
mWuDI?D(SD&D:,

Logic
for Problem

Solving
Robert Kowalski

Imperial College of Science and Technology
University of London

NORTH-HOLLAND
NEW YORK· AMSTERDAM • OXFORD

7

Elsevier Science Publishing Co., Inc
52 Vanderbilt Avenue, New York, New York 10017

Sole Dlstnbutors Outside USA and Canada
Elsevler SCience Publishers B.V
P.O Box 211, 1000 AE Amsterdam, The Netherlands

© 1979 by Elsevler SCience Publishing Co., Inc.

Library of Congress Cotologmg m Publication Data

Kowolskl, Robert
Logic for problem solvmg
(Artificial intelligence series) (The Computer sCience library)

Bibliography p
Includes Index
1. Problem solving. 2. Electronic digital computers-Programming
3 Logic, Symbolic and mathematical Title

QA63. K68 5197 79-22659
ISBN 0-444-00365-7 (hbk)
ISBN 0-444-00368-1 (pbk)

Current printing (lost digit)
10 9 8

Manufactured In the United States of America

To
my parents

Table of Contents

1 Introduction •.••..•••..•••..•••..••••..••..•••.•••.••••••••.•••••••••• l

The family relationships example and clausal form •••••••••••••••••• 2
A more precise definition of clausal form •.•••.•••.••••.••••••••••• 5
Top-down and bottom-up presentation of definitions ••••••••••••••••• 7
Semantics of clausal form ••••••.••••••••••••••.•••.••••••••••••..•• 8
The fallible Greek example .••••••••••••••.••••••••••••.••••••••••• 10
The factorial example .••••••••••••••.••••.•••.•••.•••••••••••••.•• 10
The universe of discourse and interpretations •••••.••••••••••••••• 12
A more precise definition of inconsistency •••••••.••••••••.••••••• 14
The semantics of alternative conclusions ••••.••••••••••••••••••••• 16
Horn clauses .•.••••.•.•••.••••.•••..•••.••••••••.••••••••••••••••• 16
Mushrooms and toadstools .••••.••••••••..•••••••••••••••••.•••••••• 17
Exercises •.••..•••..••••..••..••••••••..•••.•••.•••••••••••••••••• 18

2 Representation in Clausal Form ••••..••••.•••••••••••••••••••••••••••• 22

Infix notation •••.•••••.•••..•••..•••.•••••••••••••••••.••••••••.• 22
Variables and types of individuals ••..•••.•••••••••••••••••••••••• 23
Ex istence ••••••••••••.•••••••••••••••.•••.••••••••.••••••••••••••• 25
Neg at ion •.••.•••..••••.••••.••••.••••••••..••••••••••••••••••••••• 28
Denial of conclusions which are implications ••.••••••••••••••••••• 2B
Conditions which are implications •••.••••••••••••.••••.•••.••••••• 29
Definitions and "if-and-only-if" •.••.••••.••••••••••••.••••••••••• 31
Semantic networks .•••••••••••••.••••••••.••••.•••.•••••••••••••••• 31
Extended semantic networks ••••••••••••••••••.••••••••••••••••••••• 33
The representation of information by binary predicate symbols ••••• 33
Advantages of the binary representation ••••.•••••••••••••••••••••• 36
Databases •.••.••••.••••.•••••.••••••••••••.••••••••••••••••••••••• 37
Data query languages •••.••••.•••.••••..••••••••.•••.•••••••••••••• 39
Data description •••••••.••••••••.••••.••••••••.••••••••••••••••••• 39
Integrity constraints •••••••..••..••••••••••••••••••••••••••.••••• 40
A departmental database ••••.••••••••••••••••••.••••••••••••••••••• 41
Equality •••..•••..•••.•••••••••.••••.••••.•••.••••••••••••.••••••• 42
Exercises ••.•••..•••••.••...••.••••..••••••••••••.••••.••••••••••• 44

3 Top-down and Bottom-up Horn Clause Proof Procedures •.•••••••••••••••• 49

Introduction •••.•••••••••.•••••.•••.••••.•••.••••••••.•••••••••••• 49
The parsing problem ••••••••••••••••.••••••••••••.••••••••.•••••••• 49
A predicate logic representation of the parSing problem ••••••••••• 52
Bottom-up inference •••••.•••••••••••••.••••••••.•••••••••••••••••• 53
Top-down inference .••••.••••••••••••••.••••••••••••••••••••••••••• 55
The family relationships example ••••••.•••••••••••••••••••••.••••• 57
Inference rules and search strategies •.•••.••••••••••••••••••••••• 60
Infinite search spaces: natural numbers •••••••..••.••••••••••••••• 64
Definitions ••.••.••••.•••..•••.•••••••••.•••.••••.••••••••••••••• 67
Substitution and matching •••••••••••.•••.•••.••••.•••••••••••••••• 70
Correctness and completeness of inference systems ••••.•••.•••••••• 7l
Exercises ...•••.•••••••••.••••..•••.•••••••••••••••••••••••••••••• 71

4 Horn Clause Problem-Solving •.•..••••••••.•••••••••••••••••.•••••••••• 75

Path-finding .•.•.•••••••••••••••••••.••••.•••••••••••••••••••••••• 75
The water containers problem •.•.••••..••..•••••••.•••••••••••••••• 75
A simplified path-finding problem •.•••••.•••••••.••••••••.•••••••• 77
Graph-representation of search spaces •••••••••••.•••.•••.••••••••. 79

Table of Contents

The Search Spaces for the Water Containers Problem•..••.• 81
Search strategies for path-finding •••.••••.•••..••..•••.••••.••... 83
The and-or tree representation of problem-reduction••••• B5
The problem-solving interpretation of Horn clauses•.••••••••• B8
Splitting and independent subgoals .•............••..•.•••••••..... B9
Dependent subgoals•••••••••••. 91
Finding versus showing•.••.•••...•••.•••.•..•.......... 92
Lemmas, duplicate subgoals and 10ops••••••.•••.. 94
Search strategies for problem-reduction spaces• 95
Si-directional problem-solving•••.•••.•• 99
A notation for describing bi-directional problem-solving •••.•••.. l0l
Another formulation of the path-finding problem •••••••••......... l02
Other aspects of problem-solving•••.•••••• 103
Exercises•..•••.•••..•••.. 104

5 The Procedural Interpretation of Horn Clauses•..••••••• l07

Terms as data structures••.••••.•••.•••.... 107
Computation by successive approximation to output 109
The variation of input-output parameters••.•••..•......... l10
Non-determinisml: several procedures match a procedure call •..... lll
Sequential search regarded as iteration••..•••.••••.. lI2
"Don't know" versus "don't care" non-determinism l13
Non-determinism2: The scheduling of procedure calls•••.•• ll4
Bottom-up execution of programs ••••..•••...•..................... llB
The pragmatic content of logic programs•••.•••.•••.... 120
Separation of data structures••... 121
Terms versus relations as data structures •••.•••.••.•..•.......•• 122
Database formal isms and programming languages• l24
Algorithm; Logic + Control •••••••.••••.•••.••............••..••• l25
Specification of the control component 127
Natural Language Logic + Control •...••................•.••••• 129
Exercises•............................. 129

6 Plan-Formation and the Frame Problem••......... l33

Plan-formation and the blocks world l33
A clausal representation of the blocks world problem •••.••....... 134
Bottom-up execution of the state space axiom {12) •.•••••........• l38
Bottom-up execution of the frame axiom (15) •..•••.•••••••.••••..• 139
Mixed top-down and bottom-up execution of the frame axiom• 140
Top-down execution of the state space and frame axioms ••••....... 143
Applications of plan-formation•••...•......... l44
Limitations ...•.••......... 145
Exercises•••.•••...••.•••...........••• 146

7 Resolution •..•••.••.......•••..•••.••••.•••••••......••••••••••••..• 147

Negative goals and assertions ••.................•.•••...........• 147
Resolution•....•.....................•••............ 149
Middle out reasoning with Horn clauses ..•••.•••.•.........••.•••• 150
Propositional logic example ..•.••••••.................••.••...... l51
Arrow notation for non-Horn clauses••.•.............••• l56
Disjunctive solutions to non-Horn clause problems ...••••••••..... l57
Factoring•.............•.•••. 159
Exercises••..•.................•••.••.•.........•••••••... 160

Table of Contents

8 The Connection Graph Proof Procedure .••••••••.••.•••.•••.••••••••••• 163

The initial connection graph •••.••..•••.••.•••.•••••••••••.••.••• 163
The Resolution of links in connection graphs ••••••.•••••••.•••••• 165
Mixed top-down and bottom-up search - the parsing problem •••••••• 168
Macro-processing and middle-out reasoning •••.••••••.•••••••.••••• 169
Arrow notation for controlling selection of links •••.•••.•••••••• l70
Self-resolving clauses •.••.••..•••.••..••.•••.••••••.•••••••••••• 173
Deletion of links whose resolvents are tautologies ••••••••••••••• 174
The connection graph proof procedure •••••..••.•••••••••••.••••••• 175
Exercises ...••..•••.••..••..••.•••..••.•••••••.•• , •••.•••. ••••••• 177

9 Global Problem-Solving Strategies •.••.•••.•••.••..•..•••.•••.••••••• 179

Deletion of redundant subgoals •.••..••.•••.••..••.•••.••••••••••• l80
Addition of surrogate subgoals .••••.••••••.•••.••••••.••••••••••• 181
Rejection of inconsistent goal statements .•.•••.••.••.••••.•••••• l82
Generalising the use of diagrams in geometry •••.••.•••.•••••••••• 183
Goals as generalised solutions ••.•••.•••.••••••.••.•••.•••.•••••• 184
Goal transformation and the information explosion ••.••••••••••.•• 185
Loop detection by analysis of differences •.••.••••••••••.•••.•••• 185
The factorial example ...•..••.•••.•••.•••.••.••••••••••.••••.••. • 187
Invariant properties of procedures •.•.•••.•••.••.•••.•••••••••••• 188
Exercises ...••.•••.••..•••..•.•••.•••.•••.••••••.•••.••.••••••••• 190

10 Comparison of Clausal Form with Standard Form ••.••••••.•••.•••.••.• 193

Introduction to the standard form of logic ..••.••••••.•••••••.••• 193
Conversion to clausal form ••••••.•••••••.••.•••.••.•••.•••.•••••• 197
Comparison of clausal form with standard form •••••••••••••.•••••• 200
Conjunctive conclusions and disjunctive conditions .•••••••••••••• 200
Disjunctive conclusions ••.•••.•••.•••.••••••.•••.•••••••••••.•••• 202
Only-if halves of definitions ..•••.••..••.•••.••••••.•••••••.•••• 202
Implications as conditions of implications ••••.••.•••.••••••••••. 202
Derivation of programs from specifications •.•••.•••••••••••••.••• 204
Exercises •••..•......••..••......••..••.•...•••.••.•••.••..•••••• 206

11 If-and-only-if ••.•..••...••.••..••.•••.•••.•••.••.•••.•••.•••.••••• 210

The need for the only-if halves of definitions ••••••••••••••••••• 211
Terms versus relations as data structures ••••.••.•••.•••••••.•••• 2l2
The unstated only-if-assumption •••..••.•••.••..••.•••••••.•••.••. 213
Ambigui ty of only-if .••..••.•••.•••.•••.••••••.••••••.•••.••••••• 215
Object language and meta-language solutions ••••.••••••••••••••••• 215
Object language and meta-language interpretations of negation •••• 217
Horn clauses augmented with negation interpreted as failure •••••• 219
Proof of program properties •.••••••.•••.••••••••••.•••••••••••••• 221
The monotonicity criticism of logical consequence ••.•••.••..••.•• 222
Exercises •••.••...••.•••..••.•••.•••.••..••..•••••••••••••••••••• 223

12 formalisation of Provability ••.•••..••.••••••..••.•••.••••••••••••• 225

Correct representabil i ty •.•••.•••.••.••••.••.•••.• , .••••.•••.••.• 226
A simple definition of a provability relation •.••..••.••••••••••• 227
Direct execution versus simulation ••••.•••.••••••••••.••••••••••• 228
Addition and suppression of assumptions •••.•••.•••.•••.•••••••••• 230
Bootstrapping •••.•..••..••.••••••••.•••.••..•••••••••••••••• , •••• 231

Table of Contents

Combining the object language and meta-language •.•••.•••••••.•••• 232
Incompleteness of the combined object and meta-language •.•••.•••• 233
More comprehensive form of the Demonstrate relation •.•••••••.•••• 234
Exercises ••••..••..••..•••••••.•••••••..•••••••••••.••••••••••••• 235

13 Logic, Change and Contradiction •.•.••••.•••••••••••.•••..•••.••••.• 239

Information systems •••..•••.•••.•••.•••.•••.•••.••••••••.•••.•••• 239
Dynamics of information system change •••.•••.•••••••.•••••••••••• 240
Restoration of consistency ..•••••••••••.•••••••••••.••••••••.•••• 242
A logic program for natural language ••..•••.•••.••••••••••••••••• 244
Conclus ion .••..•••••.•. '" .••..•••. '" .•••.•••. '" .•••.•••••••••. 246

References ...•...••..••.•••..••..••.••••.•••••••••••••••••••..••••• 247

Index ..•••..•..••..••..•••.••..••.••••.•••••••••••••••••••.•••••••• 261

Preface

This book investigates the application of logic to problem-solving and
computer programming. It assumes no previous knowledge of these fields,
and may be appropriate therefore as an introduction to

Logic

logic,
the theory of problem-solving, and
computer programming.

Logic is an important tool in the analysis and presentation of
arguments. It investigates whether assumptions imply conclusions,
independently of their truth or falsity and independently of their
subject matter. This book aims to apply the traditional methods of logic
to contemporary theories of problem-solving and computer programming.

As an introduction to logic, the book differs from others in its use
of the clausal form of logic. This has several advantages. Clausal form
is simpler than the standard form of logic but is just as powerful. It is
simple enough to be introduced directly, without the usual preliminary
study of propositional logic, and it bears greater resemblance than
standard form to other formal isms used in data processing and computer
programming.

This book is not concerned with the mathematics of
applications. For an interesting and more thorough
relationships between logic and language the reader is
the books by Quine [1941] and Hodges [1977].

Problem-solving

logic but with its
discussion of the
advised to consult

The clausal form of logic can be used to elucidate and compare models
of problem-solving developed in cognitive psychology and artificial
intelligence. This book investigates the heuristic search, problem-
reduction and program execution models of problem-solving and argues that
logical inference provides a model which is both simpler and more
powerful.

The interpretation of logical inference as problem-solving builds upon
the distinction between reasoning, forward from assumptions to
conclusions, and 1QE-down reasoninq, backwards from goals to subgoals.

problem-solving

The problem-solving interpretation of inference is primarily the top-down
interpretation. Bottom-up inference is the manner in which solutions are
generally presented and justified, whereas top-down inference is the
manner in which solutions are most often discovered. Bottom-up inference
is the synthesis of new information from old; top-down inference is the
analysis of goals into subgoals.

This book covers similar ground to the problem-solving sections of the
books by Nilsson [1971], Winston [1977] and Bundy et al [1978]. Where
those books use production systems, LISP or LOGO as the unifying
formalism, ours uses the clausal form of logic.

Computer programming

Employed as a language for communicating with computers, logic is
higher-level and more human-oriented than other formal isms specifically
developed for computers. In contrast with conventional computing
methodology, which employs different formal isms for expressing programs,
specifications, databases, queries and integrity constraints, logic
provides a single uniform language for all of these tasks. We shall
investigate the use of logic for databases, but concentrate on its use as
a programming language.

The meaning of programs expressed in conventional languages is defined
in terms of the behaviour they invoke within the computer. The meaning
of programs expressed in logic, on the other hand, can be defined in
machine-independent, human-oriented terms. As a consequence, logic
programs are easier to construct, easier to understand, easier to
improve, and easier to adapt to other purposes.

The same methods of top-down inference which give logic a problem-
solving interpretation can be used to execute logic programs efficiently
by means of computers. Top-down inference unifies problem-solving and
computer programming. Moreover, it provides many of the facilities for
intelligent program execution, such as non-determinism, parallelism, and
procedure call by pattern-matching, which are under development for more
conventional programming languages today. An efficient programming
language, called PROLOG [Colmerauer et al 1972], [Roussel 1975],
[Bruynooghe 19761. [Warren, Pereira and Pereira 1977] and [Clack and
McCabe 1979], based on the clausal form of logic, has been used for
applications in artificial intelligence, databases and engineering.

Mechanical theorem-proving

The use of the clausal form of logic and its associated systems of
inference is based upon investigations into the mechanical proof of
theorems by means of computers. The resolution rule of Robinson [1965a]
and the model-elimination proof procedure of Loveland [1968, 1969] have
been the main antecedents of the inference systems investigated in this
book. Their inference methods in turn are based upon earlier researches
by Herbrand [1930J and Prawitz [1960].

Organisation of the book

direction of change. This combines the problem-solving interpretation of
logic with the classical use of logic in the analysis of human knowledge
and belief.

Level of the book ----- -- --- ----
This book is an extension of lecture notes prepared in March 1974

[Kowalski 1974b] for an advanced course on the Foundations of Computer
Science held at the Mathematics Centre in Amsterdam. Short courses on the
same material were given by the author in Edinburgh, Milan, Rome and
Stockholm, between 1973 and 1975. Since 1975, parts of the book have been
used for introductory courses in logic and in problem-solving given to
computing students at Imperial COllege. A complete course covering all
the material in the book was given at the University of Syracuse in
1978.

The book is written at an informal level and contains almost no
proofs. It assumes no previous background in logic, problem-solving or
computer science, and may be suitable, therefore, for students at the
first year undergraduate level. Many of the exercises, however, are of a
more advanced level. Moreover, some of the discussion in Chapter 5,
comparing logic with conventional programming languages, may not be
completely intelliigible to readers without previous programming
experience.

Acknowledgements

Much of the material in this book has been influenced by the work of
my colleagues Keith Clark, Alain Colmerauer, Pat Hayes, Maarten van Eroden
and David Warren. I am grateful to them and to Frank Brown, Alan Bundy,
Tony Hoare, Wilfred Hodges, Chris Hogger, Jan Nilsson, George pollard,
Ray Reiter, Richard Waldinger and George winterstein, for the valuable
comments they have made on earlier drafts of the book, and to Karen King,
Frank McCabe, Kevin Mitchell and Chris MoSS, for helping to produced the
camera-ready copy. I am also happy to acknowledge the support of the
Science Reseach Council.

I am especially indebted to my wife, Danusia, and children, Dania,
Tania and Janina, for their patience and encouragement.

Preface

Although the inference methods in this book were originally designed
for use by computers, they can also be used by human beings. The problem-
solving strategies developed for efficient mechanical theorem-proving are
similar to those investigated by researchers concerned with computer
simulation of human problem-solving. In particular we have attempted to
present a view of logic which reconciles the machine-oriented view of
resolution with the heuristic proof-procedures of Bledsoe 11971, 1977J
and his colleagues.

This book can be regarded as a text in the
theorem-proving, similar to those by Chang and
[1978] and Robinson [1979]. It is less formal,
attempt to give a broad coverage of the field.

Organisation of the book

field of mechanical
Lee 11973J, Loveland

however, and makes no

The book is organised into three parts. The first part, Chapters I and
2, deals with the machine-independent semantics of the clausal form of
logic and the use of clausal form for representing information; the
second part, Chapters 3 to 8, deals with inference systems for clausal
formi and the third , Chapters 9 to 13, investigates extensions of
clausal form as well as more powerful problem-solving methods.

The first part of the book emphasises that logic, unlike most other
formal isms, can be understood without understanding its behaviour.
Examples are given of the use of logic for describing programs and
databases, and clausal form is compared with semantic networks for
representing the meanings of natural language sentences.

The second part of the book introduces inference methods for clausal
form in stages of increasing complexity. Chapters 3 to 6 deal with
inference methods for Horn clauses, which are simplified sentences,
mainly of the form

A if Bl and B2 and ... and Bm'

Top-down and bottom-up inference are introduced in Chapter 3 as
generalisations of top-down and bottom-up parsing procedures for context-
free grammars. Chapter 4 deals with the problem-solving interpretation of
top-down inference, whereas Chapter 5 deals with its programming language
interpretation. Chapter 6 describes the application of Horn clause logic
to plan-formation problems. Inference methods for non-Horn clause
problems and their problem-solving interpretation are investigated in
Chapters 7 and 8.

Chapter 9 deals with global problem-solving methods for clausal form,
whereas the remaining chapters investigate various extensions of clausal
form. Although clausal form is as powerful as the standard form of
logic, it is sometimes less natural. The standard form of logic and its
relationship to clausal form are investigated in Chapter 10. Definitions
using "if-and-only-if" are treated separately in Chapter 11. In Chapter
12 we consider an extension of logic which combines the use and mention
of sentences in a manner similar to that of natural language. The final
chapter deals with the dynamics of changing information systems, paying
special attention to the role of contradiction in determining the

1

CHAPTER 1

Introduction

Logic studies the relationship of implication between assumptions and
conclusions. It tells us, for example, that the assumptions

Bob likes logic. and
Bob likes anyone who likes logic.

imply the conclusion

Bob likes himself.

but not the conclusion

Bob only likes people who like logic.

Logic is concerned not with the truth, falsity or acceptability of
individual sentences, but with the relationships between them. If a
conclusion is implied by true or otherwise acceptable assumptions, then
logic leads us to accept the conclusion. But if an unacceptable or false
conclusion is implied by given assumptions, then logic advises us to
reject at least one of the assumptions. Thus, if I reject the conclusion
that Bob likes himself then I am logically compelled to abandon either
the assumption that Bob likes logic or the assumption that Bob likes
anyone who likes logic.

To demonstrate that assumptions imply a conclusion, it is helpful to
construct a proof consisting of inference steps. For the proof to be
convincing, the individual inference steps need to be direct and obvious
and should fit together correctly. For this purpose, it is necessary that
the sentences be unambiguous and it is useful if the grammar of the
sentences is as simple as possible. The requirement that the language of
proofs be both unambiguous and grammatically simple motivates the use of
a symbolic language rather than a natural language such as English.

The symbolic language of the clausal form of logic, used in the first
nine chapters of this book, is exceedingly simple. The simplest sentences
are atomic sentences which name relationships between individuals:

Bob likes logic.

John likes Mary.

John is 2 years older than Mary.

(The underlined words are part of the names of relationships. Those not
underlined are names of individuals.) More complex sentences express that

2 Chapter 1: Introduction

atomic conditions imply atomic conclusions:

Mary likes John if John likes Mary.

Bob likes x if x likes logic.

Here x is a variable which names any individual. Sentences can have
several joint conditions or several alternative conclusions:

Mary likes John or Mary likes Bob if Mary likes x.
(Mary likes John or Bob if she likes anything at all).

x likes Bob if x is a student of Bob and x likes logic.

Sentences are also called clauses. In general, every
that a number (possibly zero) of joint conditions
(possibly zero) of alternative conclusions. Conditions
express relationships among individuals. The individuals
named by words such as

Bob, John, logic or 2

clause expresses
imply a number
and conclusions

may be fixed and

called (somewhat confusingly, perhaps) constant symbols, or they may be
arbitrary and named by variables such as

u, v, w, x, y, z.

The use of function symbols to construct more complex names such as

dad (John) (i.e. John's dad)

fraction(3,4) (i.e. the fraction 3/4)

will be considered later.

This informal outline of the clausal form of logic will be elaborated
and slightly modified in the next section of this chapter. But the great
simplicity of clausal form compared with natural languages should already
be apparent. It is surprising therefore that clausal form has much of
the expressive power of natural language. In the last four chapters of
the book we shall investigate some of the shortcomings of clausal form
and propose ways of overcoming them.

The family relationships example and clausal form

It is convenient to express the atomic formulae which serve as the
conditions and conclusions of clauses-rn-a simplified, if somewhat less
natural, form. The name of the relation is written in front of the atomic
formula, followed by the sequence of names of individuals to which the
relation applies. Thus we write Father (Zeus,Ares) instead of Zeus is
father of Ares and Fairy-Princess (Harmonia) instead of Harmonia is
fairy prIncess. Here, str ictly speaking, "Fairy-pr incess" names a
property of individuals rather than a relation among individuals.
However, in order to simplify the terminology, we shall include
properties (also called predicates) when we speak of relations.

The family relationships example and clausal form 3

Moreover,to mix terminology thoroughly we shall refer to names of
relations as predicate symbols.

We use the arrow read "if", to indicate implication, writing, for
example,

Female(x) (- Mother(x,y)

to express that

x is female if x is mother of y.

To simplify notation and the inference rules later on, it is
convenient to regard all clauses as implications, even if they have no
conditions or conclusions. Thus we write

Father (Zeus,Ares) (-

instead of

Father (Zeus,Ares).

Implications without conclusions are denials. The clause

(- Female (Zeus)

expresses that Zeus is not female.

The following clauses describe some of the properties and family
relationships of the Greek gods.

Fl Father (Zeus,Ares) <-

F2 Mother (Hera,Ares) <-

F3 Father (Ares,Harmonia) <-

F4 Mother (Aphrodite,Harmonia) <-

FS Father (Cadmus,Semelel <-

F6 Mother (Harmonia,Semele) <-

F7 Father (Zeus,Dionysus) <-

F8 Mother (Semele,Dionyslls) <-

F9 God (Zeus) <-

F10 God (Hera) <-

F11 God (Ares) <-

F12 God (Aphrodite) <-

F13 Fairy-Princess(Harmonia) <-

4 Chapter 1: Introduction

The intended meaning of the clauses should be obvious. The following
clauses constrain, and therefore help to clarify, their meaning.

F14 Female(x) (- Mother(x,y)

FlS Male(x) (- Father (x,y)

F16 Parent(x,y) (- Mother (x,y)

F17 Parent(x,y) (- Father (x,y)

These clauses state that, for all x and y,

x is female if x is mother of y,

x is male if x is father of y,

x is parent of y if x is mother of y, and

x is parent of y if x is father of y.

Variables in different clauses are distinct even if they have the same
name. Thus the variable x in clause F14 has no connection with the
variable x in PIS. The name of a variable has significance only within
the context of the clause in which it occurs. Two clauses which differ
only in the names of the variables they contain are equivalent and are
said to be variants of one another.

In the clausal form, all the conditions of a clause are conjoined
together (i.e. connected by "and"), whereas all the conclusions are
disjoined (Le. connected by "or"). Hence the connectives "and" and "or"
can safely be replaced by commas. Commas between conditions, therefore,
are read as "and" and between conclusions are read as "or". Thus

FIB Grandparent(x,y) (- Parent(x,z), Parent(z,y)

F19 Male(x), Female (x) (- Human(x)

where x, y and z are variables, state that for all x, y and z

x is grandparent of y if x is parent of z and
z is parent of y,

x is male or x is female if x is human.

If several conclusions are implied by the same conditions then
separate clauses are needed for each conclusion. Similarly if the same
conclusion is implied by alternative conditions then separate clauses are
needed for each condition. For example, the sentence

Female (x) and Parent(x,y) (- Mother (x,y)

which can be expressed directly in the standard form of logic (defined in
Chapter 10) can be expressed equivalently by the clauses

The family relationships example and clausal form 5

Female (x) (- Mother (x,y)

Parent(x,y) (- Mother (x,y) •

The two clauses are implicitly connected
is the mother of y and x is the parent
Similarly, the sentence

by "and": i.e. x is female if x
of y if x is the mother of y.

