
Logical English for Legal Applications
Robert Kowalski

Department of Computing
Imperial College London

London, UK
rak@doc.ic.ac.uk

Jacinto Dávila
Contratos Lógicos. C.A. and
Universidad de Los Andes

Mérida, Venezuela
jd@logicalcontracts.com

Miguel Calejo
logicalcontracts.com

Lisbon, Portugal
mc@logicalcontracts.com

ABSTRACT
Logical English (LE) is syntactic sugar for logic programs, which
are collections of facts and rules of the form conclusion if
conditions. In this paper, we focus on legal applications of LE
and the use of meta- (or higher-order) predicates to represent
propositional attitudes, such as permission, obligation,
notification of a message and designation of the occurrence of an
event. We also illustrate an integration of LE with SWISH, the
online implementation of SWI Prolog.

CCS CONCEPTS
• Software and its engineering → Very high level languages;
Syntax; Semantics; • Computing methodologies → Natural
language processing; Knowledge representation and reasoning;
• Applied computing → Law.

KEYWORDS
Logical English, logic programming, language of law

ACM Reference format:

Robert Kowalski, Jacinto Dávila and Miguel Calejo. 2021. Logical
English for Legal Applications. In Workshop on Explainable AI in
Finance.

1 Introduction

Most computer languages today are computer-oriented languages,
which can be understood by humans only with special training. In
contrast, Logical English (LE) [20, 21] is both a general-purpose,
Turing-complete computer language, and a form of English,
which can be understood by humans without any training in
computing, logic or advanced mathematics.

LE is an English-like syntax for logic programs, and is inspired
in part by the observation that well-written legal documents often
have the form of logic programs [35, 18]. In this paper, we
present the current state of LE and its integration with SWISH
[39], an online implementation of SWI Prolog.

Our long-term aspiration for LE is for it to contribute to the
development of more human-understandable, explainable,
general-purpose computer languages of the future. But in the
short term, we focus on legal applications, which potentially
include expert systems, computable contracts, smart contracts on
blockchains, rules as code and plain English legal writing. In this
paper, we illustrate the current state of the SWISH
implementation of LE, in the context of examples inspired by the

Figure 1: Clause 1.-(1) of the British Nationality Act 1981 in
LE on SWISH.

ISDA Master Agreement [21] and the loan agreement of Flood
and Goodenough [12].

But first, we illustrate LE with an example from the British
Nationality Act 1981 (BNA) [35]. Here is the original English
expression of the very first clause of the BNA:

1.-(1) A person born in the United Kingdom after
commencement shall be a British citizen if at the time of the
birth his father or mother is

(a) a British citizen; or
(b) settled in the United Kingdom.

Figure 1 shows an LE representation of 1.-(1). The main
difference between the two representations is that the conditions
concerning a person’s time and place of birth are expressed as
separate conditions in LE, but are embedded in the conclusion in
the original English .

In the LE representation, each “template” in lines 6-12 of
Figure 1 declares a fixed predicate together with its variable
arguments. The predicate is a simple or compound verb
interspersed with arguments that are simple noun phrases
delimited by a pair of asterisks *. The position of an argument in
a template indicates its semantic role in relation to the predicate
of the template.

The variable nature of an argument is signalled by an indefinite
article “a” or “an” followed by a common noun or by an adjective
followed by a common noun. In the current implementation, all

1

mailto:email@email.com

variables are purely mnemonic. In the future, we plan to use
common nouns to indicate the types of variables, and different
adjectives attached to the common noun to indicate different
variables of the same type.

A template can be instantiated by replacing an argument of the
template by a noun phrase or some other expression referring to
an individual, including a symbol, as in a person P is a parent of
a person Q if P is the mother of Q. If the template contains the
keyword “that”, then the argument following the keyword can be
replaced by an instance of a template. For example, the template
a person says that *a sentence*, can be instantiated to Alice
says that Mary says that John is the father of Alice.

The “knowledge base” named “citizenship” in lines 15-21
contains a rule representing 1.-(1). The conclusion (on lines
14-15) and conditions (on lines 16-21) of the rule are instances of
the templates. Indentation indicates the relative priorities of the
logical connectives “and” and “or”.

