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ABSTRACT
Logical English (LE) is syntactic sugar for logic programs, which
are collections of facts and rules of the form conclusion if
conditions. In this paper, we focus on legal applications of LE
and the use of meta- (or higher-order) predicates to represent
propositional attitudes, such as permission, obligation,
notification of a message and designation of the occurrence of an
event. We also illustrate an integration of LE with SWISH, the
online implementation of SWI Prolog.

CCS CONCEPTS
• Software and its engineering → Very high level languages;
Syntax; Semantics; • Computing methodologies → Natural
language processing; Knowledge representation and reasoning;
• Applied computing → Law.
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1 Introduction

Most computer languages today are computer-oriented languages,
which can be understood by humans only with special training. In
contrast, Logical English (LE) [20, 21] is both a general-purpose,
Turing-complete computer language, and a form of English,
which can be understood by humans without any training in
computing, logic or advanced mathematics.

LE is an English-like syntax for logic programs, and is inspired
in part by the observation that well-written legal documents often
have the form of logic programs [35, 18]. In this paper, we
present the current state of LE and its integration with SWISH
[39], an online implementation of SWI Prolog.

Our long-term aspiration for LE is for it to contribute to the
development of more human-understandable, explainable,
general-purpose computer languages of the future. But in the
short term, we focus on legal applications, which potentially
include expert systems, computable contracts, smart contracts on
blockchains, rules as code and plain English legal writing. In this
paper, we illustrate the current state of the SWISH
implementation of LE, in the context of examples inspired by the

Figure 1: Clause 1.-(1) of the British Nationality Act 1981 in
LE on SWISH.

ISDA Master Agreement [21] and the loan agreement of Flood
and Goodenough [12].

But first, we illustrate LE with an example from the British
Nationality Act 1981 (BNA) [35]. Here is the original English
expression of the very first clause of the BNA:

1.-(1) A person born in the United Kingdom after
commencement shall be a British citizen if at the time of the
birth his father or mother is

(a) a British citizen; or
(b) settled in the United Kingdom.

Figure 1 shows an LE representation of 1.-(1). The main
difference between the two representations is that the conditions
concerning a person’s time and place of birth are expressed as
separate conditions in LE, but are embedded in the conclusion in
the original English .

In the LE representation, each “template” in lines 6-12 of
Figure 1 declares a fixed predicate together with its variable
arguments. The predicate is a simple or compound verb
interspersed with arguments that are simple noun phrases
delimited by a pair of asterisks *. The position of an argument in
a template indicates its semantic role in relation to the predicate
of the template.

The variable nature of an argument is signalled by an indefinite
article “a” or “an” followed by a common noun or by an adjective
followed by a common noun. In the current implementation, all
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variables are purely mnemonic. In the future, we plan to use
common nouns to indicate the types of variables, and different
adjectives attached to the common noun to indicate different
variables of the same type.

A template can be instantiated by replacing an argument of the
template by a noun phrase or some other expression referring to
an individual, including a symbol, as in a person P is a parent of
a person Q if P is the mother of Q. If the template contains the
keyword “that”, then the argument following the keyword can be
replaced by an instance of a template. For example, the template
*a person* says that *a sentence*, can be instantiated to Alice
says that Mary says that John is the father of Alice.

The “knowledge base” named “citizenship” in lines 15-21
contains a rule representing 1.-(1). The conclusion (on lines
14-15) and conditions (on lines 16-21) of the rule are instances of
the templates. Indentation indicates the relative priorities of the
logical connectives “and” and “or”.

A key feature of LE is its representation of variables, building
on the fact that all variables in rules are universally quantified.
The indefinite article “a” or “an” at the beginning of a noun
phrase introduces the first occurrence of a variable in a rule, and
the same noun phrase with the indefinite article replaced by the
definite article “the” is used for all later occurrences of the same
variable in the same rule. To reduce ambiguity, LE has no
pronouns, such as “he”, “she” or “it”.

Despite its English-like appearance, the only linguistic
knowledge that LE incorporates about English is:

● An expression of the form conclusion if conditions is a
syntactically correct sentence if conclusion is a
syntactically correct sentence and conditions is a boolean
combination of syntactically correct sentences.