Parent(x,y) (- Mother (x,y) or Father(x,y)

can be expressed by the clauses

Predicate
individuals.

Parent(x,y) (- Mother (x,y)

Parent(x,y) (- Father (x,y)

x is parent of y if x is mother of y and
x is parent of y if x is father y.

symbols can name relationships
For example, the atomic formula

Parents(x,y,z)

among more

could be used to express that

x is the father of z and y is the mother of z

i.e. Parents(x,y,z) (- Father(x,z), Mother (y,z) •

more precise definition of clausal form

than two

We shall define the syntax (grammar) of clausal form more precisely
and at the same time indicate its correspondence with English.

A clause is an expression of the form

where Bl, .•• ,Brn,Al, •.• ,An are atomic formulae, n 0 and m 0. The
atomic formulae AI, ..• ,An are the joint conditions of the clause and
Bl, ..• ,Bm are the conclusions. If clause contains
the variables xI, ... ,xk then It as statlng that

for all
Blor •.• or Bm Al and .•. and An'

If n 0 then interpret it as stating unconditionally that

for all xl, •.• ,xk
Blor ... or Bm.

6

Ifm

Chapter 1: Introduction

o then interpret it as stating that

for all xl"",xk
it is not the case that
Al and ..• and An'

If 1 = n = 0 then write it as 0 and interpret it as a sentence which
is always false.

An atom (or atomic formula) is an expression of the form

where P is an m-place predicate symbol, tl, ..• ,tm are terms and
ID > 1. Interpret the atom as asserting that the relation called P
hoTds among the individuals called tI,o.o,tm,

A term is a variable, a constant symbol or an expression of the
form

where f is an m-place function symbol, tl, ..• ,tm are terms and ID 1.

The sets of predicate symbols,
and variables are any mutually
reserve the lower case letters

u,v,w,x,y,z,

function symbols, constant symbols
disjoint sets. By convention, we

with or without adornments, for variables. The types of other kinds
of symbols can be identified by the positions they occupy in clauses.

The arrow of clausal form (- is written in the opposite direction to
that normally used in the standard form of logic. Where we write

B (- A (B if AI

it is more usual to write

A -) B (if A then B).

The difference, however, is only superficial. We use the notation B (- A
in order to draw attention to the conclusion of the clause.

The various places
called its arguments.
and the last argument

of a predicate symbol or function symbol are also
In the atom P (tl"" ,tm), the first argument is tl

is t m.

Composite terms are needed in order to refer to infinitely many
individualS using only finitely many clauses. For example, the non-
negative integers can be represented by the terms

0, s(0), 5(5(0)), s (s (••• 5 (0) ••• ») ,

n times

A more precise definition of clausal form 1

where 0 is a constant symbol and s is a I-place function symbol (s stands
for "successor"). The term s(t) names the number which is one larger then
the number named by the term t. It is the successor of t in the
succession of integers. The clauses

Numl Numb(0) (-

Num2 Numb{s(x)) (- Numb{x)

state that

o is a number and

s(x) is a number if x is.

and presentation of definitions

The definition of clausal form has been presented in a top-down
manner. The first definition explains the goal concept of clause in terms
of the concept of atomic formula, (which has not yet been defined). It
becomes the new goal concept, which in the next definition is reduced to
the two subgoal concepts of predicate symbol and term. The concept of
term is defined recursively and reduces eventually to the concepts of
constant symbol, variable and function symbol. Thus the original concept
finally reduces to the four concepts of predicate symbol, constant
symbol, variable and function symbol. It does not matter what objects
these symbols are, provided they can be distinguished from one anotheE
and do not get confused with the "reserved" symbols:

<- and

We assume therefore that the reserved symbols are not contained within
the other symbols.

The top-down presentation of definitions has the advantage of always
being well-motivated. Its disadvantage is that, since goal concepts are
defined in terms of subgoal concepts which are not yet defined,
definitions cannot be completely understood as they are presented.

The bottom-up presentation of definitions is the opposite. It begins
with concepts which are undefined, either because they are "primitive"
and undefinable or else because they are already well understood. Then it
defines new concepts in terms of ones already given. The definitions
terminate when the goal concept has been defined. Definitions can be
understood as soon as they are given, but the motivation cannot be
appreciated until all the definitions have been completed.

The distinction between top-down and bottom-up applies not only to the
presentation of definitions, but also to the presentation and discovery
of proofs and to the writing of computer programs. Proofs can be
presented in the traditional, bottom-up, mathematical reasoning
forward from what is given, deriving new conclusions from previous ones
and terminating when the goal has been derived. Alternatively, proofs can
be presented in a top-down manner which reflects the process of their
discovery; reasoning backward from the goal, by reducing goals to

8 Chapter 1: Introduction

subgoals and terminating when all the subgoals are recognised as
solvable.

computer programs also can be written bottom-up, starting with
primitive programs already understood by the computer and writing new
programs in terms of old ones. At each stage the programs can be executed
by the computer and can be tested. If the low-level programs already
written cannot be put together into suitable higher-level programs, then
they have to be rewritten. Experience teaches that it is better to write
programs top-down, writing the highest-level programs first in terms of
unwritten lower-level ones. The lower-level programs are written later
and are guaranteed to fit together properly. Moreover, the lower-level
programs later can be changed and improved without affecting the rest of
the program.

Together with the utility of using symbolic logic to represent
information, the distinction between top-down and bottom-up reasoning is
one of the major themes of this book. It is the distinction between
analysis (top-down) and synthesis (bottom-up), between teleology (top-
down) and determinism (bottom-up). Moreover, the use of top-down
inference in preference to bottom-up inference reconciles the classical,
logical view of reasoning as it to be performed with the
psychological view of reasoning as it performed by human beings in
practice.

Top-down reasoning relates the human problem-solving strategy of
reducing goals to subgoals to the method of executing computer programs
by replacing procedure calls with procedure bodies. It unifies the study
of logic with both the study of human problem-solving and the study of
computer programming.

Semantics of clausal form

Syntax deals with the grammar of sentences. Historically, it also
deals with inference rules and proofs. Semantics, on the other hand,
deals with meaning. The translation of clauses into English gives only an
informal guide to their semantics.

In natural languages we speak casually of words and sentences as
having meanings. In symbolic logic we are more careful. Any meaning that
might be associated with a predicate symbol, constant symbol, function
symbol or sentence is relative to the collection of sentences whiCh
express all the relevant assumptions. In the family relationships
example, for instance, if Fl-19 express all the assumptions, then there
is nothing to rule out an interpretation in which the assertion

F

holds. Such
Fl-19, which
the symbols

Mother (Zeus,Ares) (-

a possibility is consistent
alone determine any meaning

with the stated assumptions
that might be associated with

"Mother", "Father", "Zeus", etc.

Semantics of clausal form 9

To rule out the possibility F we need some additional assumption such as

F2" (- Male(x), Female (x) .

F is consistent with Fl-19 but inconsistent with Fl-20.

Given a set of clauses which express all the assumptions concerning a
problem-domain, to understand any individual symbol or clause it is
necessary to determine what is logically implied by the assumptions. The
meaning of a predicate symbol, such as "Mother", might be identified with
the collection of all sentences which contain the predicate symbol and
are logically implied by the assumptions. Thus the meaning of "Mother" in
Fl-20 includes the denial

F* (- Mother (Zeus,Ares)

but the meaning of "Mother" in Fl-19 does not.

It follows that it is unnecessary to talk about meaning at all. All
talk about meaning can be reexpressed in terms of logical implication.
To define the semantics of the clausal form of logic, therefore, it
suffices to define the notion of logical implication.

In the clausal form of logic, to determine that a set of assumptions
imply a conclusion we deny that the conclusion holds and show that the
denial of the conclusion is inconsistent with the assumptions. The
semantics of clausal form, therefore, reduces to the notion of
inconsistency. To determine, for example, that the consequence F* is part
of the meaning of motherhood as determined by the clauses Fl-20, we show
that the denial of F*, namely the assertion F, is inconsistent with
Fl-20. The reduction of semantics to the notion of inconsistency may
seem unnatural, but it has significant computational advantages.

The inconsistency of a set of clauses can be demonstrated
"semantically" by showing that no interpretation of the set of clauses
makes them all true, or it can be demonstrated "syntactically" by
constructing a proof consisting of inference steps. This book is about
the syntactic, proof-theoretic method of demonstrating inconsistency.
But, because clauses can be understood informally by translating them
into English or more formally by considering the interpretations in which
they are true, we shall delay the investigation of inference rules and
proofs until Chapter 3.

The semantics of symbolic logic, based upon the notion of
interpretation, is independent of the inference rules used to manipulate
expressions in the language. This distinguishes logic from the vast
majority of formal isms employed in computing and artificial intelligence.
Programs expressed in normal programming languages need to be understood
in terms of the behaviour they evoke inside a computer. The burden of
communication falls upon the programmer, who needs to express information
in machine-oriented terms. However, when programs are expressed in
symboJic logic, they can be understood in terms of their human-oriented,
natural language equivalents. The burden of communication then falls upon
the machine, which needs to perform mechanical operations (equivalent to
inference steps) to determine whether the information expressed in a
program logically implies the existence of a solution to a given problem.
The machine needs to be a problem-solver. The tasks of constructing

10 Chapter 1: Introduction

proofs, executing programs and solving problems become identical.
Moreover, similar problem-solving strategies apply, whether they are
applied by human-beings to problems posed in natural language or by
machines to problems posed in symbolic logic.

Before presenting the precise, semantic definitions of inconsistency
and interpretation, we shall illustrate by examples some of the
expressive capabilities of clausal form and some of the characteristics
of its semantics.

The fallible Greek example

To show that the assumptions

G1 Human (Turing) (-

G2 Human (Socrates) (-

G3 Greek (Socrates) (-

G4 Fallible(x) (- Human (x)

imply the conclusion that there is a fallible Greek, we deny the
conclusion

G5 Fa11ible(u), Greek(u)

and show that the resulting set of clauses is inconsistent. Moreover, the
demonstration of inconsistency can be analysed to determine the reason
for the inconsistency of G5 with Gl-4, namely the substitution

u = Socrates

which identifies an individual that is both fallible and Greek. In this
way the clause GS can be regarded as expressing the problem of finding an
individual u which is a fallible Greek. The substitution, u = Socrates,
which can be extracted from the proof, can be regarded as a solution to
the problem.

The example of the fallible Greek was first introduced to explain the
behaviour of programs written in the programming language PLANNER [Hewitt
19691. Our intention here is just the opposite: to show that information
expressed in logic can be understood without understanding the behaviour
it evokes inside a machine.

The factorial example

The fallible Greek example is not typical of programs written in
conventional programming languages. However, the factorial example is.

The factorial of 0 is 1.
The factorial of x+l is x+l times the factorial of x.

The factorial example

The simplest formulation of the definition uses function symbols:

fact (x) names
times(x,y)
s (x)

the factorial of x,
the product of x and y,
x+1.

11

A 2-place predicate symbol expresses equality. Equal (x,y) holds when x
"is" y.

Equal(fact(0), 1) (-

Equal (fact (s (x», times (s (x), fact (x») (-

To complete the definition, additional definitions are
characterise "times" and "Equal". The following clauses are
the ones which are necessary for equality.

(l)

(2)

(3)

Equal (x,x) (-

Egual(x,y) (- Equal(x,z), Equal(z,y)

Equal (fact (x), fact (y» (- Equal (x,y)

needed to
typical of

To find the factorial of 2, for example, we deny that it exists:

(4) (- Equal{fact(s(s(0»), w)

But (I) and (4) alone are inconsistent and the substitution

w = fact(s(s(0)}

can be identified as the reason for inconsistency. Unfortunately, the
substitution is not very informative.

The problem is that the function symbols "fact", "times" and "s" allow
numbers to be referred to by many different names. The variable-free
terms

s(s(0}), sell, s{fact(0)}, s(fact(times(0, s(0»»

all name the same number 2 and are equal to one another. The problem can
be solved if individuals are given unique names. In this example it
suffices to employ only the constant symbol 0 and the function symbol s.
The factorial and multiplication functions can be treated as relations.

Fact(x,y) holds when the factorial of x is y.
Times(x,y,z) holds when x times y is z.

Then the clauses

Fact! Fact(0, s{0}} (-

Fact2 Fact(s(x), u) (- Fact(x,v), Times(s(x), v, u)

completely define the factorial relationship relative to an appropriate
definition of mUltiplication. The equality relation does not appear and
its definition is unnecessary. Assume that a definition of

12 Chapter 1: Introduction

multiplication, including such clauses as

Times(0,x,0) (-

Times(s{0), y, y) (-

etc.

is provided. To solve the problem of finding the factorial of 2, we deny
that it exists.

Fact3 (- Fact(s(s(0», w)

The resulting set of clauses Factl-3 is inconsistent with any definition
of Times which implies the assertions

5(0), 5(s(0») (-

Times(s(0), s(0), s(0» (-

Given a demonstration of inconsistency it is possible to extract the only
substitution

w = s{s(0»

which solves the problem. In this way the definition of Fact supplemented
by a definition of Times serves as a program which can be used by a
computer to calculate factorials. The program can be understood without
understanding how the computer works.

The universe of discourse and interpretations

In this section and the next we define the semantics of clausal form.
These sections are more rigorous than the rest of the chapter and may be
safely skimmed through on a first reading.

The two formulations of the factorial definition illustrate a general
principle of clausal writing style. To avoid problems associated with
individuals having more than one name, constant symbols and function
symbols should be used sparingly. If individuals are named by unique
variable-free terms, then the universe of discourse of a set of clauses,
which intuitively represents the collection of all individuals described
by the clauses, can be identified with the collection of all variable-
free terms which can be constructed from the constant symbols and
function symbols occurring in the set of clauses. A candidate
interpretation for a set of clauses can then be regarded as any
assignment to each n-place predicate symbol occurring in the set of
clauses of an n-place relation over the universe of discourse.

The assumptions Gl-4 of
example. They have a small,
the two constant symbols

the fallible Greek problem are a simple
finite universe of discourse, consisting of

"Turing" and "Socrates".

The universe of discourse and interpretations 13

To specify a candidate interpretation
universe of discourse for each of the
of clauses. Each predicate symbol
interpretations and therefore the set
of

is to specify a relation over the
three predicate symbols in the set
can be assigned four different
of clauses as a whole has a total

4*4*4 = 64

different candidate interpretations.* But only two of them make all of
the clauses Gl-4 true. One of them makes all of the variable-free atoms

Human (Socrates) , Human (Turing) ,
Fallible (Socrates) , Fallible (Turing) ,
Greek (Socrates) , Greek (Turing)

true. The other makes the atoms

true but

false.

Human (Socrates) , Human(Turing),
Fallible (Socrates) , Fallible(Turing),
Greek (Socrates)

Greek(Turing)

The larger set of clauses Gl-S has the same universe of discourse and
the same collection of 64 candidate interpretations. However, none of the
64 interpretations make all five clauses Gl-S simultaneously true. The
two interpretations which make Gl-4 all true make G5 false. In particular
the instance

G'5 (- Fallible (Socrates) , Greek(Socrates)

of GS, in which u = Socrates, is false in both interpretations, because
the two conditions

Fallible (Socrates) and Greek (Socrates)

denied by G'S are true in both interpretations. Since G1S is false in
both interpretations, GS is false also (because a clause containing
variables is true in an interpretation if and only if all its instances
are true and is false if one of its instances is false). Therefore Gl-5
is inconsistent because there is no interpretation which makes all of its
clauses true. By analysing the proof of inconsistency it is possible to
identify the individual

u = Socrates

whose existence is inconsistently denied by the clause GS.

The semantic method of showing the inconsistency of a set of clauses,
by demonstrating that no interpretation makes all of its clauses true,
is a general method which can be used for any set of clauses. Moreover,

* The symbol "*" is used throughout this book for multiplication.

14 Chapter 1: Introduction

the interpretations which need to be considered can always be restricted
to those whose domain of individuals consists of the universe of
discourse. If the set of clauses contains no constant symbols, then it
is necessary to include in the universe of discourse a single, arbitrary
constant symbol. In this case the universe of discourse consists of all
variable-free terms which constructed from the given constant
symbol symbol and any function symbols which might occur in the set of
clauses.

The inclusion of an arbitrary constant symbol in the universe of
discourse, if there is none in the set of clauses, formalises the
assumption that at least one individual exists. Because of this
assumption, the clause

(1) Good (x) (-

which expresses that everything is good, implies that at least one thing
is good. It is inconsistent with the assumption that nothing is good

(2) (- Good{y) .

The universe of
symbol, say 4.
which

discourse consists of some single, arbitrary constant
There are only two candidate interpretations - one in

Good (4) is true

the other in which

Good(..q..) is false.

The first interpretation falsifies (2). The second interpretation
falsifies (1). So (1) and (2) are, therefore, simultaneously true in no
interpretation and are inconsistent. Notice that the demonstration of
inconsistency does not depend on the name of the arbitrary member of the
universe of discourse. The argument is the same no matter what constant
symbol is used.

The notion of interpretation itself can be simplified. To specify an
interpretation it suffices to specify its effect on the truth or falsity
of variable-free atomic formulae. An interpretation of a set of clauses,
therefore, can be regarded as any aSSignment of either one of the two
truth values

to every every variable-free atom which can be constructed from the
universe of discourse and the predicate symbols occurring in the set of
clauses.

A more precise definition of inconSistency

We are now in a position to present a more precise definition of
inconsistency.

A more precise definition of inconsistency

A set of clauses S is inconsistent
consistent. It is consistent if and only
in some interpretation of S.

if and only if it is not
if all its clauses are true

A clause is true in an interpretation of a set of clauses S if and
only if every instance of the clause, obtained by
replacing variables by terms from the universe of discourse of S, is
true in the interpretation. Otherwise the clause is false in the
interpretation.

A variable-free clause is true in an interpretation I if and only
if whenever all of its conditions are true in I, at least one of its
conclusions is true in I. Equivalently, the clause is true in I if
and only if at least one of its conditions is false in I or at least
one of its conclusions is true in I. Otherwise, the clause is false
in I.

15

The precise definition of inconsistency clarifies the semantics of the
empty clause, D. Since the empty clause has neither conditions nor
conclusions it cannot possibly be true in any interpretation. It is the
only clause which is self-inconsistent. To demonstrate the inconsistency
of a set of clauses it suffices to demonstrate that it logically implies
the obviously inconsistent empty clause. The empty set of clauses,
however, is consistent. All clauses which belong to it are true in all
interpretations, since it contains no clauses which can be false.

The notions of instantiation and substitution are important not only
for defining the semantics of clausal form but also for defining the
inference rules later on. An instance of a clause is obtained by applying
a substitution to the clause. A substitution is an assignment of terms to
variables. Only one term is assigned to any given variable. It is
convenient to represent a substitution as a collection of independent
substitution components:

.... , Xm = t"l
Each component Xl = tl of the substitution assigns a term ti a
varlable Xl' The result of applying substitution rr to an expreSSIon E
IS a new expression Err which is just like E except that, wherever rr
contains a substitution component Xi = ti and E contains an occurrence of
the variable Xi' the new expression contains an occurrence of ti' The
application of cr to E replaces all occurrences of the same variable by
the same term. The expression E can be any term, atom, clause or set of
clauses. Different variables may be replaced by the same term.

It follows that
distinct individuals.

distinct variables do
The assumptions

Ll Likes (Bob,logic) (-

L2 Likes(Bob,x) (- Likes(x,logic)

L3 (- Likes(x,y), Likes(y,y)

not neCeSSar ily

No one likes anyone who likes himself.

refer to

16 Chapter 1: Introduction

for example, are inconsistent because L1 and L2 are inconsistent with thE
instance

(- Likes(Bob,Bob), Likes (Bob,Bob)

of L3 in which both x : Bob and y : Bob.

The semantics of alternative conclusions

The precise definition of inconsistency clarifies the semantics of
alternative conclusions. If a clause has several conclusions, then it
should be interpreted as stating that if all its conditions hold then at
least one (but possibly more) of its conclusions hold. 'I'his inclusive
interpretation of "or" contrasts with the exclusive interpretation in
which "A or BOI is interpreted as expressing that either one or other of A
and B holds, but not both.

The inclusive interpretation of "or" implies, for example, that the
set of assumptions

B1 Animal (x), Mineral (x), Vegetable (x) (-

B2 Animal (x) (- Oyster (x)

B3 Mineral(x) (- Brick(x)

B4 Vegetable (x) (- Cabbage (x)

is consistent with the possibility that something is both an animal and a
vegetable:

B5 Animal (x) (- Bacterium (x)

B6 Vegetable (x) (- Bacterium (x)

B7 Bacterium(BV) (-

The exclusive sense of "or" can be captured by means of inclusive "or"
and denial. To express. for example, that every human is either male or
female but not both, requires two clauses:

Female (x) , Male(x) (- Human{x)

(- Female (x) , Male(x), Human (x)

Horn clauses

For many applications of logic, it is sufficient to restrict the form
of clauses to those containing at most one conclusion. Clauses containing
at most one conclusion are called Horn clauses, because they were first
investigated by the logician Alfred Horn [1951]. It can be shown, in
fact. (exercise 5 in Chapter 12) that any problem which can be expressed

Horn claLJses 17

in logic can be reexpressed by means of Horn clauses.

The majority of formal isms for computer programming bear greater
resemblence to Horn clauses than they do to "non-Horn" clauses. In
addition, most of the models of problem-solving which have been developed
in artificial intelligence can be regarded as models for problems
expressed by means of Horn clauses.

Because Horn clauses are such an important subset of clausal form,
and because inference methods for Horn clauses have a simple problem-
solving and computer programming interpretation, we shall investigate
them in detail (in Chapters 3-6) before investigating the full clausal
form in general (in Chapters 7-8). It is important to appreciate,
however, that although non-Horn clauses might be dispensible in theory
they are indispensible in practice. Moreover, the extension of Horn
clause problem-solving methods to clausal form in general is a
significant extension of the simpler models of problem-solving which are
more popular tOday.

Mushrooms and toadstools

A simple example which can be expressed
non-Horn clauses is one which expresses some
mushrooms and toadstools. Suppose I believe

naturally only by means of
typical beliefs concerning

(1) Every fungus is a mushroom or a toadstool.

(2) Every boletus is a fungus.

(J) All toadstools are poisonous. and

(4) No boletus is a mushroom.

Symbolically,

FungI Mushroom(x). Toadstool (x) (- Fungus(x)

Fung2 Fungus(x) <- Boletus(x)

Fung3 Poisonous (x) <- Toadstool (x)

Fung4 (- Boletus(x), Mushroom(x)

then I should also believe at least the more obvious of the logical
consequences of my beliefs. In particular I should believe that

All boleti are poisonous.

FungS Poisonous(x) <- Boletus (x)

But every collector of edible fungi knows that few boleti are
poisonous and most are quite tasty. If I reject the conclusion FungS and
maintain my belief in logic then I must reject at least one of my initial
assumptions Fungl-4. It is surprising how many people abandon logic
instead.

18 Chapter 1: Introduction

Exercises

1) using the same vocabulary (i.e. predicate symbols, constants and
function symbols) as in Fl-19, express the following sentences in clausal
form:

a) x is a mother of y if
x is a female and x is a parent of y.

b) x is a father of y if
x is a male parent of y.

c) x is human if
y is a parent of x and y is human.

d) An individual is human if
his (or her) mother is human and
his (or her) father is human.

e) If a person is human
then his (or her) mother is human or
his (or her) fether is human.

f) No one is his (or her) own parent.

2) Given clauses which define the relationships

Father(x,y) (x is father of y)
Mother(x,y) (x is mother of y)
Male (xl (x is male)
Female(x) (x is female)
Parent(x,y) (x is parent of y)
Diff (xrY) (x is different from y)

define the following additional relationships!

M(x) (x is a mother)
F(x) (x is a father)
S (x,yl (x is a son of y)
D(x,y) (x is a daughter of y)
Gf(x,y) (x is a grandfather of y)
Sib{x,y) (x is a sibling of y)

For example the clause

Aunt(x,y) (- Female{x), Sib(x,z), Parent{z,y)

defines the relationship Aunt(x,y) (x is an aunt of y)
the Female, Sib and Parent relations.

3) Let the intended interpretation of

in terms of

Hc (xl
Wd(x)
Star (xl
Comet (x)
planet (x)
Near(x,y)
Ht (x)

be

Exercises

x is a heavenly creature
x is worth discussing
x is a star
x is " comet
x is a planet
x is near y
x has a tail.

a) Express in clausal form the assumptions:

19

Every heavenly creature worth discussing is a star, planet
or comet.
Venus is a heavenly creature, which is not a star.
Comets near the sun have tails.
Venus is near the sun but does not have a tail.

b) What "obvious" missing assumption needs to be added to the
clauses above for them to imply the conclusion

Venus is a planet ?

4) Using only the predicate symbols, Numb, Odd and Even, the function
symbol s, and the constant 0, express in clausal form

al the conditions under which a number is even,

bl the conditions under which a number is odd,

cl that no number is both odd and even,

dl that a number is odd if its successor is even,

el thet a number is even if its successor is odd,

f) that the successor of a number is odd if the
even and that the successor is even

5) Let the intended interpretation of

Parity(x,odd)
Par ity (x,even)

be x is odd
be x is even.

if the number
number is
is odo..

Let the notion of opposite parities be expressed by the two clauses

Opp(odd,even) <-
Opp(even,odd) <-

Define the notion of Cl number being odd or even using only three
additional clauses, two of them variable-free assertions.

6) Inventing your
2ssumptions in clausal
the other to name me.

own
form.

predicate symbols, express the following
Use only two constants, one to name my cat,

20 Chapter 1: IntrodUction

Birds like worms.
Cats like fish.
Friends like each other.
My cat is my friend.
My eats everything it likes.

What do these assumptions imply that my cat eats?

7) Assume that arcs in a directed graph, e.g.

B 2

1
C

are described by assertions of the form

Distance(r,s,t) (-
(the length of the arch from r to 5 is t).

Thus the assertion

Distance(A,B,3) <-

describes the arc from A to B. Assume also that the relationship

Plus(x,y,z) ,

which holds when x+y = z, is already given.
extend the definition of the relationship
expresses that there is a path of length z from

8) Assume that the relationships

Using only
Dist(x,y,z)
x to y.

(the list x is empty)

one
so

clause,
that it

Empty (x)
First(x,u)
Rest(x,v)

(the first element of list x is u)
(the rest of the list x following
the first element, is the list v)

are already given. Pictorially, the relationship

u v

x

holds when both of the conditions First(x.u) and Rest{x,v) hold.

a) Define the new relationship

Memb(z,x) (element z is a member of list x)

in terms of the First and Rest relations. Two clauses are

Exercises

necessary.

b) Define the relationship

Sub(x,yl (all elements of list x
are elements of list y)

in terms of the Empty, First, Rest and Memb relations.

c) Assume

Plus(x,y,z) (x + y = z)

is given. Define the relationship

Sum(x,w) (the sum of all elements in
the list of numbers x is w)

in terms of the Empty, First, Rest and Plus relations.

21

9) Using predicate symbols of your Own invention, but no function
symbols or constants, express the following sentences in clausal form:

No dragon who lives in a zoo is happy.
Any animal who meets kind people is happy.
People who visit zoos are kind.
Animals who live in zoos meet the people who visit zoos.