A key feature of LE is its representation of variables, building
on the fact that all variables in rules are universally quantified.
The indefinite article “a” or “an” at the beginning of a noun
phrase introduces the first occurrence of a variable in a rule, and
the same noun phrase with the indefinite article replaced by the
definite article “the” is used for all later occurrences of the same
variable in the same rule. To reduce ambiguity, LE has no
pronouns, such as “he”, “she” or “it”.

Despite its English-like appearance, the only linguistic
knowledge that LE incorporates about English is:

● An expression of the form conclusion if conditions is a
syntactically correct sentence if conclusion is a
syntactically correct sentence and conditions is a boolean
combination of syntactically correct sentences.

● Two noun phrases have the same meaning if they differ
only in an initial article a, an or the.

As a matter of style, wherever possible, every English verb is
associated with only a single template and is expressed in the
singular and in the present tense. Every common noun is
expressed in the singular and in the common case. This style
avoids the need for linguistic knowledge about subject-verb
agreement. The elimination of the past and future tense of verbs
is made possible by eliminating the notion of current time, which
constantly changes, and by replacing it with a timeline, which
never changes.

In the next section, we illustrate the current state of the SWISH
implementation of LE with a variant of an example from [21].
which investigated the use of LE to standardise the wording of
the Automatic Early Termination clauses of International Swaps
and Derivatives Association (ISDA) Agreements. The example
illustrates the use of meta- (or higher-order) predicates to
represent permission, notification and designation of the
occurrence of an event.

In the following section, we present an example from the loan
agreement of Flood and Goodenough [12]. The loan agreement
illustrates the use of meta-predicates to represent obligation,
failure to fulfill an obligation, and curing a failure before a
deadline.

2 Permission to designate an event occurrence
The Early Termination clause 6(a) of an ISDA Master Agreement
allows a non-defaulting party to terminate a contract following an
event of default by the other party of the contract:

If at any time an Event of Default with respect to a party (the
“Defaulting Party”) has occurred and is then continuing, the
other party (the “Non-defaulting Party”) may, by not more
than 20 days notice to the Defaulting Party specifying the
relevant Event of Default, designate a day not earlier than the
day such notice is effective as an Early Termination Date in
respect of all outstanding Transactions. If, however,
“Automatic Early Termination” is specified in the Schedule
as applying to a party, then ….

The following LE rule, which is a variant of the representation in
[21] shows how the exception, signalled by the English words
“If, however”, is incorporated into the representation of 6(a) as an
additional condition expressing that the exception does not apply:

it is permitted that a party designates
that Early Termination in respect of all outstanding Transactions
occurs at a time T3

if an Event of Default occurs with respect to an other party
at a time T1
and the Event is continuing at a time T2
and the party gives notice to the other party at T2

that the Event occurs at T1
and T2 is on or before T3
and T3 and T2 are at most 20 days apart
and it is not the case that

the Schedule specifies that Automatic Early Termination
applies to the other party for the Event of Default.

The rule illustrates the use of that to embed one sentence inside
another. This embedding, which is called meta-programming in
logic programming (LP), is similar to the use of higher-order
functions in functional programming and to the use of modal
operators in modal logic. François Bry [6] discusses several
semantics for meta-programming in LP, and proposes a novel
semantics that is a conservative extension of first-order logic.

The predicates used in the rule are declared by the templates:
it is permitted that *an eventuality*,
a party designates that *an eventuality*,
an event occurs at *a time*.
an event of Default occurs with respect to *a party* at
a time,
an event is continuing at *a time*,
a party gives notice to *a party* at *a time* that
a message,
a date is on or before *another date*,
a time and *a time* are at most *a number* days apart, the
Schedule specifies that *a specification*,
Automatic Early Termination applies to *a party* for
an event of Default.

Here *an eventuality*, *a message* and *a specification* are
meta-variables, which can be instantiated by an instance of any
template. With the aid of the templates, the parser expands the
rule into the following Prolog clause (where a variable is
represented by an underscore _ followed by a number):

2

Figure 2: A scenario, query and answer. Scenarios and queries are included in the left pane along with the templates and
knowledge base. The lower right pane specifies the problem in Prolog syntax, The upper right pane displays the solution.