● Two noun phrases have the same meaning if they differ
only in an initial article a, an or the.

As a matter of style, wherever possible, every English verb is
associated with only a single template and is expressed in the
singular and in the present tense. Every common noun is
expressed in the singular and in the common case. This style
avoids the need for linguistic knowledge about subject-verb
agreement. The elimination of the past and future tense of verbs
is made possible by eliminating the notion of current time, which
constantly changes, and by replacing it with a timeline, which
never changes.

In the next section, we illustrate the current state of the SWISH
implementation of LE with a variant of an example from [21].
which investigated the use of LE to standardise the wording of
the Automatic Early Termination clauses of International Swaps
and Derivatives Association (ISDA) Agreements. The example
illustrates the use of meta- (or higher-order) predicates to
represent permission, notification and designation of the
occurrence of an event.

In the following section, we present an example from the loan
agreement of Flood and Goodenough [12]. The loan agreement
illustrates the use of meta-predicates to represent obligation,
failure to fulfill an obligation, and curing a failure before a
deadline.

2 Permission to designate an event occurrence
The Early Termination clause 6(a) of an ISDA Master Agreement
allows a non-defaulting party to terminate a contract following an
event of default by the other party of the contract:

If at any time an Event of Default with respect to a party (the
“Defaulting Party”) has occurred and is then continuing, the
other party (the “Non-defaulting Party”) may, by not more
than 20 days notice to the Defaulting Party specifying the
relevant Event of Default, designate a day not earlier than the
day such notice is effective as an Early Termination Date in
respect of all outstanding Transactions. If, however,
“Automatic Early Termination” is specified in the Schedule
as applying to a party, then ….

The following LE rule, which is a variant of the representation in
[21] shows how the exception, signalled by the English words
“If, however”, is incorporated into the representation of 6(a) as an
additional condition expressing that the exception does not apply:

it is permitted that a party designates
that Early Termination in respect of all outstanding Transactions
occurs at a time T3

if  an Event of Default occurs with respect to an other party
at a time T1
and the Event is continuing at a time T2
and the party gives notice to the other party at T2

that the Event occurs at T1
and T2 is on or before T3
and T3 and T2 are at most 20 days apart
and it is not the case that

the Schedule specifies that Automatic Early Termination
applies to the other party for the Event of Default.

The rule illustrates the use of that to embed one sentence inside
another. This embedding, which is called meta-programming in
logic programming (LP), is similar to the use of higher-order
functions in functional programming and to the use of modal
operators in modal logic. François Bry [6] discusses several
semantics for meta-programming in LP, and proposes a novel
semantics that is a conservative extension of first-order logic.

The predicates used in the rule are declared by the templates:
it is permitted that *an eventuality*,
*a party* designates that *an eventuality*,
*an event* occurs at *a time*.
*an event* of Default occurs with respect to *a party* at
*a time*,
*an event* is continuing at *a time*,
*a party* gives notice to *a party* at *a time* that
*a message*,
*a date* is on or before *another date*,
*a time* and *a time* are at most *a number* days apart, the
Schedule specifies that *a specification*,
Automatic Early Termination applies to *a party* for
*an event* of Default.

Here *an eventuality*, *a message* and *a specification* are
meta-variables, which can be instantiated by an instance of any
template. With the aid of the templates, the parser expands the
rule into the following Prolog clause (where a variable is
represented by an underscore _ followed by a number):
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Figure 2: A scenario, query and answer. Scenarios and queries are included in the left pane along with the templates and
knowledge base. The lower right pane specifies the problem in Prolog syntax, The upper right pane displays the solution.

It_is_permitted_that(designates_at_that(_229076,_229078,
occurs_at(Early_Termination_in_respect_of_all_outstanding_
Transactions,_229086))):-

of_Default_occurs_with_respect_to_at
(_229114,_229116,_229118),
is_continuing_at(_229114,_229078)),
gives_notice_to_at_that(_229076,_229116,_229078,occurs_
at(_229114,_229118))),is_on_or_before(_229078,_229086),
is_not_more_than_days_after(_229086,20,_229078),
not the_Schedule_specifies_that(Automatic_Early_
Termination_applies_to_for_of_Default(_229116,_229114)).

