
CENTRAL GOVERNMENT PENSION RULES AS A LOGIC PROGRAM

K.K. BAJAJ, R.K. DUBASH
KBCS NODAL CENTRE, DEPARTMENT OF ELECTRONICS,

LODI ROAD,A BLOCK, CGO COMPLEX,NEW DELHI
E-MAIL : +uunet!shakti!vikram!kbcs

AND
ROBERT KOWALSKI

DEPARTMENT OF COMPUTING, IMPERIAL COLLEGE OF
SCIENCE & TECHNOLOGY, UNIVERSITY OF LONDON, LONDON, ENGLAND

E-MAIL : shakti I uunet ! NSFNET-RELAY. AC. UK I doc. imperial, ac. uk ! rak

Abstract

An automated legal reasoning system for the Central
Civil Services (CCS) Pension Rules is under development.
This paper discusses the use of logic programming for
representing the knowledge contained in the rules and how
the logic program can be used as an expert system. The
emphasis of the paper is in the use of temporal reasoning in
the laws under consideration, the separation of the logic
part of the program from the user data interface and the
interaction of the user through forms with the knowledge
base. The importance of the interplay of the propositional
logic analysis of the rules with the entity-relationship
analysis for the determinmation of predicates and parameters
is also discused.

1. Introduction

Logic programming is one of the knowledge
representation paradigms. Although it has received
considerable attention as a basic pillar for fifth
generation computer system ever since the Japanese project
was launched almost a decade ago, it is only recently that
application development has picked up using logic
programming for representing knowledge. In the area of
automated legal reasoning systems, one of the first
applications of logic programming was for the British
Nationality Act (I). The group at Imperial College has used
logic programming for other applications such as the social
security disbursements under the Department of Health and
social Security (DHSS) Program (2). Logic programming has
been found to be an effective scheme for representing legal
knowledge.

Logic programs represent knowledge in the form of
statements

A if B and ... B , n > o
1 n

* Any correspondence may be addressed to K.K. Bajaj.

20

Where A and B are all atomic formulae. The conditions
B can also be negative atomic formulae. Most knowledge
i

can be represented in the form of such statements and hence
by logic programs.

In this paper we present the use of logic programming
for representing the knowledge contained in Central Civil
Services (CCS) Pension Rules and how the logic program can
be used as an expert system. A similar automated reasoning
system for import policy legislation is also under
development and has been reported elsewhere (3). The two
applications present technical challenges in logic
programming which are quite diverse in nature. While the
latter has comparatively shallow reasoning power, wider
breadth of data, larger data base, more complex user

interface, relatively simpler English with fewer ambiguities
in language, the former offers the possibilities of deeper
reasoning, more complex English language, complex temporal
reasoning. The applications demonstrate the power of logic
programming in different domains of reasoning in law.

The CCS Pension Rules are applicable to most government
employees. These rules determine the number of years which
qualify for pension, regulate the amounts of pensions,
decide on the classes of pensions and conditions governing
their grant. Determination and authorisation of the amounts
of pension and gratuity, of family pension and death-cum-
retirement gratuity in respect of government servants dying
while in service are also as per the rules laid down in the
CCS pension rules. In addition, the rules also deal with
sanction of family pension and residuary gratuity in respect
of deceased pensioners, commutation of pension etc. There
are 89 pension rules which are sub-divided into 252 sub-
rules. Over and above these, there are 338 Govt. of India
decisions in the form of Office Memoranda and Circulars
which are in the form of case laws or new rules. These
decisions have been announced from time to time taking into
account the problems and hardships caused to a section of
employees, by the main rules. The rules, sub-rules and govt.
decisions for Commutation Rules are 34,73 and 23 whereas in
the case of Extraordinary Pension Rules the numbers are
13,29 and 23 respectively.

We are at present writing the section on Qualifying
Service as a logic program. This is the largest of the
sections and relatively more complex in the formulation of
the statutory laws. It contains 20 rules, 45 sub-rules and
95 Govt. of India decisions as case laws and/or new rules.

21

The main emphasis of this paper is in the use of
temporal reasoning in the laws under consideration, the
separation of the logic part of the program from the user
data interface, the interaction of the user through forms
with the knowledge base, the interplay of the propositional
logic analysis of the rules with the entity-relationship
analysis for the determination of predicates, parameters and
conditions.

2. Logic Program Implementation Methodology

The program was first implemented in PROLOG
without any considerations of logic and data interface
problems. This mixing of user interface with knowledge
representation led to complications in data management and
logic management. At times for certain data values one could
not be sure of the results of the program. It was
difficult to ensure the correctness of the logic with data
capture from the user and data manipulation interspersed all
over the program.