What two missing additional assumptions are needed to justify the
conclusion

No dragon lives in a zoo. ?

10) There are four different variable-free atoms which can be
constructed from the vocabulary of clauses LI-3. Consequently there are
16 different interpretations of Ll-3. How many of these interpretations
make both Ll and L2 true? How many make L3 true? How many make all of
Ll-3 true?

22

CHAPTER 1

Representation in Clausal Form

In order to construct a mechanical problem-solving system, it is
necessary to express information in an unambiguous language. Moreover,
for the system also to serve as a model of human problem-solving, the
language needs to resemble the natural languages used by human beings.
The language of symbolic logic is both precise enough to be understood
and manipulated by computers and natural enough to be regarded as a
simplified form of natural language.

In this chapter, we shall compare the clausal form of logic with
of the features of natural language. We shall also compare it
semantic networks for representing natural language meanings and
relational databases for representing information in computers. In
to make the relationship between logic and natural language
apparent, we introduce the infix notation for predicate symbols.

Infix notation

some
with
with

order
more

The informal notation used to introduce clausal form at the beginning
of the first chapter can be given formal status.

Binary (two-place) predicate symbols can be written between their
arguments. Instead of writing atoms in prefix form

= (x,y), (x,y), Father (x,y)

we can write them in infix form

x = y, x ..:. y, x is the father of y

respectively. The expression "is the father of" is regarded as a single
predicate symbol.

Unary (one-place) predicate symbols can be written after their
arguments, without the attendant parentheses. Thus we can write

x is 900d (- x accomplishes y, y is good

instead of

Good (x) (- Accomplishes (x,y) , Good(y).

Unary predicate symbols written after their arguments are also regarded

Infix notation 23

as infix notation.

For predicate symbols having more than two arguments, infix notation
distributes parts of a predicate symbol between its arguments. Thus we
can write

John gave book to Mary <-

instead of

Gave (John, book, Mary) <-

where "gave" and "to" are regarded as the first and second parts of the
single predicate symbol "Gave".

Infix notation, though easier to read, increases the possibility of
ambiguity. The expression

John is a student (-

in infix notation can be interpreted as either one of the two clauses

Student (John) <-

Isa(John,student) <-

in prefix notation. To eliminate ambiguity, we underline infix predicate
symbols and their parts. Thus the atom in the clause

John is a student <-

has one argument, whereas the atom in

John is a student (-

has two arguments. Underlining may be omitted, as in the case of the two
binary predicate symbols" = " and " ", when there is no ambiguity.

Infix notation can also be employed for function symbols. We can write

x + y, x * y, x!, x + 1, x's dad

for example, instead of

+(x,y), times(x,y), fact(x), s(x), dad(x).

Infix notation for function symbols and associated conventions for
reducing parentheses will be discussed again in Chapter 5.

Variables and of individuals

The analogue of variables in logic are such words in English as

"something", "anything", "everything",
"nothing", "a thing", "things".

24

For example,

Chapter 2: Representation in Clausal Form

(- x is good, x is bad
Nothing is both good and bad.

x is bad (- x accomplishes y, y is bad
Anything which accomplishes something bad is bad itself.

There are many occasions, however, in which logic uses
English uses a word which refers to a specific (or
of individual. It is usual in logic to name types by
argument predicate symbols. Thus, the English sentence

All men are animals.

would be expressed by the clause

x is an animal (- x is a man

a variable, but
classification)
means of one-

The variable x in the clause is avoided in the English by referring to
the type "men". This is even more obvious if the English sentence is
paraphrased

Men are animals.

The English words "anyone", "everyone", "anywhere", "somewhere",
"any time" , "sometime" refer to individuals of type "human", "place", and
"time".

Relative pronouns in English, such as "who", "which" and "where" refer
to individuals already mentioned in the same sentence. For example

Anyone who eats animals is a carnivore.
x is a carnivore (- x is human,

x eats y,
y "I"S"an animal

The restrictive relative clause

who eats animals

adds two extra conditions concerning the individual x mentioned in the
main sentence

Anyone is a carnivore.
x is a carnivore (- x is human

The non-restrictive relative clause, however, in the sentence

John, who eats animals, is a carnivore.
John is a carnivore (-
John eats y < y is an animal

adds an extra sentence to the main sentence.

The words "is a" occur so frequently in English that it is natural to
treat them as a single unit and to symbolize them by a binary predicate

Variables and types of individuals 25

symbol. Thus we write

x is a animal <- x is a human

treuting types
The treatment
allows us to
for example

as individuals rather than as properties of individuals.
of types as individuals increases expressive power. It

write clauses which refer to types by means of variables,

x is a y <- x is a z, z is a y

which expresses the transitivity of "is a". Transitivity cannot be
expressed in clausal form if types are treated as properties.

Existence

The English word "some" expresses existence. In the standard form of
logic the existence of individuals can be expressed without giving them a
name. But in the clausal form of logic, existence is expressed by naming
individuals, using constant symbols and function symbols. The sentence

Some men are animals.

for example, can be expressed by means of the clauses

© is a man (-

© is a animal (-

where the constant symbol is not used elsewhere to name a different
individual. Notice, however, that the same clauses can also be regarded
as expressing the English sentence

Some animals are men.

The English words "has" and "have" often express existence. The
sentence

Zeus has a parent who loves him.

for example, can be reexpressed as

Some parent of Zeus loves him.

In clausal form, a constant symbol
parent. The name doesn't matter provided
different individual. If the constant
condition, then the sentence is symbolized

is a parent of Zeus <-

Q loves Zeus <-

is needed
it is not

symbol
by means

to name the loving
used elsewhere for a

@ satisfies this
of the clauses

26 Chapter 2: Representation in Clausal Form

To express that

everyone has a parent who loves him

the loving parent needs to be named by a function symbol. The simpler
clauses

a parent of x <- x is a human

J:iJ).loves x (- x is a human

express the stronger assumption that a single individual, who is a parent
of everyone, loves everyone. We need to express the more modest
assumption that for every human x there is an individual which is a
loving parent of x. Different individuals might have different loving
parents. The loving parent of x is a function of x and its name needs to
be constructed by a function symbol applied to x. Any function symbol can
be used, provided it is different from any used elsewhere. If the
function symbol "par" satisfies this condition, then the term par (x)
names the loving parent of x and the sentence can be expressed by the
clauses

par (x) is a parent of x (- x is a human

par(x) loves x (- x is a human.

In a similar manner, the assumptions

Everyone has a mother.

Offices have desks.

Birds have wings.

can be symbolized, using function symbols, by such clauses as

mum (x) is a mother of x (- x is a human

a(x) is a aesk (- x is a office
d(x) is in x (- x is a office

w(x) is a wing (- x is a bird

w(x) is part of x (- x is a bird.

Individuals can be named by function symbols having several arguments.
The "English" sentence

For every individual x and every list y
there exists a list whose first element
is x and rest is y.

for example, can be expressed by the clauses

Existence 27

cons(x,y) is a list (- y is a list

x is the first of cons(x,y) (- y is a list

y is the rest of cons(x,y) (- y is a list

where the term cons(x,y) names the list

x y

constructed by putting
the infix notation for
is more compact:

the element x in front of the list y. Although
the clauses is easy to read, the prefix notation

L(cons(x,y» (- L(y)

First(x, cons(x,y» (- L(y)

Rest(y, cons(x,y» (- L(y).

The existence of an individual which is referred to in the conclusions
of a statement needs to be expressed by a constant symbol or function
symbol. However, it needs to be expressed by a variable if the individual
is referred to in the conditions of the statement but not in the
conclusionS. For example

One person is a grandparent of another if
he has a child who is parent of the other.

x is grandI2arent of y (- x is human,
y is human,
x is I2aren t of z,
z is Earent of y

It is often easier to understand a
conditions but not in conclusions are
example, the clause

clause if variables which occur in
read as expressing existence. For

Mary likes John (- Mary likes x

can be read as stating that

The clause

if there is anything that Mary likes at all,
then Mary likes John.

x has y (- z gives y to x

expresses that x has y if someone gives y to x.

28 Chapter 2: Representation in Clausal Form

Negation

Negation can be expressed directly in the standard form of logic. In
the clausal form it can only be expressed indirectly. The conclusion-
less clauses

(- Mother (Zeus,x)

<- Mother(x,y), Father(x,z)

for example, state that

Zeus is not the mother of anyone and
no one is both a father and a mother.

It is a feature of clausal form semantics that a negated condition
can be reexpressed as an unnegated conclusion. The sentence

Rohert is at work if he is not at home.

which can be expressed directly with a negative condition

At(Robert,work) (- not-At (Rohert,home)

in standard form can be expressed without negation in clausal form by
means of a non-Horn clause

At(Robert,work), At (Robert,home) (- •

The sentence

not-Happy (John) (- not-Likes(Mary,John)

in standard form can be reexpressed in clausal form

Likes(Mary,John) (- Happy (John) •

Notice that the different English sentences

Every fungus which is not a toadstool is a mushroom.
Every fungus which is not a mushroom is a toadstool.
Everything which is neither a mushroom nor a
toadstool is not a fungus.

all have the Same clausal form

Toadstool (x) , Mushroom(x) (- Fungus (x) •

Denial of conclusions which are implications

In clausal
necessary to

form, to show that assumptions imply a conclusion, it is
deny that the conclusion holds and to demonstrate

Denial of conclusions which are implications 29

inconsistency. A typical conclusion often has the form of an implication:

All boleti are poisonous.

Poisonous (x) (- Boletus (x)

for example. In general, an implication is a Horn clause with a single
conclusion and One or more COnditions. A Horn clause with a conclusion,
but no condition, is called an assertion. It is often convenient,
however, to use the terminlogy "implication" in the wider sense which
includes assertions.

To deny
individuals
satisfy the
individual,

an implication it is necessary to assert the existence of
satisfying all of the conditions and to deny that they
conclusions. In this case, we assert the existence of an

say , which is a boletus and deny that it is poisonous.

Boletus(1?) (-
(- Poisonous (

In Chapter 10, when we investigate the standard form of logic, we
shall formulate a systematic procedure for transforming denials of
sentences into clausal form. Meanwhile, it suffices to use the rule above
for denying conclusions which have the form of implications.

Conditions which are implications

In natural language and in the standard form of logic it is common for
a condition to have the form of an implication. For example, the
implication

All Bob's students like logic.

which has the structure of a Horn clause

x likes logic (- x is a student of Bob

is the condition of the sentence

(1) Bob is happy if all his students like logic.

Although the sentence can be expressed directly in the standard form
of logic, it needs to be paraphrased before it can be expressed in
clausal form. In Chapter 10 we shall present a systematic method for
transforming such sentences from standard form into clausal form. Here we
can illustrate the method by successively transforming the original
sentence (1) in English:

(2) Not all of Bob's students like logic if Bob is unhappy.

(The unnegated condition and conclusion of (I) become the negated
conclusion and negated condition of (2).)

30

(3)

Chapter 2; Representation in Clausal Form

There is a student of Bob, who doesn't like
logic, if Bob is unhappy.

(The conclusion of (2), which is the denial of an implication, is
reexpressed by asserting the existence of an individual which satisfies
the condition of being a student of Bob but not the conclusion of liking
logic.)

(4) There is a student of Bob, say ,
and 0 doesn't like logic, if Bob is unhappy.

(The culprit is given a name.)

(5) is a student of Bob if Bob is unhappy.
doesn't like logic if Bob is unhappy.

(The two conclusions are expressed by two sentences having the same
condition.)

(6) GY is a student of Bob or Bob is happy.
Bob is happy if @ likes logic.

(The negated condition is reexpressed as an unnegated conclusion ana the
negated conclusion as an unnegated condition.)

(7) G9 is a student of Bob, Bob is happy <-
Bob is happy < Q likes logic

The transformation from English to clausal form can be compressed. In
the simple case where the English sentence has the form

Le.

A if B is implied by C.

A (- [8 (- Cl

in the standard form of logiC, the corresponding clauses have the form

A, C (-

A (- B.

Complications arise when, as in the preceding example, the condition
B <- C

contains variables which need to be replaced by constant symbols or terms
involving function symbols.

Although sentences having conditions which are implications may appear
unnatural in clausal form, they have a natural problem-solving
interpretation, discussed in Chapters 7 and 8. In Chapter 10 we shall
investigate such sentences in greater detail. Until then we shall
concentrate on examples which can be expressed by Horn clauses, whose
conditions are simple atomic formulae.

Definitions and "if-and-only-if" 31

Definitions and "if-and-only-if"

It is normal in mathematics and logic to express definitions by means
of "if-and-only-if":

x is grandparent of y if-and-only-if
there is a z which is child of x and parent of y.

The expression

A if-and-only-if B

is interpreted as meaning

A if B and A only-if B.

"A only-if B" is normally interpreted as

B if A.

This interpretation of "only-if", however, is not the only one. In
Chapter 11 we shall discuss an alternative interpretation.

The expression "if-and-only-if" can be expressed directly in the
standard form of logic. In the clausal form, however, the two halves need
to be expressed independently. Moreover, the only-if half is often
unnatural. In the case of the only-if half of the grandparent definition

x is parent of rel(x,y) (- x is grandparent of y

rel(x,y) is parent of y (- x is grandparent of y

a function symbol is necessary to name the relative of x and y who is a
child of x and a parent of y.

If-and-only-if definitions and sentences having conditions which are
implications are the two main cases in which clausal form is more awkward
than both natural language and the standard form of logic. Until Chapters
10 and 11 we shall avoid complications by using only the if-halves of
definitions, which is adequate for most purposes.

Semantic networks

Many researchers in the field of artificial intelligence use semantic
networks, as an alternative to symbolic logic, to represent information
in computers. Semantic networks are used both as models of human memory
organisation and as representation schemes for the meanings of natural
language sentences.

32

A semantic
whose directed
represented by
Chapter 1, for
network.

Chapter 2: Representation in Clausal Form

network is a graph whose nodes represent individuals and
arcs represent binary relationships. Each individual is
only one node. The information in the clauses Fl-6 of

example, can be represented by means of the semantic

Hera

Aphrodite Semele

In general, a semantic network can be regarded as equivalent to the
set of variable-free assertions represented by its arcs. An arc labelled
R directed from node 5 to node t

R

s

represents the assertion

R{s,t) (-

Simple semantic networks have no provision for representing variables,
function symbols, n-ary predicate symbols or clauses having conditions or
alternative conclusions. As we shall see later, the restriction to binary
relations is not an important limitation, because every n-ary
relationship can be reexpressed as the of n+l binary
relationships. Other restrictions, however, are more serious and have
motivated several investigators to propose extensions [Shapiro 1971,
1972], [Hendrix 1975], [Schubert 1977], all of which treat semantic
networks as an alternative syntax for symbolic logic. The one described
below treats extended semantic networks as a pictorial syntax for clausal
form [Deliyanni and Kowalski 1979}.

Extended semantic networks 33

Extended semantic networks

As in simple semantic networks, nodes represent individuals and arcs
represent binary relationships. However, nodes can be constants,
variables or terms constructed using function symbols. Arcs can
represent conditions as well as conclusions and are grouped into clauses.
Conditions are drawn with two lines and conclusions with one heavy line
as before. Clauses containing more than one atom are delimited by
enclosing them within subnetworks. The extended semantic network

likes

ohn

is a

uman y

corresponds to the set of clauses

John likes Mary <-

John human <-

Mary likes John, Mary likes Bob <- Mary likes x

Bob likes y <- Y likes logic.

Apart from their pictorial aspect, semantic networks have two other
attractions: They provide a useful scheme for storing information, and
they enforce the discipline of using binary rather than more general n-
ary predicate symbols. The fact that every individual is represented by
a single node means that all information about the individual is directly
accessible from the node. This feature has been exploited in the design
of path-finding problem-solving strategies. In the next two sections,
however, we shall compare the use of binary predicate symbols with that
of more general n-ary predicate symbols.

The representation of information EY binary predicate symbols

Every n-ary relationship can be reexpressed as a conjunction of 0+1
binary relationships. For example, the assertion

John gave book to Mary <-

can be reexpressed in English:

34 Chapter 2: Representation in Clausal FOrm

There is an event e
which is an act of giving
by an actor John
of an book
to a reClplent Mary.

In clausal form, ignoring the assertion which describes that e is of
type "event", the single 3-place relationship can be reformulated as 4
binary relationships.

e is an act of giving (-

e has actor John <-

e has object book <-

e has recipient Mary (-

The semantic network representation

giving

book

Mary

of the clauses is similar to the case structure analysis of natural
language employed in linguistics [Fillmore 1968] and artificial
intelligence [Quillian 1968], [Schank 1973, 1975J, [Simmons 1973].

In general, to replace an n-aey relationship by binary relationships
it 15 necessary to treat the n-ary relationship and its relation as
individuals (giving them names such as "e" and "giving" in the preceding
example). It is necessary to introduce a binary relationship which
expresses that the n-ary relationship belongs to the n-ary relation: in
this example, the binary relationship

e is an act of giving (-

For every argument of the n-ary relationship, a binary relationship is
needed to express that the argument belongs to the n-ary relationship.

We shall refer to the representation of information by general n-ary
relationships as the representation and the corresponding
representation by means of binary relations as the binary representation.

Binary relationships can replace n-ary relationships in both
conditions and conclusions of clauses. For example, the English sentence

A person possesses an object
after it is given to him.

can be expressed in the form

The representation of information by binary predicate symbols 35

For every event u in which x gives y to z,
there exists a situation, say result(u),
immediately after u, which is a
state of possession by the subject z of the
object y.

The
binary
having

systematic formulation of
predicate symbols ignoring
the same conditions.

the sentence in clausal form using
types, produces four Horn clauses all

result(u) is immediately after u (- u is an act of giving,
u has actor x,
u has obJect y,
u has reclplent z

result(u) is a state of possession (-

u ""''---=-''''-''''-'''''''''

giving,

z

result(u) has subject z (- u is an act of giving,
u has actor x,
u has object y,
u has recipient z

result(u) has object y (- u is an act of giving,
u has actor x,
u has object y,
u has recipient z

In this example, the binary representation is less
ary representation which includes explicit arguments
the state result(u).

compact than an n-
for the act u and

result(u) is immediately after u (-
U is an act of giving x of Y to z

result(u) is a state of possession £y z of Y (-
U is an act of giving x of Y to z

However, if we assume that every act of giving has
recipient then the original binary representation
more compactly.

resul t (u) is immediately after u (- u

resul t (u) is a state of possession (- u

an actor, object and
can be reformulated

is an act of giving

is an act of giving

result(u) has subject z (- u has reCipient z

resul t (u) has object y (- u has object y

36 Chapter 2: Representation in Clausal Form

Advantages of the binary representation

The binary representation is generally more expressive than the n-ary
representation. It makes it easier to add new information and to ignore
information that is unknown.

In the binary representation, relations and relationships are treated
as individuals. Consequently it is possible to talk about them in such
sentences as

Mary wants John to give her the book.

Mary wants e <-

The corresponding expression in the n-ary representation

Mary wants (John gave book to Mary) <-

is not a legal sentence of clausal form.

The ability to talk about relationships in
also makes it easier to add new information
example, having expressed that

the binary representation
about a relationship. For

John gave the book to Mary

to add the new information that he did so in Hyde park requires only the
addition of a new assertion

in the
requires
symbol

Hyde park is the location of e <-

binary representation. But, in
replacing the original assertion

John gave book to Mary <-

the n-ary representation, it
which used a 3-place predicate

by a new one with a 4-place predicate symbol.

John gave book to Mary in Hyde park <-

Notice, however, that it is really the treatment of relationships as
individuals which is responsible for the advantages of the binary
representation in the preceding two examples. Both of the sentences

Mary wants e <-

Hyde park is the location of e <-

can be expressed in an n-ary
which names the relationship

representation with an an explicit argument
e.

e is an act of giving BY John of book to Mary <-

The binary representation is also more convenient than the n-ary

Advantages of the binary representation 37

representations when components of a relationship are unknown. For
example, to express that

the book was given to John

it suffices in the binary representation simply to state what is known
and to ignore what is unknown.

e' is an act of giving (-
e' has object book (-
e' has recipient John (-

In the two n-ary representations, on the other hand, it is necessary to
give the unknown actor a name.

or
gave book to John (-

e' is an act of book to John (-

The argument in favour of binary relations is not conclusive. There
are many relationships, such as

x times y is z,
x recerved-grade y for course z,
x is the y th element of seguence z, and
v that the assumptions x

imply the conclusion y
obtained by the proof procedure u,

for which an n-ary representation is more convenient
representation. The use of general n-ary relations
common than the use of binary relations in the field of

Databases

than the binary
moreover is more
databases.

A database is a collection of information to be used for a variety of
purposes. A typical database might contain a firm's personnel records,
details of bank transactions or the police files of convicted criminals.
Increasingly. such databases are represented in a form which can be
processed by computers. These are used to update the databases, to check
the consistency of data, and to answer requests for information.

A single database might be used to obtain information by many users
with little computer training. In this case the data need to be
represented in a simple form which is independent of its representation
inside the computer. Consequently, the database query language must be
both simple to learn and easy to use. It is now widely accepted that
these requirements can best be satisfied if data are viewed as relations
[Codd 197BJ.

The relational view of data is equivalent to the representation of
data by tables: The argument positions of a relation can be regarded as
the columns of a table and the relationships which make up the relation
are its rows. Thus the 5-column, 3-row table

38 Chapter 2: Representation in Clausal Form

Birthday club Name Office Dues Birthdate Date joined

Mary president 19p 4.Mar.77 4.Mar.77
John secretary lep 2.Mar.78 2.Mar.7B
Bob treasurer 19p l.Jan.89 l.Jan.80

represents the 5-argument relation which is described by the 3
assertions:

Club (Mary, president, 18p, 4.Mar.77, 4.Mar.77) (-

Club{John, secretary, lOp, 2.Mar.78, 2.Mar.78) (-
Club(Bob, treasurer, lOp, 1.Jan.80. l.Jan.80) (-

The same information can be described by using binary predicate
symbols. In this example the binary representation can be simplified
because each row of the table can be uniquely identified by the value in
its first column. Accordingly, the value in that column is said to be a

of the table. In the binary representation of the table, the key can
function as the name of the relationship which it identifies.

Bl Member (Mary, birthday club) (-

B2 Member (John, birthday club) (-

B3 Member (Bob, birthday club) (-

84 Office (Mary, preSident) (-

B5 Office(John, secretary) (-

B6 Office (Bob, treasurer) (-

87 Dues(Mary, 19p) (-

B8 Dues (John, 10p) (_.

B9 Dues (Bob, lep) (-

Ble Birthdate(Mary, 4 .Mar. 77) (-

B11 Birthdate(John, 2.Mar.78) (-

B12 Birthdate(Bob, l.Jan.80) (-

BB Datejoined(Mary, 4.Mar.77) (-

B14 Datejoined(John, 2.Mar.78) (-

B15 Datejoined(Bob, l.Jan.8B) (-

Notice that the binary representation of the table, though mOre
longwinded, is easier to read than the n-ary representation. The names of
the columns, which are necessary for understanding the table, are not
represented in the n-ary representation, but are represented by binary
predicate symbols in the binary representation.

More importantly from a computational
representation can often expresS general
expressed at all in the n-ary representation.
laws

point of view, the
laws which could

In particular, the

Dues(x,10p) <- Member (x, birthday club)
Datejoined(x,y) <- Member (x, birthday club),

Birthdate(x,y)

binary
not be
general

can replace the specific
representation, but cannot
all.

assertions B7-9 and
be formulated in the

813-15 in the binary
n-ary representation at

Data query languages 39

Data languages

The relational view of data has been used more for data queries than
for data description.

Most relational query languages use the symbolism of symbolic logic or
relational algebra. Relational calculus query languages [Codd 1972] can
be regarded as using a binary representation of relations. Given, for
example, the data contained in the Birthday club and the Address tables

Birthday club Name Office Dues Birthdate

Address

the query

Name Street number

What Birthday club members live
on Euclid Avenue?

Street

can be formulated in the binary representation

<- Answer (x)
Answer (x) <- Member (x, birthday club),

Street(x, Euclid Ave)

Date joined

Town

[I

in a manner similar to that of the relational calculus. It can also be
formulated in the n-ary representation

<- Answer (x)
Answer (x) <- Club(x,y,z,u,v),

Address(x, y', Euclid Ave, Zl)

similar to that of the tabular query-by-example language [Zloof 1975].

The relationship between queries expressed in the clausal form of
logic and ones expressed in query-by-example has been investigated by van
Emden (1979J. A classification of relational query languages, all based
on the standard form of logic, has been made by Pirotte [1978).

Data description

The relational model of data is not concerned with the formalism used
to represent data within the computer. It is compatible with any
formalism which can be viewed abstractly in terms of relations.
Nevertheless, the use of symbolic logic is especially attractive. It has
the advantage that the same formalism can be used both for expressing
queries and for defining data. Moreover, when the data can be defined by

40 Chapter 2: Representation in Clausal Form

means of general laws, the data definitions are indistinguishable from
programs. The sentence

Dues(x, 10p) (- Mernber{x, birthday club)

for example, can be regarded both as a general law and as a program which
computes the dues paid by members of the birthday club.

Symbolic logic was used before the relational model of databases to
describe both data and queries in question-answering systems. Among the
first systems were those described by Darlington [1969] and Green [1969a,
1969b]. The use of the "Answer" predicate symbol, in particular, waS
introduced by Green. More recent systems have been developed in
Marseille [Colmerauer et al 1972], [Dahl and Sambuc 1976] and Maryland
[Minker et al 19731, [McSkimin and Minker 1977J, and by Nicolas and Syre
[1974J and Kellogg, Klahr and Travis [1978].

Integrity constraints

since
describe
correct.

data often
properties

The clause

contain errors,
which the data-

Y is before z (- Today(z) ,

constraints are used to
satisfy in order to be

Member(x, birthday club),
Birthdate(x,y)

for example, expresses that all members of the birthday club were born
before today. If today were 1.Apr.79

Today(1.Apr.79) (-

then given an appropriate definition of the is before relation, the data

Member (Bob, birthday club) (-
Birthdate(Bob, (-

would be inconsistent with the integrity constraint and should be
rejected by an intelligent database management system.

Using symbolic logic as a
the conventional distinction
constraints for databases are
The clause

formalism for describing information blurs
between databases and programs. Integrity

indistinguishable from program properties.

x y (- Fact{x,y)

for example, describes a property which needs to be satisfied by a
correct definition of the factorial relation. Like an integrity
constraint, its purpose is not to contribute to the definition of the (
and Fact relations but rather to constrain the definitions from having
unacceptable properties.

Integrity constraints can be used for other purposes. They can be used
to reject inconsistent queries

Integrity constraints

What number is less than 1,300
and is the factorial of 5,200 ?

41

and to transform difficult goals into easier ones. The use of integrity
constraints to aid problem-solving is investigated in Chapter 9.

departmental database

The PROLOG [Roussel 19751 Horn clause problem-solving system developed
in Marseille has been used for a variety of tasks which combine features
of both databases and programs. It has been USed in Marseille for natural
language question answering [Colmerauer et al 1972], [Dahl and Sambuc
1976] and symbolic integration [Bergman and Kanoui 1973], in Edinburgh
for plan-formation [Warren 1974, 1976], geometry theorem-proving [Welharn
1976], [Coelho and Pereira 1975], the solution of mechanics problems
expressed in English [Bundy et al 1979] and compiler-writing [Warren,
Pereira and Pereira 1977] and in Budapest for computer-aided design
[Markusz 19771 and drug analysis [Futo, Darvds and Szeredi 1978]. In
London we have implemented part of a database which describes the
activities of our department. The following clauses are typical of those
used to describe the data.