Figure 2 shows the use of the rule to answer query one with
scenario one.

The expression it is permitted that in this example resembles the
permission operator of deontic logic. But in this context, it is
better understood as expressing that an agent is empowered to
bring about a state of affairs[15]. In the context of 6(a), the logic
of empowerment can be expressed as a rule:

an event occurs at a time T2
if it is permitted that a party designates at a time T1

that the event occurs at T2
and the party designates at T1 that the event occurs at T2.

Notice that there is no restriction here on the relationship between
the times T1 and T2. In particular, T1 can be later than T2 in the
case of a retroactive event. For example, the annulment at T2 of a
marriage at T1 retroactively terminates the marriage at T1. In the
case of 6(a), the Early Termination Date T3 is not retroactive.

3  Curing a failure to fulfil an obligation
The loan agreement of Flood and Goodenough (FG) [12]
exemplifies many of the characteristics of legal contracts,
including the treatment of obligations, violations and remedies.
Here is the first part of Clause 5, subclause(a) and the first part of
Clause 6:

5. Events of Default: The Borrower will be in default under this
agreement upon the occurrence of any of the following events
or conditions, provided they shall remain uncured within a
period of two days after notice is given to Borrower by Lender
of their occurrence (such an uncured event an “Event of
Default”):

(a) Borrower shall fail to make timely payment of any
amount due to Lender hereunder; ...(b);...(c);...(d)....

A default will be cured by the Borrower (i) remedying the
potential event of default and (ii) giving effective notice of such
remedy to the Lender. ....
6. Acceleration on Default: Upon the occurrence of an Event of
Default all outstanding payments under this agreement will
become immediately due and payable, ….

The wording of the agreement suggests that an Event of Default
occurs when one of the events (a)-(d) occurs. But this would
mean that the Event of Default is retroactive, and that the
acceleration of all outstanding payments in Clause 6 would have
to take place in the past, with the borrower foreseeing the future.

Clearly, for Clause 6 to make sense, the Event of Default must
occur at the end of the two day period for curing a potential
default, in which case the original event of kind (a)-(d) is better
understood as failure to fulfil an obligation.  Here is 5(a) in LE:

the borrower fails on a date to fulfil an obligation
if the obligation is

that the borrower pays an amount to the lender on the date
and it is not the case that

the borrower pays the amount to the lender on the date.

the borrower defaults on a date D3
if the borrower must fulfil an obligation
and the borrower fails on a date D0 to fulfil the obligation
and the lender gives notice to the borrower on a date D1

that the borrower fails on D0 to fulfil the obligation
and D3 is 2 days after D1
and it is not the case that

the borrower cures on a date D2 the failure of the obligation
and D2 is on or before D3.

the borrower cures on a date D the failure of an obligation
if the obligation is

that the borrower pays an amount to the lender on a date D0
and the borrower pays the amount to the lender
on a date D1
and the borrower gives notice to the lender on a date D2

that the borrower pays the amount to the lender on D1
and D is the latest of D1 and D2.

Suppose the lender lends the borrower $1000, and the borrower
must repay the lender in two yearly instalments:

the borrower must fulfil obligation1.
obligation1 is that the borrower pays 550 to the lender on
201 5-06-01.
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Figure 3: In scenario two, the borrower gives notice on 2016-06-04, and the answer to query one with scenario one is “false”

the borrower must fulfil obligation2.
obligation2 is that the borrower pays 525 to the lender on
2016-06-01.

Figure 3 shows the execution of a scenario in which the
borrower fails to make the first and second payments on time,
but the lender notices only the second failure. The borrower
attempts to cure the second failure by making the second
payment, but gives the lender notice one day late.

4 Relationships with other work
LE is a controlled natural language (CNL), which is similar in
spirit to ACE [10] and PENG [34], which are also
implemented in Prolog. But, different from ACE and PENG,
which are syntactic sugar for first-order logic, LE is syntactic
sugar for a variant of pure Prolog, which is a non-monotonic,
meta (or higher-order) logic. The relationship of LE to this
variant of Prolog is similar to the relationship of PENGASP[11]
to the LP language ASP.

