
LPS - A Logic-based Production System Framework

Robert Kowalski and Fariba Sadri
Department of Computing
Imperial College London
{rak, fs}@doc.ic.ac.uk

12 January 2009

Abstract

Production rules and logic programs can be com-
bined in a single logic-based framework. The
framework gives both an operational and model-
theoretic semantics to production rules, as well as
to logic programs extended with a database of facts
that is modified by destructive assignment.
The model-theoretic semantics is obtained by sepa-
rating the production system working memory into
facts and goals. Logic programs are used to define
ramifications of the facts and to reduce goals to
sub-goals, including actions. The execution of ac-
tions generates a sequence of states, which serves
as a candidate model of the production rules.

1 Introduction
Production rules and logic programs are among the main
kinds of knowledge representation in Artificial Intelligence.
Despite the fact that both represent knowledge in the form
of rules, there has been little attempt to understand the rela-
tionships between them.
 In this paper we present a framework that combines the
two kinds of rules, eliminating their overlap, and reconciling
their differences. In the course of doing so, we obtain a
logic-based production system framework (LPS), in which
production rules have a model-theoretic semantics, and
logic programs destructively manipulate a database of facts.

LPS is inspired both by the abductive logic programming
(ALP) agents of [Kowalski and Sadri, 1999] and by the
teleo-reactive (TR) programs of [Nilsson 1994].

1.1 Confusions about rules in AI
Rules in production systems have the form conditions →
actions and look like conditionals in logic. Indeed, the most
popular textbook on Artificial Intelligence [Russell and
Norvig 2003] views production rules as just conditionals
used to reason forward (page 286). However, one of the
main textbooks on Cognitive Science [Thagard, 2005] ar-
gues that production rules are not conditionals:

“Rules are if-then structures …very similar to the condi-
tionals…, but they have different representational and com-
putational properties.” (page 43). “Unlike logic, rule-based
systems can also easily represent strategic information about

what to do. Rules often contain actions that represent goals,
such as IF you want to go home and you have bus fare,
THEN you can catch a bus.” (page 45).

[Thagard, 2005] characterizes Prolog as “a programming
language that uses logic representations and deductive tech-
niques” (page40). [Simon,1999], on the other hand, includes
Prolog “among the production systems widely used in cog-
nitive simulation.” (page 677).

The relationship between logic, logic programming and
production systems has recently become the focus of atten-
tion as the result of the W3C Rule Interchange Format (RIF)
Working Group recommendations for rules interchange (see
http://www.w3.org/2005/rules/wiki/RIF_Working_Group).

The RIF proposals include a Horn clause language, RIF-
BLD and a draft production rule language RIF-PRD. The
definition of RIF-BLD has a model-theoretic semantics, but
no operational semantics, whereas the definition of RIF-
PRD has only an operational semantics. Both proposals ig-
nore the fact that one of the main uses of both Horn clauses
and production rules is to reduce goals to sub-goals.

Indeed, it is the elimination of this overlap that is one of
the main features of our proposed framework.

In the remainder of the paper, we provide background
material, describe the operational and model-theoretic se-
mantics of LPS, present soundness results and then discuss
conflict resolution and teleo-reactive behaviour.

2 Background

2.1 Production systems
A typical production system [Newell, 1973; Simon, 1999]
combines a “working memory” consisting of atomic sen-
tences, with condition-action rules of the form conditions C
 actions A. Condition-action rules are also called produc-
tion rules, just plain rules, or if-then rules.

Production rules are executed by means of a cycle, which
uses forward chaining to match facts in the working mem-
ory with conditions of production rules, deriving the actions
of the rules as candidates to be executed. If more than one
rule is triggered, then conflict-resolution is performed to
decide which rules should be fired, executing their actions
by adding and deleting facts in the working memory. The

mailto:fs%7D@doc.ic.ac.uk
http://www.w3.org/2005/rules/wiki/RIF_Working_Group

repeated execution of this production system cycle generates
a sequence of state transitions of the working memory.