It_is_permitted_that(designates_at_that(_229076,_229078,
occurs_at(Early_Termination_in_respect_of_all_outstanding_
Transactions,_229086))):-

of_Default_occurs_with_respect_to_at
(_229114,_229116,_229118),
is_continuing_at(_229114,_229078)),
gives_notice_to_at_that(_229076,_229116,_229078,occurs_
at(_229114,_229118))),is_on_or_before(_229078,_229086),
is_not_more_than_days_after(_229086,20,_229078),
not the_Schedule_specifies_that(Automatic_Early_
Termination_applies_to_for_of_Default(_229116,_229114)).

Figure 2 shows the use of the rule to answer query one with
scenario one.

The expression it is permitted that in this example resembles the
permission operator of deontic logic. But in this context, it is
better understood as expressing that an agent is empowered to
bring about a state of affairs[15]. In the context of 6(a), the logic
of empowerment can be expressed as a rule:

an event occurs at a time T2
if it is permitted that a party designates at a time T1

that the event occurs at T2
and the party designates at T1 that the event occurs at T2.

Notice that there is no restriction here on the relationship between
the times T1 and T2. In particular, T1 can be later than T2 in the
case of a retroactive event. For example, the annulment at T2 of a
marriage at T1 retroactively terminates the marriage at T1. In the
case of 6(a), the Early Termination Date T3 is not retroactive.

3  Curing a failure to fulfil an obligation
The loan agreement of Flood and Goodenough (FG) [12]
exemplifies many of the characteristics of legal contracts,
including the treatment of obligations, violations and remedies.
Here is the first part of Clause 5, subclause(a) and the first part of
Clause 6:

5. Events of Default: The Borrower will be in default under this
agreement upon the occurrence of any of the following events
or conditions, provided they shall remain uncured within a
period of two days after notice is given to Borrower by Lender
of their occurrence (such an uncured event an “Event of
Default”):

(a) Borrower shall fail to make timely payment of any
amount due to Lender hereunder; ...(b);...(c);...(d)....

A default will be cured by the Borrower (i) remedying the
potential event of default and (ii) giving effective notice of such
remedy to the Lender.
6. Acceleration on Default: Upon the occurrence of an Event of
Default all outstanding payments under this agreement will
become immediately due and payable, ….

The wording of the agreement suggests that an Event of Default
occurs when one of the events (a)-(d) occurs. But this would
mean that the Event of Default is retroactive, and that the
acceleration of all outstanding payments in Clause 6 would have
to take place in the past, with the borrower foreseeing the future.

Clearly, for Clause 6 to make sense, the Event of Default must
occur at the end of the two day period for curing a potential
default, in which case the original event of kind (a)-(d) is better
understood as failure to fulfil an obligation. Here is 5(a) in LE:

the borrower fails on a date to fulfil an obligation
if the obligation is

that the borrower pays an amount to the lender on the date
and it is not the case that

the borrower pays the amount to the lender on the date.

the borrower defaults on a date D3
if the borrower must fulfil an obligation
and the borrower fails on a date D0 to fulfil the obligation
and the lender gives notice to the borrower on a date D1

that the borrower fails on D0 to fulfil the obligation
and D3 is 2 days after D1
and it is not the case that

the borrower cures on a date D2 the failure of the obligation
and D2 is on or before D3.

the borrower cures on a date D the failure of an obligation
if the obligation is

that the borrower pays an amount to the lender on a date D0
and the borrower pays the amount to the lender
on a date D1
and the borrower gives notice to the lender on a date D2

that the borrower pays the amount to the lender on D1
and D is the latest of D1 and D2.

Suppose the lender lends the borrower $1000, and the borrower
must repay the lender in two yearly instalments:

the borrower must fulfil obligation1.
obligation1 is that the borrower pays 550 to the lender on
201 5-06-01.

3

Figure 3: In scenario two, the borrower gives notice on 2016-06-04, and the answer to query one with scenario one is “false”

the borrower must fulfil obligation2.
obligation2 is that the borrower pays 525 to the lender on
2016-06-01.

Figure 3 shows the execution of a scenario in which the
borrower fails to make the first and second payments on time,
but the lender notices only the second failure. The borrower
attempts to cure the second failure by making the second
payment, but gives the lender notice one day late.