The problem was then analysed de novo with Logic
first. During the propositional logic analysis of the rules
a strict discipline was maintained in keeping away from
PROLOG and implementation problems. The idea was to
identify appropriate propositional logic predicates. Soon
it was discovered, that while one could identify the
predicates to a reasonable degree of accuracy, the same was
not true of conditions and parameters. In fact the choice
of parameters seemed to affect clarity in so far as
conditions were concerned.

We then tried the entity-relationship analysis of
the variables involved to identify simple relations in the
form of tables. The interplay of entity-relationship
analysis with the propositional logic analysis led to the
identification of minimum predicates with appropriate
conditions and parameters. The logic of the problem could
thus be completed. This is elaborated in the next section.

The analysis of the problem thus far was carried
out without any worry of user interface with respect to data
input. The program could be tested by supplying the
required data as prolog facts. The user data interface
(UDI) was designed separately so as to keep the logic of
rules totally independent. A similar approach has been
followed in the work on import export policy as well. It is
proposed to develop a general shell as a user data interface
for this class of problems.

The UDI captures the data at the start of the session.
Simple forms have been designed for this purpose, which are
similar to the manual forms being used by the offices.
Necessary details concerning qualifying service, emoluments
etc. are obtained through the filling of these soft forms.

22

Consultation with the knowledge base or the rules base
begins at this stage and the program returns the results of
consultation.

Finally, it is proposed to add a simple Explanation
Module to the program. This will refer back to the logic
program to pick up the applicable clauses and subclauses for
a given situation and provide structured English of the
clause as an explanation. We also propose to keep the
English text of the corresponding clause verbatim from the
book of rules. A prolog subprogram containing rule numbers
and titles forms the simplest explanation module. There is
thus a three stage approach to the automated reasoning
system.

It may be noted here that unlike APES, the data is not
being captured from the user interactively. The data is
captured at the initial stage and then consulting with the
logic begins. Thus this approach is an alternative to APES
architecture. It is a general architecture applicable to a
large body of problems. It is being used in the Import
Policy problem referred to above. The main body of rules is
a clean logic program free from user/data interaction. UDI,
Logic and Explanation modules are three independent but
interacting subprograms, of the logic program.

3. Analysis of the Logicproblem

The rules on qualifying service relate to commencement
of qualifying service, conditions subject to which service
qualifies etc. The pension rules clearly specify how to
treat the time spent on probation, whether pre-retirement
civil service in the case of re-employed government servants
counts and if so, under what conditions. Like this all
aspects of service (leave, suspension, removal,
reinstatement, resignation etc.) are covered in the section
on qualifying service. It is obvious that the basic idea is
to establish the initial date from which service should be
counted in a given case. The uninterrupted service time
period is expected as a result of application of this set of
rules. Thus the concept of time is very crucial to this
problem. The first-order logic makes it posible to take
care of time explicitly thereby making temporal reasoning
practical in a real life knowledge and inferencing problem.

As with a problem of this kind, we took the rules as
laid down in the book in sequence and analysed with respect
to logic. The entity relationship analysis was carried out
subsequently which showed that the formulation of predicates
was not entirely correct. This is best illustrated through
an example. Rule 13 on qualifying service is as follows :

13. " Subject to the provisions of these rules, qualifying
service of a Government servant shall commence from the
date he takes charge of the post to which he is first

23

appointed either substantively or in an officiating or
temporary capacity :

Provided that officiating or temporary service is
followed without interruption by substantive
appointment in the same or another service or post:

Provided further that -

(a) in the case of a Government servant in a
Group 'D' service or post who held a lien or
a suspended lien on a permanent pensionable
post prior to the 17th April, 1950, service
rendered before attaining the age of sixteen
years shall not count for any purpose, and

(b) in the case of a Government servant not
covered by clause (a), service rendered
before attaining the age of eighteen years
shall not count, except for compensation
gratuity."

Predicates formulated for "commencement of qualifying
service" included :

start-of-service (rule-no,Post,Tl)
end-of-service(rule-no,Post,T2)

The entity relationship analysis and the need for
reapplicability of predicates to later rules, however, led
us to replace the "end-of-service(rule-no,Post,T)" predicate
by "follows (Post, Postl)"

This was due to the fact that end of one service means
start of another. With the former predicate we are storing
redundant information and have to use 'start-of-service'
after 'every end-of-service' The 'follows' predicate,
however, makes explicit the fact that the time of occurrence
of the post corresponding to the second parameter is
immediately after the post represented by the first
parameter.

Direct representation of the text of rule 13 with
respect to time using propositional logic analysis gave a
representation such as

qual-serv(13,TI,T2) :-

(type(Post,officiating);type(Post,temporary)),
start-of-service(Tl),
end-of-service(T2).