(- x
(- x

X is occupied with
x is occupied with
x is occupied with
9:30 is the hour of

y
y
y (- x

teaches y
attends y
is member of committee y

Fri
3
145
AAK
145
65

304
304

(-

(-is the day of
is the level of
is the room of
teaches 304
has capacity

304 (-
x

80
3"4

(- 3 is the level of x
(-
(-

(-people attend
attends y (- x is a student

z is the level
problem-solving is the name of 304 <

x in year z,
of y

Here it is assumed that course 304 meets only once a week. If it meets
more often, then composite terms, part(304,1), part(304,2), for example,
might be used to name diferent parts of the course.

Various integrity constraints, such as

<- X is the room of y, x has capacity u,
v people attend y, u (v

can be expressed and tested for consistency with the data. Queries can be
answered by denying that they have an answer, proving inconsistency and
extracting from the proof the information needed to construct the answer.
Thus, to determine the activity with which RAK is occupied at 9:30 on
Fridays it suffices to deny that there is such an activity:

<- Answer (x)
Answer (x) (- RAK is occupied with x,

9:30 is the hour of x,
is the day of x Fri

42 Chapter 2: Representation in Clausal Form

The substitution x = 304

which can be extracted from the proof answers the query. The answer
extraction can be done automatically by the problem-solving system.

Equality

Mathematical notation normally uses function symbols and the binary
predicate symbol = (equality) where we have used other predicate symbolS.
It is usual to write

x*y
xl
x

z
y
father (y)

instead of
instead of
instead of

Times(x,y,z)
Fact(x,y)
Father (x,y).

Similarly, the relational calculus query language uses function
symbols and equality, writing

office(x)
dues(x)
birthdate (x)
datejoined (x)

y
y
y
y

instead of
instead of
instead of
instead of

Office(x,y)
Dues(x,y)
Birthdate(x,y)
Datejoined(x,y) .

Functional notation is often more compact than relational notation. It
is simpler, for example, to express

The date on which a member of the
birthday club joins the club is the
same as his birth date.

in the functional notation

birthdate(x) = datejoined(x) (- Member (x, birthday club)

than in the relational notation

Birthdate(x,y) (- Member (x, birthday club), Datejoined(x,y)
Datejoined(x,y) (- Member (x, birthday club), Birthdate(x,y).

Equality is necessary whenever an individual has moce than one name.
For example:

Jove = Jupiter (- .

It is also necessary, even in the relational notation, to express that
one argument of a relation is a function of the others. For example:

x = y (- Father{x,z), Father(y,z)

To show that a set of clauses S containing the equality symbol is
inconsistent, the set of clauses needs to contain the following axioms
characterising the equality relation, for every function symbol f and
every predicate symbol P occurring in s, (including the equality symbol) .

El
E2
E3

Jl
J2
J3

Equality

x = x <-
P(xl"'''xm) P{Yl""'YIJl)' xl:Yl' ••. , xm=Ym
f{xl""'xm) - f(Yl,··o,Yml <- xl-Yl' "0, xm=Ym

For example, to demonstrate that the assumptions

Jekyl = Hyde <-
father (John) = Hyde <-
Member {father (John) , birthday club) <-

imply the conclusion

Member(Jekyl, birthday club) <-

it is necessary to deny the conclusion

J4 <- Member (Jekyl, birthday club)

and add the appropriate axioms for the equality relation:

J5
J6
J7
J8

x = x <-
Member(xl,x2) <- Member (Yl'Y2) , Xl = Yl' x2
Xl = x2 <- Yl = Y2' Xl = Yl' x2 = Y2
father{x) = father(y) <- x = Y

43

The resulting set of clauses Jl-8 is inconsistent because Jl-3 are
"obviously" inconsistent with the instances

Hyde = Hyde <-
birthday club = birthday club <-

Member(Jekyl, birthday club) (- Member (father (John) , birthday club),
Jekyl = father (John) ,
birthday club = birthday club

Jekyl = father(John) <- Hyde Hyde, Jekyl = Hyde, father (John) Hyde

of J5-7. Clause J8 in this
inconsistency.

example does not contribute to the

Problem-solving is considerably simplified if individuals have only
one name (distinct variable-free terms naming distinct individuals). Then
the single axiom

El x = x <-

expresses the only situation in which two individuals are the same (if
they have the same names). The infinitely-many axioms

D oiff (s,t) <-

for every pair of distinct variable-free terms sand t, express the only
situations in which individuals are different (if they have different
names). Given a finite set of clauses S the infinitely-many axioms 0 can
be replaced by finitely many clauses

44

01

02
03

04

05

Chapter 2: Representation in Clausal Form

Diff (a,b) (-
for every pair of distinct constants a and b in S

Diff(a, f(xl""'xm» (-
Diff(f(xl""'xm), a) (-
for every constant a and function symbol f in S.

Diff(f(Xl""'Xm), g(Y1""'Yn» <-
for every pair of distinct function symbols f and 9 in s.

Diff(f(Xl""'Xm), f(Yl""'Ym» (- oiff(xi'Yi)
for every function symbol f in S and argument i of f.

Diff(x,y) is the same as not-ex = y). This can be expressed

0*1
0*2

Diff(x,y) if-and-only-if not-ex = y), i.e.
Diff(x,y) (- not-ex = y)
not-ex = y) (- Diff(x,y)

in the "standard form" of logic or

Diff{x,y), x = y (-
(- Diff(x,y), x = y

in the clausal form. However, there is another interpretation of

Diff(x,y) only-if not-ex = y)

which is different from 0*2, namely

0* 0*1 describes the only condition for which the conclusion
Oiff(x,y) holds.

0* talks about the sentence 0*1. It is a sentence of the meta-lanquaqe,
talking about individuals which are sentences of the object language.
The relationship between the object language, in which one useS
sentences, and the meta-language, in which one talks about sentences, is
investigated in Chapters 11 and 12.

To simplify matters for the
possible, refer to individuals
Diff predicate symbols only in
"definitions":

remainder
by unique
conditions

El
o

x '" x (- and
Diff (s,t) (-

of the book we shall, whenever
names, using the equality and
of clauses, except for their

for all pairs of distinct variable-free terms sand t.

In practice the Diff relation is defined by more efficient means.

Exercises

1) Express the following sentences in clausal form. Some of them are
ambiguous.

EXercises 45

a) Everyone likes someone.

b) Everyone likes everyone.

c) Someone likes everyone.

d) No one likes anyone.

e) No one likes someone.

f) Someone likes no one.

g) John and Mary like themselves.

h) A teacher is happy if he belongs to no committees.
(Paraphrase the sentence first: It is not the case that a
teacher is happy and belongs to some committee.)

i) Anyone who knows anything about logic likes logic.

2) In each of the following arguments the assumptions imply the
conclusion. Express the assumptions and the denial of the conclusion in
clausal form, so that the resulting set of clauses is inconsistent.
Demonstrate inconsistency by showing that the set of claUSes is true in
no interpretation.

a) Assumption There is a single individual who is a loving parent of
everyone.

Conclusion Everyone has a parent who loves him.

b) Assumptions All easterners like all westerners.
All westerners like all easterners who
westerner.

like some

Conclusion All westerners like all easterners without exception.

c) Assumptions Canaries are birds.
All birds have wings.

Conclusion Canaries have wings.

cl) Assumptions Anything which accomplishes something good is good itself.
Anything which accomplishes something bad is bad itself.
War accomplishes both peace and suffering.
Peace is good and suffering is bad.

Conclusion Some things are both good and bad.

e) Assumptions x is a member of cons(x,y).
x is a member of cons(u,y) if x is a member of y.

Conclusion A is a member of cons(C, cons(A, cons(C, nil»).

f) Assumption Bob is happy if all his students like logic.

46 Chapter 2: Representation in Clausal Form

Conclusion Bob is happy if he has no students.

3) The word "like" in exercise (6) of Chapter 1 disguises two
different meanings. Redo exercise (6) distinguishing between the notions

x likes to eat y and
x likes to be with y.

You can do so either by using
Likel and Like2' or by using
one of which is the name of an

two completely distinct predicate symbols,
a single three argument predicate symbol,
event (eating) or of a state (being with).

4) Express in clausal form the information represented in the
following semantic network and English sentences:

Subject-of

fire Prometheus

e

The object of e' is any act
If a ruler forbids an act which
subjects then there is another
punishes the subject.

e'

of giving fire to humans.
is performed by one of his
event in which the ruler

5) This exercise is based on Schank's [1973, 1975) conceptual analysis
of actions. Let the intended interpretation of

Let the terms

Act(x,y) be
Possess(x,y,u)
Actor(x,y)
Object(x,y)
Donor(x,y)
Recipient (x,y)

ATRANS name

GIVE
TAKE
resul t (u)
prior (u)

x is an act of type y,
x possesses y in state u,
the actor of act x is y,
the object of act x is y,
the donor of act x is y,
the recipient of act x is y.

the type of all acts of abstract
transactions,
the type of all acts of giving,
the type of all acts of taking,
the state immediately after the act u,
the state immediately prior to the act

Express the following sentences in clausal form:

u.

Exercises 47

a) In the state immediately after any act of type ATRANS, the
recipient of the act possesses the object of the act.

b) In the state immediately prior to any act of the type
ATRANS, the donor possesses the object of the act.

c) An act of type ATRANS is an act of giving if the actor is
the donor.

d) An act of type ATRANS is an act of taking if the actor is
the recipient.

6) Redo exercise (5) using equality and function symbols. Let

act (xl
actor (x)
object(x)
donor (x)
recipient (xl

name the type of act x,
the actor of x,
the object of x,
the donor of x,
the recipient of x.

7) Let Parents(x,y,zl hold when x is the father and
Formulate a set of clauses whose only variable-free
the Parents relation but which imply the variable-free
Chapter 1.

y the mother of z.
assertions concern
assertions Fl-8 of

8) Assume that data is given in the Supplier, Part and Supply tables:

Supplier Supplier-Number Name Status City

Part Part-Number Name Colour Weight

Supply supplier-Number Part-Number Quantity

Formulate the following queries in clausal form. Use both the binary and
the n-ary representations, taking advantage of the fact that Supplier-
Number is a key of the Supplier table and Part-Number is a key of the
Part table. Assume that the relationship

x < y (x is less than y)

48 Chapter 2: Representation in Clausal Form

is already given.

al What are the numbers of suppliers of nuts?

bl What are the names of suppliers of bolts?

cl What are the locations of suppliers of nuts and bolts?

dl What are the names of parts supplied by the supplier named
John?

el What are the names of suppliers located in London who
supply nuts weighing more than one ounce?

f) What are the names of suppliers of both nuts and bolts?

gl What are the names of suppliers of nuts or bolts?

49

CHAPl'ER 3

.'!:..2.E-down and Horn Clause Proof Procedures

Introduction

The parsing problem - to show that a string of words forms a sentence
according to given rules of grammar - can be represented in logic as a
problem of demonstrating the inconsistency of a set of Horn clauses.

Different parsing procedures for determining that a string is a
sentence correspond to different proof procedures for demonstrating
inconsistency. Top-down parsing procedures correspond to goal-directed
proof procedures which work backwards from the conclusion by using
implications to reduce problems to subproblems. The aim is to reduce the
original problem to a set of subproblems each of which has been solved.
Bottom-up parsing procedures correspond to proof procedures which work
forward from the initial set of assumptions, by using implications to
derive conclusions from assumptions. The aim is to derive assertions
which directly solve each of the initially given problems.

Top-down and bottom-up proof procedures apply to the solution of any
problem. Top-down inference is the analysis of goals into subgoals;
bottom-up inference is the synthesis of new information from old. In
this chapter we define top-down and bottom-up inference for Horn clauses
only. Later we shall extend their definition to non-Horn clauses and
investigate systems which combine both directions of inference.

The parsing problem

The following description of the parsing problem is based on Foster's
description [Foster 1970] of a formulation by Amarel.

Given a grammar and a string of words such as

"The slithy toves did gyre"

the problem is to demonstrate that the string is a sentence. This can be
done by filling in the triangle

50 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

sentence

The slithy toves did gyre

with a parse tree:

sentence

nOun phrase verb phrase

determiner noun aux verb

The slithy toves did gyre

The parse tree is constructed in accordance with a grammar. In this
example, the following rules of grammar have been used.

(1)
(2)

A noun phrase followed by a
A determiner followed by an
is a noun phrase.

verb phrase is a sentence.
adjective followed by a noun

(3)
(4)
(5)
(6)
(7)
(8)

An auxiliary followed by a
"The" is a determiner.
"slithy" is an adjective.
"toves" is a noun.
"did" is an auxiliary.
"gyre" is a verb.

verb is a verb phrase.

Different ways of filling in the triangle determine different parsing
procedures. procedures are determined by filling in the
triangle from the top downwards. procedures are obtained by
filling in the triangle from the bottom upwards.

A top-down procedure might generate all branches in parallel:

sentence

noun phrase verb phrase

The sli thy toves did gyre

The parsing problem 51

or it might generate one branch at a time, say from left to right.

sentence

noun phrase verb phrase

determiner noun

Similarly, a bottom-up procedure might work on all words in the input
string in parallel:

sentence

determiner

The slithy toves did gyre

or it might work on one word at a time.

sentence

determiner

The slithy toves did gyre

The triangle can be
top-down and bottom-up,
method of filling in the
point, it is important
bottom-up procedures.

filled in from right to left, bi-directionally
and even from the middle out. Every systematic
triangle determines a parsing procedure. At this
to distinguish mainly between the top-down and

52 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

A predicate logic representatIon of the parsing problem

There are many ways to represent the parsing problem in logic. The One
we describe here has the property that different parsing procedures
correspond to different proof procedures for the same representation.

We regard the initial string of words as a graph. A node of the graph
occurs between adjacent words of the initial string and also at the
beginning and end of the string. We regard words in the string as labels
on the arcs connecting adjacent nodes:

1

the

2

slithy toves

4 ...
did

5
;)a

gyre

6 ...
The nodes are arbitrarily named 1-6. No ordering is implied by the
numbers used to name the nodes.

The rules of grammar can be regarded as statements concerning labelled
graphs:

If there is a path from node x to y labelled "the" then
the path from x to y is also labelled "determiner", Le.

Det(x,y) <- the(x,y).

If there is a path from x to u labelled "determiner" and a
path from u to v labelled "adjective" and a path from v to
y labelled "noun" then there is a path from x to y
labelled "noun phrase", i.e.

Np(x,y) <- Det(x,u), Adj (u,v), Noun(v,y).

A parse of the initial string of words can be regarded as a graph
which is labelled according to rules of grammar and has a path, from the
beginning of the string to the end, labelled "sentence":

sentence

noun phrase verb phrase

the slithy toves did gyre

The initial graph is represented by a set of assertions:

A predicate logic representation of the parsing problem 53

Parse 1 the(1,2) (-

Parse 2 slithy(2,3) (-
Parse 3 toves(3,4) (-

Parse 4 did(4,S) (-

Parse 5 gyre(S,6) (-

The rules of grammar are represented by clauses containing variables:

Parse 6 Sent(x,y) (- Np{x,z), Vp(z,y)
Parse 7 Np(x,Y) (- Det(x,u), Adj (u,v), Noun(v,y)
Parse 8 Vp(x,y) (- Aux(x,z), Verb(z,y)
Parse 9 Det (x,y) (- the(x,y)
Parse 10 Adj (x,y) <- slithy(x,y)
Parse 11 Noun(x,y) (- toves(x,y)
Parse 12 Aux(x,y) (- did(x,y)
Parse 13 Verb(x,y) (- gyre(x,y)

These are the only ruleS of grammar needed to parse the original string
of words. In a more realistic formulation of the problem, we have to
consider the use of other rules of grammar as well. For

Parse 14 Np(x,yl (- Det(x,z), Noun(z,y)
Parse 15 Np(x,y) (- Noun (x,y)
Parse 16 Vp(x,y) (- Verb(x,y)
Parse 17 Det(x,y) (- a(x,y)
Parse 18 Adj (x,y) (- brillig (x,y)
Parse 19 Noun(x,y) <- wabe(x,y)
Parse 20 Verb(x,y) (- gimble(x,y)

To show that the string of words from 1 to 6 is a sentence we show
that the denial of the goal

Parse 21 (- Sent (1,6)

is inconsistent with Parse 1-20.

inference

A bottom-up refutation begins with assertions in the input set of
clauses. It uses implications to derive new assertions from old ones,
and ends with the derivation of assertions which explictly contradict the
denial of the goal.

A graphical representation of the bottom-up refutation of Parse 1-21
is shown below. It resembles the parse tree turned upside-down. Nodes
are labelled by assertions. The implication used to derive a new
assertion labels the bundle of arcs leading from the old assertions to
the new one.

54 Chapter 3: Top-down and Bottom-up HOrn Clause Proof Procedures

the(1,2)<-
.H,", ", "'-I toves(3,4)<- did(4,S)<-

Parse 9 Parse le Parse 11 Parse 12 Parse 13

Det(1,2)<- Adj(2,3)<- Noun(3,4)<- Aux(4,S)<- Verb(5,6)<-

Parse 7 Parse

Np(1,4) (- Vp(4,6) (-

Parse 6

Sent(1,6) <-

Parse 21

o
The assertion

Np(1,4) (-

for example, is obtained from the three assertions

Det(1,2) (-
Adj(2,3) (-
Noun(3,4) <-

by matching them with the three conditions of the clause

Np(x,y) (- Det(x,u), Adj(u,v), Noun(v,y).

Matching is accomplished by finding a most general substitution, in this
case

u:2, v:3, y=4},

which makes the assertions identical to the conditions.

In general, one step of bottom-up inference matches (in the most
general possible manner) a number of assertions with the conditions of a
clause and derives a new assertion. The new assertion consists of the
conclusion of the clause instantiated by the matching substitution. If
the clause is a denial (which has no conclusion) then the derived clause
is the empty clause. A more precise definition is given at the end of the
chapter.

Bottom-up inference is a generalisation of instantiation combined with
the classical rule of modus ponens:

From A <- and B <- A derive B (- .

Instantiation is restricted to the minimum needed to match assertions
with conditions, so that modus ponens can be applied.

Top-down inference 55

!2E-down inference

A top-down refutation begins with a denial in the input set of
clauses. It uses implications and assertions to derive new denials from
old ones and ends with the derivation of the empty clause.

A graphical representation of a top-down refutation of Parse 1-21 is
given below. Nodes are labelled by denials. An arc is labelled by the
input clause which is used to derive the denial at the bottom of the arc.
Selected atoms are underlined.

(-
Parse 6

(- NJ2(lfz), Vp(z,6)
Parse 7

(- Det(llu), Adj (u,v) , Noun (v,z), Vp(z,6)
Parse 9

(- the!llu), Adj(u,v), Noun(v,z) , Vp(z,6)
Parse 1

(- Adj(2lVl, Noun(v,z) , Vp(z,6)
Parse le

(- slithy(2[v) , Noun (v,z), vp(z,6)
Parse 2

<- Noun(3[z), vp(z,6)
Parse 11

<- toves{3lZ)' vp(z,6)
Parse 3

(- YE (4 ,61
Parse 8

(- Aux(4 l w), Verb(w,6)
Parse 12

(- Verb(w,6)
Parse 4

(- Verb{St 6)
Parse 13

(- 2x.re (5(6)
Parse 5

0

Beginning with the initial denial

(- Sent(1,6)

top-down inference matches the condition
conclusion of the implication

of the denial with the

Sent(x,y) (- Np(x,z), Vp(z,y)

deriving the new denial

(- Np{l,z), Vp{z,6)

which consists of the conditions of the input clause instantiated by the
matching substitution

{x=l, y=6J.

56 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

The inference step formalises the reasoning that

if there is no sentence from I to 6 then there is no z
such that there is a noun phrase from I to z followed by a
verb phrase from z to 6.

The same inference step can also be interpreted from a problem-solving
point of view:

The goal of showing that there is a sentence
can be solved if a z can be found such that
of showing there is a noun phrase from I to
phrase from z to 6 can be solved.

from 1 to 6
the subgoals
z and a verb

In the problem-solving interpretation, the original goal is reduced to
two new subgoals.

In general, top-down inference involves matching a selected condition
of a denial with the conclusion of an implication and deriving a new
denial by replacing the selected condition by the conditions of the
implication and applying the matching substitution. If the implication
is an assertion, which has no conditions, then the selected condition is
simply deleted and the matching substitution is applied. If, in addition,
the selected condition is the only condition in the denial then the
derived clause is the empty clause. In the problem-solving
interpretation, a denial is interpreted as a collection of goals. Top-
down inference replaces a selected goal (in the context of a collection
of goals) by a set of subgoals. A precise definition of top-down
inference is given at the end of the chapter, while the problem-solving
interpretation is investigated in the next chapter.

Top-down inference is a generalisation of instantiation combined with
modus toll ens :

From not-A and A (- B derive not-B.

Instantiation is restricted to the minimum needed to apply the modus
tollens rule.

Different top-down refutations are determined by selecting different
atoms in denials for the application of top-down inference. For example,
clause Parse 8 could be applied to the denial

(- Np(l,z), Vp(z,6)

to derive the new denial

(- Np(l,z), Aux(z,u), Verb(u,6)

If there is a refutation for one selection of atoms then there is a
refutation for any other selection.

It is also possible (as in bottom-up inference) to select all
conditions in a denial simultaneously. The figure below illustrates such
a top-down parallel refutation. Below each selected condition is the name
of the clause used in the derivation of the next denial.

Top-down inference 57

(- Sent(1,6)

Parse 6

(- Np (l,z) , Vp(z,6)

Parse 7 Parse 8

<- Det(l,u), Adj (u,v) , Noun (v,z), Aux(z,w), Verb (w, 6)

Parse 9 Parse "" Parse 11 Parse 12 Parse 13

<- the (l,u), slithy(u,v), toves(v,z), did (z,w), gyre (w,6)

Parse 1 Parse 2 Parse 3 Parse 4 Parse 5

o

This formulation of the parsing problem was obtained by Alain
Colmerauer with the author by expressing his Q-system [Colmerauer 1973]
in logic. It is significant that, whereas the Q-system is a bottom-up
parsing procedure, the Horn clause formulation is more abstract and can
be used either top-down or bottom-up.

Although the example uses only context-free rules of grammar, it is
easy to extend the representation to express context-sensitive grammars
and arbitrary rewriting systems [Chomsky 1957J.

The family relationships example

The concepts of
Horn clauses. The
Chapter 1, provide

top-down and bottom-up inference apply to any set of
clauses which define family relationships, Fl-19 of
another example.

Given clauses Fl-19, the problem of showing that Zeus is a grandparent
of Harmonia can be represented as the problem of filling in the triangle

2S
Father (Z;uS,Ares) Father (Ares, Harmonia)

58 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

with a derivation tree:

Grandparent (Zeus,Harmonia)

Parent(Zeus,Ares) Parent (Ares,Harmonia)

Father (Zeus,Ares) Father (Ares,Harmonia)

In the clausal form of logic, the problem is to show that the denial

F* (- Grandparent (Zeus,Harmonia)

is inconsistent with the clauses Fl-l9. The figures below illustrate
bottom-up, top-down, and parallel top-down refutations.

Father (Zeus,Ares) (- Father (Ares,Harmonia) (-
F17 F17

Parent(Zeus,Ares) (- Parent (Ares, Harmonia)

FIB
Grandparent (Zeus,Harmonia) (-

F* o
)I, refutation of f* and Fl-.!1

(- Grandearent(Zeus,Harmonia)
FIB

(- Parent(Zeus,z) , Parent (z,Harrnonia)
F17

(- Father (Zeus,z), Parent (z,Harmonia)
F17

(- Father (Zeus f z) , Father (z,Harmonia)
Fl

(- Father (AreslHarmonia)
F3

0

Y2E-down refutation of and Fl-.!2.

The family relationships example

(- Grandparent (Zeus,Harmonia)
FIB

(- Parent(Zeus,z), Parent(z,Harmonia)
Fl7 Fl7

(- Father (Zeus,z) , Father(z,Harmonia)
FI F3

o
parallel !QE-down refutation of f* and Kl-19.

59

Because the operation of matching atomic formulae is so general, top-
down and bottom-up inference can be used not only to show that Zeus is a
grandparent of Harmonia but also to find a grandparent of Harmonia or to
find a grandchild of Zeus. This is illustrated in the top-down refutation
which shows the inconsistency of FI-19 with F**.

F** (- Grandparent{u,Harmonia)

The grandparent of Harmonia whose existence contradicts F** can be
determined by analysing the matching substitutions uSed in the
refutation. The last step of the refutation matches the variable u from
the initial denial with the constant symbol "Zeus", determining that
u = Zeus is a grandparent of Harmonia.

Notice that the first step of the refutation matches the condition

Grandparent (u,Harmonia)

with the conclusion

Grandparent (x,y) •

Top-down inference uses a most general substitution which makes the two
atoms identical, in this case

{x = u, y = Harmonia}.

Any less general substitutions, such as

60 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

or
{x
{x

Ares, u
Zeus, u

Ares, y
Zeus, y

Harmonia}
Harmonia}

which also makes the two atoms identical, need not be considered.

Given any two atoms, all (most general) matching substitutions differ
only in the names they give to variables and are otherwise equivalent.
Consequently, it is necessary to use only one of them in any inference
step. The matching substitution

{u : X, y: Harmonia}

for example, is equivalent to the one used in the first step of the
refutation above. It gives rise to the equivalent denial

(- Parent(x,z), Parent(z,Harmonia)

which is a variant of the other.

The possibility of restricting instantiation to the generation of most
general matching substitutions was observed by Prawitz [1960] and
elaborated by Robinson [l965a] who incorporated it into the resolution
rule (Chapter 8), which generalises the top-down and bottom-up inference
rules investigated in this chapter. Unification algorithms for matching
atomic formulae have been the subject of much investigation [Robinson
1971J, [Paterson and wegman 1976j, [Martelli and Montanari 1977].

Inference rules and search strategies

Inference rules are the building blocks of proof procedures. A proof
procedure is a systematic method for showing that a set of assumptions
imply a conclusion. Proof procedures for the clausal form of logic are
refutation procedures, which show that assumptions imply a conclusion by
demonstrating that the assumptions are inconsistent with the denial of
the conclusion.

Inference rules specify the form of the individual steps which make up
a proof. All possible ways of applying the inference rules, both to an
initially given set of clauses and to the clauses derived from them,
determine the search space for the set of clauses. Specifying a
systematic search strategy for investigating clauses in the search space
determines a proof procedure.

Top-down inference determines search spaces which have the form of a
tree. Individual nodes of the search space are labelled by denials which
contain a selected condition. For each input clause whose conclusion
matches the selected condition there is an arc, labelled by the input
clause, which leads to the denial obtained by applying top-down
inference. A refutation is a path in the search space leading from the
initial denial to the empty claUSe D.

A top-down search space for the problem of finding a grandparent of
Harmonia is illustrated in the figure below. To save space, abbreviations
such as

Inference rules and search strategies

Ha for Harmonia
He for Hera
P for Parent etc.

