

Towards a Logic-based Production System Language
Robert Kowalski and Fariba Sadri

Department of Computing, Imperial College London, 180 Queens Gate, London SW7 2AZ

{rak, fs}@doc.ic.ac.uk

Abstract. In this paper we present a system, called LPS, that combines production rules
and logic programs in a single logic-based framework. The framework gives both an
operational and model-theoretic semantics to production rules, and to logic programs
extended with a database of facts that is modified by destructive assignment. The model-
theoretic semantics is obtained by separating the production system working memory
into facts and goals. Logic programs are used to define macro-actions, ramifications of
the facts and to reduce goals to sub-goals, including actions. The execution of actions
generates a sequence of database states. In the case of successful termination, this
sequence, taken as a whole, serves as the basis for a model of the production rules.

 Keywords – logic programming, production systems, model-theoretic semantics

1 Introduction
Production rules and logic programs are among the main kinds of knowledge
representation in Artificial Intelligence. Despite the fact that both represent knowledge
in the form of rules, there seems to have been little attempt to study the relationships
between them. In this paper we present a framework that combines the two kinds of
rules, eliminates their overlap, and reconciles their differences. For this purpose, we
define a logic-based framework (LPS), in which production rules have a model-
theoretic semantics, and logic programs destructively manipulate a database of facts.

1.1 Confusions about rules in AI
Rules in production systems have the form conditions → actions and look like
conditionals in logic. Indeed, the most popular textbook on Artificial Intelligence [13]
views production rules as just conditionals used to reason forward (page 286).
However, one of the main textbooks on Cognitive Science [14] maintains that “Rules
are if-then structures…very similar to the conditionals…, but they have different
representational and computational properties.” (page 43). “Unlike logic, rule-based
systems can also easily represent strategic information about what to do. Rules often
contain actions that represent goals, such as IF you want to go home for the weekend
and you have bus fare, THEN you can catch a bus.” (page 45).

Thagard [15] characterizes Prolog as “a programming language that uses logic
representations and deductive techniques”. However, Simon [14] includes Prolog
“among the production systems widely used in cognitive simulation.”

The relationship between logic, logic programming and production systems has
recently become the focus of attention in the W3C RIF Working Group drafts on rule
interchange (see http://www.w3.org/2005/rules/wiki/RIF_Working_Group). The RIF
proposals include a Horn clause language, RIF-BLD and a draft production rule
language RIF-PRD. RIF-BLD has model-theoretic, but no operational semantics.
Although the conditions of production rules in RIF-PRD have model theoretic
semantics, production rules themselves have only an operational semantics. Both
proposals ignore the fact that one of the main uses of both Horn clauses and
production rules is to reduce goals to sub-goals. Indeed, it is the elimination of this
overlap that is one of the main goals of LPS.

Whereas production systems manipulate a working memory that combines both
facts and goals, and logic programs manipulate only goals, LPS separates facts from
goals and treats them differently. The facts are updated destructively by structured
actions, and the goals are updated by firing production rules and by goal-reduction.
LPS has both an operational semantics and a model-theoretic semantics.

In the remainder of the paper, we present background, the syntax, operational
semantics and model-theoretic semantics of LPS, and discuss conflict resolution. We
assume the reader is familiar with the basic concepts of logic programming.

1.2 Motivating Example
We consider an online shopping scenario, similar to the RIF-PRD draft running
example. The following informal rules and clauses illustrate the LPS approach.
Some condition-goal rules:

When a customer logs in, he is welcomed.
When a customer checks out, payment is taken, and confirmation is issued.

Some logic programming clauses (A customer is welcomed with an appropriate offer):
A customer is welcomed if his status is new and there is a promotional item in
 the store and the promotional item is offered to him.
A customer is welcomed if his status is gold and there is a promotional item in
 the store and there is an item in his profile and the item is similar to the
 promotional item and the promotional item is offered to him.

2 Background

2.1 Production systems
A typical production system combines a working memory of atomic sentences, also
called facts, with condition-action rules of the form condition→ actions. Condition-
action rules are also called production rules, if-then rules, or just plain rules.
 In RIF-PRD and many other production systems, the working memory can be
viewed as a model-theoretic structure. An atomic sentence is true in the structure if it
is a fact in the working memory and false otherwise. The language of the condition of
a rule is generally a subset of first-order logic. Roughly speaking, a rule is fireable, if
there exists an instance of the rule such that the condition of the instance is true in the
current state of the working memory, viewed as a model-theoretic structure.
 If more than one rule is fireable, then conflict-resolution is performed to select an
instance of a rule to fire, by executing its actions. The actions part of a rule can be a
sequence of actions. Typical actions are to add, delete or modify a fact in the working

memory. An action can also be an external action, such as printing. Executing
production rules in this way is called “forward chaining”.1
 The repeated firing of production rules generates a sequence of state transitions of
the working memory. It is partly because state transitions are performed by
destructive assignment and partly because of conflict resolution that production
systems do not have a model-theoretic semantics.
 The following formulation of the production system cycle will facilitate
comparison with the LPS cycle later in the paper. Both cycles can be formalised by
means of the transitive closure of a labelled transition system, as in the RIF-PRD
formal operational semantics.

Definition 1. A production system (PS) framework is a tuple <P, S0, Con> where P is
a set of production rules, S0 is the initial state of the working memory, and Con is a
conflict resolution strategy. Given such a framework, the PS cycle generates a
sequence of state transitions, S0, …, Si , Si+1 ….., where each Si is a working memory
state. It generates Si+1 from Si by means of the following steps:
PS1. For every instance condition σ→ actions σ of a rule condition → actions in P

such that condition σ holds in Si , all the actions σ are collected into a set Gi.
PS2. If the set Gi is not empty, conflict resolution is performed according to the policy

of Con to select a single a= actions σ in Gi. The cycle terminates if there is no
such a selected by Con or if the set Gi is empty.