Conflict resolution can be performed in many different
ways. Typical conflict resolution strategies include giving
priority to more specific rules over more general rules, and
writing rules in the order in which they are to be executed.
For example, a timid agent might try the following rules in
their given order:
 someone attacks me  try to escape
 someone attacks me  attack them back.
A more aggressive agent might try them in reverse order.
 Compared with classical logic, which has both a model-
theoretic semantics and diverse proof procedures, produc-
tion systems arguably have only an “operational semantics”
in the form of the production system cycle.
 LPS has both a model-theoretic semantics and an opera-
tional semantics similar to the production system cycle, in-
spired by the ALP agent framework of [Kowalski and Sadri,
1999]. However, unlike the ALP agent cycle, the LPS cycle
is closed to external updates and actions. This simplifies the
formulation of the model-theoretic semantics and is consis-
tent with the W3C draft proposal for RIF-PRD.

2.2 Three kinds of production rules
Arguably, in practice, there are three kinds of production
rules: condition-action rules that implement stimulus-
response associations; forward chaining logic rules; and
goal-reduction rules.

The first kind of rule is arguably the most characteristic
of production systems, and is responsible for their general
characterisation as condition-action rules. They typically
have implicit or emergent goals. For example, the rule
 it is raining  cover yourself with an umbrella.
has the implicit goal to stay dry.
 The second kind of rule, for example
 human X  mortal X
adds to the working memory a fact that is a logical conclu-
sion of other facts in the working memory. It is probably
this kind of rule that gives the impression that production
rules are just conditionals used to reason forward.
 However, it is the third kind of rule, exemplified by the
rule for taking a bus if you want to go home for the week-
end, that causes the most mischief. Such rules have the form
 goal G and conditions C  add H as a goal.
Forward chaining with such goal-reduction rules behaves
the same as backward reasoning with the logic program-
ming clause G  C, H.

To represent goal-reduction in production rule form, the
working memory contains, in addition to “real” facts,
which describe the current state of some domain or world
model, and goal facts, which describe some future desired
state of the world. Similarly, production rules have both
“real” actions, which update the world model, and goal
manipulation actions, which maintain the relationship be-
tween goals and sub-goals.

Both types of actions are expressed as additions and dele-
tions of facts in the working memory. There are no higher-

level structures to ensure that these additions and deletions
are “meaningful”.

The logic-based production system LPS distinguishes be-
tween the two kinds of facts and the two kinds of actions. It
uses structured definitions of actions in terms of their pre-
conditions and the facts that that they initiate and terminate.
It uses a structured representation of goals which distin-
guishes between goals that are conjoined together (joined by
and) and sub-goals that are disjoined (related by or). It
represents stimulus-response association rules by production
rules, but represents forward chaining logic rules and goal-
reduction rules by logic programming clauses.

2.3 Logic programming
Logic programs and production systems both suffer from
their own confusions. Whereas production rules suffer from
confusion about whether goals are emergent or explicit,
logic programs suffer from confusion about whether they
are declarative or procedural.

Logic programs are sets of clauses of the form:
 H  B1, … , Bn
where the comma stands for and, the conclusion H is an
atomic formula (atom, for short) and the conditions Bi are
literals (atoms or the negations of atoms). All variables are
implicitly universally quantified in front of the clause. Horn
clauses are the special case where all the conditions are
atomic. Facts are the special case where there are no vari-
ables and n=0. Sometimes clauses that are not facts are also
called rules, inviting confusion with production rules.

For example, the three sentences:
you will go home for the weekend 

you have the bus fare, you catch a bus,
not something goes wrong with the bus journey.

you will go home for the weekend 
you have the bus fare, you catch a bus.

you have the bus fare.
are a clause, a Horn clause and a fact, respectively.

Goal clauses are conjunctions of literals. The literals in a
goal clause represent individual goals. All variables are
implicitly existentially quantified in front of the goal clause,
and the intention is to find an instantiation of the variables
that makes all of the goals hold compatibly. This is nor-
mally performed by means of backward reasoning.
Given a goal clause L1,…., Li,…, Ln, backward reasoning is
performed by applying the resolution rule [Robinson, 1965],
selecting some atomic goal Li, resolving it with some clause
H  B1,… , Bm whose conclusion H unifies with Li and
generating a new goal clause
 (L1 ,…., Li-1, B1 , … , Bm, Li+1,…, Ln)σ,
where σ is the most general unifier of H and Li. This “se-
lected” resolution reduces the goal Li to the subgoals
(B1 , … , Bm)σ . If H is a fact, then resolution solves the goal
without introducing sub-goals, If m=0 and n=i=1, then the
new goal clause is equivalent to true.