61

have been used for constant symbols and predicate symbols, and the input
clauses labelling arcs have been omitted. Darkened nodes at the tips of
the search tree contain selected conditions which match the conclusion of
no input clause.

(- G(u,Ha)

(- p (u,z), p{z,Ha)

<- P(u,z), F(z,Ha) <- p (u,z), M(z,Ha)

<- P (u,Ar) <- P(u,Aph)

(- F (u,Ar) <- M(u,Ar) <- F(u,Aph) <- M(u,Aph)

u "" Ze u = He

o o
The search space is finite and can be searched completely in a finite

amount of time. The two main kinds of search strategy are breadth-first
and depth-first search. Breadth-first search explores all branches of
the search tree to the same away from the root of the
tree, before exploring them to the next depth, n+l steps away from the
root. Pictorially, breadth-first search explores the search space above
in the following sequence:

•

Depth 3

62 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

a a

Depth-first search explores one branch of the
When it reaches a tip of the tree it backtracks
branch as close to the tip as possible.

1

2

3

5

o
Branch 3 Branch 4 ---- ----1

8

9

18

search space at a time.
and tries an alternative

1

3

7

o

1

8

9

11

The numbers next to arcs indicate the sequence in which the arcs are
generated. Here the first branch already contains a solution of the
problem. If only one solution is required, then the rest of the search
space need not be generated. The whole search space has to be generated,
however, if all solutions are desired. In this case there are two

Inference rules and search strategies 63

refutations, each of which determines a different answer to the question

Who is a grandparent u of Harmonia?
u = Zeus, u = Hera.

The search space for top-down inference is affected by the selection
of conditions in denials. In the search space above, conditions were
deliberately chosen with the intention of minimising the size of the
search space. In the search space below, the selection of conditions
maximises its size.

<- G (u,Ha)

(-

<- F(u,z), P(z,Ha) P(z,Ha)

<-P (Ar ,Ha) <-P(Ha,Ha) <-P (Ha,Ha)

<-P(D,Ha) <-P(D,Ha)

o 0

Both top-down search spaceo are complete in the sense that they
contain a refutation if the set of clauses is inconsistent. It suffices,
therefore, to search either one search space or the other. In general,
other things being equal, the larger the search space the more difficult
it is for the search strategy to find a refutation.

In the problem-solving interpretation of top-down inference, the
selection of a condition in a denial is the selection for solution of a
subgoal from a set of subgoals. It is one of the most important
considerations of problem-solving strategy and a major topic of the next
two chapters.

The structure of bottom-up search spaces is more complex than that of
top-down search spaces. Consequently, they are more difficult to search.
The figure below illustrates the bottom-up search space for the family
relationships example. Nodes are labelled by assertions. A bundle of arcs
connects the assertions which match the conditions of an input clause
with the new assertion derived by bottom-up inference. The input clause
which ought to label the bundle is omitted to save space. Darkened nodes
indicate assertions to which no bottom-up inference step applies. The
same abbreviations are used as before. In addition, we use

MI for Male and
FI for Female.

64 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

F(Ze,Ar) (- F(Ar,Ha) <- M(He,Ar) <- F (Ze,D) <-

P{Ze,Ar)<- Ml(Ar)<- P{Ar,Ha)(- Fl (He) <- P{He,Ar)< Ml(Ze)(-

MI (Ze) <- P(Ze,D)(-

G(Ze,Ha)<- G(He,Ha)<-

o o

M(Aph,Ha) <- M(Ha,5) <- M(5,D) <- F (C,5) <-

P(Aph,Ha)<- FI(Ha)<- P(S,D)<-

Fl (Aph) (-

G{Aph,5)<- G (Ar ,5) <- G(C,D)<-

Not included in the figure are the input assertions, such as

God (Zeus) <- and Fairy-Princess (Harmonia) <-

which match no conditions. Notice that the assertion

Male (Zeus) <-

is derived in two different ways, giving
the same assertion. In the next chapter,
search spaces in which different nodes are

rise to two
we consider

labelled by

nodes labelled by
representations of
different clauses.

In practice, few strategies other than breadth-first search have been
appl ied
breadth
any of
maximum

to bottom-up search Spaces. As in
first search explores all assertions of
depth The depth of an assertion
of the depths of its parent assertions.

top-down search spaces,
depth n before generating
is one greater than the

Search strategies are an important part of all problem-solving systems
and are investigated in greater detail in the next chapter.

Infinite search spaces: natural numbers

The search spaces for the parSing problem and the family relationships
problems are both finite. Infinite search spaces are normally associated
with clauses containing function symbols. The definition of natural
number using the successor function symbol is a simple example.

Infinite search spaces: natural numbers 65

Numb(0) (-

Numb(s(x» (- Numb(x)

Suppose the problem is to show that three is a number.

(- Numb(s(s(s(0»»

The top-down search space is finite

(- Numb(s(s(s(0))))

(- Numb(s(s(0»)

(- Numb{s(0»

(- Numb(0)

o

and contains only the solution of the problem. The bottom-up search
space, however, is infinite.

Numb (0) (-

Numb(s(0» (-

Numb(s(s(0))) (-

Numb(s(s(s(0)))) (-

o Numb(s(s(s{s(0»») (-

Numb(s(s(s(s(s(0)))))) (-

For the problem of finding a number, however, both search spaces are
infinite. Moreover, both spaces contain an infinite number of solutions.

66 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

(- Numb(u)

u = 0 u = s (u')

0 (- Numb(u')

u' 0 u'= S (u")

0 (- Numb(u")

u' '= 0 u' '::;: S (u' ")

0 (- Numb (u' , ')

Here each arc of the top-down search space
the matching substitution which is needed
existence is denied in the initial statement

Numb (0) (-

o Numb(s(0)) (-

o Numb(s(s(0») (-

o Numb(s(s(s(0)))) (-

is labelled by that
to find the number
of the problem.

part of
u whose

When search spaces are infinite, depth-first search strategies are
subject to the possibility of following the wrong branch of the search
space and thus failing to find a refutation. In the present example, this
happens in the top-down search space if the clause

Numb(s(x» (- Numb (x)

is always used before the assertion

NUmb(0) (-

and in the bottom-up search space if

Numb(s(x» (- Numb(x)

is always used before the denial

(- Numb(u).

To guarantee the completeness of a proof procedure, not only must the
search space be complete, but the search strategy must be exhaustive:
eventually investigating every node of the search space.

Definitions 67

Definitions

Some of the concepts introduced in this chapter are defined more
precisely below:

Let S be a set of Horn clauses and let there be given a selection
strategy which picks a condition from any denial. A sequence of denials

is a !QE-down derivation of Cn from S if

1) the first clause Cl belongs to Sand
2) every denial in the sequence, other than the first, is
obtained from the preceding denial by an application of
top-down inference, using a clause in S.

A derivation of the empty clause from S is a refutation of S.

Given a denial

m 2. I

with selected atom Ai and an implication

n) 0

which shares no variables with the denial, a new denial can be obtained
by !QE-down inference if the selected atom A· matches the conclusion B of
the implication. The new denial consists ot all the conditions of the
original denial the selected condition) together with all the
conditions of the implication, with the matching substitution e applied:

If the denial and the implication contain variables in common, then
they have to be renamed, glvlng equivalent clauses which share no
variables, before top-down inference is attempted. Thus to apply top-down
inference to the denial

(- Np(y,u), Vp(u,z)

using the clause

Np(x,y) (- Det(x,u), Noun(u,y)

it is necessary to rename variables first, using, for example, the
variant implication

Np(x',y') (- Det(x',u'), Noun(u',y')

to obtain the new denial

<- Det(y,u'), Noun(u' ,u), Vp(u,z)

68 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

where the matching substitution is

{x' = y, y' = u}.

In general, any condition can be selected in a denial. The selection
strategy is of the last-in-first-out kind if the selected condition is
always one of the conditions most recently introduced into the denial, in
particular one of the conditions

8 l 8, ... ,8n8

in the new denial

(- AI 8, ••. ,Ai_1S,B1S, ..• ,BnS,Ai+18 , ••• ,AmS.

A top-down derivation can be represented as a graph by associating a
node with every denlal C] in the derivation and by inserting an arc,
from it to the next denlal Cj+l' labelled by the implication used in the
inference step.

The definition of matching sUbstitution is needed to define both top-
down and bottom-up inference and will be presented after the top-level of
the definition of bottom-up inference.

It is convenient to define a graph-representation of bottom-up
inference from the outset. Let S be a set of Horn clauses. A graph 0 with
nodes labelled by assertions is a derivation of a clause C from
S if

1) 0 consists of a single node labelled by C, belonging to
Sand C is either an assertion or the empty clause, or

2) 0 consists of subderivations,

0 1 of Al <- from S,
°2 of A2 <- from S,

Dm of <- from S,

whose root nodes are connected by arcs to a new node
labelled by C and C is obtained from Al <-, A2 <-, ... , Am (- by bottom-up inference using a clause C' in S.

c'
c

Definitions

The clause C' labels the bundle of arcs associated with
the inference step.

69

It is convenient to define the inference of clause C from m
assertions

Al (-, A2 (- , ••• , Am (-
using clause C' by decomposing the inference into a sequence of m simpler
inference steps. Suppose that C' has the form

B (- Bl' B2 ,
(- BI' B2 ,

... , Bm
Bm·

or

The clause C is obtained by inference using C' from

1) by selecting a condition, say
with an assertion, say Al (-
intermediate clause C"

(B (- B 2 , ••• , Bm)e or
((- B 2 , ••• , Bm)e

Bl' of C', matching it
and deriving the

where e is the matching substitution and

2) deriving C by bottom-up inference from
A2 (-, ... , Am (- using e".

3) If m=l then C = C".

4) In step (1) the variables in Al (- need to be distinct
from those in C'. If necessary, variables need to be
renamed to make them distinct.

It can be shown that the conditions in C' can be selected in any order
without affecting the clause C which is finally derived.

The assertions Al (-, A2 (-, •.. , Am (- to which bottom-up
inference is applied need not all be distinct. For example, the assertion

Friends(Narcissus, Narcissus) (-

can be derived in one step of bottom-up inference from two copies of the
assertion

Likes{Narcissus, Narcissus) (-

using the clause

Friends(x,y) (- Likes(x,y), Likes(y,x).

70 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

Substitution and matching

It remains to define the notions of substitution and matching.

A substitution

is a set of substitution components of the form

Xi = ti

where xi is a variable and ti is a term. Distinct substitution components
of a substitution

and

have distinct variables xi and Xj. Thus a substitution can be regarded as
a function which maps varlables Onto terms. If E is an expression (term,
atom, or clause) then the result of applying the substitution

e:z::: {xl=tl' ••. ,

to E is a new expression

which is identical to E
belongs to e, wherever E
occurrence of ti. The new

except that for every
contains an occurrence

expression Ee is said to

component xi=ti which
of Xi' Ea contains an
be an instance of E.

A substitution a unifies the two expressions El and E2 if it makes
them identical, i.e.

Ela is the common instance of El and E2 determined A substitution
8 matches El and E2 (is a most general unifier of El and EZ) if

1) 8 unifies El and E2 and

2) the common instance
E/;" determined y any other unifier a of El and EZ is an

instance of the common instance
E19

determined by 8. Thus
E10" = (E19) >-

for some substitution A.

Every pair of expressions which can be unified can also
Moreover, all matching substitutions are equivalent, in the
the common instances they determine are variants.

be matched.
sense that

Correctness and completeness of inference systems 71

Correctness and completeness of inference systems

A system of inference rules is correct (or sound) if every set of
clauses which has a refutation constructed in accordance with the
inference rules is inconsistent. The system is complete if every
inconsistent set has a refutation. The notions of correctness and
completeness connect semantics with the part of syntax concerned with
proof theory. An inference system which is both correct and complete is
one for which the semantic notion of inconsistency coincides with the
proof theoretic notion of refutability. The correctness of top-down and
bottom-up inference is easy to verify.

Bottom-up inference is a special case of the hyper-resolution rule
defined and proved complete by Robinson [1965b]. Top-down inference is a
form of the model elimination rule introduced and proved by Loveland
[1968, 1969]. Like hyper-resolution, model elimination applies to
arbitrary sets of clauses. In both cases for non-Horn clauses, however,
an additional rule of inference, the factoring rule, discussed in Chapter
7, is needed for completeness.

Many forms of top-down inference have been developed, notably linear
resolution [Loveland 1970], [Luckham 1970], ordered linear resolution
[Reiter 1971], SL-resolution [Kowalski and Kuehner 1971], G-deduction
[Michie et al 1972), inter-connectivity graph resolution [Sickel 1976]
and analytic resolution [Brand 1976]. Linear resolution employs no
restriction on the selection of atoms for top-down inference. Given a
denial containing n atoms it potentially investigates the nl redundant
sequences in which the atoms can be selected. The other systems,
including model elimination, employ last-in-first-out selection
procedures. The importance of selecting atoms in a more flexible manner
will be studied in the next two chapters. Completeness for top-down
inference systems employing arbitrary selection procedures has been
proved by several authors including Brown [1973] and Hill [1974].

Top-down and bottom-up inference are special cases of the resolution
rule [Robinson 1965a). A system which mixes top-down and bottom-up
inference for Horn clauses has been described by Kuehner [1972J. The
connection graph proof procedure [Kowalski 1974a] investigated in Chapter
8 combines both directions of inference for non-Horn clauses as well. A
non-resolution system which uses the standard form of logic rather than
clausal form has been developed for applications in mathematical theorem-
proving by Bledsoe and his colleaguEs [1971, 1977]. His system also
combines bottom-up reasoning forwards from assumptions together with
top-down reasoning backwards from conclusions.

Exercises

1) A string of items can be regarded as a directed graph whose nodes
are spaces and whose arcs are labelled by items connecting one space to
the next. An arc labelled by an item connecting space x to space y

w

x y

72 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

can be represented by means of a three place relationship

Conn(x,w,y) .

Thus the assertions

Conn (4,D,2) (-
Conn(2,A,3) (-
Conn (3 ,D,f) <-

represent the string

DAD

whose spaces are arbitrarily named

4, 2, 3, f .

A string is a palindrome if it reads the same backwards as it does
forwards. Express the following more precise definition by means of Horn
clauses.

a) A string from space x to space y is a palindrome if the
item from x to x' is the same as the item from y' to y and
the string from x' to y' is a palindrome.

b) A string from x to y is a palindrome if there is an item
from x to y.

c) A string from x to x is a palindrome.

Construct both top-down and bottom-up solutions for the problem of
showing that the string DAD is a palindrome.

2) Let strings be
relation as in exercise

represented
(1) •

by means of the three place Conn

a) Define by means of Horn clauses the relationships

Identical(w,x,u,v)

Admissible(u,v)

which holds
consists of
i.e.

x x

when the string from
w copies of the same

x

u v

w times

u to v
item x,

which holds when, for some i, the string
from u to v consists of i copies of item a
followed by i copies of item b followed by
i copies of c, i.e. has the form

b}

Exercises

a a b

i times

Exhibit the entire top-down
for the problem of showing
admissible. In the case of
select conditions in a manner
the search space.

3) Using the clause

73

b c c ... ------
i times i times

and bottom-up search spaces
that the string a b c is
the top-down search space
which minimises the size of

Distance(x,y,w) (- Distance(x,z,u), Distance{z,y,v), Plus(u,v,w)

and any assertions such as

Plus(3,2,5) (-
Plus(5,4,9) (-

which ere necessary for the Plus relation, construct top-down and bottom-
up solutions to the problem

(- Distance(A,M,w)

for the graph shown in exercise (7) of Chapter
solutions does the top-down search space contain?

(- Distance(x,x,w)

solvable?

1. How many distinct
Is the problem

4) The relation x y can be defined by the Horn clauses

o (x (-
sex) sty) (- x y.

Generate the top-down and bottom-up search spaces (where they are finite)
for the following problems.

a} (- s(s(0)} ::. s(s(s(0}}}

b} (- s(s(0)}} (w

c) <- W (s(s(0)}

d} <- s(s(w)) < sew)

e} (- s (6 (w» (s (0)

5) Define the relation Plus(x,y,z) which holds when x+y = z. You can
use two clauses, one for the case x is 0, the other for the case x is
s (x') •

74 Chapter 3: Top-down and Bottom-up Horn Clause Proof Procedures

6) Assume that the relations

Plus(x,y,z) and Times(u,v,w)

are defined by variable-free assertions and hold whenever x+y
u*v : W respectively.

z and

a) Let Exp(x,y,z) stand for the relation x to the exponent y
is z, written xTy : z. Express the following sentences in
clausal form, without using function symbols.

b)

for all x.
y*z if xlu = y and xlv = z.

xlI = x
xl (u+v)
xlu = z if xl(u+v) = wand xlv = y and y*z = w.

Using the clauses
problems by means
refutations.

If 2fa = 10 and a+a
If 3lc = 12 and b+l

=
=

Show that for every

You may need to

from part
of both

(a) solve
top-down

b, then find w such
c then find w such
x there is a z such

the
and

that
that
that

following
bottom-up

2lb w.
3lb w.
xl0 z.

assume such obvious facts about
multiplication as Times(l,x,x) (- .

75

CHAPTER 4

Horn Clause Problem-Solving

When logic is
proof procedures
clause inference
solving developed

used to express problems and problem-solving methods,
behave as problem-solvers. We shall argue that Horn
subsumes many of the alternative models of problem-
in artificial intelligence.

In this chapter we compare Horn clause inference both with the path-
finding model of the Graph Traverser [Daean and Michie 1966] and the
General Problem Solver [Newell and Simon 1963] and with the and-or tree
model of problem-reduction (Gelernter 1963), [Nilsson 1971]. In the next
chapter we compare Horn clause inference with problem-solving regarded as
execution of programs. In subsequent chapters we investigate both the use
of non-Horn clauses in problem-solving (Chapters 7 and B) as well as more
global problem-solving strategies (Chapter 9).

The close relationship between problem-reduction and top-down
inference has been observed by several authors, including [Kowalski and
Kuehner 1971], [Loveland and Stickel 1973], [Pop1e 1973], [Van der Brug
and Minker 1975]. Moreover it is already implicit in the Logic Theorist
[1963], The General Problem-Solver and the Geometry Theorem Proving
Machine [Gelernter 1963].

Path-finding

It is possible to express any problem as a path-finding problem.

Given an initial state A, a goal state Z, and operators
which transform one state into another, the problem is to
find a path from A to Z.

The water containers problem

The water-containers problem can be formulated naturally as a path-
finding problem. GiVenn

l:d Cit;es]
both empty

don't
care

76 Chapter 4: Horn Clause Problem-Solving

Given both a seven and a five litre container, initially empty, the goal
is to find a sequence of actions which leaves four litres of liquid in
the seven litre container. There are three kinds of actions which can
alter the state of the containers:

(1) A container can be filled.

(2) A container can be emptied.

(3) Liquid can be poured from one container into the other,
until the first is empty or the second is full.

The water-containers problem has a simple Horn clause formulation.
Interpret

State(u,v) as expressing that there is a state in which
the 7 litre container contains u litres of liquid and the
5 litre container contains v litres.

Assume that the relations

x + y = z and x y

are already defined (by infinitely many variable-free assertions, for
example) .

wel State("',"') (-

we2 (- State (4,y)
WC) State (7 ,y) (- State(x,y)
WC4 State(x,S) (- State(x,y)
WC5 State{"',y) (- State(x,y)
WC6 State(x,"') (- State(x,y)
we7 State ('" ,y) (- State (u,v) , u+v y, y (5
weB State(x,0) (- State (u,v) , u+v X, X (7
We9 State(7,y) (- State(u,v) , u+v W, 7+y • W
WCl'" State(x,S) (- State (u,v), u+v W, 5+x • W

Clauses WCl and WC2 express the given and the goal states respectively.
WC3 and WC4 define the action of filling a container. WCS and WC6 define
emptying a container. WC7 and we8 define pouring from one container into
another until the first is empty. WC9 and WCl'" pouring from one
into another until the second is full.

Before investigating the top-down and bottom-up search spaces, it is
useful to define the graph-representation of search spaces. First we
shall consider a simplified version of the path-finding problem and its
Horn clause formulation.

A simplified path-finding problem 77

simplified path-finding problem

Suppose the problem is to find a path from node A to node Z in the
following graph.

D

B

A E Z

C Y

F

The problem can be formulated with a one-place predicate

Go(x)

which expresses that it is possible to go to node x.
chapter we shall compare this formulation with the one
semantic networks) which employs a two-place predicate

Go* (x,y)

expressing that it is possible to go from node x to node y.

GO(A) (- <- Go(Z)
Go{BI (- Go{AI Go{CI <- Go(A)
Go(D) (- Go(S) Go(F) <- Go(e)
Go{EI (- Go{BI Go{XI (- Go{DI
Go {ZI (- Go(X) Go{XI <- Go (E)
Go {ZI (- Go{YI

Later in the
(suggested by

In this formulation the clauses which describe the graph behave as path-
finding procedures which connect adjacent nodes. The top-down and bottom-
up search spaces are both trees.

78 Chapter 4: Horn Clause Problem-Solving

Go(A) (-

Go(B) (- Go(e) (-

Go(D) (- Go (E) (- Go(F) (-

Go (X) (- Go(X) (-

Go(Z) (- Go(Z) (-

o o

(- Go (Z)

(- Go (X) (- Go(Y)

(- GO(D) (- Go(E)

(- Go(B) (- Go(B)

(- Go(A) (- Go (A)

o o

In both search spaces there is a one-ta-one correspondence between
refutations and solution paths. Both search spaces, however, contain
undesirable redundancies. The bottom-up search space derives the
assertion Go(X) (- in two different ways and then redundantly uses it
twice in the same way to obtain two refutations. The top-down search
space derives the goal statement (- Ga(s) in two different ways and then
redundantly solves it twice in the same way. These redundancies can be
eliminated by representing the search spaces as graphs rather than as
trees.

Graph-representation of search spaces 79

Graph-representation of search spaces

The of a search space is obtained from the tree-
representation by identifying nodes which have the same label. Thus no
clause occurs in the graph-representation more than once.

GO(A) (-

Go(B) (- GO(e) (-

Go (D) <- Go (E) <- GO(F) <-

Go(X) (-

Go(Z) (-

o
Graph-representation of the bottorn-.!!E. search space

(- Go (Z)

(- Go(Y)

(- GO(D) (- Go (E)

(- Go (B)

(- Go(A)

o
Graph-representation of the search space

Use of the graph-representation suggests that whenever a search
strategy generates a clause in the search space, it checks whether the
cl;mse has been generated before. If it has, then only one occurrence of
the clause is retained. Generally, the new occurrence is deleted.

The graph-representation can turn an infinite search
finite one. The top-down search space for the problem of
from A to Z in the following graph is a simple example.

space into a
finding a path

80 Chapter 4: Horn Clause Problem-Solving

D

S x

A z

c y

F

<-Go(Z)

<- GoIX) (- Go(Y)

<- GolD)

Go(B)

(- Go(A) (- Go {Xl

o (- Go(D)

(- GalS)

o

<- Go(B)

o

(- Go(B)

Infinite !£E-down search space in the tree representation

Graph-representation of search spaces 81

(- Go(,)

<- Go(Y)

(- Go(A)

o

The Search Spaces for the Water Containers Problem

We can now exhibit the graph representations of the search spaces for
the water containers problem. In order to avoid complicating the
appearance of the search spaces, arcs which lead to nodes labelled by
clauses which already occur elsewhere in the search space are not always
shown.

The top-down search space is more complicated than the bottom-up
search space. Notice, however, that the matching substitutions which are
generated in the first step of both branches of the top-down search space
determine that if the goal

(- State(4,x)

has a solution, then x must be either 0 or 5.

Generally speaking, the conclusions of clauses WC3-l0
any goal state which cannot have at least one container
empty. For this reason, in the clause

(- State(u,v), u+v 9

will not match
either full or

it is easier to select the second goal which generates pairs of integers
adding up to 9, and to reject those yielding impossible goal states than
it is to solve the subgoals in the other sequence.

B2 Chapter 4: Horn Clause Problem-Solving

State(",0) (-

wcs WC3 WC6

__ ___ ______ State(0,S) (-

WC4

State(7,5) <- (-

WCB

State(5,0) (-

WC4

State(5,S) <-

WC9

WC2

o

(-

(-

(-

(-

(-

State(6,e) (-

(-

(-

(-

WC10

WCB

State (7,3) (-

WC5

State(£I,3) (-

WeB

State(3,0) (-

WC4

State(3,S) (-

WC9

State(7,l) (-

wcs
State(0,1) (-

WCB

State(l,0) (-

we4

State(l,S) (-

Bottom-,!:!E search space for the containers problem

The Search Spaces for the water Containers Problem B3

(- State(4,x)

x = 0 WCB WC10 x = 5

State(u,v) , u+v 4 (- State (u,v) , u+v 9

(- State(0,4) (- State(7,2)
1<X:5 WC3

(- State(y,4) (- State(y,2)
WC9 y = 7 WC7 Y • 8

(- State (u,v), u+v 11 <- State (u,v), u+v 2

(- State(6,5) (- State(2,0l
1<X:4 WC6

(- State(6,y) (- State(2,y)
WCB y • 8 WCl8 Y • 5

(- State(u,v), u+v 6 (- State(u,v), u+v 7

<- State(l,S) (- State(7,0)
WC4 WC3

(- State(l,y) (- State(y,0)
y • 8 WCl Y 8

(- State(0,l) 0
WC5

<- State(y,l)
WC9 y • 7

(- State(3,5)
1<X:4

(- State(3,y)
WCB y = 0

<- State(0,3)
WC5

(- State (y, 3)
y = 7

'!'.£E.-down search space for the containers problem

Search strategies for path-finding

The path-finding model of problem-solving is concerned more with the
development of search strategies than it is with the structure of search
spaces and the representation of information. Given the task of finding a
path in a graph, the search problem becomes one of devising intelligent

84 Chapter 4: Horn Clause Problem-Solving

strategies for searching the graph.

Most search strategies for path-finding employ some form of guidance
by evaluation functions. Given a search space, an evaluation function

f applied to nodes in the space produces real numbers as values. The
value f{N) of a node N is intended to measure the usefulness of
continuing the search from that node. The greater the value of the node
the mOre promising it is to apply operators to it. heuristic search
strategy, guided by the evaluation function, always searches from the
node of currently greatest value.

Breadth-first and depth-first search can be regarded as special cases
of heuristic search. In depth-first search, the value of a node is its
distance from the start node. In breadth-first search, it is the inverse
of its distance from the start node. In both cases, the distance between
two nodes is measured simply by the number of arcs contained in the
currently shortest path connecting the nodes.

In a typical path-finding problem, a node in the search space
represents a state of some collection of objects. If there are n objects,
a state can be represented by the n-tuple consisting of the individual
states of the objects. In the water containers problem, for example,
there are two objects which can be in one of the eight states 0-7. Such
state-space path-finding problems can easily be represented with Horn
clauses by using a predicate

which expresses that the state in which

is possible.

the 1st individual is in state Xl
the 2nd individual is in state x2

the mth individual is in state xm

Special evaluation functions are useful for such state-space problems.
In the simplest caSe, given a node

N State (sl,s2, ... ,srn)

(which is either an assertion or a goal, depending on the direction of
the search space) and searching for a node

T State(t l ,t2, ... ,tm)

the distance between Nand T might be estimated by the sum of the
distances between the individual states.