PS3. The actions of a are executed in sequence, generating Si+1 from Si. �
 Conflict resolution can be performed in many different ways, for example by
giving priority to rules in the order in which they are written. For example, a timid
agent might try the following rules in the order:

 someone attacks me → add(run away)
 someone attacks me → add(attack them back)

Other conflict resolution strategies will be discussed after the LPS cycle.

2.2 Production Rules in Practice
Arguably, there are three kinds of production rules: reactive rules, forward chaining
logic rules, and goal-reduction rules.

The first kind of rule is the most characteristic type of production rule, and is
responsible for their general characterisation as condition-action rules. This kind of
rule typically has implicit or emergent goals. For example, the rule it is raining →
cover yourself with an umbrella has the implicit goal to stay dry.
 The second kind of rule, for example human X→ mortal X adds to the working
memory a fact that is a logical conclusion of other facts in the working memory. It is
probably this kind of rule that gives the impression that production rules are just
conditionals used to reason forward.

 However, it is the third kind of rule, exemplified by the goal-reduction rule “IF you
want to go home for the weekend and you have bus fare, THEN you can catch a bus.”
that causes the most trouble for a model-theoretic semantics. This is because, to
represent goal-reduction in production rule form, the working memory needs to
contain, in addition to “real” facts, which describe the current state of a database, also

1 It is often claimed that production rules can be executed either forwards or backwards. But
this claim seems to be based on a confusion with logical implications and possibly with
production rules in formal grammars.

goal facts, which describe some future desired state. Correspondingly, production
rules have both “real” actions, which update the database, and goal actions, which
maintain goals and sub-goals. Both types of actions are expressed as additions and
deletions of facts in the working memory. There are no higher-level structures to
ensure that these additions and deletions are “meaningful”.
 To obtain a model-theoretic semantics, LPS represents the third kind of rule, which
has the general form: goal G and conditions C → add H as a goal
as a logic programming clause of the form: G ← C, H. Backward reasoning with the
clause simulates forward chaining with the production rule.
 To obtain the model theoretic semantics, LPS divides the working memory into
two components, one containing real facts, and the other containing goals. The real
facts act as a database representing the current state of a domain. LPS uses destructive
assignment with structured definitions of actions, to transform one state of the
database into another. The collection of all such states determines a model-theoretic
structure, which makes the production rules true.
 LPS updates and manipulates goals using backward reasoning, representing the
current state of the goals as a disjunction of conjunctions of atomic goals, which is a
kind of flattened and-or tree with existentially quantified variables. The LPS cycle
terminates successfully when one of the conjunctions becomes empty.
 LPS also represents forward chaining production rules of the second kind, above,
as logic programming clauses. However, it extends logic programming by using
reactive rules (and condition-goal rules, more generally) dynamically to add new
goals to the current state of the goals whenever an instance of the condition of a rule
holds in the current state of the database. The model-theoretic semantics ensures that
these rules are true in the model-theoretic structure determined by the sequence of
databases that is generated if the cycle terminates successfully.

2.3 Logic Programming
In this section we review the main concepts of logic programming needed for LPS.
We restrict logic programs and goals in LPS to Horn clauses (without negation). For
simplicity, in the remainder of the paper, when we use the terminology “clause” and
“goal clause” we mean Horn clauses without negation.

Definition 2. Logic programs are sets of clauses of the form: H ← B1, … , Bn where
← stands for if and the comma stands for and. The conclusion H and the conditions Bi
are atomic formulae (atoms, for short). All variables are implicitly universally
quantified in front of the clause. Facts are clauses with no variables and with n=0. �
 Thus clauses that are facts are like facts in the working memory of a production
system. Clauses that are not facts are often called rules. We do not use this
terminology in this paper, because this invites confusion with production rules.

Definition 3. Goal clauses are conjunctions of atoms, the individual atoms of which
represent individual goals. All variables are implicitly existentially quantified in front
of the goal clause. �
 Backward reasoning uses program clauses to reduce goals to sub-goals and is
formalized by SLD-resolution [9].

Definition 4. A selection function, s, is a function from goal clauses to atoms, such
that when L = s(C), L is an atom in C and is said to be the selected literal in C.

 Given a goal clause L1,…., Li,…, Ln, with selected atom Li and given a clause
H ← B1,… , Bm whose conclusion H unifies with Li with most general unifier σ, SLD-
resolution reduces the goal Li to the subgoals (B1 , … , Bm)σ and generates the SLD-
resolvent, which is a new goal clause (L1 ,…., Li-1, B1 , … , Bm, Li+1,…, Ln) σ.
 If m=0 and n=i=1, then the new clause is called the empty clause, written {},
which is logically equivalent to true. �

Definition 5. Given a set of clauses L, a selection function s, and an initial goal clause
C0, an SLD-derivation, or successful SLD-computation of C0 from L wrt s, is a
sequence of goal clauses C0, …, Ci , Ci+1 … Cn such that Ci+1 is generated from Ci by
means of SLD-resolution and Cn is the empty clause. �
 The selection function determines a search tree whose nodes are goal clauses, each
branch of which is an attempted construction of a successful computation. To obtain a
proof procedure, it is necessary to employ a search strategy ∑, which chooses goal
clauses and program clauses, in the search for an SLD-derivation of the empty clause.
Different search strategies, including depth-first, breadth-first, and best-first strategies,
are all possible. We will see later, that the selection function s and the search strategy ∑ in LPS perform some of the functions of conflict resolution in production systems.