Backward reasoning treats clauses as procedures:
 to show/solve H, show/solve B1 and … and Bm .
For example, backward reasoning turns the clause:
 you will go home for the weekend 

 you have the bus fare, you catch a bus.
into the procedure:
 To go home for the weekend,

have the bus fare, and catch a bus.
A negative goal, not G, is solved by negation as failure: not
G succeeds if and only if backward reasoning with goal G
does not succeed.

For Horn clauses, the demonstration that the declarative
and procedural interpretations coincide can be traced to the
completeness result for SL-resolution [Kowalski and
Kuehner, 1971]. Moreover, the declarative interpretation
that a goal clause is true in all models is equivalent to its
being true in a unique, minimal model [van Emden and
Kowalski, 1976].

Similar results hold for logic programs with negation as
failure [Apt and Bol, 1994]. In particular, for the model-
theoretic semantics of LPS, we use the fact that any locally
stratified set of clauses has a unique minimal model [Przy-
musinski, 1988]. Intuitively, a logic program is locally
stratified if it does not contain recursion through negation.
For example, the program {pnot q, qnot r} is locally
stratified, whereas {pnot p} is not.

3 LPS – a logic-based production system
Given sets of clauses A and L, set of rules P, initial “world
model” W0 and initial set of goal clauses G0, the framework
determines a sequence of state transitions:
 <W0, G0>, a0, …, <Wi, Gi>, ai…
Wi is a set of facts representing the current state of some
“world model”. These are, in effect, the extensional predi-
cates of a deductive database. E.g. on(a, b).

ai represents an action a executed in world Wi, transform-
ing Wi into Wi+1. Actions a are specified by clauses in A
defining the predicates initiates(a, p) and terminates(a, p)
and precondition(a, p), which, respectively, determine the
facts p that they initiate and terminate, and that must hold as
preconditions for their successful execution in Wi. We im-
pose the restriction that A is locally-stratified.

The transformation of Wi is implemented by destructive
assignment. So Wi+1 = Wi  add(ai) – delete(ai) where:

add(ai) = {p: initiates(a, p) holds in Wi  A  L}
delete(ai) = {p: terminates(a, p) holds in Wi  A  L}

The set L contains three kinds of clauses: (1) Clauses that
define state-independent predicates, like human(X)  mor-
tal(X). (2) Clauses that define intentional predicates, whose
values change as ramifications of the extensional predicates,
like above(X, Y)  on(X, Z), above(Z, Y). (3) Clauses that
define plans, including, but not restricted to plans in
AgentSpeak(L) [Rao, 1996], like

quenched-thirst  go-to-fridge, open-fridge,
get-drink, open-drink, drink.

Clausal syntax does not indicate the intended sequence of
actions in plans. This can be remedied by introducing state
variables, as in section 3.2. However, in the meanwhile, the
reader may assume that actions are executed in the order
they are written.
 For simplicity, we impose the restriction that clauses of
the second and third kind do not contain negation. However,

the restriction can be removed, as in the ALP agent cycle
[Kowalski and Sadri, 1999], at the expense of complicating
the operational semantics. In any case, we require that
clauses of the first kind are locally stratified.
 To achieve their desired effect, the planning clauses in L
should follow from the action specifications in A, similar to
the way that compound actions in [Shanahan, 2000] follow
from the effects of their component actions. For example,
the action drink in the plan for quenched-thirst should initi-
ate the fact quenched-thirst. Moreover, earlier actions in a
plan should achieve preconditions for later actions in the
plan.

In contrast with [Shanahan, 2000], we do not require that
plans have explicit conditions expressing that preconditions
persist. Instead, the LPS cycle checks that action precondi-
tions hold at the time of their execution, and exploits the use
of destructive assignment to obtain persistence implicitly. If
a precondition fails to persist, the cycle allows actions to be
re-executed, reinstating their effects.

P is a set of production rules of the form conditions 
goals. The intention is that P should be true in a minimal
model M determined by the (possibly infinite) history

W0, a0 …, Wi , ai… augmented by L.
(The minimal model is defined in sections 3.2 and 3.3.) The
conditions of production rules are conjunctions of literals in
the predicates of L and Wi. In addition, one of the conditions
of a rule can refer to the most recent action ai-1, as in event-
condition-action rules [Paton and Diaz, 1999]. The goals are
conjunctions of atoms in the predicates of L, Wi and A, in-
cluding actions to be performed in the future.