Compared with most other CNL languages, the main
distinguishing feature of LE is its use of templates and its lack
of an English dictionary and grammar. As a result, LE is
closer to the computer-executable LP language into which it is
translated, whereas the linguistically-based approaches are
closer to ordinary natural language. Arguably, the LE
approach reduces ambiguity and misunderstanding. The
challenge is to ensure that this simplified LE approach is
acceptable to users in practice; and if it is not, to extend LE
with additional linguistic knowledge in small increments until
it reaches an adequate level of acceptability.

LE can also be regarded as a domain-specific language
(DSL) for legal applications. In this regard, it resembles such
domain-specific languages as Blawx [27] and Oracle Policy
Modelling [24], which are also rooted in LP.

In addition, LE has features in common with CNLs that do
not have LP foundations. For example, RegelSpraak [8],
which has been used to automate tax law within the Dutch Tax
Administration over the last decade, was initially based upon
the RuleSpeak approach [40], which deliberately avoided the
use of if … then… syntax. However, over the years, The
language has evolved so that all rules have the LP-like form
“result if conditions”. Whereas in RegelSpraak “the results
and conditions are connected using carefully composed Dutch
phrases to maximize the resemblance to a natural sentence”,
in LE the template declarations and syntactic constraints are
used to maximise the resemblance to natural English.

Similarly, LE also resembles the natural language (NL)
syntax [2] for query-answering in Cyc, a massive knowledge
base of general common-sense rules and assertions. Like LE,
the Cyc NL uses English-like templates to represent
predicates, and it uses universally quantified rules to represent
knowledge. Like LE, the Cyc NL also uses determiners to
introduce variables. But because rules are written in the form
if conditions then conclusion, it uses the determiner some to
introduce a variable and the determiners the and that for later
occurrences of the same variable in the same rule. Because the
Cyc knowledge base is already written in a formal logical
language, the main use of the Cyc NL is to represent queries
and explanations for answers derived by means of the Cyc
inference engine. In contrast, the main intended use of LE is
to represent logic programs.

LE inherits its semantics [19] from the logic of LP. This is a
non-monotonic logic with default negation and meta-level
reasoning [5, 6]. In contrast with modal logic [28] for
representing such deontic modalities as permission and
obligation, LE uses meta-predicates to represent propositional
attitudes more generally.

5 Discussion
Our goals for LE are that it be:

● a machine-oriented computer language,
● a human-oriented logic, and
● a controlled but natural form of English.

We have addressed the first goal by translating LE into LP,
employing implicit quantifiers and infix predicates as
syntactic sugar. We have addressed the second goal by
building upon the logical semantics of LP with
meta-predicates. The third goal is potentially the most
challenging. So far, it has been addressed primarily by the use
of templates, which have proved to be natural and sufficient
for several real legal documents.

LE is still under development. The current implementation
includes many, but not all of the features envisioned in [21].
The most important missing feature is the treatment of
common nouns as types. This absence of types reflects the
untyped nature of most logic programming languages
including Prolog.

As already mentioned, LE employs virtually no linguistic
knowledge about English grammar and vocabulary. The
incorporation of even a small amount of such knowledge
might go a long way towards making LE more readable.

4



In addition to such features of the language itself, the current
implementation also lacks adequate editing, error detection
and debugging tools. The current system in SWISH provides
access to the Prolog debugger, which is very useful, not only
for debugging, but also for explaining reasoning steps.
Rendering such explanations in LE is one of the most
important extensions to be introduced in the future.

Without good editing, error detecting and debugging tools,
writing LE is difficult. To help with these difficulties, we plan
to use the templates to guide the writer by means of a
predictive editor. But, even with the help of such tools, we
anticipate that writing readable LE will still be difficult. To
help writers construct well-written, readable LE, we need a
larger corpus of well-written examples, to serve as a guide to
writing style.

In our experience, well-written legal examples, and some of
the many legal applications written in pure Prolog [1, 3, 4, 6,
13, 14, 17, 22, 23, 25, 26, 29, 30, 31, 32, 33, 35, 36, 37, 38]
are a good place to look for practical applications and
inspiration for LE. In some cases, implementing legal
applications in LE might even make them easier for humans
to understand. Perhaps, more importantly, it might make them
harder to misunderstand.
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