The value of a node is greater the smaller its estimated distance to T.
More sophisticated evaluation functions might estimate overall distance
by a weighted sum of individual distances or by a more complex function

Search strategies for path-finding 85

of individual distances (such as the square root of the weighted sum of
the squares of the distances) .

In many path-finding problems, costs are associated with nodes or arcs
of the graph and the problem is to find the least costly path connecting
the given and goal nodes. In the water-containers problem, for example,
it might be required to find the shortest solution. In such cases, the
greater the cost of reaching a node the smaller is its value. Both
evaluation function guided search strategies [Nilsson 1971] and branch-
and-bound [Lawler and wood 1966] are useful for such problems.

It is not always possible or desirable to use a numerical-valued
evaluation function to guide the search strategy. It may be possible,
none the less, to define a merit ordering among nodes in the search
space. The search strategy, guided by the merit ordering, always
searches from a node having the greatest merit.

Since a top-down refutation can be regarded as a path from an initial
set of goals to the empty clause, the problem of finding a refutation in
a top-down Horn clause search space can be regarded as a path-finding
problem and the theory of heurlstic search can be applied. However, it
must be modified when applied to bottom-up search spaces where solutions
are more naturally as trees or graphs [Kowalski 1972]. Even in
the case of top-down search spaces the heuristic search path-finding
model of problem-solving does not address the important problem of
selecting subgoals. These deficiencies are remedied by the problem-
reduction model of problem-solving and its associated and-or tree
representation.

The and-or tree representation of problem-reduction

In the problem-reduction model of problem-solving the task is to find
a solution to an initially given problem, using a given collection of
assertions and procedures to reduce problems to subproblems. The task is
accomplished by repeatedly applying procedures to unsolved problems,
replacing them by subproblems, until the initial problem has eventually
been replaced by the empty set of subproblems.

In the and-or tree representation of problem-reduction, nodes of the
tree are labelled by problems:

(1) The root node is labelled by the initial problem.

(2) If a problem A labels a node and a procedure reduces A to
the subproblems Al,A2, ••• ,Aw then the node is connected by a
bundle of directed arcs to nodes labelled by the individual
subproblems. The bundle itself may be labelled by the
procedure.

86

(3)

Chapter 4: Horn Clause Problem-Solving

If the problem A
it is connected
empty collection

A

I o

labell ing a node
by a single arc
of subproblems.

matches an assertion, then
to a node labelled by the

The figure below illustrates both the and-or tree representation and
the Horn clause representation for a simple problem-reduction task.

Likes(John,Mary)

Pretty (Mary) 1
o

Initial Problem

Procedures

Assertions

Happy (John)

I Kind (John)

o

Handsome (John)

o

(- Happy{John)

Happy (John) (- Rich (John)
Happy (John) (- Likes(Mary,John)

Rich (John)

Strong (John)

o

Likes (Mary,John) (- Likes(John,Mary), Kind(John)
Likes (Mary,John) (- Handsome (John) , Strong(John)
Likes (John,Mary) (- Pretty(Mary)

Pretty(Mary) (-
Kind (John) <-
Handsome (John) <-
Strong (John) <-

The problem has two solutions which can be represented as subtrees of
the and-or tree:

The and-or tree representation of problem-reduction 87

Happy (John) Happy (John)

Likes (Mary,John) Likes (Mary,John)

Likes{John,Mary) Kind (John) Handsome (John) Strong (John)

Pretty(Mary) o o o

o

one solution the other solution -----
The and-or representation is obtained from the and-or tree

representation by identifying all nodes which are labelled by the same
subproblero. In the example below, the and-or graph representation turns
an infinite and-or tree search space into a finite one. The problem has
no solution.

Happy (John) Happy (John)

Likes(Mary,John) Likes (Mary,John)

Likes(John,Mary) Kind (John) Kind (John)

o o
Likes (Mary,John) Pretty(Mary) Pretty (Mary)

o

o

and-or tree representation and-or representation

Initial Problem

Procedures

Assertions

(- Happy(John)

Happy (John) (- Likes(Mary,John)
Likes (Mary,John) (- Likes(John,Mary), Kind(John)
Likes (John,Mary) (- Likes(Mary,John), Pretty(Mary)

Pretty(Mary)(-
Kind (John) (-

Both the and-or tree and and-or graph representations of problem-
reduction focus attention on the structure of the search space and on

88 Chapter 4: Horn Clause Problem-Solving

search strategies. However, they ignore both the structure of the
problems which label the nodes of the search space ana the connection
between problems in the form of shared variables. The Horn clause model
of problem-reduction represents problems by atomic formulae and makes
explicit (in the form of matching substitutions) the information which is
generated when a procedure or assertion is applied to a problem.

The problem-solving interpretation of Horn clauses

The problem-solving interpretation of Horn clauses is basically the
top-down interpretation.

The atoms in a denial (- AI, ••• ,Am are
or 90als, to be solved. If the denial contains
then it is interpreted as stating the goal:

Find xI, ••. ,xk

interpreted as problems,
the variables xI"",xk

which solve the problems AI, ••• ,Am.
and is called a goal statement.

An implication A (- AI, ... ,Am
method, or procedure:

is interpreted as a problem-solving

To solve a problem of the form A,
solve the subproblems AI, •.• ,Am.

Given a problem B which matches A, the procedure reduces the solution of
B to the solution of the subproblems

where e is the matching substitution. We say both that the procedure
matches A and that it applies to A.

An assertion A <- is interpreted as a procedure which solves
problems directly without reducing them to further subproblems.

The empty clause 0 is interpreted as the goal statement.

The and-or tree and and-or graph representations can be extended to
Horn clause problem-reduction in general. It is necessary to represent
the contribution of a procedure to the values of the variables in the
problem to which the procedure is applied. In the extended and-or tree
representation, each bundle of arcs is labelled by that part of the
matching SUbstitution (called the output component) which affects
variables in the problem under consideration. The figure below
illustrates the extended and-or tree representation for the fallible
Greek problem of Chapter 1.

The problem-solving interpretation of Horn clauses

Fall ible (x) Greek (x)

x = Socrates

Human (x) o
x = Turing x = Socrates

o o

In general, the substitution S which matches a problem
procedure A (- can be decomposed into two parts 8 =

89

(1) One part 8 i affects variables in the procedure. It passes
input from the problem to be solved to the procedure which
tries to solve it. Si is called the input component of the
matching substitution.

(2) The other part 80 affects variables in the problem to be
solved. It passes output from the procedure to the problem
whose solution is being attempted. 80 is called the output
component of the matching substitution.

Thus the procedure reduces the problem B to the collection of subproblems

whereas the output component 8 is the procedure's contribution to
finding the values of the in B.

When the matching substitution makes a variable, say x, in the problem
identical to a variable, say y, in the procedure, then it is useful to
treat the substitution as transmitting input and to include y = x in
the input component of the matching substitution.

Splitting and independent subgoals

An important characteristic of the and-or tree representation is that
it explicitly exhibits the splitting of a goal statement into separate
subgoals. Splitting is especially useful when the subgoals share no
variables. Subgoals which share no variables are independent and can be
solved by different problem-solvers working independently.

In the family relationships example the two subgoals in the initial
goal statement

(- Parent(x,Ares), Parent(Ares,z)

share no variables and are independent.

90 Chapter 4: Horn Clause Problem-Solving

Parent (Ares,z)
Parent (x,Ares)

Mother (Ares,z) Father (Ares,z)

Mother (x,Ares) Father (x,Ares)

x = Hera x = Zeus z Harmonia

o o o

Any solution to the problem of finding an x which is a parent of Ares is
compatible with any solution to the problem of finding a z which is a
child of Ares. Problem-solvers could work on the separate problems
simultaneously without danger of interfering with one another.

Top-down search spaces whose nodes are labelled by goal statements
contain redundancies when subgoals are independent. This is illustrated
by the goal statement search space for the previous problem. The same
abbreviations are used as in the previous chapter.

(- P(x,Ar), P(Ar,z)

(- M(x,Ar), P(Ar,z) (- F(x,Ar), P(Ar,z)

(- F(x,Ar) ,M(Ar,z) (- F(x,Ar) ,F(Ar,z)

(- M(x,Ar) ,M(Ar,z) (- M(x,Ar) ,F(Ar,z)

z = Harmonia Z "" Harmonia

(- M(x,Ar) (- F (x,Ar)

x = Hera x "" Zeus

o o

Here the subgoal of finding a child of Ares is redundantly considered
twice, once in the context of the goal statement (- M(x,Ar), P(Ar,z)
and again in the context of the goal statement (- F(x,Ar), P(Ar,z). In
the and-or tree search space the subgoal is represented only once.

More generally, given an initial
solving A and m ways of solving B,
space contains n*m branches, whereas

goal statement (- A, B, n ways of
the goal statement top-down search

the and-or tree contains only n+m.

Dependent subgoals 91

Dependent subgoals

The extended and-or tree representation does not specify the
relationship between the solution of a goal statement and the solution of
its separate subgoals. In particular, the problem-solving interpretation
leaves open the possibility that a goal statement

<- Al,···,Am

might be solved by

(1) independently solving the separate subgoals, obtaining
associated substitutions Sl"",Sm which solve the subgoals
and then

(2) combining the separate substitutions to obtain a solution of
the goal statement itself.

If the subgoals are independent then it suffices to combine the separate
substitutions by taking their union. If they are dependent then it is
necessary to combine them by finding a most general common instance of
the substitutions. For example, the combined substitution for the
independent subgoals in the goal statement

<- Parent(x,Ares), Parent{Ares,z}

is simply the union

{x = Hera, z = Harmonia}

of the individual substitutions. But the combined substitution for the
dependent subgoals

<- 0 < y, Even{y)

given the separate substitutions

{y = s (y')} and {y = s(s{"))},

is obtained by matching the two values for y giving

iy = s(s(0))).

Top-down goal-statement search spaces make explicit both the
dependencies among sub-goals and the effect on the size of the search
space of solving different subgoals in different sequences. The and-or
tree search space for the problem of the fallible Greek, for example, is
independent of the order in which the top level goals are solved. The
goal statement search spaces, however, are quite different. Solving goals
in one sequence we obtain a search space containing alternative branches,
whereas solving them in a different sequence generates a search space
consisting only of the solution itself. Notice that, as in the extended
and-or tree representation, it is useful to label arcs by the output
component of the matching substitution.

92 Chapter 4: Horn Clause Problem-Solving

(- Fallible (x) , Greek(x)

(- Human (x) , Greek(x)

x = Turing x = Socrates

(- Greek (Turing) (- Greek (Socrates)

o

(- Fallible(x), Greek(x)

(- Human (x) , Greek (x)

x = Socrates

(- Hurnan(Socrates)

o

Another search space

For the remainder of the book we shall use goal statement search
spaces (in preference to extended and-or tree spaces), because they make
it easier to show the effect of the subgoal selection strategy on the
size of the search space. In practice, computer implementations of Horn
clause problem-solving systems use a representation which combines
features of both and-or tree and goal-statement spaCes.

The goal statement search spaces for the fallible Greek problem
illustrate a general principle. When subgoals are dependent, select one
to which the fewest The aim is to minimise the overall
size of the search space by locally minimising the number of alternative
branches which emanate from any node.

Finding versus showing

Logic does not distinguish between procedures which show that a given
relationship holds and procedures which find individuals for which it
holds. Thus the grandparent procedure, for-eiample, is able not only to
show that one individual is grandparent of another but also to find both
grandparents and grandchildren.

Finding versus showing 93

The difference between showing and finding
presence or absence of variables. In general,
problem contains, the more finding there is to be

is
the

done.

indicated by the
more variables a

Any procedure which applies to a showing problem P(t) also applies to
the corresponding finding problem P(x). Thus the search space for a
finding problem is generally larger than it is for a showing problem.
This suggests the principle of selecting sUbqoal which involves least
finding and most showing. This principle is subsumed by the one which
selects the subgoal to which fewest procedures apply, but it is easier to
apply. It requires only an analysis of the subgoals under consideration
rather than an analysis of all the matching procedures as well.

Applying these principles to the grandparent procedure

Grandparent (x,y) (- Parent(x,z), Parent(z,y)

results in the selection of different subgoals depending on the form of
the problem to be solved:

(1) Given x, to find grandchildren y of x, first find children z
of x, then find children y of z.

(2) Given y, to find grandparents x of y, first find parents z
of y, then find parents x of z.

(3)

(4)

Given both x and y, to show x is grandparent of y, compare
the number n of children of x with the number m (two) of
parents of y.
If n < m, first find children z of x then show they are
parents of y.
If n > m, first find parents
children of x.
Ifn '" rn, it doesn't matter
selected first.

Given neither x nor y,
grandparent relationship, it
selected first.

z of y and then show they are

which of the two subgoals is

to find individuals in the
doesn't matter which subgoal is

The principle of preference for subgoals to which fewest procedures
apply has two aspects. On one hand, it is a principle of procrastination,
which delays as long as possible the selection of explosive subgoals that
can be solved in many ways. On the other hand, it is a principle ,of eager
consideration of subgoals which can be solved in few ways.

The principle of procrastination can lead to smaller searches in two
ways. When subgoals share variables, delaying the selection of a finding
problem (which can be solved 1n many ways) can turn it into a more
manageable showing problem which can be solved in fewer ways. Finding the
values of variables may be done more efficiently by selecting other, less
explosive, dependent subgoals. Whether subgoals are dependent or not, it
may be possible to postpone the consideration of explosive subproblems
until after the initial problem has been solved by alternative methods.
By then, whether or not the explosive 5ubproblem has been instantiated it
can be ignored.

94 Chapter 4: Horn Clause Problem-Solving

The principle of eager consideration is of particular utility when a
subgoal can be solved in at most one way. To solve a goal statement, all
its subgoals have to be solved. Therefore, if a goal statement contains
an unsolvable subgoal, which matches no procedure, then the selection and
recognition of the unsolvable subgoal demonstrates the unsolvability of
the goal statement as a whole; hence we avoid the unnecessary
consideration of other subgoals in the same goal statement. When only a
single procedure matches a given subgoal, then it must be applied sooner
or later, if the goal statement has a solution. Early consideration has
the advantage that any information in the form of values for variables
can be obtained as soon as possible and communicated to other dependent
subgoals. Moreover, if the procedure eventually fails to solve the
subgoal, then consideration of other more explosive subgoals in the same
goal statement may be avoided.

The number of procedures (including assertions) which apply to a given
subgoal is only a local approximation to the total number of ways the
subgoal can be solved. It can be misleading in some cases. Better
approximations can be obtained by employing look-ahead techniques similar
to the mini-max methods discussed later in this chapter.

The effect of different strategies for selecting subgoals on the size
of the search space is more pronounced when composite terms, constructed
by means of function symbols, are involved. The effect of composite terms
on the selection of subgoals will be investigated in the next chapter.

Lemmas, duplicate subgoals and loops

Many features of the extended and-or graph representation can be
incorporated into the top-down goal statement representation by
generating lemmas which record the solution of solved subgoals. When a
subgoal is solved, an assertion can be generated which solves the subgoal
directly in one step. Such assertions are lemmas, which are found by top-
down deduction but could have been generated bottom-up. Thus a lemma
which has been generated when a subgoal is solved in the context of one
goal statement can be used to solve the same subgoal directly when it
arises again in the context of another goal statement.

To achieve the power of and-or graphs, negative lemmas
also need to be generated when a subgoal is recognised as unsolvable.
Negative lemmas can be used to recognise that the same subgoal is
unsolvable when it arises again in another context.

The generation of positive lemmas was first described by Loveland
[19691 for the top-down model-elimination proof procedure. Both positive
and negative lemma generation are incorporated into the top-down parsing
procedure for context-free grammars devised by Earley [1970]. An
equivalent of lemma generation in Horn clause problem-solving has been
proposed by Warren [unpublished] as an extension of the Earley parsing
procedure.

The simple case, where duplicate subgoals occur in the same goal
statement, can be dealt with directly - simply by deleting all but one
of the duplicate occurrences. Such merging of duplicate atoms in the same
clause is a special case of the factoring rule described in Chapter 7.

Lemmas, duplicate subgoals and loops 95

It is also a special case of the rule for deleting redundant subgoals,
described in Chapter 9.

Perhaps the most important case of duplicate subgoals arises when a
goal occurs as its own subgoal. This is one of the situations that leads
to loops and to infinite search spaces. Given a goal B and a matching
procedure

each of the goals A18,A28" .. ,Aro8 where 8 is the matching substitution
is a subqoal of B. Moreover, any subgoal of a subgoal of B is also a
sUbgoal of B. Thus one goal is subgoal of another if they both occur on
the same branch of the and-or tree search space.

Loop detection procedures, which test whether a goal occurs as its own
subgoal, are a feature of Loveland's model elimination procedure and of
SI-resolution. More general loop detection strategies, which test
whether a goal subsumes a subgoal, have been investigated by Derek Brough
[19791 and have been incorporated into a Horn clause problem-solving
system implemented at Imperial College.

Search strategies for problem-reduction spaces

Search strategies for
for path-finding. They
evaluation of procedures

and-or trees and graphs are extensions of those
differ primarily because they combine the

with the selection of subgoals.

The mini-max and alpha-beta strategies [see Nilsson 711 are commonly
employed when and-or trees represent game playing problems. Individual
subgoals represent states of the game. Alternative procedures which apply
to a given subgoal represent the problem-solver's alternative moves for
the state represented by the subgoal. The bundle of subqoals wnich
results from the application of a procedure represents the states
associated with all the opponent's alternative responses to the problem
solver's move.

The value of a move (represented by a procedure) for the problem-
solver is only as great as the opponent's strongest response. Thus the
value of applying a procedure is the minimum of the values of the
subgoals in the bundle associated with the procedure. The value of an
individual state of the game (represented by a subgoall on the other
hand, is as great as the problem-solver's best move. Hence the value of a
subgoal is the maximum of the values of the procedures which apply to the
subgoal.

Given an initial evaluation of subgoals, mini-max evaluation looks
ahead into the search space and provides a revised, more accurate
evaluation of subgoals. It can be used not only for game playing but for
problem-reduction in general. An appropriately modified version of mini-
max evaluation can be used specifically to improve the criterion for
selecting subgoals. A general method for using 'look-ahead' to improve
evaluation functions for clausal theorem-proving has been developed for
the connection graph proof procedure [Kowalski 1974a] presented in
Chapter 8.

96 Chapter 4: Horn Clause Problem-Solving

For many problem-reduction applications it is more appropriate to use
some form of depth-first search. This is efficient to implement because
only one branch of the top-down search space is considered at any time.
When no untried procedure applies to the selected subgoal in the goal
statement at the end of the branch, the search strategy backtracks to the
next-ta-last node of the branch and tries to solve the selected subgoal
there in an alternative way. For this reason depth-first search is also
called backtracking.

Although backtracking is effective in many cases
distressingly unintelligent in others. Both successful and
applications of backtracking are illustrated by the arch
problem.

it can be
unsuccessful
recognition

Consider, for example, the problem of recognising an arch in the
following scene:

It is convenient to name an arch by means of a function symbol which
collects together the immediate constituents of the arch. We let the term

a (y, x,z)

name the arch

x

Y[}
which consists of block x on top of left tower y and right tower z. A
tower can be named by using a function symbol which combines the block on
top of the tower with the subtower beneath it. We let the term

t (u,v)

name the tower

Search strategies for problem-reduction spaces 97

which consists of block u on top of tower v. Thus t(B,A) names the tower
comprising block B on top of block A; a(t(B,A) ,D,C) names the arch in the
scene above. The scene and the definitions of arch and tower are
represented by clauses Al-l2.

Al Arch{a{y,x,z)) (- Block (x) , Tower (y) ,
Tower{z) , On(x,y) , On{x,z)

A2 Tower (x) (- Block (x)
A3 Tower (t{x,y» (- Block (x) , Tower{y),On(x,y)

A4 On{x, t (y,z» (- On{x,y)

AS Block{A) (-
A6 Block (B) (-
A7 Block{C) (-
A8 Block(D) (-
A9 Block (El (-

Ala On(B,Al (-
All On(D,B) (-
Al2 On(D,C) (-

Clause A4 reduces the problem of determining
tower to that of determining whether the block
on top of the tower.

whether a block is on a
is on the block which is

The definition of arch Al is unsatisfactory for several reasons (see
exercise 5). The problems which arise with backtracking, however, are
independent of them.

Consider the problem

(- Arch(a(t(B,A), 0, C»

of recognising the arch in which block 0 is both on the tower B on A and
on the tower C. Using Al and solving subproblems in any sequence, the
top-down search space consists of just the single path which solves the
problem. No search strategy, including backtracking, behaves unintelli-
gently.

Suppose, however, that the problem is to find an arch in the scene

(- Arch (w) .

Assume that subproblems are selected and procedures are applied in the
order in which they are written. Because such strategies are especially
easy to implement, they are incorporated in many computer-based problem-
solving systems. The initial problem quickly reduces to an un solvable
goal statement.

98

Al
w = a(y,x,z)

x = A
AS

A2

AS
Y = A

A2

AS
z = A

Chapter 4: Horn Clause Problem-Solving

(- Arch{w)

(- Block(x), TOwer(y), Tower(z), On(x,y), On(x,z)

(- Tower(yl, TOwer(z), On(A,y), On(A,z)

(- Block(y), Tower(z), On(A,y), On(A,z)

(- Tower{z), On(A,A), On(A,z)

(- Block(z), On(A,A), On(A,z)

(- On(A,A), On(A,A)

unsolvable

The simple depth-first strategy backtracks to the previous node and
searches for another block z. But changing z does not affect the
unsolvability of On(x,y) 50 long as x and yare both A. The backtracker
goes into an infinite loop, trying a potentially infinite sequence of
towers z which do not affect the unsolvability of the subproblem On(x,y),
where x and y are A.

Backtracking can be made more intelligent if, when generating an
unsolvable subgoal, it analyses the substitutions which cause the failure
(in this case x:A and y:A), and backtracks to a node where it can undo
them (in this case to the goal statement containing the selected subgoal
Block(y)). Efficiency can be improved by preserving intermediate solved
subgoals. The backtracker can be made more intelligent still by analysing
the failure, not only to identify the subgoal whose solution should be
undone, but also to determine how it should be done [Schmidt et al 1978].
In this example, when the subgoal On(x,y) with x:A and y:A is recognised
as unsolvable, the assertion On{B,A) <- can be identified as the
nearest match. The search strategy can then backtrack to the goal
statement containing the selected subgoal Block{x) with substitution x:A
and test whether Block(x) with x:B can be solved. Such goal-directed
intelligent backtracking has the spirit of Sussman's [1975] model of
problem-solving. Instead of carefully evaluating subgoals and alternative
procedures, the problem-solver picks them arbitrarily. If they fail, he
analyses the mistake in order to find a better method of solution.

Notice, however, that the effect of solving subgoals in an arbitrary
sequence and backtracking intelligently when things go wrong can be
achieved more directly by selecting the correct subgoals in the first
place. In this example, it suffices to select the subgoals

On(x,y) and On{x,z)

before the others in the definition Al of the arch. Similarly, the
subgoal

Search strategies for problem-reduction spaces 99

On(x,y)

should be selected first in the definition A3 of tower. It is necessary,
moreover, to try the assertions AI0-12, which define the location of
blocks resting on blocks, before the procedure A4, which defines the
location of blocks on towers.

w = a(y,x,z)

x = B
Y A

z = A

<- Arch(w)

<- Block(x) , Tower(y), Tower(z), On(x,y), On(x,z)

<- Block(B), Tower (A) , Tower{z), On(B,z)

<- Block (B) , Tower (A) , Tower (A)

<- Tower (A)

<- Block (A)

o
Here the duplicate subgoal Tower (A) has been deleted to avoid redundancy.
Notice that the first solution finds the pathological arch:

a (A, B, A)

Backtracking is employed in both the PLANNER [Hewitt 1969] programming
language and the PROLOG [Co1merauer et al 1972] [Roussel 1975] top-down,
Horn clause programming system. The inefficiencies of backtracking in
PLANNER led to the development of CONNIVER [Sussman and McDermott 1972a,
1972b], a PLANNER-like programming language in which the programmer
writes both problem-solving procedures and search strategies. In PROLOG,
the problem-solver provides the backtracking search strategy but the
programmer can control the extent of backtracking.

Various problem-solvers incorporating intelligent backtracking have
been designed and implemented by Sussman and his colleagues [Sussman
19751, [Stallman and Sussman 1977], [Doyle 19781. Intelligent Horn
clause backtracking problem-solvers have also been investigated by Cox
and Pietrzykowski [19761, [Cox 1978] and by Bruynooghe [1978]. Limited
intelligent backtracking strategies have also been implemented in various
Horn clause systems at Imperial College.

Bi-directional problem-solving

The Horn clauses which describe a typical problem-solving task can be
classified into three kinds:

100 Chapter 4: Horn Clause Problem-Solving

(1) general-purpose procedures (including assertions), which
describe the problem-domain,

(2) problem-specific assertions, which express the hypotheses of
the problem to be solved, and

(3) a goal statement, which expresses the problem itself.

Problem-specific assertions can be absent from a given task
description. But when they are present, it may be useful to combine top-
down reasoning (from the problem to be solved) with bottom-up reasoning
(from the hypotheses of the problem). However, it is important in this
case to avoid bottom-up reasoning from assertions which are part of the
general description of the problem-domain. This restricted use of
bottom-up reasoning combined with top-down reasoning is a characteristic
feature of Bledsoe's theorem-proving system [1971].

The majority of bottom-up proof procedures, however, do not
distinguish betwen different types of assertions. As a result, they
generally lead to combinatorially explosive behaviour, generating
assertions which follow from the general description of the problem-
domain, in addition to assertions which follow from the assumptions of
the particular problem at hand.

A useful criterion for
with top-down reasoning is
for path-finding problems:

combining problem-specific bottom-up reasoning
a variation of the one proposed by Pohl [1972]

At every step choose the direction of inference which
gives rise to the least number of alternatives.

In the top-dawn direction, the number of
number of procedures which match the
statement. In the bottom-up direction,
assertions which can be derived from any
is illustrated for a path-finding problem

2

2

3

3

alternatives is the smallest
selected subgoal in a goal

it is the smallest number of
assertion. The Pohl criterion
below.

2

4

2

1 N

The search space generated
in one direction

The search space generated
in the other direction

The number next to each node indicates the number of successor nodes.
The Pohl criterion selects the direction associated with generating the

Bi-directional problem-solving

successor of N. Given the previous formulation of the path-finding
problem, bi-directional path-finding is accomplished by combining top-
down and bottom-up reasoning.

notation for describing bi-directional problem-solving

The distinction between top-down and bottom-up inference can be
pictured using arrows to indicate the direction of reasoning. For every
pair of matching atoms in the initial set of clauses (of which one is a
condition and the other a conclusion) an arrow is directed from one atom
to the other.

For top-down inference, arrows are directed from conditions to
conclusions. For the grandparent problem, we obtain the following graph.

Grandparent(x,y) (- Parent(x,z), Parent(z,y)

Parent(x,y) (- Father (x,y) Parent(x,y) (- Mother (x,y)

...
Father (Zeus,Ares) (- Father (Ares,Harmonia) (- Mother (Hera,Ares) (-

Reasoning is guided by the direction of the arrows. It starts with the
initial goal statement, is transferred within procedures from conclusions
to conditions and ends with the assertions.