All variables occurring in the conditions of a rule are im-
plicitly universally quantified in front of the rule. However,
all variables occurring only in the goals of a rule are exis-
tentially quantified in front of the goals. For example,

X attacks me  Y defends me against X
is understood as

X(X attacks me  Y(Y defends me against X)).
Gi is a set of goal clauses, each of which represents a partial
plan for achieving the goals generated by the production
rules so far. The intention is that, for every Gi, one of the
goal clauses in Gi should be true in the model M. Go can be
the empty set, as is typical of production systems.

3.1 The Operational Semantics
The operational semantics is a variant of the production
system cycle, but can also be viewed as a model generator,
which attempts to construct a model M, in which P is true.
 Given a current state <Wi, Gi> where i  0 and action ai-1
(if i>0), the LPS cycle executes the following steps:

Step 1. Every instance conditions σ  goals σ of a rule
in P such that conditions σ hold in Wi  L  {ai-1} is fired,
conjoining goals σ to every goal clause in Gi.

Step 2. Backward reasoning is used an indefinite (possi-
bly zero) number of times, to reduce non-action goals in Gi
to sub-goals. For this purpose, facts in Wi are treated like
clauses in L, to solve goals in the extensional predicates.

The cycle terminates successfully if the empty goal clause
is derived. Otherwise, backward reasoning continues until

one or more candidate actions are derived. If it is not possi-
ble to derive any candidate actions, then the cycle is unsuc-
cessful (possibly non-terminating) and no further steps or
iterations should be performed.

A candidate action is an action whose preconditions all
hold in Wi  L and that needs to be executed before all
other actions are executed and goals are achieved in the
same goal clause.

Step 3. Conflict resolution is performed to select a single
candidate action a in some goal clause C.

Step 4. The selected action is executed, letting ai = a,
and updating Wi to Wi+1, destructively adding the new facts
in add(a) and deleting the old facts in delete(a).

 A new goal clause is generated by resolving the selected
goal a in C with the action ai treated like a clause in L. The
resulting set of goal clauses is the new set Gi+1.

Repeat the cycle.
Note:
 In step 1, finding a substitution σ such that conditions σ
holds in Wi  L  {ai-1} can be performed by means of ei-
ther forward or backward reasoning or by a combination of
the two, exploiting the declarative nature of clauses.
 In step 2, treating the facts in Wi like clauses allows the
opportunistic exploitation of the side effects of actions.
 In step 2, a form of conflict resolution is involved in
deciding what goals to reduce, what clauses to use, and how
long to continue backward reasoning. In particular, if a can-
didate action was derived in a previous cycle, then back-
ward reasoning need not be performed at all.
 Checking that the preconditions of a candidate action a
hold can instantiate variables in a. For example, checking
the precondition clear(X) of the action move(b, X) instanti-
ates X to c if clear(c) holds in Wi  L.
 In step 3 conflict resolution amounts to selecting be-
tween different ways of solving a goal. We will discuss this
issue in greater detail in section 3.4.
 In step 4 treating the actions ai like clauses allows the
execution of ai to solve different action goals. Retaining the
goal clause C containing a, allows the action to be retried if
its required effects are deleted by other actions later.
 There are numerous optimisations that can be made in
an implementation of the operational semantics. These in-
clude deleting a goal clause if:
- all of its resolvents have been generated,
- it is subsumed by another goal clause,
- it contains an action to be executed earlier,
- it contains an action to be executed in the current cycle,

but its preconditions do not hold,
- it contains a goal that should hold in the current cycle,

but does not.
The last three optimisations require an explicit representa-
tion of state.

3.2 Representation with explicit state
For simplicity, and because it is closer to conventional pro-
duction system languages, the representation we have used
until now does not have explicit state. This has the addi-
tional advantage that it makes it more obvious how to trans-

form the world model from one state to another using de-
structive assignment. However, it has the disadvantage that
it is ambiguous about states in rules and clauses. For exam-
ple, the following clauses are ambiguous:

above(X, Y)  on(X, Z), above(Z, Y)
quenched-thirst  go-to-fridge, open-fridge,

get-drink, open-drink, drink
In the first clause, the conclusion and conditions are in-
tended to hold in the same state. But in the second clause,
the goal and sub-goals are intended to hold in sequence.