Backward reasoning treats clauses H ← B1,… , Bm as goal-reduction procedures:
to show/solve H, show/solve B1 and … and Bm . For example, it turns the clause: you
will go home for the weekend ← you have the bus fare, you catch a bus into the
procedure: To go home for the weekend, have the bus fare, and catch a bus.
 Horn clauses inherit the model-theoretic semantics of classical logic. However,
they also have an alternative, minimal model semantics:

Theorem 1: Given a set of Horn clauses L, there exists a unique minimal model M
such that for all goal clauses C, C is a logical consequence of L (i.e. C is true in all
models of L) if and only if C is true in M. �
 The theorem is a direct consequence of the theorem proved in [4] for the case
where C is an atomic fact. Note that the theorem does not hold for more general
consequences of L, containing negation and universal quantification. The following
theorem follows from Theorem 1 and the well-known soundness and completeness
results for SLD-resolution:

Theorem 2: Given a set of Horn clauses L, a goal clause C, and a selection function s,
there exists a successful SLD computation of C from L wrt s
• if and only if C is a logical consequence of L
• if and only if C is true in the minimal model of L. �

2.4 Abductive Logic Programming
LPS is partly inspired by abductive logic programming (ALP) [8] and by abductive
logic programming agents (ALP agents) [10]. ALP extends LP by allowing some
predicates, Ab, the abducibles, to be undefined, in the sense that they do not occur in
the conclusions of clauses. Instead, they can be assumed, but are constrained directly
or indirectly by a set IC of integrity constraints.
 Thus an ALP framework <L, Ab, IC> consists of a logic program L, a set of
abducibles Ab, and a set of integrity constraints IC. The predicates in the conclusions
of clauses in L are disjoint from the predicates in Ab. An atom whose predicate is in

Ab is called abducible. In LPS, the abducible atoms represent actions, and the
integrity constraints generalise condition-action rules.
 Here we define a simplified variant of ALP that is the basis for the LPS operational
and model-theoretic semantics. For this purpose, we restrict the integrity constraints to
implications of the form condition → conclusion where condition and conclusion are
conjunctions of atoms, and all the variables occurring in condition are universally
quantified over the implication, and all variables occurring only in the conclusion are
existentially quantified over the conclusion. Thus the implication customer(C) →
status(C, S) stands for the quantified sentence ∀C[customer(C)→ ∃ S[status(C, S)]].

Definition 6. Given an ALP framework <L, Ab, IC> and a goal clause C (which can
be the empty clause), a solution is a set of atomic sentences ∆∆∆∆ in the predicates Ab,
such that both C and IC are true in the minimal model of L ∪∪∪∪ ∆∆∆∆. �
 This semantics is one of several that have been proposed for ALP and for integrity
constraints more generally. It has the advantage that it extends naturally to provide a
semantics for production rules in LPS. The following proof procedure for ALP, which
extends SLD-resolution, also provides a natural basis for the LPS cycle. To ensure
that ∆∆∆∆i, below, is a set of atomic sentences, the selection function must be restricted so
that when it selects an abducible atom L then L is ground (contains no variables). We
call such a selection function safe (by analogy with the terminology “safe selection
function” for logic programs with negation).

Definition 7. Given an ALP framework <L, Ab, IC>, safe selection function s, and
initial goal clause C0, an ALP-derivation, wrt s, is a sequence of pairs <∆∆∆∆0, C0>, …,
<∆∆∆∆n, Cn>, where ∆∆∆∆0 = {} and Cn is the empty clause, ∆∆∆∆n = ∆∆∆∆n-1 and for all i, 0 ≤ i ≤ n-
1, <∆∆∆∆i+1, Ci+1> is obtained from <∆∆∆∆i, Ci> by the following steps:
ALP1. For every instance condition σ→ conclusion σ of an integrity constraint in
 IC such that condition σ holds in L ∪∪∪∪ ∆∆∆∆i , add the conjunction of atoms
 conclusion σ to Ci. Let Ci* be the resulting goal clause.
ALP2. Let L = s (Ci*). If L is not abducible, then Ci+1 is the SLD-resolvent of Ci* with

some clause in L and ∆∆∆∆i+1 = ∆∆∆∆i. If L is abducible and L ∈ ∆∆∆∆i then Ci+1 is the SLD-
resolvent of Ci* with L and ∆∆∆∆i+1 = ∆∆∆∆i. If L is abducible and L ∉ ∆∆∆∆i then Ci+1 is the
SLD-resolvent of Ci* with L and ∆∆∆∆i+1 = ∆∆∆∆i ∪∪∪∪ {L} . �

The condition “Cn is the empty clause and ∆∆∆∆n = ∆∆∆∆n-1” is needed to ensure that, not only
are there no more goals to solve, but there are no further instances of the integrity
constraints that need to be made true. Note the similarity between ALP1 and PS1.
 The verification that condition σ holds in L∪∪∪∪∆∆∆∆i can be performed in different
ways, for example by showing there is an SLD derivation of condition σ from L∪∪∪∪∆∆∆∆i.
Alternatively, the addition of an abducible atom to ∆∆∆∆i can be used to “trigger” the
condition by forward reasoning, and the remaining conditions can then be verified by
backward reasoning.
 To ensure ALP1 and ALP2 fully instantiate the universally quantified variables of
integrity constraints, and to ensure that the abducible atoms in L and IC can always be
made safe for selection, the abductive framework and initial goal clause C0 have to be
range-restricted. We will define a similar restriction for LPS later. The proof of the
following theorem can be adapted from the proof for the IFF proof procedure [7].
Theorem 3. Soundness and Completeness. Let <L, Ab, IC> be a range-restricted
ALP framework and C0 a range-restricted goal clause. If there exists an ALP-
derivation <{}, C0>, …, <∆∆∆∆n, {}>, then C0 and IC are true in the minimal model of

L∪∪∪∪∆∆∆∆ n. If there exists a set ∆∆∆∆ of atomic sentences with predicates in Ab such that C0
and IC are true in the minimal model of L∪∪∪∪∆∆∆∆, then for every safe selection function
there exists an ALP-derivation <{}, C0>, …, <∆∆∆∆n, {}> where ∆∆∆∆n⊆∆∆∆∆. �
 LPS is based on ALP agents [10], which embed ALP in an observation-thought-
action cycle, in which abducible atoms represent observations and actions. Integrity
constraints give the reactive behaviour of condition-action rules. The ALP agent cycle
generates a sequence of actions in the attempt to make an initial goal and the integrity
constraints true in the agent’s environment.
 In ALP agents, the agent’s environment is an external, destructively changing
semantic structure. The set ∆∆∆∆, on the other hand, is the agent’s internal representation
of its interactions with the environment. This internal representation is monotonic in
the sense that observations and actions are time-stamped and state representations are
derived by an action theory, such as the situation or event calculus. In contrast, in both
production systems and LPS, the environment is simulated by an internal destructively
changing representation. In LPS this representation is associated with a Kripke-like
model-theoretic structure.