For bottom-up inference, arrows are directed from conclUSions to
conditions.

parent(x?er(,

Father (Zeus,Ares) (- Father (Ares,Harmonia) (- Mother (Hera,Ares) (-

Reasoning begins with the assertions, is transferred within procedures
from conditions to conclusions, and ends with the goal statement.

102 Chapter 4: Horn Clause Problem-Solving

The grandparent definition can also be used in a combined top-down,
bottom-up manner. Different combinations can be represented by using
numbers to indicate sequencing. For simplicity, we show only the notation
associated with the grandparent definition. The combination of directions

3

t
Grandparent(x,y) (- Parent(x,z),

t
Parent(z,y)

J
1 2

represents the algorithm which

I} waits until x is asserted to be parent of z, then
2) finds a child y of z, and finally
3) asserts that x is grandparent of y.

The combination indicated by

1

$
Grandparent(x,y) (- Parent{x,z), Parent(z,y)

tr
2 3

1) responds to the problem of showing that
x is grandparent of y,

2) by waiting until x is asserted to be parent of z,
and then

3) attempting to show that z is parent of y.

The arrow notation can also be used for non-Horn clauses. In Chapter 8
it is used to control the behaviour of the connection graph proof
procedure.

Another formulation of the path-finding problem

The effectiveness of a problem-solving strategy (such as bi-
directional reasoning) depends on the problem-formulation rather than on
the problem itself. This is shown by comparing the previous formulation
of the path-finding problem with the one suggested by the representation
of semantic networks.

In this representation we employ a predicate Go*(x,y) which expresses
that it is possible to go from node x to node y. Assertions describe the
arcs in the initial graph. The following assertions describe the graph at
the beginning of the chapter.

Another formulation of the path-finding problem 103

GO*(A,B) <- Go*(D,X) <-
Go*(A,C) <- Go*(E,X) <-
Go*(B,D) <- Go*(X,Z) (-
Go*(B,E) <- Go*(Y,Z) <-
GO*{C,F) <-

In addition to the assertions, a single procedure is necessary for path-
finding

Go*(x,y) (- Go*(x,z), Go*{z,y).

The problem of finding a path from A to Z is described by a single goal
statement

(- Go*(A,Z).

Here the assertions are specific to the graph, whereas the path-
finding procedure is general-purpose. However, only the goal statement is
specific to the particular path in the graph. Bottom-up inference
generates assertions about paths which are unmotivated by the particular
path to be found. Both forward and backward search, as well as bi-
directional search, can be accomplished by top-down inference alone. The
direction of search depends on the choice of subgoal in the path-finding
procedure. Selecting Go* (x,z) before Go* (z,y) is forward search.
Selecting the two subgoals in parallel or timesharing between them gives
rise to bi-directional search.

The path-finding problem can be formulated in different ways; the same
problem-solving behaviour can be obtained from different formulations by
applying different problem-solving strategies. Even the specific
behaviour determined by the bi-directional path-finding strategy which at
every step chooses the direction which grows least rapidly can be
accomplished with both formulations. In the first formulation it is
obtained by applying the Pohl criterion for combining top-down and
bottom-up infeYence. In the second formulation it is accomplished by top-
down inference alone, applying the strategy of selecting the subgoal to
which fewest procedures (including assertions) apply.

Other aspects of problem-solving

Problem-solving can be classified into three main stages.

1) The first stage identifies the problem-domain and formulates
problem-solving procedures.

2) The second stage applies the procedures to the solution of
problems.

3) The third stage improves the
strategies and procedures.

problem problem-solving

This chapter has been restricted to a discussion of the second stage. It
has not considered the other stages which are concerned with learning.
In this respect we have followed the advice of McCarthy [1968] and Minsky
[1968] to explore the adequacy of the representation language before
dealing with the problems of formulating and improving the representation
of the problem domain.

104 Chapter 4: Horn Clause Problem-Solving

In the next chapter we the interpretation of the Horn
clause subset of logic as a programmlng language. This unifies problern-
solving with programming. The first stage of problem-solving is the
initial stage of problem formulation and specification. The second stage
runs the specification as a program, and the third identifies
inefficiencies and remedies them by improving the procedures and
tailoring the problem-solving strategies to the problems to be solved.

In subsequent chapters we investigate the role of non-Horn clauses in
problem-solving and the use of global problem-solving strategies. In the
last chapter we compare the interpretation of logic as a model for
problem-solving with the role of logic in philosophy as a model for
representing beliefs and formalising arguments.

However, nowhere in this book do
learning. Nor do we investigate such
solving by example and by analogy.

we investigate the problems of
important strategies as problem-

Exercises

1) a) Express the arrow-inversion problem by means of Horn clauses
without function symbols:

Given three arrows in a row DUD, pointed down, up,
down respectively, the goal is to reach the state D D D in
which all arrows point down. The only action possible is
to invert a pair of adjacent arrows, changing both their
directions simultaneously.

Hint: Let State(x,y,z)
the first, second and
respectively.

express that there is a possible state in which
third arrows point in directions x, y and z

bl Show that the problem is unsolvable
graph representation of the top-down
showing that it contains no solutions.

by generating
search space

the
and

c) Describe how the clausal formulation of the problem can be
modified in order to

iJ invert adjacent arrows only when they have opposite
directions,

ii) add an action which interchanges adjacent arrows,
iii) deal with a row of four arrows instead of three.

2) a) Express the farmer, wolf, goat and cabbage problem by means
of Horn clauses:

The farmer, wolf, goat and cabbage are all on the north
bank of a river and the problem is to transfer them to the
south bank. The farmer has a boat which he can row taking
at most one passenger at a time. The goat cannot be left
with the wolf unless the farmer is present. The cabbage,

Exercises 105

which counts as a passenger, cannot be left with the goat
unless the farmer is present.

b) Compare the graph representations of both the top-down and
bottom-up search spaces.

c) Can you find useful evaluation functions to guide the
search for a solution?

3) Given the two different representations of the path-finding
problem, compare the problem-solving strategies needed

a) to recognise that there is no path from A to B if there is
no arc leading from A or no arc leading to Band

b) to show that it is possible to go from A to A.

4) Let sequences be characterised by means of two relations

Item{i,j,k) which holds when ij = k i.e.
the j-th element in the sequence i is k and
Length(i,u) which holds when the length of sequence i is u.

Thus the sequence

can be characterised by means of the assertions:

Item(A,l,all (-
Itern(A,2,a2 1 (-

Item (A, n, an) (-
Length (A,n) (-

Assume that Plus(x,y,z) holds when x+y = z.

a) Define
which

by means
holds when

sequence x.

of Horn clauses the relation Sum(x,v)
v is the sum of the numbers in the

b) Use the clauses of part (a) to find top-down the sum of
the numbers in the sequence B: 3,4,10.

cl Can Sum(x,v} be defined in such a manner that, given x to
find v, the search space contains only the solution?

5) a) List all the solutions to the problem

(- Arch(w)

implied by the definition of arch and the description of the scene given

106 Chapter 4: Horn Clause Problem-Solving

by clauses Al-12.

b) Reformulate the definition of arch and tower by means of
Horn clauses in order to eliminate as many pathological
arches and towers as possible. (This problem can be
solved more easily later using negation as failure,
investigated in Chapter 11.)

6) Consider the problem

(- Numb(u), Numb{v), u > v

given the clauses

Numb(0) (-
Numb(s(x» (- Numb(x)
s(x) > 1:1 (-
s(x) > sty) (- x> y.

Analyse the behaviour of the backtracking search strategy for solving the
problem. Assume that the solution of subgoals is attempted in the order
in which they are written and that alternative clauses also are tried in
the order given.

107

CHAPTER 5

The Procedural Interpretation of Horn Clauses

A Horn clause

is interpreted as a procedure whose
procedure calls Al' Top-down derIvations
a new goal statement from an old one by
call with the name B of a procedure

B <- A1, .•• ,Aw
is procedure invocation.

body {Alt ... ,Arn} is a set of
are computations. Generation of
matching the selected procedure

A logic program consists of a set of Horn clause procedures and is
activated by an initial goal statement.

Conventional programs mix the logic of the information used in solving
problems together with the control over the manner in which the
information is used. Logic programs are more abstract. They control
neither the order in which different procedures are invoked when several
match a given procedure call, nor the order in which procedure calls are
executed when several belong to the same goal statement.

Logic programs express only the logic of prOblem-solving methods. They
are easier to understand, easier to verify and easier to change.
are especially congenial to inexperienced programmers and database users
who do not want to become involved with the details of controlling the
prograrn1s behaviour.

The first logic programming system, called PROLOG [Colmerauer et al
1973], [Roussel1975] based on the procedural interpretation of Horn
clauses [Kowalski 1974) was designed and implemented in 1972. A PROLOG
compiler written in PROLOG for the PDP10 was implemented at the
University of Edinburgh by Warren, Pereira and Pereira [1977]. They
showed that the PROLQG compiler executes LISP-like logic programs as
efficiently as compiled LISP [McCarthy et al 19621.

Terms as data structures

Data in logic programs
relations. The use of terms
many of the characteristics
generally, they function

can be represented by means of terms or
as data structures gives Horn clause programs
of a list-processing language like LISP. MOre
as recursive data structures of the kind

108 Chapter 5: The Procedural Interpretation of Horn Clauses

advocated by Hoare [1972J. The use of relations in logic programs, on
the other hand, is like the representation of data by relations in
database formalisms [Codd 1970]. Relations are also like tables and
arrays in conventional programming languages. They will be discussed in
more detail later in the chapter.

As in LISP, binary
function symbol:

cons(x,y)

trees can be represented by means

names the tree

of a binary

which has the subtree x immediately to the left of the root node and the
subtree y immediately to the right. Thus the term

cons(A,cons(B,C)) names the tree

and the program

Tips(x,l) (- Label (x)
Tips(cons(x,y), w) (- Tips(x,u), Tips(y,v), u+v = w

defines the relationship Tips(x,y) which holds when y is the number of
tips in the binary tree x. Label (x) holds when x is a label:

Label (A) (-
Label (B) (-
Label (C) (-

for example. The goal statement

(- Tips(cons(A,cons(B,C)), y)

expresses the goal of computing the number of tips in the tree pictured
above. The term cons(A,cons(B,C)) names the input and the variable y
names the output. The top-down solution

<- Tips (cons (A,cons (B,C)) , y}

(- Tips (Alu), Tips (cons (B,C) , v) , u+v y

(- Label {Alu), Tips(cons(B,C) , v} , u+v y
u=l

<- TiEs (cons (B,C) l v} , 1+v = y

<- TiEs(Bru') , TiEs(Clv') , u'+v' = v, 1+v y
u'=l
v'=l (- Label (B) , Label (C) , 1+1 = v, l+v = y
v =2

(- 1+2 = Y
Y =3

0
is a computation of the output y
computation.

3. The search space contains only the

Terms as data structures 109

Lists can be regarded, as in LISP, as a special kind of binary tree.
The term cons(x,y) names the list

x y

which has first element x followed by
nil empty list. Thus the
names the list A,B,e and the program

Item (cons(x,y) , 1, x) (-

the list y. The constant symbol
term--COns(A,cons(B,cons(C,nil»)

Item(cons(x,y), u, z) (- Item(y,v,z), v+l = u

defines the relationship Item(x,y,z) which holds when the y-th element of
the list x is z. Notice that the term cons(A,B) does not name the list
A,B because B is not a list. The list consisting of B alone is named by
cons(B,nil) and therefore the list A,B is named by cons(A,cons(B,nil».

Programs may be easier to read if infix notation is used for function
symbols and conventions are uSed for--sllppressing parentheses. It is
especially convenient to use an infix function symbol "." for lists

x.y stands for cons(x,y)

and to reduce parentheses by letting

x.y.z stand for cons(x,cons(y,z».

Thus the list A,B,C can be represented by the term

A.B.C.ni! .

Facilities for defining infix function symbols and for reducing
parentheses are provided in PROLOG. The programmer can further reduce
parentheses by declaring precedence relations among function symbols.
Thus by declaring that the infix function symbol & binds more closely
than the infix function symbol:>, the term

p&q:>r&s

can be written instead of

(p & q) :> (r & s).

computation by successive approximation to output

Horn clause procedures transmit output throughout computation.
Partial outputs accumulate and determine successive approximations to the
final output. The approximations are generated whether or not the
computation eventually succeeds.

110 Chapter 5: The Procedural Interpretation of Horn Clauses

The figure below illustrates the computation by successive
approximation of the list which results from appending 3.nil to 2.1.nil •

(1)
(2)

x

u

u'

(- Append{2.1.nil, 3.nil, xl

2.u (2)

(- Append (l.nil, 3.nil, u)

l.u' (2)

(- Append (nil, 3.nil, u'l

3.nil j
Append(nil,x,x) (-
Append (x.y, z, x.u) (- Append(y,z,ul

Clause (1) states that appending any list x to the empty list produces
the list x. Clause (2) states that appending a list z to a non-empty list
x.y produces a list x.u with the same first element and with a remainder
u which is the result of appending z to y.

The successive steps of
approximations to the output

x 2.u
x 2.1.u'
x = 2.1.3.nil

the computation determine succeSSLve

In general, the output of a computation can be regarded as the collection
of all output components of matching substitutions performed in the
computation. The output can be compactified, as in the example above, by
applying output components lower in the refutation to the terms of output
components higher in the refutation.

The variation of input-output parameters

The distinction between the input and output parameters of a procedure
depends upon the context in which the procedure is invoked. Any subset of
the procedure's parameters can be given as input. The remaining
parameters are then computed as output.

The following computation illustrates the use of Append to compute the
list x which produces 2.1.3.nil when 3.nil is appended to it. The search
space contains, in addition to the successfully terminating computation,

The variation of input-output parameters III

only one other step, which fails because no procedure matches its
procedure call.

(- Append (x, 3.nil, 2.1.3.nil) , = 2.xl
(- Append (xl' 3.nil, 1.3.nil)

xl= 1.x2
3.nil, 3.ni11 (- Append (x2'

'2 nil '2 = 3.x3

0 <- Append (x3' 3.nil, nil)

The ability to execute the same procedure with various patterns of
input and output is an important featUre of logic programs. It implies,
for example, that the same procedures which compute derivatives of
functions can also be used to compute integrals [Bergman and Kanoui
19731. Procedures which verify that a given program meets given
specifications can also be used to generate programs from specifications
[Moss 1977J.

Non-determinisml : several procedures match £ procedure call

compared with normal programs, Horn clause programs executed top-down
are non-deterministic in two main senses: When several procedures match a
given procedure call, the search strategy by means of which the
alternative procedures ate tried is not determinedl . When several
procedure calls need to be executed in a single goal statement, the order
of execution is not determined2 .

In the first
outputs. If only
will be found.
which order they

case, alternative procedures may compute alternative
one output is needed, it is not determined l which output
If all outputs are required, it is not determinedl 1n
will be generated.

A procedure, which is deterministicl for one pattern of input and
output parameters may be non-deterministicl for a different pattern. The
Append procedure, for example, is non-deterministicl when it is used to
partition a given list into two parts as in the problem

(- Append (x, y, 2.l.3.nil).

The search space of all computations
economy which is obtained by structuring
two different partitions

x = 2.l.nil, y
x = 2.1.3.nil, y

3.nil
nil

is illustrated below. Notice the
the search space as a tree. The

and

for example, ate both obtained from the single initial approximation

x = 2.1.x2 .

112 Chapter 5: The Procedural Interpretation of Horn Clauses

Append(x, y, 2.1.3.nil)

x = nil x = 2.xl
y 2.1.3.nil o (- Append (xl' y, 1.3.nil)

Xl = l,x2

(- Append (x2' y, 3.ni1)

x2
y

nil
3.nil o

nil
nil

Sequential search regarded iteration

x2 = 3.x3

(- Append (x3f y, nil)

o

The ability to specify repeated execution of the same command is an
essential feature of all programming languages. Such repetition, also
called iteration* can be accomplished by executing recursive Horn
clause procedures. It can also be achieved by using backtracking to
search a space of alternativs. The definition of grandparent is a simple
example. Suppose that we are given data about individuals in the
parenthood relationship

Parent(Zeus,Ares) <-
Parent{Hera,Ares) (-
Parent (Ares,Harmonia) <-
Parent (Semele,Dionysus) (-
Parent (Zeus,Dionyslls) <-

etc.

and the problem is to show that Zeus is a grandparent of Harmonia

(- Grandparent{Zeus,Harmonia)

using the definition of grandparent

Grandparent(x,y) (- Parent(x,z), Parent(z,yl.

In a conventional programming language, the programmer would have to
specify both how the data in the parenthood relationship is stored and
how it is retrieved. In a logic program, the same decisions are taken by
the program executor instead. In either case, the simplest strategy is to
store and retrieve the data sequentially. The parenthood relationship
might be stored seguentially, either in a two-dimensional array or in a

*Some of the discussion in the next few sections refers to features of
conventional programming languages. The reader who is not familiar with
such languages can ignore these sections without disadvantage.

Sequential search regarded as iteration 113

linked list. The sequential retrieval strategy is an iteration,
consisting of a double loop, one nested inside the other. To show Zeus is
a grandparent of Harmonia, the outer loop searches for a child z of Zeus
and the inner loop tests whether z is a parent of Harmonia. The iterative
algorithm which has to be specified by the programmer in a conventional
programming language is identical in this case to the behaviour
determinedl by the backtracking strategy for executing non-deterministicl
programs.

In other cases, as when the Append procedure is used to partition
lists, backtracking is mOre general than iteration. In general, whereas
iteration searches a tree whose depth is determined by the number of
loops which are nested, backtracking searches an arbitrarily deep tree of
alternatives,

The suitability of a search strategy depends upon the structure in
which the data is stored. Iteration, regarded as sequential search, is
suitable for data stored seguentially. Other search strategies are
appropriate for such data structures as hash tables, binary treeS or
semantic networks. Fishman and Minker [1975] for example, store data in
a manner which facilitates parallel search, whereas Deliyanni and
Kowalski [1979J propose a path-following strategy for retrieving data
stored in semantic networks.

"Don'! know" versus "don'! care" non-determinisml

Non-determinisml does not always entail the need to search for a
solution. The deflnition of Max(x,y,z) (the maximum of x and y is z) is
an example.

Max(x,y,x) (- x> y
Max{x,y,y) (- y > x

Both procedures apply when x and y are identical, as in the case

(- Max(3,3,z).

Searching for a solution, which is unavoidable in the general case,
creates redundancy when it is unnecessary. Backtracking is redundant, for
example, when it is applied to the goal statement

(- Max(3,3,zl, Even(z)

and the procedure calls are executed in the order in which they are
written. The second procedure call Even(z}, which succeeds when z is
even, fails no matter how the first procedure call is executed.
Backtracking after the first failure, to try a different way of executing
the first procedure call, is both unnecessary and redundant.

Searching can be restricted in general whenever the output variables
of a procedure call are a function of the input - for example, when the
variable y is a function of x in the relation F(x,yl and x is given as
input. Backtracking can be suppressed if the first solution of the goal
F{A,yl fails to solve the second goal G(yl in the goal statement

114 Chapter 5: The Procedural Interpretation of Horn Clauses

(- F(A,y), G(y).

When searching for a solution is unnecessary, then the program
executor "doesn't care" which solution is generated nor how it is
obtained. Otherwise, searching is unavoidable when the executor "doesn't
know". Don't care non-determinisml is a dominant feature of Dijkstra's
language of guarded commands [1976]. The use of don't care non-
determinisml to restrict search is a form of intelligent backtracking.

Non-determinisml can have both don't
characteristics. The path-finding problem is
problem of finding a path from A to N

know and don't care
an example. Given the

(- Go(A,N)

for example, the program eXecutor doesn't care which path is
normally doesn't know which procedures to apply in order to
Searching is necessary to find one path but is unnecessary and
thereafter.

found but
find it.

redundant

The path-finding problem is a special case of the general situation in
which a procedure call shares nO variables with other calls in the same
goal statement. Any non-determinism! involved in executing the procedure
call matters only until the first solution is found. The second
procedure call in the body of the procedure

Happy (Bob) (- Teaches (Bob,x) , Attends(y,x)

Bob is happy if he teaches a course
which someone attends.

is an example. If it is executed
its only variable y occurs in no
find only a single solution.

after the other procedure call, then
other procedure call and it suffices to

The property that a procedure call contains no variables or that all
its variables occur in no other procedure call is a syntactic property
which the program executor can easily recognise without the aid of the
programmer. The situation, however, in which search can be restricted
because a procedure call computes the value of a function is undecidable
in principle. It is easier for the programmer to convey such information
to the program executor as a comment about the program, than it is for
the executor to discover the fact for itself.

Don't care non-determinisml provides a way of adding extra information
to a program without enlarging the search space and even reducing its
size. The new information may solve a problem more directly than the
original procedures, and if the non-determinisml doesn't matter then the
original procedures can be ignored.

Non-determinism2: The scheduling of procedure calls

In conventional programming languages the program controls the
scheduling of procedure calls - usually in some fixed sequence, but
sometimes timesharing among them or executing them in parallel. In logic,

Non-determinism2: The scheduling of procedure calls 115

however, the body of a procedure specifies only the collection of
procedure calls. The manner in which they are executed is determined 2 not
by the program but by the execution mechanism. Different strategies for
scheduling procedure calls affect the efficiency of execution but do not
affect the meaning as determined by the relations which are computed.

The definition of sorted lists is a simple example.
definition of the (relation is already given.

Assume that the

Sl
s2
S3
S4
S5
s6
S7
S8

Sort(x,y)
Perm (x,y)
Delete(x,y,z)

holds when y is a sorted version of list x,
y is a permutation of x,
z results from deleting anyone

occurrence of x from y.

Sort(x,y) (- Perm(x,y), Ord(yl
Perm(nil,nil) (-
Perm(z, x.y) (- Delete(x,z,z'), Perm(z',y)
Delete(x, x.y, y) (-
Delete(x, y.z, y.u) (- Delete(x,z,u)
Ord (nil) (-
Ord{x.nil) (-
Ord(x.y.z) (- x y, Ord(y.z)

In principle, the procedure calls in the body of procedure SI can be
executed in any sequence. Given a list 1, to generate a sorted version y
of 1, it is possible firstly to execute the procedure call Ord(y),
generating an ordered list y, and then to execute Perm(l,y), testing
whether y is a permutation of 1. If the test fails, other ordered lists
can be generated until the test succeeds. It is more effective, of
course, to execute procedure calls in the opposite sequence - first
generating permutations of x and then testing whether they are ordered.
But no matter in which sequence procedure calls are executed and no
matter what the cost in terms of efficiency, the result in terms of the
input-output relation computed is the same.

Effective scheduling of procedure calls depends upon the pattern of
input and output. Generally it is more efficient to execute a procedure
call which contains the input in preference to one which does not. Thus,
given the problem

1
<- Sort (1 ,y)

(- Perm(l,y), Ord(yl

of finding a sorted version y of an input list 1 it is better to select
for execution the procedure call Perrn(l,y) which contains the input than
it is to select Ord(yl which does not. If both 11 and 12 are given
and the problem

Sort(11,l2)

Perm(11,l2)' Ord(12)

is to test that 12 is a sorted version of 11' then both procedure calls
contain the input and it does not affect efficiency which procedure call
is executed first. Moreover, since the two procedure calls do not share

116 Chapter 5: The Procedural Interpretation of Horn Clauses

variables and since they are equally good candidates for execution, they
can be executed together - either timesharing between them if only one
processor is available or executing them in parallel if several can be
used.

In general, it is advantageous to execute procedure calls as soon as
sufficient input is available. Given procedures (51-8) and the goal of
sorting the list 2.1.3.nil, generating permutations before testing them
for orderedness, the test for orderedness can be initiated just as
effectively when the first two elements of the permutation have been
determined as it can when the entire permutation has been generated.
Executing procedure calls as soon as possible has the advantage that
failure can be detected as soon as possible. The figure below illustrates
the effectiveness of eagerly executing the orderedness test to reject in
one step all permutations which have first element 2 and second element
1.

(- Sort(2.1.3.nil, y)

<- Perm(2.1.3.nil l y) , Ord(y)
y x.y'

<- Delete(x l 2.1.3.nil l z') , Perm (z' , y') , Ord(x.y')
x 2
z' 1. 3.nil

(- Perm(1.3.nil, y') , Ord(2.y')
y' x' .y"

<- Delete (x' , 1.3.nil, z") , Perm (z", y") , Ord(2.x'.y")
x' 1
z" 3. nil

(- Perm(3.nil, y") , Ord(2.l.y")

(- Perm(3.nil, y") , 2<1, Ord(l.y")

The behaviour of the admissible pairs problem is a more dramatic
example, which is intolerably non-deterministicl if procedure calls are
executed last-in-first-out. A pair (a,b) of lists of numbers is
admissible if the two lists have the same length and for every i

if ai is the i-th element of a and
b i is the i-th element of b, then
bi 2*ai and
ai+l = 3*b i ·

Pictor ially:

The following clauses, in which lists are represented by means of terms,
define the desired relationship:

Non-determinismz! The scheduling of procedure calls

Adm(x,y) <- Double(x,y), Triple(x,y)
Double (nil ,nil) <-
Double(x.y, u.v) <- Times(Z,x,u), Double(y,v)
Triple(x.nil, u.nil) <-
Triple(x.y.z, u.v) <- Times(3,u,y), Triple(y.z, v)

117

Consider the problem of generating an admissible pair of lists whose
first list begins with with the number 1:

<-Adm(l.y, w)

The program is intolerably non-deterministicl if procedure calls are
executed last-in-first-out, completing the execution of one call before
initiating another. It becomes virtually deterministicl' however, if
procedure calls are executed as soon as sufficient input is available.
The two procedure calls behave as co-operating sequential processes. As
soon as either one of the two processes, Double or Triple, has enough
information about its input it runs until it needs more. By that time it
has produced enough output for the other process to resume execution.

y nil
v = nil

o

z = nil
v ' = nil

o

<- Adm (l.y, u)

<- Double(l.y, u), Triple(l.y, u)

u = U I.V

<- Times(2.I.u '),Double(y,v), Triple(l.y, u'.v)

u' '" 2

<- Double(y,v), Triple(l.y, 2.v)

y '" y'.z

<- Double(y'.z, v), Times(3,2,y'), Triple(y' .z, v)

y' = 6

<- Double(6.z, v), Triple(6.z, v)

v = u".v'

<- Times (2,6,u"), Double(z,v '), Triple(6.z, u" .v ')

u" = 12

<- Double(z,v'), Triple(6.z, 12.v')

Coroutines, which cooperatively produce and consume data, can be
written in programming languages such as SIMULA. Such coroutines,
however, are syntactically and semantically different from normal
procedures. However, more recent schemes, in which procedures are called
by need (Henderson and Morris 1976] and the activation of processes is

118 Chapter 5: The Procedural Interpretation of Horn Clauses

controlled by the flow of data [Kahn 1974J [Friedman and Wise 1978J,
resemble the execution of procedures in logic programs. The strategy for
executing procedure calls is not determined by the program but by the
program executor.

execution of programs

The procedural interpretation of Horn clauses is primarily the top-
down interpretation. It is sometimes possible, however, to give a
procedural interpretation to bottom-up inference. Although it is
generally more efficient for computers to interpret Horn clauses top-
down, it is often more natural for people to understand them bottom-up.
Moreover, it is sometimes more efficient to execute programs bottom-up
rather than top-down.