This ambiguity can be resolved either by introducing ex-
plicit state variables, as additional arguments of predicates,
or by employing a special-purpose notation for the three
kinds of clauses in L. The special-purpose notation can be
compiled into the explicit state variable representation, in
the same way that definite clause grammars are compiled
into logic grammars in Prolog. In the sequel we use the rep-
resentation with explicit state both for the sake of clarity and
because it is necessary for the model-theoretic semantics.

With explicit representation of state, predicates p in Wi
are written in the form holds(p, i) or p(i). Actions ai are
written as happens(a, i) or as a(i). Predicates in rules and
clauses are written similarly with explicit state arguments.

To represent rules and clauses with explicit states, we
need inequalities. For example:
 thirsty(I)  quenched-thirst(I’) & I  I’

above(X, Y, I)  on(X, Z, I), above(Z, Y, I)
quenched-thirst(I5+1)  go-to-fridge(I1),

open-fridge(I2), get-drink(I3), open-drink(I4),
drink(I5), I1 < I2 < I3 < I4 < I5

Here the inequalities impose a total ordering on the actions.
However, they can also be used to impose a partial order.

 L contains clauses defining the < and  relations. For the
purposes of specifying both the operational and model-
theoretic semantics, we need not be concerned with effi-
ciency. It is sufficient, therefore, to assume that L contains
such defining clauses as:

0 < I I  J  I < J
I+1 < J+1  I < J I  J  I = J

The operational semantics needs little modification to deal
with explicit representation of state. In particular, step 1 of
the cycle needs no change, because the conditions of pro-
duction rules are all verified relative to the current state Wi.

The main impact on the operational semantics of having
explicit states is that goal clauses in Gi now contain inequal-
ity goals relating state variables. These inequalities are
treated just like any other goals and their variables are
treated like any other variables. However, in an efficient
implementation, inequalities would be processed as con-
straints, rather than by the clauses that define them.

For the model-theoretic semantics, we need a declarative
specification of state transitions. This can be given by
clauses similar to the situation calculus and event calculus,
with explicit state arguments for initiates and terminates:

holds(P, I+1)  happens(A, I), initiates(A, I, P)
holds(P, I+1)  holds(P, I), happens(A, I),

not terminates(A, I, P)

Call these clauses S/EC. These clauses are needed only for
the model-theoretic semantics and are not in L.
 The clauses A  S/EC constitute a theory that can be
used for planning from first principles. The planning clauses
in L are intended for planning from second principles.

3.3 Model-theoretic semantics
Given some selection strategy for reducing goals to sub-
goals and some strategy for conflict resolution, the cycle
determines a (possibly infinite) sequence <W0, G0>, a0, …
<Wi, Gi>, ai, … of states and actions.

Let Wi*, ai*, Gi*, L*, A* and P*, respectively, be the rep-
resentations of Wi, ai, Gi, L, A and P with explicit states.
With this notation, the set  of sentences
W0*  … Wi* …{a0*, …, ai*, …} L*  A*  S/EC
is a locally-stratified logic program. Therefore,  has a
unique minimal model M. This model is like a Kripke pos-
sible worlds structure embedded in a single model. The fol-
lowing two theorems are “true by construction”. For lack of
space we do not present their proofs.

Theorem 1: (Finite case) If the operational semantics ter-
minates successfully, then G0  P* is true in M.

Theorem 2: (General case) G0  P* is true in M if and
only if for every i there exists a k  i, such that Gi* is true in
W0*  … Wk *  {a0*, …, ak-1*}.

Theorems 1 and 2 are soundness results for the opera-
tional semantics viewed as a model generator. It is also pos-
sible to prove completeness results, which ensure that, if
there is a model then the operational semantics can construct
it. These results are beyond the scope of this paper.