3 LPS – A Logic-based Production System Framework
Like ALP agents, LPS combines logic programs and integrity constraints, and
represents actions by abducible atoms. Moreover, like the ALP agent cycle, the LPS
cycle generates actions in the attempt to make an initial goal and the set of integrity
constraints true. However, unlike ALP agents, which use an internal, monotonic
representation of states, LPS uses destructive assignment to maintain an internal
representation of only the current state. In both ALP agents and LPS, if the cycle
terminates successfully, then the actions and the totality of all the states generated by
the cycle determine a model of the initial goal and integrity constraints. This model is
analogous to a Kripke model, in which the individual states are like possible worlds.

Definition 8. An LPS framework is a tuple < V, P, L, A, W0 , G0 >, where
• V is itself a tuple <A, M, E, I, O, ≤ , <, initiates, terminates, precondition>
dividing the vocabulary of L and P into predicates representing atomic actions A,
macro-actions M, extensional predicates E, directly affected by atomic actions,
intensional predicates I, indirectly affected by changes to the extensional predicates,
and “ordinary” stateless predicates O not affected by change of state. In addition, the
vocabulary contains the inequality predicates ≤ and < to compare states, the special
predicates initiates and terminates, which represent the effects of actions on the
extensional predicates, and precondition, which represents the preconditions of
actions. Let AFT be the set A ∪ M ∪ E ∪ I ∪ O ∪ {≤ , <}. Only the predicates in AFT
can occur in rules and clauses. The other predicates are used for state transitions.
• P is a set of condition-conclusion rules.
• L is a set of Horn clauses, made up of five disjoint subsets Lstateless, Lram, Lplan,

Ltemp, Lmacro, defining stateless predicates, intentional predicates, plans, the
inequality predicates, and macro-actions, respectively.

• A is a set of Horn clauses, called action clauses, made up of two disjoint subsets
Apre and Apost, defining preconditions and postconditions of actions, respectively.

• W0 is a set of atomic sentences, in the predicates of E.
• G0 is a set of goal clauses whose predicates belong to AFT. �
Given such a framework, the LPS cycle, defined below, determines a sequence of
state transitions <W0, G0>, a0, …, <Wi, Gi>, ai…, where the ai represent actions, the

Wi represent the successive states of the database, and the Gi represent the successive
states of the goals. The cycle terminates successfully in state n, if Gn contains the
empty clause. In this case, the sequence of states and actions W0, a0, W1 , a1, …, Wn
augmented with the clauses in Lstateless ∪ Lram ∪ Ltemp ∪ Lmacro determines a minimal
model M, in which G0 and P are true. Here we give greater detail:

V - the vocabulary. For clarity in the LPS cycle, except for facts in the database
states Wi, the extensional, intension and atomic and macro-action predicates have a
single explicit state argument, which we write as their last argument. We sometimes
use the notation p(t) to refer to an atom with state argument t (represented by non-
negative integers or variables T, T1, T2) when the other arguments of the atom are
irrelevant to the discussion.

This state argument is always a variable in G0, the rules in P and the clauses in L
and A. Moreover, different occurrences of state variables in the same rule or clause are
so highly constrained that they could easily be made implicit. For example, all state
arguments in clauses in Lram and A are a single (universally quantified) variable.

On the other hand, the state variables and inequalities in G0, in the conclusions of
rules in P and in the conditions of clauses in Lplan and Lmacro are needed only to
indicate the order in which actions and goals are to be achieved. These variables and
inequalities could be made implicit, by employing a syntax in which the intended order
of achievement is indicated by the order in which the goals and actions are written.

 Whether states are implicit or explicit, we impose the restriction that no two
actions (whether from A or M) have the same state argument. This is because, for
simplicity, the LPS operational semantics executes a single action in each cycle/state.
 Wi - the database. Wi is a set of facts representing the current state of the
database. These correspond to the extensional predicates of a deductive database, e.g.
customer(john-smith), spent-to-date(john-smith, 500). Because the transformation of
Wi into Wi+1 is implemented by destructive assignment, the facts in Wi are written
without state arguments. This means that facts that are not affected by the
transformation simply persist without being copied explicitly from one state to the
next. However, for the model-theoretic semantics, to combine all the states into a
single model, the facts in Wi need to be understood as containing the implicit state
argument i. We use the notation W*i when we need to refer to facts containing explicit
state arguments: W*i = {p(i) : p ∈ Wi}.

A – the action clauses. The clauses in A are divided into clauses Apre defining the
preconditions of actions and clauses Apost defining the post-conditions of actions.
Unlike the clauses in L, the clauses in A do not contribute to checking the conditions
of rules or to the reduction of goals to subgoals. They have the form:

initiates(a, p, T) ← init-conditions(T)
terminates(a, p, T) ← term-conditions(T)
precondition(a, q, T) ← pre-conditions(T)

where a represents an atomic action, p represents an extensional predicate and q
represents any predicate in E ∪ I ∪ O. The conditions init-conditions(T), term-
conditions(T) and pre-conditions(T) are (possibly empty) conjunctions of atoms in the
predicates E ∪ I ∪ O. Each clause in A contains a single state variable. For example:

initiates(take-payment(X, ID, Value), spent-to-date(X, New), T) ←
spent-to- date(X, Old, T), New = Old + Value.
terminates(take-payment(X, ID, Value), spent-to-date(X, Old), T) ←
spent-to-date(X, Old, T).