24

However, with entity relationship analysis we handled the
minimum age limitation in the predicate through the
formulation given below :

real-start(13,Post,Ti,T2) : -

service (Post,Ti,T2),
start-qual-service(Post,T0),
(T0<TI, T=TI) or (T0>TI, T=T0)

The predicate start-qual-serv(13,Post,T) initially
incorporating information regarding actual start of service
so as not to count service before minimum age was also
suitably amended as follows, owing to formulation of the
generally applicable predicate real-start(13,Post,T) as
defined previously. The entire rule 13 is formulated as
follows :

start-qual-serv (13,Post,T) :-
(type(Post,officiating);/*or*/type(Post,temporary),
follows (Post, Postl), type (Postl, substantive),
service (Post, TI,T2),
(exception-a(Post,Age,Tl),age-check(Age,16,T,Tl);/*or*/
exception-b(Post, Age,Tl),age-check (Age, 18,T,TI)).

exception-a(Post,A,Tl) :-
group(Post,D),lien(Post, 17-apr-1950)
service (Post,Ti,T2),age (TI,A).

exception-b(Post,A,Tl) :-

not exception-a(Post,Age,Tl),
service(Post,Ti,T2),age(Ti,Age).

age-check(Age,Threshold-age,T,Tl) :-

((Age < Threshold-age,T is T1 + Threshold-age - Age);
(Age>=Threshold-age,T = TI)

The entity relating to 'Post' of an employee was
initially to be a predicate allowing access to details such
as group (A,B,C,D), organisation, type (apprentice,
probationary, etc.). It was subsequently decided on the
basis of simplicity and usability to make Post a structured
term with all these attributes and have three predicates to
access the components of this term given the post as a
parameter. These three predicates would then be group,
type, organisation, each taking as input the Post and giving
as output the appropriate result. The structured term Post
has been defined as

Post (Group, Title, Type, Organisation, Pay-scale, TI,T2)

We will consider one more rule and its formulation in
Prolog before we leave this subject to discuss the more

25

specific and interesting aspects of CCS Pension Rules.
14.1 alongwith its Logic is given below :

Rule

14.1 "The service of a Government servant shall not
qualify unless his duties and pay are regulated by the
Government, or under conditions determined by the
Government."

qual-serv (14.l,Post,Ti,T2) :-

(regulated-by-govt (Post) ;/*or*/conditions-of-
post (Post)),
(paid (Post,TI,T2,consolidated-fund);/*or*/
paid (Post,TI,T2,1ocal-fund)),
not(non-pensionable (Post,Ti,T2),not qual-
serV(_,Post,Ti,T2)),
real-start (Post,Tl).

There are several pension rules which are in the form
of negative conclusions, which is like any other piece of
legislation. Logic programs are known to represent knowledge
in the form of implications

A if B and ...B , n>o
i n

Negative conclusions have been shown to be represented as
implications by adding extra conditions or transforming some
of the existing conditions (4). A negated condition is
deemed to hold if the corresponding positive condition can
be shown to fail to hold - this is negation by failure
(NBF). Negative statements are handled through NBF in the
condition. We will examine some of the rules with negative
conclusions.

16. "Service as an apprentive shall not qualify, except in
the case of S.A.S. apprentice in the Indian Audit and
Accounts Department or the Defence Accounts Department"

This statement is handled through suitable transformation of
the conditions. The equivalent statement is, "service as an
apprentice shall qualify, only in the case of S.A.S.
apprentice in the Indian Audit and Accounts Department or
the Defence Accounts Department. After the transformation
this becomes

qual-serv (16,Post,Ti,T2) :-

type (Post,apprentice),(organisation
Indian-audit-and-account);organisation
(Post,defence-accounts))

(Post,

Another rule with a negative conclusion is rule

26

25.2 "The period of interruption in service between date of
dismissal, removal or compulsory retirement, as the
case may be, and the date of reinstatement, and the
period of suspension, if any, shall not count as
qualifying service unless regularised as duty or leave
by a specific order of the authority which passed the
reinstatement."

This can also be transformed to fit in logic programming.
The equivalent statement is :

"The period of interruption in service between the date
of dismissal, removal or compulsory retirement, as the case
may be, and the date of reinstatment, and the period of
suspension, if any, shall count as qualifying service if
regularised as duty or leave by a specific order of the
authority which passed the order of reinstatement." This
gets easily translated into
predicate logic as :

qual-serv (25.2,Post,Tl, T2) :-
date-of-dismissal (Post,Tl),
date-of-reinstatement (Post,T2)
suspension-period-regularised (Post,Ti,T2)

We may also note here that rule 14.1 above is also an
example of a negative conclusion and it has been represented
through appropriate transformation of the conditions. We
can safely conclude that the treatment of negative
conclusions in logic programs for representing legislation
as pioneered by Kowalski and others (4) is found to be
adequate for this problem. We have had similar experience
while representing the Indian import policy as a logic
program.