3.4 Conflict Resolution
The LPS cycle performs conflict resolution in the choice of
actions to be executed, rather than in the choice of rules that
are fired. Therefore, it is limited to choosing how goals are
achieved, rather than whether they are achieved at all.
 As a consequence, conventional ways of writing produc-
tion rules are not always acceptable. For example, given a
state in which someone attacks me, both the operational
semantics and the model-theoretic semantics require that all
of the goals of the rules:
 someone attacks me  attack them back
 someone attacks me escape
are achieved in future states. Given the intended interpreta-
tion, not only is it unlikely that all the goals can be
achieved, but just as importantly, it is unlikely that this is
what the writer of the rules intended.
 To obtain the intended effect of the rules in LPS we need
to rewrite them, making their intended higher-level goal and
the alternative ways of achieving it explicit. For example:

someone attacks me  protect myself
 protect myself  attack them back
 protect myself  escape
More generally, given rules:
 C  G1 C  G2
where the intention is that when C is true one of G1 and G2
is to be achieved, rewrite them in the form:
 C  G

 G ← G1 G ← G2
where G is the higher-level goal, which holds if G1 or G2.
 There are also other, less problematic cases, where con-
flict resolution can be dealt with simply by assigning differ-
ent priorities to the rules. In the particular case where the
rules are written in order of priority:
 C1  G1 C2  G2 … Cn  Gn
conflict resolution can be incorporated by adding extra con-
ditions to the rules:
 C1  G1 C2 , not C1  G2 …
 Cn , not C1 ,… , not Cn-1  Gn
For example, the rules:
 someone attacks me  protect myself
 hungry  eat
can be replaced by
 someone attacks me  protect myself
 hungry , not someone attacks me eat
There is also a more problematic case, where conflict reso-
lution is used to deal with refraction, preventing the same
rule from firing repeatedly when its conditions continue to
hold in successive states. For example, the rule
 thirsty(I)  quenched-thirst(I’), I  I’
will fire repeatedly and redundantly in all states in which the
condition thirsty(I) continues to hold.
 This can be treated by replacing the condition by the
action (or event) that initiates it, in this case by the rule
 become-thirsty(I)  quenched-thirst(I’), I  I’
More generally, to avoid firing the same rule
 C(I)G(I’), I I’
unnecessarily, replace it by
 A(I)G(I’), I I’,
if C(I) is an extensional predicate and initiates(A, I, C). A
similar approach can be used when C(I) is an intensional
predicate.

3.5 Teleo-Reactive Behaviour
The flexibility provided by the combination of production
rules and logic programming clauses can also be used to
obtain more flexible, opportunistic planning and problem-
solving behaviour. For example, consider the clause:

quenched-thirst(I5+1)  go-to-fridge(I1),
open-fridge(I2), get-drink(I3), open-drink(I4),
drink(I5), I1 < I2 < I3 < I4 < I5

The clause expresses an inflexible plan, in which all the
actions need to be executed in the given order, whether or
not they are all necessary. A more flexible plan, involving
the same actions, can be obtained, following the style of
teleo-reactive programs [Nilsson, 1994], by making the de-
sired effects of the actions explicit:

quenched-thirst(I+1)  opened-drink(I), drink(I)
 opened-drink(I+1)  have-drink(I), open-drink(I)
 have-drink(I+1)  near-drink(I), get-drink(I)
 near-drink(I+1) near-fridge(I), open-fridge(I)
 near-fridge(I+1)  go-to-fridge(I)
In this representation, earlier steps of the plan need not be
executed, if all the preconditions already hold for some later
step of the plan. This may be the case already in the state
where the goal quenched-thirst was first introduced, or it

may arise as a side-effect of executing some other action, in
pursuit of some other goal.
 In general, instead of writing plans in the form
 Gn  A1, A2, …, An
they can be written in the more flexible form:
 Gn  Gn-1, An … G2  G1, A2 G1  A1
where Gi is initiated by Ai and is a precondition of Ai+1. Note
that the more general case, where an action has several pre-
conditions, is straight-forward.
 Another feature of TR programs, which we also obtain in
LPS, is the ability to recover from failure. This is obtained
by having the ability to re-execute actions and reinstate their
effects.

3.6 Conclusions
LPS attempts to reconcile production systems and logic
programs without reducing one to the other, building on the
strengths of each. It retains the use of production rules for
stimulus-response associations, but uses logic programs to
obtain the effect of forward chaining logic rules and goal-
reduction rules. It gives a model-theoretic semantics for
production rules and a logical justification for destructively
updating a database of facts.
 To our knowledge, these contributions are novel. Other
authors have explored the relationship between production
rules and logic programs. [Raschid, 1994] and [Flesca and
Greco, 2001] both translate production rules into logic pro-
grams and give them a model-theoretic semantics. But they
do not distinguish between different kinds of facts, different
kinds of actions, and different kinds of rules.
 LPS can be viewed as a special case of the ALP agent
language and cycle. The ALP agent model and its associated
proof procedure [Fung and Kowalski, 1997] have a number
of additional features, which can be exploited to extend
LPS. These extensions include:
 rules with conditions that refer to the past history of

actions and world states,
 planning clauses with conditions that are rules,
 negative goals solved by actions that terminate facts,
 deadlines for the achievement of goals.