 An action a can be executed in state Wi provided that for all q, if precondition(a,
q, i) holds in W*i ∪ Apre ∪ Lstateless ∪ Lram then q holds in W*i ∪ Lstateless ∪ Lram.
Since W*i ∪ Apre ∪ Lstateless ∪ Lram and W*i ∪ Lstateless ∪ Lram. are sets of Horn
clauses, the notion of holding can be understood equivalently either in terms of truth
in the associated minimal model, in terms of the existence of an SLD-derivation, or in
terms of any other complete proof procedure for Horn clauses. The execution of a
updates the state of the database: Wi+1 = (W i – delete(a)) ∪ add(a)
where delete(a) = {p: terminates(a, p, i) holds in W*i ∪ Apost ∪ Lstateless ∪ Lram}

 add(a) = {p: initiates(a, p, i) holds in W*i ∪ Apost ∪ Lstateless ∪ Lram}.
Not every action needs to initiate or terminate database facts. In particular, we can
have external actions, as in RIF-PRD, which have no impact on the database.
• Gi - the goal states. Gi is a set of goal clauses, each of which can be regarded as
a partial plan for achieving the initial goals G0 and the additional goals generated by
the cycle so far. The intention is that, for every Gi, one of the goal clauses in Gi should
be true in the model that is generated by the LPS cycle. G0 can contain only the empty
clause, as is typical of production systems. The predicates in Gi all belong to AFT.
• P – the rules. The set P of rules has the same form condition→ conclusion and
the same implicit quantification as ALP integrity constraints, where both condition
and conclusion are conjunctions of atoms2. The predicates in the condition belong to E
∪ I ∪ O ∪ A, and the predicates in the conclusion belong to AFT. For example:

customer(X, T), login(X, T) → welcome(X, T’), T≤T’
customer(X, T), checkout(X, T), shop-cart(X, ID, Value, T) →
 take-payment(X, ID, Value, T1), confirm(X, ID, Value, T2), T<T1, T1<T2

All atoms in the condition with predicates belonging to E ∪ I contain a single state
variable, say T. The condition can also include a single atom representing an action in
A of the form a(T-1). This allows P to include a kind of action-condition-conclusion
rule. All state variables in the conclusion refer to states later than or equal to T, as
indicated by inequalities among state variables in the conclusion.
 L - the clauses. The set of clauses L is made up of four disjoint subsets Lstateless,
Lram, Lplan, Ltemp. The set Lstateless consists of clauses not containing state arguments,
with all predicates from O. For example: similar(X, Y) ← cd(X), dvd(Y)
 Lram defines intensional predicates, which are ramifications of the extensional
predicates. For example :

status(X, gold, T) ← spent-to-date (X, V, T), 500≤V
status(X, new, T) ← spent-to-date (X, V, T), V <500

Here spent-to-date is an extensional predicate, which changes directly as the result of
actions, such as take-payment, and status is an intensional predicate, which changes as
a ramification of changes to the predicate spent-to-date. In general, clauses in Lram
have the form conclusion ← condition where conclusion is an intensional atom in I,
and the atoms in condition are all extensional, intensional or state-independent atoms
in E ∪ I ∪ O. The clauses in Lram contain only a single state variable.
 Lplan represents plans for achieving future states of the database, including plans
similar to those in AgentSpeak(L) [11]. For example:
 quenched-thirst(T5+1) ← go-to-fridge(T1), open-fridge(T2), get-drink(T3),

 open-drink(T4), drink(T5), T1 < T2, T2< T3, T3 < T4, T4 < T5
In general, clauses in Lplan have an extensional predicate in the conclusion, and
predicates from AFT in the conditions. States in the conditions are constrained to be
2 Later we will see that, to deal with conflict resolution, we allow negative conditions in rules.

earlier than the state in the conclusion. The conditions must have one action whose
state is immediately prior to the state in the conclusion.
 Ltemp defines the inequality relations. These clauses are needed only to check that
one state comes before another. Therefore any such definition will serve the purpose
including, for example:

0 < I+1 I ≤ J ← I < J
I +1 < J +1 ← I < J I ≤ J ← I = J

Lmacro defines the macro-actions. Clauses in Lmacro have a predicate from M in the
conclusion, and predicates from AFT in the conditions. States in the conditions are
constrained to be earlier than or the same as the state in the conclusion. The conditions
must have one action (from A or M) whose state is the same as the state in the
conclusion. For example:

welcome(X, T) ← status(X, new, T), promotional-item(Y, T), offer(X, Y, T)
welcome(X, T) ← status(X, gold, T), promotional-item(Y, T), profile(X, Z, T),
similar(Y, Z), offer(X, Y, T)

In the LPS cycle, the state argument of an action is always a variable when it is chosen
for execution. Otherwise, all of its other arguments need to be variable-free. This is a
generalisation of the safety requirement of ALP. In addition, the selection function
needs to be timely in the sense that, when an action is selected, the goal clause in
which it occurs contains no other atoms that need to be solved or executed earlier.

Definition 9. A selection function is safe if and only if, when it selects an action, the
action is ground except for state variables; and, when it selects an inequality, the
inequality is ground. A selection function is timely if and only if, when it selects an
action a(t) in a goal clause C, then C contains no other atom whose state is
constrained to be before or the same as C, i.e. no other atom of the form p(t), no pair
of atoms of the form p(t’), t’ ≤ t and no pair of atoms of the form p(t’), t’ <t. �
To ensure the existence of safe selection functions and to ensure that quantifiers in
rules are correctly interpreted, LPS frameworks need to be range-restricted. We define
range-restriction after the LPS cycle.