We will now briefly consider the examples of those
rules which exhibit dependence on time and/or result in
computation of elapsed time as a result of the occurrence of
certain events as laid down in the rules. This will
illustrate the power of first-order logic in temporal
reasoning.

The entire rule 13 as explained earlier in the context
of the formulation of predicates is an example of temporal
reasoning. The date of commencement of service is to be
counted from the date of joining subject to an arbitrary
date 17 April 1950 and the condition of whether the employee
was under 18 or 16 years age depending upon his category.
The age of the employee can be explicitly handled and
checked against 18 or 16 years with respect to the date 17
April 1950 and a date arrived at unambiguously from where
the service is to be counted. This rule has already been
shown in its proper formulation in this section.

27

Similarly, the predicate 'follows (Post i, Post 2)'
also captures the movement of time in conjunction with other
predicates. The rules applicable to an employee who works in
a post Postl from time T1 to T2 and in any break can be well
represented through follows (Postl, Post2) :-

service (Postl,Ti,T2),service (Post2,T2,T3)

4. User Data Interface

The data capture from the user is completed before
consultation begins with the expert system. This is in
contrast to the APES architecture (5) where data is captured
interactively as consultation proceeds. In standard expert
system shells also the data is obtained interactively from
the user while the rules are tested by the expert-system.

The UDI has been developed based on forms approach
which tries to present the users with forms on the screen.
The entire information that needs to be collected from the
user for computing pension, has been divided into a number
of forms which are displayed on demand through a menu. The
information relates to employee's personal details,
retirement details, military service etc. The manual form
has been categorised into the following screens which are
shown as options to choose from a menu. The screens which
must necessarily be filled by the user are shown with an
asterisk.

i,
2.
3.
4.
5.
6.
7.

Personal Details *
Retirment Details *
Military Service
Autonomous Organisation Service
Qualifying Service *
Govt. Dues and NOC action *
Commutation option

The requisite information is thus supplied by the user
through these forms. After consultation with the Pension
Rules knowledge base appropriate results are displayed on
the screen.

5. Explanation Subsystem

The user can ask for explanation in which case the
Explanation Subsystem is consulted by the expert system.
The explanation part reconsults the knowledge base for the
rules applicable to the case under consideration which have
been saved after the initial consultation.

For the present only a simplified treatment of
explanation is envisaged. The rule numbers alongwith their
english text are stored which can be reproduced as part of
explanation. The explanation subsystem can also interact
with the knowledge base in which case structured text of the

28

rule can be presented which will be based on the way the
rule has been written in propositional logic.

This portion of the expert system is still in
preliminary stages.

6. Conclusion

We have presented the development of the CCS Pension
Rules as a logic proram. The formulation of the rules in
logic has clearly shown the need for interaction of
propositional logic analysis with entity relationship
analysis. The three stage approach of data capture through
a UDI, knowledge base in the form of rules represented in
logic, and explanation subsystem has been seen to be
extremely efficient and useful from the viewpoint of
practical development. The logic part of rules and the user
interaction can be kept separately, which makes it easier to
maintain the knowledge base. The UDI with its provision to
capture the entire data from the user through screens at the
initial stage has been shown to be a general architecture
which is an alternative to APES. We hope this formulation
will help us to show that the subsequent legislation can be
framed without any ambiguities and in simple English.

REFERENCES

I.

2.

Sergot MT, Sadri F, Kowalski RA, Krivaczek
F, Hammond P and Cory H T (1986) ; 'The British'
Nationality Act as a Logic Program" CACM Vol 29
No. 5, pp 370-386

Bench-Capon J.J.M., Robinson G.O., Routen T.W.,
Sergot M.J. (May, 1989),"Large Scale Applications
in Law : A formalism for Supplementary Benefit
Legislation", Proceedings of the First
International Conference on AI and Law, Boston, pp
190-198.

3.

4.

5.

Bajaj K.K., Dubash R.K., Kamble A.S., Kowalski R
A, Murthy B K, Rajgopalan D. (September 1989) :
"Indian Import Policy and Procedures as a Logic
Program" KBCS Nodal Centre, Department of
Electronics, Govt. of India, New Delhi

Kowalski R.A. (June 1989) : "The treatment of
negation in logic programs for representing
legislation" Second International Conference on AI
and law Vancouver, Canada

Hammond P., Sergot M.J. (1984), APES Reference
Manual. Logic Based Systems Ltd., Richmond,
Surrey, England, 1984