Acknowledgments
We are grateful to Ken Satoh, Luis Moniz Pereira, Harold
Boley, Thomas Eiter and Keith Stenning for helpful discus-
sions.

References
[Apt and Bol, 1994] Krzysztof Apt and Roland Bol. Logic

Programming and Negation: A Survey. J. Log. Program.
19/20: 9-71, 1994.

[van Emden and Kowalski, 1976] Maarten van Emden and
Robert Kowalski. The Semantics of Predicate Logic as a
Programming Language JACM , 23(4):733-742.

[Flesca and Greco, 2001] Sergio Flesca and Sergio Greco.
Declarative semantics for active rules Theory and Prac-
tice of Logic Programming, 1(1):43-69.

 [Fung and Kowalski, 1997] The IFF Proof Procedure for
Abductive Logic Programming. Journal of Logic Pro-
gramming.

[Kowalski and Kuehner, 1971] Robert Kowalski and Don-
ald and Kuehner. Linear Resolution with Selection Func-
tion. Artificial Intelligence, 2: 227-60.

[Kowalski and Sadri, 1999] Robert Kowalski and Fariba
Sadri. From Logic Programming towards Multi-agent
Systems. Annals of Mathematics and Artificial Intelli-
gence. Vol. 25 391-419.

[Newell, 1973] Alan Newell. Production Systems: Models
of Control Structure. In W. Chase (ed): Visual Informa-
tion Processing 463-526 New York: Academic Press
463-526.

 [Nilsson, 1994] Nils Nilsson. Teleo-reactive programs for
agent control, Journal of Artificial Intelligence Re-
search, 1, 1994, 139-158.

 [Paton and Diaz, 1999] Paton N. and Diaz O. Active data-
base systems, ACM Computing Surveys, 31(1):63-103,
1999.

[Przymusinski, 1988] Theodor Przymuszynski. On the De-
clarative Semantics of Deductive Databases and Logic
Programs, in Foundations of Deductive Databases and
Logic Programming, ed Minker J., Morgan Kaufman
(1988), pp 193-216.

[Rao, 1996] Anand Rao. Agents Breaking Away, In Lecture
Notes in Artificial Intelligence, Volume 1038, (eds Wal-
ter Van de Velde and John W. Perrame) Springer Verlag,
Amsterdam, Netherlands.

 [Raschid, 1994] Loquila Raschid. A Semantics for a Class
of Stratified Production System Programs. Journal of
Logic Programming. 21(1).

[Robinson, 1965] John Alan Robinson. A Machine-Oriented
Logic Based on the Resolution Principle. JACM 12. Jan.
1965, 23-41.

[Russell and Norvig 2003] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach (2nd ed.),
Upper Saddle River, NJ: Prentice Hall.

[Shanahan, 2000] An Abductive Event Calculus Planner,
The Journal of LogicProgramming, vol. 44, 207–239.

[Simon, 1999] Herbert Simon. Production Systems. In Wil-
son, R. and Keil, F. (eds.): The MIT Encyclopedia of the
Cognitive Sciences. The MIT Press. 676-677.

[Thagard, 2005] Paul Thagard. Mind: Introduction to Cog-
nitive Science. Second Edition. MIT Press.

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/a/Apt:Krzysztof_R=.html
http://www.informatik.uni-trier.de/~ley/db/journals/jlp/jlp19.html#AptB94
http://www.informatik.uni-trier.de/~ley/db/journals/jlp/jlp19.html#AptB94
http://www.doc.ic.ac.uk/%7Erak/papers/kowalski-van_emden.pdf
http://www.doc.ic.ac.uk/%7Erak/papers/kowalski-van_emden.pdf
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=71137
http://www.doc.ic.ac.uk/%7Erak/papers/sl.pdf
http://www.doc.ic.ac.uk/%7Erak/papers/sl.pdf