4 Relationships with other work
LE is a controlled natural language (CNL), which is similar in
spirit to ACE [10] and PENG [34], which are also
implemented in Prolog. But, different from ACE and PENG,
which are syntactic sugar for first-order logic, LE is syntactic
sugar for a variant of pure Prolog, which is a non-monotonic,
meta (or higher-order) logic. The relationship of LE to this
variant of Prolog is similar to the relationship of PENGASP[11]
to the LP language ASP.

Compared with most other CNL languages, the main
distinguishing feature of LE is its use of templates and its lack
of an English dictionary and grammar. As a result, LE is
closer to the computer-executable LP language into which it is
translated, whereas the linguistically-based approaches are
closer to ordinary natural language. Arguably, the LE
approach reduces ambiguity and misunderstanding. The
challenge is to ensure that this simplified LE approach is
acceptable to users in practice; and if it is not, to extend LE
with additional linguistic knowledge in small increments until
it reaches an adequate level of acceptability.

LE can also be regarded as a domain-specific language
(DSL) for legal applications. In this regard, it resembles such
domain-specific languages as Blawx [27] and Oracle Policy
Modelling [24], which are also rooted in LP.

In addition, LE has features in common with CNLs that do
not have LP foundations. For example, RegelSpraak [8],
which has been used to automate tax law within the Dutch Tax
Administration over the last decade, was initially based upon
the RuleSpeak approach [40], which deliberately avoided the
use of if … then… syntax. However, over the years, The
language has evolved so that all rules have the LP-like form
“result if conditions”. Whereas in RegelSpraak “the results
and conditions are connected using carefully composed Dutch
phrases to maximize the resemblance to a natural sentence”,
in LE the template declarations and syntactic constraints are
used to maximise the resemblance to natural English.

Similarly, LE also resembles the natural language (NL)
syntax [2] for query-answering in Cyc, a massive knowledge
base of general common-sense rules and assertions. Like LE,
the Cyc NL uses English-like templates to represent
predicates, and it uses universally quantified rules to represent
knowledge. Like LE, the Cyc NL also uses determiners to
introduce variables. But because rules are written in the form
if conditions then conclusion, it uses the determiner some to
introduce a variable and the determiners the and that for later
occurrences of the same variable in the same rule. Because the
Cyc knowledge base is already written in a formal logical
language, the main use of the Cyc NL is to represent queries
and explanations for answers derived by means of the Cyc
inference engine. In contrast, the main intended use of LE is
to represent logic programs.

LE inherits its semantics [19] from the logic of LP. This is a
non-monotonic logic with default negation and meta-level
reasoning [5, 6]. In contrast with modal logic [28] for
representing such deontic modalities as permission and
obligation, LE uses meta-predicates to represent propositional
attitudes more generally.

5 Discussion
Our goals for LE are that it be:

● a machine-oriented computer language,
● a human-oriented logic, and
● a controlled but natural form of English.

We have addressed the first goal by translating LE into LP,
employing implicit quantifiers and infix predicates as
syntactic sugar. We have addressed the second goal by
building upon the logical semantics of LP with
meta-predicates. The third goal is potentially the most
challenging. So far, it has been addressed primarily by the use
of templates, which have proved to be natural and sufficient
for several real legal documents.

LE is still under development. The current implementation
includes many, but not all of the features envisioned in [21].
The most important missing feature is the treatment of
common nouns as types. This absence of types reflects the
untyped nature of most logic programming languages
including Prolog.

As already mentioned, LE employs virtually no linguistic
knowledge about English grammar and vocabulary. The
incorporation of even a small amount of such knowledge
might go a long way towards making LE more readable.

4

In addition to such features of the language itself, the current
implementation also lacks adequate editing, error detection
and debugging tools. The current system in SWISH provides
access to the Prolog debugger, which is very useful, not only
for debugging, but also for explaining reasoning steps.
Rendering such explanations in LE is one of the most
important extensions to be introduced in the future.

Without good editing, error detecting and debugging tools,
writing LE is difficult. To help with these difficulties, we plan
to use the templates to guide the writer by means of a
predictive editor. But, even with the help of such tools, we
anticipate that writing readable LE will still be difficult. To
help writers construct well-written, readable LE, we need a
larger corpus of well-written examples, to serve as a guide to
writing style.

In our experience, well-written legal examples, and some of
the many legal applications written in pure Prolog [1, 3, 4, 6,
13, 14, 17, 22, 23, 25, 26, 29, 30, 31, 32, 33, 35, 36, 37, 38]
are a good place to look for practical applications and
inspiration for LE. In some cases, implementing legal
applications in LE might even make them easier for humans
to understand. Perhaps, more importantly, it might make them
harder to misunderstand.