The operational semantics is a synthesis of the PS cycle and ALP derivations.

3.1 The Operational Semantics
Definition 11. LPS cycle: Given a range-restricted LPS framework < V, P, L, A, W0 ,
G0 >, a safe selection function s, and search strategy ∑, the LPS cycle determines a
sequence of state transitions <W0, G0>, a0, …, <Wi, Gi>, ai…where for all i, 0 ≤ i , ai
and <Wi+1, Gi+1> are obtained from ai-1 and <Wi, Gi> by the following steps:
LPS1. For every instance condition σ→ conclusion σ of a rule in P such that condition σ holds in W*i ∪ {ai-1} ∪ Lstateless ∪ Lram, add conclusion σ to every clause in Gi.

Let Gi
* be the resulting set of goal clauses.

LPS2. Using the selection function s and search strategy ∑, let Gi+1 be a set of goal
clauses, starting from Gi

, derivable by SLD-resolution using the clauses in W i ∪
{ ai-1} ∪ Lstateless ∪ Lram ∪ Lplan ∪ Ltemp such that either Gi+1 contains the empty
clause or Gi+1 contains at least one clause whose selected literal is an executable
action. (Recall that an action is executable in state Wi if and only if all the
preconditions of the action hold in the current state.)

• If there is no such Gi+1 then the cycle terminates unsuccessfully. (Note that
SLD-resolution might loop without generating a selected executable action, in
which case unsuccessful termination is non-constructive.)
• If Gi+1 contains the empty clause and Gi = Gi

*, then the cycle terminates
successfully and Wi+1 = Wi.

LPS3. If the cycle does not terminate in step LPS2, then let a(t) be the selected,
executable action in a goal clause in Gi+1 chosen by the search strategy ∑. (Note
that a(t) might have been generated and selected in an earlier cycle, but not have
been executable before. Moreover, even if it was selected and executable before,
the search strategy might have chosen some other action.)

LPS4. The chosen action is executed, letting ai = a(i). The current state of the
 database Wi is updated to Wi+1, by destructively deleting the old facts in
 delete(a(i)) and adding the new facts in add(a(i)). �
Range-restriction. The following definition generalises the definition of range-
restriction for normal logic programming and ALP:
Definition 10. An LPS framework < V, P, L, A, W0 , G0 > is range-restricted if and
only if all rules in P and all clauses in L, A and G0 are range-restricted, where:
• A goal clause C in G0 (and more generally any conjunction C of atoms in the
predicates AFT is range-restricted if and only if every variable occurring in an atomic
action atom in C, except for state variables, occurs in an atom in C whose predicate
does not belong to A ∪ {≤ , <}, and whose state is not constrained to be after the state
of the action, and every variable in an inequality (with predicate in {≤ , <}) occurs in a
non-inequality atom of C.
• A clause conclusion ← conditions in L is range-restricted if and only if conditions
is range-restricted and every variable in conclusion occurs in conditions.
• A clause conclusion ← conditions in A, where conclusion is initiates(a, p, t),
terminates(a, p, t), or precondition(a, p, t), is range-restricted if and only if every
variable in p occurs either in conditions or in a.
• A rule condition → conclusion in P is range-restricted if and only if every variable
occurring in an atomic action atom in conclusion, except for a state variable, occurs
either in the condition or in an atom in the conclusion whose predicate does not
belong to A ∪ {≤ , <}, and whose state is not constrained to be after the state of the
action, and every variable in an inequality (with predicate in {≤ , <}) occurs in a non-
inequality atom in the rule. �
 Derivation versus search. Both ALP and LPS generate a sequence of paired
database and goal states – of the form <∆∆∆∆i, Ci> in the case of ALP, and of the form
<Wi, Gi> in the case of LPS. However, ALP derivations include only inferences
necessary to solve the initially given problem, whereas the LPS cycle also includes a
search for the solution, determined by the search strategy ∑.
 The cycle granularity. To maximise similarity with the PS cycle, except for the
last transition of a successfully terminating cycle, the transition from one state <Wi,
Gi> to the next <Wi+1, Gi+1> is determined by the execution of an action. As a result, a
single iteration of the cycle needs to perform an indeterminate number of SLD-
resolution steps until a selected action becomes executable and is chosen for
execution. A single action in LPS typically involves the deletion and addition of
several facts. In PS, each such deletion and addition is a separate action.

Notice that for the shopping example, it would be useful to allow input actions by
customers. It is easy to extend the LPS cycle to allow such external input actions, so

that the transition from one state to another results from the collective effects of these
and the internally chosen action. We omit the details for lack of space.
 The selection function and choice of actions to be executed. There is no
requirement that an action must be selected if it is executable. In fact, the selection of
an executable action can be delayed, to plan future goals, Nor is there any requirement
that an action that is selected and executable be chosen for execution. This is because
several such actions might be executable in the same iteration of the cycle.
 The evaluation of conditions of rules and clauses in A. In LPS1, an instance
condition σ→ conclusion σ of a rule in P is fired when condition σ holds in W*i ∪
{ ai-1 } ∪ Lstateless ∪ Lram. Here “holds” means that condition σ is true in the minimal
model of W*i ∪ {ai-1 } ∪ Lstateless ∪ Lram. To ensure that truth can be verified
effectively, we have restricted the form of condition to conjunctions of atoms.
However, if the minimal model is finite, then this restriction can be liberalised, and
condition can be any sentence of first-order logic. There are many simple, syntactic
restrictions, such as Datalog, that can be imposed to guarantee finiteness. Similarly,
the syntax of the conditions of clauses in A can be liberalised for the same reason.

