 A Connectionist Form of Clausal Logic  

Similar to the way that clausal logic implements FOL, by 
first converting sentences into canonical form, the connec-
tion graph proof procedure implements clausal logic, by pre-
computing links between conditions and conclusions, and 
by labeling links with their unifying substitutions. These 
links can then be activated later, either forwards or back-
wards, as and when the need arises. Links that are activated 
frequently can be compiled into shortcuts, which achieve the 
same effects more directly, in the manner of heuristic rules 
and stimulus-response associations. 

Although clausal logic is a symbolic representation, once 
all the links and their unifying substitutions have been com-
puted, the names of the predicate symbols no longer matter. 
All further reasoning can be reduced to the activation of the 
links, and to the generation of new clauses, whose new links 
are inherited from the links of their parent clauses. In many 
cases, parent clauses can be deleted or over-written, when 
all their links have been activated. 

Any link can be selected for activation at any time. But 
most of the time, it makes sense to activate links only when 
new clauses are added to the graph as the result of new ob-
servations, including observations of communications. 

The activation of links can be guided by assigning differ-
ent strengths to different observations and goals, reflecting 
their relative importance (or utility). In addition, different 
weights can be assigned to different links, reflecting statisti-
cal information about how often their activation has con-
tributed to useful outcomes in the past.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A simplified connection graph of goals and beliefs.  No-

tice that only A, F and H are “grounded” in the world. B, C and D 

are mental concepts that help the agent organize its thoughts and 

regulate its behaviour. The status of E and G is unspecified. Notice 

too that the same effect can be obtained more directly by means of 

the lower-level goal if A then ((E and F) or (G and H)). 

 

The strength of observations and goals can be propagated 
throughout the graph in proportion to the weights on the 
links. The resulting proof procedure, which activates links 
with the current highest weighted strength, is similar to the 
activation networks of [Maes, 1990]. Moreover, it automati-
cally implements an ALP style of forward and backward 
reasoning, combined with a form of best-first search. 

The connection graph model of thinking can give the mis-
leading impression that thinking does not have a linguistic 
or logical character at all. But the difference between think-
ing in connection graphs and reasoning in clausal logic is 
nothing other than the conventional computer science dis-
tinction between an optimized, low-level implementation, 
which is close to the hardware, and a high-level representa-
tion, which is close to the problem domain.  

The connection graph model of the mind adds further 
support to the argument that thinking takes place in a LOT 
that is independent from natural language. The LOT may 
facilitate the development of natural language, but it does 
not depend upon its prior existence. 

The connection graph model also suggests that expressing 
thoughts in natural language is like decompiling low-level 
programs into higher-level program specifications. In com-
puting, decompiling programs is hard. This may help to 
explain why it is often hard to put our thoughts into words.  

5 Representing Uncertainty 

The links in connection graphs include internal links, which 
organize the agent’s thoughts, and external links, which 
ground the agent’s thoughts in reality. The external links are 
activated by observations and by the agent’s own actions. 
They may also include links to unobserved properties of the 
world. The agent can make assumptions about these proper-
ties, and can attempt to judge their probabilities. 

C if A 

Goal:      if   C then  D 

D if E and F B if A 

D if G and H 



 The probability that an assumption is true contributes to 
the probability that an agent’s actions will have a particular 
outcome. For example: 
 
  You will be rich if you buy a lottery ticket  

and your number is chosen. 
  It will rain if you do a rain dance 

and the gods are pleased. 
   
You can control your own actions (like buying a ticket or 
doing a rain dance), but you cannot always control the ac-
tions of others or the state of the world (your number is cho-
sen or the gods are pleased). At best, you might be able 
only to judge the probability that the world is or will be in a 
particular state (one in a million?). David Poole [1997] has 
shown that associating probabilities with such assumptions 
gives ALP the expressive power of Bayesian networks.  

6 Better Decision-making 

Uncertainty about the state of the world is only one of the 
complications contributing to the problem of deciding what 
to do. To reduce this complexity, classical decision theory 
makes simplifying assumptions. The most restrictive of 
these is the assumption that all of the alternatives to be de-
cided between are given in advance. For example, if you are 
looking for a new job, it would assume that all of the job 
options are given, and it would focus on the problem of de-
ciding which of the given options is most likely to result in 
the best outcome. 
 But as [Keeney, 1992; Hammond et al., 1999; Carlson et 
al., 2008]] and other decision analysts point out, this as-
sumption is not only unrealistic as a descriptive model of 
human decision making, but it is unhelpful as a normative 
(or prescriptive) model: To make a good decision between 
alternatives, it is necessary first to establish the goals (or 
problem) that motivate the alternatives. These goals might 
come from explicitly represented maintenance goals or they 
might be hidden implicitly in lower-level heuristic rules or 
stimulus-response associations.  

For example, you might receive an offer of a new job 
when you are not looking for one, and you may be tempted 
to limit your options simply to deciding between accepting 
or rejecting the offer. But if you step back and think about 
the broader context of your goals, then you might generate 
other alternatives, like perhaps using the job offer to negoti-
ate an improvement in your current employment. 

Decision analysis provides informal strategies for making 
better choices by paying greater attention to the goals that 
motivate the alternatives. The ALP agent model provides a 
simple framework, which can help to formalize such strate-
gies, by integrating them with a comprehensive model of 
human thinking. In particular, it shows how the same crite-
ria of expected utility, which are used in classical decision 
theory to choose between alternatives, can also be used to 
guide the search for alternatives in some form of best-first 
search. Moreover, it shows how heuristics and even stimu-
lus-responses can be integrated with logical thinking and 
decision theory in the spirit of dual process models. 

7 Conclusions 

I have sketched two ways in which the ALP agent model, 
building upon many different developments in Artificial 
Intelligence, can be used by ordinary people to improve 
their own human intelligence. It can help them express their 
thoughts more clearly and coherently, and it can help them 
make better choices. I believe that the application of such 
techniques is a fruitful direction of research for the future, 
and a promising area for collaboration between researchers 
in AI and researchers in more humanistic disciplines.  
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