ACKNOWLEDGMENTS

Veselin Karadotchev implemented a variant of LE and part of
the ISDA Master Agreement [16]. Ziyan Fu implemented a
further variant of LE and of the FG loan agreement [9]. Aora
and D2LT in London and LodgeIT in Perth helped to fund
initial work on the SWISH implementation of LE. Many
thanks also to Jason Morris, Giovanni Sartor, Rolf Schwitter,
Matthew Waddington and Adam Wyner for helpful comments
on an earlier version of this paper.

REFERENCES

[1] K.K. Bajaj, R.K Dubash, A.S. Kamble, Robert
Kowalski, B.K. Murthy and D. Rajgopalan, 1989. Indian
Import Policy and Procedures as a Logic Program.
KBCS Nodal Centre, Department of Electronics, Govt.
of India, New Delhi.

[2] David Baxter, Blake Shepard, Nick Siegel, Benjamin
Gottesman, and David Schneider, 2005. Interactive
Natural Language Explanations of Cyc Inferences."In
ExaCt, 10-20.

[3] Trevor Bench-Capon, Gwen Robinson, Tom Routen and
Marek Sergot. 1987. Logic programming for large scale
applications in law: A formalisation of supplementary
benefit legislation. In Proceedings: 1st International
Conference on AI and law, 190-198.

[4] Marco Billi, Roberta Calegari, Giuseppe Contissa,
Giuseppe Pisano, Galileo Sartor and Giovanni Sartor,
2021. Explainability through argumentation in logic
programming. CAUSAL’21: Workshop on Causal
Reasoning and Explanation in Logic Programming.

[5] Keneth Bowen and Robert Kowalski, 1981.
Amalgamating Language and metalanguage in logic
programming. In Logic Programming (Clark and
Tarnlund eds.). Academic Press.

[6] François Bry, 2019. In praise of impredicativity: A
contribution to the formalization of meta-programming.
Theory and Practice of Logic Programming 20.1:
99-146.

[7] Giuseppe Contissa and Galileo Sartor, 2020. Legal
Knowledge Representation in the Domain of Private
International Law. IFDaD.

[8] Mischa Corsius, Stijn Hoppenbrouwers, Mariette Lokin,
Elian Baars, Gertrude Sangers-Van Cappellen, and Ilona
Wilmont, 2021. RegelSpraak: a CNL for Executable Tax
Rules Specification." CNL (2021): 48.

[9] Ziyan Fu, 2020. Logical English (LE) for representing
legal documents, MSc thesis. Imperial College London.

[10] Norbert Fuchs and Rolf Schwitter, 1995. Specifying
logic programs in controlled natural language. In
CLNLP 95, Edinburgh.

[11] Stephen Guy and Rolf Schwitter, 2017. The PENG ASP
system: architecture, language and authoring tool.
Language Resources and Evaluation, 51(1), 67-92.

[12] Mark Flood and Oliver Goodenough, 2021. Contract as
automaton: representing a simple financial agreement in
computational form. AI and Law, 1-26.

[13] Nils Holzenberger, Andrew Blair-Stanek, and Benjamin
Van Durme, 2020. A dataset for statutory reasoning in
tax law entailment and question answering. arXiv
preprint arXiv:2005.05257.

[14] Allen Hustler, 1982. Programming law in logic. Faculty
of Mathematics, University of Waterloo.

[15] Andrew Jones and Marek Sergot, 1996. A formal
characterisation of institutionalised power. Logic
Journal of the IGPL 4.3: 427-443.

[16] Veselin Karadotchev, 2019. First Steps Towards Logical
English. MSc thesis. Imperial College London.

[17] Maturos Kolkorn, 2016. Representing and Reasoning
with Customs Law in Logic Programming. Diss. AIT.

[18] Robert Kowalski, 1992. Legislation as Logic Programs
In: Logic Programming in Action (eds. G. Comyn , N.
E. Fuchs, M. J. Ratcliffe), Springer Verlag, 203-230.

[19] Robert Kowalski, 2014. Logic Programming. In
Computational Logic, Vol. 9, 523-569.