3.2 Conflict Resolution
Unlike the PS cycle, the LPS cycle does not perform explicit conflict resolution.
Instead, it uses the selection function, to sequence goals, and the search strategy, to
choose among the alternative ways of solving goals and sub-goals. However, like
conflict resolution in production systems, the execution of an action in LPS is a
committed choice, from which there is no backtracking.
 Production systems use conflict resolution to decide which rules should be fired
when several rules are fireable. In contrast, LPS adds to its goals the conclusions of all
instances of rules whose conditions hold in the current state. This feature of LPS is
necessary for the model-theoretic semantic, to ensure that the rules in P will be true in
the model determined by the LPS cycle.

 As a consequence, conventional ways of writing production rules are not always
acceptable in LPS. Consider, for example, the production rules:

 Someone-attacks-me → attack-them-back
 Someone-attacks-me→ run-away

Both rules are fireable in a state in which someone attacks me. In conventional
production systems, conflict resolution would be necessary to fire only one of them.
 However, in the same situation in LPS, both rules would fire and both actions
would need to be executed. To obtain the effect of conflict resolution, LPS would
need to rewrite the two rules, making their intended higher-level goal and the
alternative ways of achieving it explicit. For example (with explicit state variables):
In P: someone-attacks-me(T) → protect-myself(T’), T≤ T’
In LPlan: protect- myself(T+1) ← attack -them -back(T)

 protect myself(T+1) ← run-away(T)
More generally, to obtain the effect of the production rules:

 C → A1 C → A2
where the intention is that, when C is true, then one of the actions A1 or A2 should be
made true in the future, rewrite the rules in the form:
In P: C(T) → G(T’), T≤ T’
In LPlan: G(T+1) ← A1(T) G(T+1) ← A2(T)

 There are also other, less problematic cases, where conflict resolution can be dealt
with simply by assigning different priorities to the rules. In the particular case where
the rules are written in order of priority:

 C1 → G1 C2 → G2 … Cn → Gn
the effect of conflict resolution can be obtained in LPS by adding extra conditions to
the rules:

 C1(T) → G1(T’), T≤ T’ C2(T) , not C1(T) → G2(T’), T≤ T’ …
 Cn(T) , not C1(T) ,… , not Cn-1(T) → Gn(T’), T≤ T’

Notice that this is a case where we need the liberalisation of the syntax of the
conditions of the rules in P, discussed at the end of the previous section

There is also a more problematic case, where conflict resolution is used to deal with
refraction, to prevent the same rule from firing repeatedly when its conditions
continue to hold in successive states. For example, the rule

 customer(X,T), online(X,T) → present-advert(X, T’), T ≤ T’
will fire repeatedly in all states in which the condition online(X,T) continues to hold.
If required, this can be avoided by replacing the online condition by the action (or
event) that initiates it, in this case obtaining the rule

 customer(X,T), login(X,T) → present-advert(X, T’),T ≤ T’
More generally, to avoid firing the same rule C(T)→G(T’), T≤ T’
unnecessarily, replace it by A(T)→G(T’), T≤ T’,
where C(T) is an extensional predicate and initiates(A, C, T). A similar approach can
be used when C(T) is an intensional predicate. Dealing with refraction by representing
it in an appropriate formulation of the rules has the advantage that different policies
regarding refraction can be combined in the same application.

3.3 Model-theoretic semantics
The set S of sentences W*0 ∪ …∪ W*i ∪…{ a0, …, ai, …} ∪ Lstateless ∪ Lram ∪ Ltemp ∪
Lmacro is a Horn clause logic program. Therefore, S has a unique minimal model M.
This model is like a Kripke structure of possible worlds Mi= W*i ∪ Lstateless ∪ Lram ∪
Ltemp ∪ Lmacro embedded in a single model M, where the actions {a0, …, ai, …} are
like the transition relation from one possible world to another.

Soundness. To prove the soundness of the LPS cycle, the rules in Lplan need to be
compatible with the action clauses in A:
Definition 12. Lplan is compatible with A if every clause in Lplan has the form :
 p(T+1) ← init-conditions(T), other-conditions, a(T)
where initiates(a, p, T) ← init-conditions(T) is an instance of a clause in A. p(T+1)
may have other arguments, and other-conditions are any other conditions respecting
range-restriction. �
 It is easy to satisfy this condition, and all the examples in this paper, if done in full
will have this property. Note that we can plan to achieve intentional atoms by
combining such clauses in Lplan with clauses in Lram.

Theorem 4: Given a range-restricted LPS framework < V, P, L, A, W0 , G0 >, safe
selection function s, and search strategy ∑, if the LPS cycle terminates successfully
and Lplan is compatible with A, then some clause C0 in G0 is true in M and all the rules
in P are true in M.
 Sketch of proof: If the cycle terminates successfully, then some Gn contains the
empty clause and Gn-1

* =Gn-1. The proof of this empty clause can be traced backwards

to a sequence of clauses, starting with some C0 in G0 : C0 ,…,Ci, ….,Cm = {}, where
Ci+1 is obtained from Ci in one of two ways:

1) Ci+1 is Ci conjoined with conclusion σ for every instance condition σ→
conclusion σ of a rule in P such that condition σ holds in W*i ∪ {ai-1} ∪
Lstateless ∪ Lram.

2) Ci+1 is obtained by SLD-resolution between Ci and some clause in W* i ∪
{ ai-1} ∪ Lstateless ∪ Lram ∪ Lplan ∪ Ltemp ∪ Lmacro.

It suffices to prove the lemma: All the Ci are true in M. The lemma implies that C0 is
true in M. Together with the condition Gn-1

* =Gn-1, the lemma also implies that all the
rules in P are true in M.
 Proof of lemma: The lemma follows by induction, by showing base case Cm = {}
is true in M and induction step if Ci+1 is true in M, then Ci is true in M. The base case
is trivial. For the induction step, there are two cases: In case 1 above, if Ci+1 is true in
M, then Ci is true in M, because if a conjunction is true then so are all of its conjuncts.
 In case 2 above, the clauses Ci+1 and Ci are actually the negations of clauses in
ordinary resolution. So, according to the soundness of ordinary resolution, ¬Ci+1 is a
logical consequence of ¬Ci and C. Therefore, if both C and Ci+1 are true in M, then Ci

is true in M. But any clause C in W* i ∪ { ai-1} ∪ Lstateless ∪ Lram ∪ Ltemp ∪ Lmacro is
true in M by the definition of M. It suffices to show that all clauses in Lplan are also
true in M. But this follows from the compatibility of Lplan with A. �

Completeness. Following the completeness results for ALP, it might be expected that
a similar completeness result would hold for LPS: Given a minimal model M of some
clause C0 in G0 and of all the rules in P, it might be hoped that there would exist some
search strategy ∑ that together with the LPS cycle could generate some related model
M’, possibly determined by a subequence of the actions of M. Unfortunately this is
not always possible. The LPS cycle will not generate models that make rules true by
making their conditions false. For example:
 P: q → a A: terminates(b, q) W0 : {q}
Here a and b are actions, and we ignore states for simplicity. There is a minimal
model corresponding to the sequence of actions b; a, but the LPS cycle can only
generate the non-terminating sequence a, a, …

4 Related and Future Work

LPS combines production rules and logic programs with a destructively updated
database, and gives this combination a model-theoretic semantics. To the best of our
knowledge, both of these contributions are novel. Raschid [12] considers a restricted
kind of production rules and translates them into stratified logic programs. She shows
that the final state of the production system cycle is identical to the minimal model of
the associated logic program. However, the model is the final state of the cycle, rather
than as in the LPS case the totality of all the states generated from the initial state to
the final state.
 Other systems more closely related to LPS have been developed mainly in other
fields, such as logic programming, active databases and intelligent agents. EVOLP
[1], in particular, gives a model-theoretic semantics to evolving logic programs that
change state destructively over the course of their execution. Several authors,
including [6] obtain a model-theoretic semantics for event-condition-action rules in
active database systems, by translating rules into logic programs with their associated

model theory. Metatemp, [5] on the other hand, is a programming language with a
Kripke semantics for modal logic sentences resembling production rules. The Bonner
Kifer Transaction Logic [2] gives a Kripke-like semantics for macro-actions, which is
similar to that of LPS.

LPS is based on ALP agents, but differs in its use of a destructively changing
database. Unlike ALP agents, LPS does not generate actions to terminate conditions of
production rules. However, Dung and Mancarella [3] address a related problem of
allowing future actions to affect the conditions of production rules. They give the
resulting production system an argumentation semantics.

Perhaps the most important direction for future work is to harmonise and unify
related work in production systems, active databases, and intelligent agents, all of
which employ rules in a cycle that generates a sequence of database states. LPS, based
on ALP agents, is a contribution to this unification. However, further work is
necessary both to extend the database to include external updates, and to investigate
further the problem of completeness. We are currently working on an implementation.

Acknowledgments. We are grateful to Ken Satoh, Luis Moniz Pereira, Harold Boley,
Thomas Eiter and Keith Stenning for helpful discussions.

References
1. Alferes, J., Leite, J., Pereira, L.M., Przymusinska, H. & Przymusinski, T.:Dynamic Updates of

Non-Monotonic Knowledge Bases, J. of Logic Programming 45(1-3):43-70 (2000)
2. Bonner and M. Kifer.: Transaction logic programming. In Warren D. S., (ed.), Logic

Programming: Proc. of the 10th International Conf., 257-279 (1993)
3. Dung, P. M. Mancarella, P.: Production Systems with Negation as Failure, IEEE Transactions

on Knowledge and Data Engineering, Vol 14; 2, 336-352 (2002)
4. van Emden, M. and Kowalski, R.: The Semantics of Predicate Logic as a Programming

Language, in JACM, Vol. 23, No. 4, 733-742 (1976)
5. Fisher, M.: A Survey of Concurrent METATEM - The Language and its Applications.

Lecture notes in computer science, 827, Springer Verlag (1994)

6. Flesca, S. and Greco, S. Declarative semantics for active rules. Theory and Practice of Logic
Programming 1 (1): 43-69, (2001)

7. Fung, T.H. and Kowalski, R. : The IFF Proof Procedure for Abductive Logic Programming.
J. of Logic Programming (1997)

8. Kakas,T., Kowalski, R., Toni, F.:The Role of Logic Programming in Abduction, Handbook of
Logic in Artificial Intelligence and Programming 5, Oxford University Press, 235-324 (1998)

9. Kowalski, R.: Predicate Logic as Programming Language, in Proceedings IFIP Congress,
Stockholm, North Holland Publishing Co., 569-574 (1974)

10. Kowalski, R. and Sadri, F.: From Logic Programming towards Multi-agent Systems, Annals
 of Mathematics and Artificial Intelligence , Volume 25, 391-419 (1999)

11. Rao, A.: Agents Breaking Away, In Lecture Notes in Artificial Intelligence, Volume 1038,
 Springer Verlag, Amsterdam, Netherlands (1996)
12. Raschid, L.: A Semantics for a Class of Stratified Production System Programs. J. of Logic
 Programming. 21(1) (1994)
13. Russell, S. and Norvig, P.: Artificial Intelligence: A Modern Approach (2nd ed.), Upper
 Saddle River, NJ: Prentice Hall (2003)
14. Simon, H.: Production Systems. In Wilson, R. and Keil, F. (eds.): The MIT Encyclopedia of
 the Cognitive Sciences. The MIT Press. 676-677 (1999)
15. Thagard, H.: Mind: Introduction to Cognitive Science. Second Edition. MIT Press (2005)