[20] Robert Kowalski, 2020. Logical English, In Proceedings
of Logic and Practice of Programming (LPOP).

[21] Robert Kowalski and Akber Datoo. 2021 Logical
English meets legal English for swaps and derivatives.
Artificial Intelligence and Law : 1-35.

[22] Ronald Lee, 1988. A logic model for electronic
contracting. Decision support systems 4.1, 27-44.

[23] Ronald Lee and Young Ryu, 1995. DX: A deontic expert
system. Journal of Management Information Systems
12.1, 145-169.

[24] Jasmine Lee, 2020. Oracle Intelligent Advisor. Best
Practice Guide For Policy Modellers. Oracle. https://
www.oracle.com/technetwork/apps-tech/policy-automati
on/learnmore/opabestpracticeguidev12-3697709.pdf

[25] Rafaél Marín, and Giovanni Sartor, 1999. Time and
norms: a formalisation in the event-calculus. Proc: 7th
international conference on AI and law.

[26] Jeremy Maxwell and Annie Antón 2010. The production
rule framework: developing a canonical set of software

5

https://www.oracle.com/technetwork/apps-tech/policy-automation/learnmore/opabestpracticeguidev12-3697709.pdf
https://www.oracle.com/technetwork/apps-tech/policy-automation/learnmore/opabestpracticeguidev12-3697709.pdf
https://www.oracle.com/technetwork/apps-tech/policy-automation/learnmore/opabestpracticeguidev12-3697709.pdf

requirements for compliance with law. Proc: 1st ACM
International Health Informatics Symposium.

[27] Jason Morris, 2020. Blawx Alpha: User Friendly Rules
as Code on the Web. https://www.blawx.com/

[28] Pablo Navarro and Jorge Rodríguez, 2014. Deontic logic
and legal systems. Cambridge University Press.

[29] Katsumi Nitta, Juntaro Nagao, and Tetsuya Mizutori,
1988. A knowledge representation and inference system
for procedural law. New Generation Computing 5.4,
319-359.

[30] Tom Routen, and Trevor Bench-Capon 1991.
Hierarchical formalizations. International Journal of
Man-Machine Studies 35.1: 69-93.

[31] Ken Satoh, Kento Asai, Takamune Kogawa, Masahiro
Kubota, Megumi Nakamura, Yoshiaki Nishigai, Kei
Shirakawa, and Chiaki Takano, 2010. PROLEG: an
implementation of the presupposed ultimate fact theory
of Japanese civil code by PROLOG technology. In JSAI
International Symposium on AI 153-164.

[32] Ken Satoh, Kubota, M., Nishigai, Y. and Takano, C.,
2009. Translating the Japanese Presupposed Ultimate
Fact Theory into Logic Programming. In Legal
Knowledge and Information Systems, 162-171.

[33] Ken Satoh, Matteo Baldoni, and Laura Giordano, 2020.
Reasoning About Applicable Law in Private
International Law in Logic Programming 1. In: Legal
Knowledge and Information Systems, 281-285.

[34] Rolf Schwitter, 2002, English as a formal specification
language. In:. 13th International Workshop on Database
and Expert Systems Applications, IEEE, 228-232.

[35] Marek Sergot, Fariba Sadri, Robert Kowalski, Frank
Kriwaczek, Peter Hammond, P. and Theresa Cory, 1986.
The British Nationality Act as a logic program.
Communications of the ACM, 29(5), 370-386.

[36] Marek Sergot, A. S. Kamble, and K. K. Bajaj, 1991.
Indian central civil service pension rules: A case study
in logic programming applied to regulations. Proc: 3rd
international conference on AI and law.

[37] David Sherman, 1987. A Prolog model of the income
tax act of Canada." Proceedings of the 1st International
Conference on AI and law.

[38] Yao-Hua Tan and Walter Thoen. 2000, INCAS: a legal
expert system for contract terms in electronic
commerce. Decision Support Systems 29.4, 389-411.

[39] Jan Wielemaker, Torbjörn Lager, and Fabrizio Riguzzi,
2015. SWISH: SWI-Prolog for sharing. arXiv preprint
arXiv:1511.00915.

[40] Ronald Ross, 2006. The RuleSpeak business rule
notation. Business Rules Journal, 7(4).

6

https://www.blawx.com/