A student of mathematics, for example,
the recursive definition of factorial

is more likely to understand

bottom-up, as

than he is to
this example,
flavour. It
factorials of
is desired.

The factorial of 0 is 1 (-

The factorial of x is u (- y+l = x,
the factorial of y is v,
x*v = u

determining the sequence of assertions

The factorial of 0 is 1 (-

The factorial of 1 is 1 (-

The factorial of 2 is 2 <-
The factorial of 3 is 6 (-

etc.

understand it top-down, as reducing goals to subgoals. In
bottom-up derivation of factorials has a computational

behaves as an iterative computation which accumulates
successively larger numbers until it derives the one which

The definition of Fibonacci number can be executed more efficiently
bottom-up than top-down.

The 0-th Fibonacci number is 1 (-
The I-th Fibonacci number is 1 (-
The u+2-th Fibonacci number is x <-

the u+l-th Fibonacci number is y,
the u-th Fibonacci number is z,
y+z = x

Here the terms u+2 and u+l are expressions to be evaluated rather than
terms representing data structures. This notation is an abbreviation for
the one which has explicit procedure calls in the body to evaluate u+2
and u+l.

Interpreted top-down, finding the u+l-th Fibonacci number
reintroduces the subproblem of finding the u-th Fibonacci number. The
top-down computation is an and-tree whose nodes are procedure calls, the

Bottom-up execution of programs

number of which is an exponential function
computing the Fibonacci of 4, for example,
ignoring additions contains a total of 9 goals

Fib(4,x)

of u. The
determines a

and subgoals.

119

problem of
tree, which

Fib(2,x'} Fib(l,z') Fib(0,z")

Fib{l,y') Fib(0,y")

Here Fib(u,x) means the u-th Fibonacci number is x. Executing the same
definition bottom-up generates the sequence of assertions

The 0-th Fibonacci number is 1 (-

The I-th Fibonacci number is 1 (-

The 2-th Fibonacci number is 2 (-

The 3-th Fibonacci number is 3 (-
etc.

The number of computation steps for the Fibonacci of u executed bottom-up
is a linear function of ll.

In this example, bottom-up execution is also potentially less space-
consuming than top-down execution. Top-down execution uses space which is
proportional to u, whereas bottom-up execution needs to store only two
assertions and therefore can use a small constant amount of storage. That
only two assertions need to be stored during bottom-up execution is a
consequence of the deletion rules for the connection graph proof
procedure (Chapter 8).

Notice that the efficiency of top-down execution approaches that of
bottom-up execution if similar procedure calls (i.e. the u-th Fibonacci
number is z and the u-th Fibonacci number is z') are executed only once.
Such top-down execution is an extension of Earley's parsing algorithm
[Earley 1970] as described by Warren [unpublished].

Iteration in conventional programming languages has three different
interpretations in logic programs. The classical interpretation regards
iteration as a special case of top-down execution of recursive
definitions. The iteration

To do P, repeat Q until R

for example, can be expressed in the form

P{x) <- R{x)
P(x) <- Q{x,x'), P(x')

where x is an input parameter which
through the loop and R(x) and Q(x,x')
is a form of iteration if Q(x,x') is

controls the number of iterations
hold for distinct x. The recursion
executed before P(x'). Consequently

12e Chapter 5: The Procedural Interpretation of Horn Clauses

each new subgoal P(x') can replace the previous subgoal P(x). Execution,
therefore, requires only a constant amount of storage for the current
subgoal.

The interpretation of iteration as top-down execution of certain forms
of recursive definitions is the only interpretation of iteration possible
in the conventional model of computation by recursion. In logic programs,
however, it is also possible to regard iteration either as sequential
search through a space of alternative responses to a procedure call or as
bottom-up execution of recursive definitions.

The pragmatic content of logic programs

It is a common mistake to treat logic simply as a specification
language whose statements have semantic content without pragmatic value.
Such an attitude is self-fulfilling. To use logic while ignoring its
pragmatic aspects is to make information potentially unusable.

Two different statements can express
therefore have the same meaning. B'lt one
problems and the other one useless.

the
might

same information and
be useful for solving

The sorting problem, studied by van Emden [1977], is a good example
of the pragmatics of logic. The simple program (51-8) for sorting lists

Sort(x,y) (- Perm{x,y), Ord{y)

is a good specification, but a useless program. Even the scheduling of
procedure calls which uses Ord(y) to monitor the partial output of
Perm(x,y) is hopelessly inefficient (taking time 2tn in order to sort a
list of length n). In contrast, even simple sequential execution of
procedure calls produces an efficient algorithm, Quicksort [Hoare 1961],
taking time n*log(n), from the program:

Here it is
of all members
of all members

Sort*(nil,nil) (-
Sort*{x.y, z) (- Partition(x,y,u,v), Sort*(u,u'),

Sort*(v,v'), Append(u', x.v', z).

intended that Partition(x,y,u,v) holds when u is the list
of y which are less than or equal to x and v is the list
of y which are greater than x.

Sort and Sort* are equivalent in the sense that
Sort*(s,t) hold for the same pairs of terms s, t. Sort
specification of sortedness but useless for efficiently
Sort* is efficient but less obviously correct.

Sort(s,t) and
is useful as a
sorting lists.

In general, a given problem can be expressed in many different ways.
The two representations of the path-finding problem (one using the
predicate Go(x), the other using the predicate Go*(x,y» can be
generalised to other problems. Even the definition of factorial can be
represented in two ways. The previous definition corresponds to the one-
place-predicate formulation of path-finding. The definition below
corresponds to the two-place-predicate formulation.

The pragmatic content of logic programs 121

Fact*(x,y,u,v)

expresses that the factorial of x is y if the factorial of u is v.

Fact*(u,v,u,v) (-

Fact*(x,y,u,v) (- u+l = u', u'*v = v', Fact*(x,y,u',v')

To find the factorial of an integer represented by a term t, a single
goal statement incorporates not only the goal but also the information
that the factorial of ° is 1.

(- Fact*(t,y,0,1)

The new formulation of factorial executed top-down behaves in the same
iterative manner as the original formulation executed in a mixed top-
down, bottom-up fashion. The old formulation is more obviously correct,
whereas the new formulation is easier to execute efficiently with more
limited problem-solving facilities.

Separation of data structures

For a well-structured program, it is desirable that the data
structures be separated from the procedures which interrogate and
manipulate them. Separation of data structures from procedures means
that the representation of the data can be altered without altering the
higher-level procedures. It is easier to improve efficiency, therefore,
by replacing an inefficient data structure with a more efficient one. In
a large complex program the information which needs to be supplied by the
data structures is often completely identified only in the final stages
of the program design. By separating data structures from procedures, it
is possible to write the higher levels of the program before the data
structures have been determined.

Data storage and retrieval are automatically separated from procedures
when data is represented by relations, as in the family relationships
example. When data is represented instead by terms it is the
programmer's responsibility to separate them in the program.

The arch recognition problem is a simple example. The previous
formulation which mixes procedures and data structures can be replaced by
one which separates them. Mention of the data structures in the top-level
procedures can be replaced by procedure calls which access, compute or
construct the data.

Arch(x) (- Block (v), Tower (u) , Tower(w), On(v,ul,
On(v,w) , Left(x,u) , Right (x,wl, TOp(x,v)

Tower (x) <- Block (x)

Tower (x) (- Block(u) , Tower (v) , On(u,v),
Top(x,u) , Bottom(x,v)

On(x,y) <- Top(y,ul, On(x,u)

122 Chapter 5: The Procedural Interpretation of Horn Clauses

Here the Top, Left, Right and Bottom relations define the interface
between the procedures and the data structures. It is intended that

Top(x,y)
Left (x,y)
Right (x,y)
Bottom(x,y)

holds when the top of x is y,
the left subtower of arch x is y,
the right subtower of arch x is y,
the bottom of tower x is y.

The data structures can be defined separately by defining their
interface with the top-level procedures:

Top(a(u,v,w), v) (-
Top(t(u,v), u) (-
Left(a(u,v,w), u) (-
Right (a (u,v ,w) , w) (-
Bottom(t(u,v), v) (-

In this caSe the interfacing procedures are defined simply by means of
assertions. But in other cases they might be defined by more general
kinds of procedures.

Comparing the two formulations of the arches program, we notice
another advantage of separating procedures and data structures: with
infix notation for predicate symbols and with well chosen names for the
interfacing procedures, data-structure-independent programs are
virtually self-documenting. For conventional programs which mix data
structures and procedures, the programmer needs to provide documentation
which explains the data structures and is external to the program. For
well-structured programs which separate procedures and data structures,
such documentation is provided by the interfacing procedures and is part
of the program.

Despite the arguments for separating procedures and data structures,
programmers mix them for the sake of run time efficiency. One way of
reconciling efficiency with good program structure is to make use of the
macro-processing facilities provided in some programming languages.
Macro-processing flattens the hierarchy of non-recursive procedure calls
by executing them at compile time before a problem is given. It is also a
feature of the program improving transformations developed by Burstall
and Darlington [1977].

The analogue of macro-processing in logic is bottom-up or middle-out
reasoning combined with deletion of clauses. Such macro-processing is a
special case of more general facilities provided by connection graph
proof procedure (Chapter 8). In the case of the arches program, the
original formulation can be derived from the new one simply by bottom-up
execution of the interfacing procedure calls.

Terms relations as data structures

Data in logic programs can be represented either by means of terms,
as in the Append and Arches examples, or by means of relations, as in

Parsing and Family Relationships examples.

Terms versus relations as data structures 123

When data is represented by terms, the input to a program is normally
represented by a term in the initial goal statement. Top-down execution
is problem-dependent and behaves like recursive evaluation in
conventional programming languages. Bottom-up execution, although it
sometimes behaves like iteration, as in the Factorial and Fibonacci
examples, is more often problem-independent and computationally
explosive, unless it can somehow be guided by a global consideration of
the problem to be solved. Global strategies for problem-solving are
investigated in Chapter 9.

When data is represented by means of relations (defined by assertions
and procedures) the input is normally expressed by assertions. Both top-
down and bottom-up execution are problem-dependent. Top-down execution
interrogates the input and bottom-up execution manipulates it, deriving
new data from that which is initially given.

It is always possible to represent data by means of terms. LISP for
example, represents all data by means of constant symbols and a single
binary function symbol "cons". Recursion theory represents all data by
means of natural numbers using a single constant symbol 0 and a unary
function symbol "s". It is instructive to compare the previous
formulation of the parsing problem with a formulation which represents
data by means of terms.

Sent(x) (- Np(y), Vp(z), Append(y,z,x)
Np(x) (- Det(y), Adj (z), Noun (v) ,

Append (y,z,u) , Append(u,v,x)
Vp(x) (- Aux(y), Verb(z), Append(y,z,x)
Oet (the.nil) (-
Adj (slithy.nil) (-
Noun(toves.nil) (-
Aux(did.nil) (-
Verb (gyre .nil) (-

Both the input string of words and the problem of showing that it is a
sentence are incorporated in the initial goal statement:

(- Sent(the.slithy.toves.did.gyre.nil)

Notice the procedure calls Append, which have no analogue in the
earlier formulation of the parsing problem. When the data is represented
by means of assertions, the program has direct access to the data,
similar to that given by arrays in conventional programming languages.
When the data is represented by terms, then special procedures like
Append are needed to provide access to the contents of the data
structures.

It is possible to represent data entirely by means of relations as in
relational databases [Codd 1970J. Instead of representing the list

a, c, b, a

by the term

cons(a, cons{c, cons{b, cons(a, nil»»

124 Chapter 5: The Procedural Interpretation of Horn Clauses

or a.c.b.a.nil

we can give it a name, say A, and represent it by the assertions

Item(A,l,a) (-

Item(A,2,c) (-

Item(A,3,b) (-

Item(A,4,a) (-

Length (A, 4) <-

where Item(x,y,z) means that

z is the y-th item of x

and Length{x,y) means that

y is the length of x.

Instead of writing an explicitly recursive program for reversing
lists, either

Reverse(nil,nil) <-
Reverse(x.y, z) <- Reverse(y,u), Append(u, x.nil, z)

or more efficiently

Reverse(x,y) <- Rev(x,nil,y)
Rev(nil,y,y) <-
Rev{x.y, z, uJ <- Rev(y, x.z, uJ

we can write a non-recursive program:

Item(rev(x), u, y) <- Item(x,v,y), Length (x,w) ,
u+v = w', w+l =w'

Length(rev(x), y) (- Length(x,y)

Here the term rev(x) names the list which is the reverse of x.

When data is represented by means of terms, the program needs to
specify how data is stored and retrieved and it needs to take
responsibility for the separation of the data from the higher levels of
the program. Data located closer to the surface of a term can be accessed
more directly than data located deeper inside. When data is represented
by relations, the program defines the data at an abstract level which is
independent of the storage and retrieval scheme adopted by the
programming system. When a relation is defined by means of assertions,
the program has direct access to the information.

Database formal isms and programming languages

Conventional database formal isms are different from the formal isms
used for programming languages. Logic, in contrast, is the same whether
it is used for databases, database queries and programs or for database
integrity constraints and program specifications. Indeed, especially

Database formal isms and programming languages 125

when relations are used as data structures, the use of logic blurs the
normal distinction between databases and programs. General laws for data
description are indistinguishable from procedures in programs, and
database integrity constraints are the same as program properties.

The conventional distinction between databases and programs is not
reflected by the nature of computational problems. A representation in
logic of the symbolic integration problem, for example, like the one
written in PRO LOG by Bergman and Kanoui [1973] can be regarded as both a
database and a program. The relationship of a function to its integral is
defined by means of assertions such as

sin (x) is the integral of cos (x) with respect to x

and by general rules, such as

u + v is the integral of u' + Vi with respect to x
if u is the integral of u' with respect to x
and v is the integral of v' with respect to x.

The definition of the relation can be viewed both as the definition of a
recursive procedure and as the description of a database by a combination
of explicit assertions and implicit rules.

The desirability of combining databases and programs more intimately
than is possible with conventional formal isms is beginning to be
appreciated by the database community. The design of a programming
language [Zloof and deLong 19771 based on query-by-example is a
significant development of this kind.

Algorithm = Logic + Control

Conventional algorithms and programs expressed in conventional
programming languages combine the logic of the information to be used in
solving problems with the control over the manner in which the
information is put to use. This relationship can be expressed
symbolically by the equation

Algorithm = Logic + Control (A L + C).

Logic programs express only the logic component L of algorithms. The
control component C is exercised by the program executor, either
following its owri autonomously determined control decisions or else
following control instructions provided by the programmer.

The conceptual
advantages:

separation of logic from control has several

(1) Algorithms can be constructed by successive refinement,
designing the logic component before the control component.

(2) Algorithms can be improved by improving their control
component without changing the logic component at all.

126 Chapter 5: The Procedural Interpretation of Horn Clauses

(3) Algorithms can be generated from specifications, can be
verified and can be transformed into more efficient ones,
without considering the control component, by applying
deductive inference rules to the logic component alone.

(4) Inexperienced programmers and database users can restrict
their interaction with the computing system to the
definition of the logic component, leaving the determination
of the control component to the computer.

In the systematic development of well-structured algorithms it is
appropriate for the logic component to be specified before the control
component. The logic component expresses the domain-specific part of an
algorithm. It both determines the meaning of the algorithm and influences
the way it behaves. The control component, on the other hand,
determines the general-purpose problem-solving strategy. It affects only
the efficiency of the algorithm without affecting its meaning.

Thus different algorithms Al and A2' obtained by applying different
control Cl and C2 to the same logic L, are equivalent in the sense that
they solve the same problems with the same results. Symbolically

Al and A2 are equivalent if Al = L + Cl and
A2 = L + C2'

The equivalence of different algorithms having the same logic can be
used to improve the efficiency of an algorithm by improving its control
without changing its logic. In particular, replacing bottom-up by top-
down control often, though not always, improves efficiency, whereas
replacing top-down sequential execution of procedure calls by top-down
consumer-producer and parallel execution almost always improves
efficiency, and never harms it.

The arguments for separating logic from control are like the arguments
for separating procedures from data structures. When procedures are
separated from data structures, it is possible to distinguiSh what
functions the data structures perform from the manner in which they
perform them. An algorithm can be improved by replacing an inefficient
data structure by a more efficient one, provided that the new data
structure performs the same functions as the old one. Similarly, when
logic is separated from control, it is possible to distinguish what the
algorithm does, as determined by the logic component, from the manner
in which it is done, as determined by the control component. An
algorithm can be improved by replacing an inefficient control strategy by
a more efficient one, provided that the logic component is unaltered. In
both cases, it is easier to determine the meaning of the algorithm and
to improve efficiency without affecting meaning.

The separation of logic from control simplifies the problem of
relating programs to specifications. By ignoring the control component
entirely, it is possible to use rules of deduction to show, for
example, that the logic component of an algorithm is correct, because
it is implied by its specification. The same techniques of deduction can
also be used to generate a logic program from its specification or to
transform an inefficient program into a more efficient one. These
techniques have been developed by Bibel [1976a, 1976b, 1978], Clark and
Tarnlund [1977] Clark and Sickel [1978], Clark and Darlington [1978] and

Algorithm Logic + Control 127

Hogger [1979J for logic programs and are similar to ones developed for
recursion equations by Burstall and Darlington [1977] and for LISP by
Manna and Waldinger [1978]. A brief introduction to these methods is
presented in Chapter 10, which deals with the standard form of logic and
its relationship to clausal form.

The analysis of algorithms into logic and control components provides
two distinct methods for improving the efficiency of an algorithm. Given
a fixed control component, incorporated in a program executor with
limited problem-solving capabilities, efficiency can be improved by
changing the representation of the problem in the logic component; or,
given a fixed logic component, it can be improved by improving the
problem-solving capabilities of the program executor. Changing the logic
component is a useful short-term strategy, since the representation of
the problem is generally easier to change than the problem-solver.
Changing the control component, on the other hand, is a better long-term
solution, since improving the problem-solver improves its performance
for many different problems.

Specification of the control component

The control component can be expressed by the programmer in a separate
control language: or it can be determined by the program executor itself.
The provision of a separate control language allows the programmer to
advise the problem-solver about program execution and is suitable for the
more experienced programmer. The determination of control by the program
executor, on the other hand, relieves the programmer of the need to
specify control altogether and is more useful for the inexperienced
programmer, the casual database user, and even the expert programmer
during the early stages of program development.

A completely satisfactory, autonomous control strategy, however,
has not yet been designed. The problem of designing an efficient
algorithm for scheduling procedure calls, in particular, has still to be
solved. The principle of procrastination, which delays execution when a
procedure call can be executed in many ways, and the complementary
principle, which initiates execution as soon as a procedure call can be
executed in no more than one way, work efficiently in a large number of
cases. But they are inadequate when all procedure calls are non-
deterministicl' Annotations for controlling the execution of procedure
calls as coroutines have been provided in the PROLOG system [Clark and
McCabe 1979] at Imperial College. They are similar to the annotations for
recursion equations proposed by Schwarz [1977].

Autonomous search strategies have been designed for both top-down and
bottom-up search spaces in theorem-proving. These strategies use merit
orderings or evaluation functions to guide the generation of clauses in
the search space. Arguments against such search strategies have been
advanced by Hayes [1973]. He argues that the kind of information they
provide is not adequate for effective problem-solving and proposes that
more suitable information can be supplied by the programmer in an
auxiliary control language. That a given relation is a function of
certain arguments is an example of such information.

128 Chapter 5: The Procedural Interpretation of Horn Clauses

Control primitives for guiding search strategies have been provided in
programming languages like PLANNER [Hewitt 1969], MICROPLANNER [Sussman,
winograd and Charniak 1971], CONNIVER {Sussman and McDermott 1972],
POPLER [Davies 1973J, SAIL [Feldman et al1972J, QA4 [Rulifson et al
1973] and QLISP [Reboh and Sacerdoti 19731. The recommendation lists of
PLANNER and MICROPLANNER in particular enable the programmer to specify
the order in which procedures should be tried in order to execute a given
procedure call. Such information might be useful in fault diagnosis
programs, for example, when the programmer knows that a symptom P is
more likely to be caused by Q than by R. This might be indicated to the
problem-solver by the recommendation that the procedure

P <- Q

be tr ied before P <- R

Both autonomous and user-specified control over the direction of
execution have been provided in theorem-proving and in artificial
intelligence programming languages. In programming languages of the
PLANNER family, the direction in which procedures are executed is
specified in advance by the types associated with procedure declarations
(consequent theorem type if the direction is top-down, antecedent
theorem type if it is bottom-up). Moreover each procedure call is
assigned the type of the procedures which it is allowed to invoke.
Autonomous, system-determined strategies for controlling direction of
execution are more common in operational research and theorem-proving.
Few strategies have been investigated, however, other than the one
which chooses the direction having the current least branching rate.
Both system-determined and user-specified control over direction are
investigated in Chapter 8, which describes the connection graph proof
procedure.

Despite the difficulties involved, the desirability of separating
logic from control and of allocating responsibility for exercising
control to the problem-solver is generally accepted in the field of
databases. Given, for example, a data base which defines the relations

the query

Supplier(x,y,z)
Part(x,y,z)
Supply(x,y,z)

supplier number x has name y and status z,
part number x has name y and unit cost z,
supplier number x supplies part number y
in quantity z.

Who supplies books?

<- Answer (y)
Answer(y) <- Supplies(x,y,z), Supply(x,u,v), Part(u,book,w)

specifies only the logic component of the problem. The data retrieval
system needs to determine that, for the sake of efficiency, the
procedure call Part(u,book,w) (containing the input) should be executed
first. Given the structurally similar query

What parts are supplied by John?

<- Answer (y)
Answer(y) <- Supplier (x,John,z) , Supply(x,u,v), Part(u,y,w)

Specification of the control component 129

however, it needs to recognise that Supplier(x,John,z) should be executed
first.

For inexperienced database users it is desirable that queries be
expressed in a formalism as close to natural language as possible. Since
logic originates from the analysis of natural it is not
surprising that database query languages express only the logic component
of algorithms. Restricting query languages to the logic component has
other advantages. It has the consequence that storage and retrieval
schemes can be changed and improved in the control component without
affecting the user's view of the data as defined by the logic component.
In general, the higher the level of the programming language and the
less advanced the level of the programmer, the more the system needs to
assume responsibility for efficiency and to exercise control over the use
of the information it is given.

The notion that

computation controlled deduction

was first proposed by Hayes [1973] and more recently by Bibel [1978],
Kowalski [1976J, Pratt [1977] and Schwarz [1977J. The similar thesis
that database systems be decomposed into a relational component which
defines the logic of the data, and a control component which manages data
storage and retrieval, has been advocated by Codd [1970]. Hewitt's
argument [1969] for the programming language PLANNER, though generally
regarded as an argument against logic, can be regarded more positively
as an argument for the thesis that algorithms consist of both logic and
control components.

Natural Language Logic + Control

The procedural interpretation of Horn clauses reconciles the classical
role of logic in the analysis of language with the interpretation of
natural language statements as programs [Winograd 1972]. Like
algorithms, natural language combines logic with control. The sentence

If you want Mary to like you then give her presents and
be kind to animals.

combines the declarative information

Mary likes you if you give her presents and
are kind to animals.

with the advice that it be used top-down to solve problems of being liked
by Mary to subproblems of giving her presents and being kind to animals.

Exercises

1) Let the Delete relation be defined by the procedures

Chapter 5: The Procedural Interpretation of Horn Clauses

01 Delete(x, x.y, y) (-
01 Oelete(x, z.y, w) (- Oelete(x,y,w)

a) Use 01-2 top-down to delete 1 from the list 2.1.nil.
Exhibit the entire top-down search space.

b) Use Dl-2 top-down to add 1 to the list 2.nil. Exhibit
the entire search space.

c) Assume that Diff(x,y} holds when x and y are not
identical. Define the relation Delallocc(x,y,w) which
holds when w is the list which results from deleting all
occurrences of x from the list y.

2) Describe a representation of the path-finding problem which makes
it possible to find the list of all nodes in a path from one node to
another.

3) Reformulate the water containers problem of Chapter 4 to
incorporate loop checking into the program, so that it can be executed
efficiently even if the problem-solver does not recognise and delete
loops.

4) Let Partition(x,y,u,v) be defined by

Partition(x,y,u,v) (- Shuffle(u,v,y), Small(x,u), Big(x,v)
Shuffle(nil, v, vI (-
Shuffle(v, nil, vI (-
Shuffle(x.y, z, x.u) (- Shuffle(y,z,u)
Shuffle(y, x.z, x.u) (- Shuffle(y,z,u)

where Small(x,u) holds
Big (x,u)
Shuffle(u,v,y)

when x (all members of u,
x > all members of u,
the lists u and v can
be shuffled together
to obtain the list y.

Consider the problem (- Partition(s,t,u,v) where sand t are given as
input and u and v are desired as output.

a) Define Small{x,u) and Big(x,u) recursively in terms of the
relations (and > - -

b) Describe the behaviour of the procedures given above and
in part a) when backtracking is used to solve the problem
top-down, executing procedure calls sequentially, left-to-
right.

cl Describe a more deterministic way of executing procedure
calls for the same problem.

Exercises 131

d) Redefine Partition(x,y,u,v) so that behaviour similar to
that of part c) is achieved by simple left-to-right
execution of procedure calls.

5) Let the relation Is(x,y) which holds when x is an initial sublist
of y

x

...........
y

be defined by

Is(x,yl (- Append {x,z,yl

al Define Is(x,y) recursively without using Append.

b) The relation Sl(x,y) which holds when x is a sublist of y

u x v
r-----l r-----l

y

can be specified by

Sl(x,y) (- Append (u,x,w) , Append (w,v,y)

Define Sl(x,y) recursively in terms of Is without using
Append.

cl Describe an execution strategy for the two procedure calls
in the specification of SI above which behaves in the same
way as top-down sequential execution of the recursive
definition of SI.

7) a) Express the 8-queens problem by means of Horn clauses:

Given an 8 by 8 checker board, find a list of eight
queen positions such that no queen can take another. One
queen can take another if both are located on the same
row, same column or same diagonal of the checker board.
Assume that the Plus relation

Plus(x,y,z) (x+y = z)

is already defined by variable free assertions.

b) Modify the 8-queens problem and show that the 2-queens
problem (placing 2 queens on a 2 by 2 checker board) is
unsolvable by generating the entire top-down search space.
Execute procedure calls in a manner which minimises the
size of the search space.

132 Chapter 5: The Procedural Interpretation of Horn Clauses

8) Any binary
example, the tree

tree can be regarded as representing a list. For

/'A
A B c o

named by the term
cons(cons(tip(A), tip(B», cons(tip(C), tip(D»)
represents the list A.B.C.D.nil

In general the relationship Represents(x,y) which holds when the tree x
represents list y can be defined by the clauses:

RI
R2
R3
R4

a)

bl

cl

Represents(nil,nil) (-
Represents (tip(x) , x.nil) (-
Represents (cons(tip(x) , y), x.z) (- Represents(y,z)
Represents (cons(cons(x,y) , z), w) (-

Represents (cons (x, cons(y,z», w)

Define the relationship Samelists(x,y) which holds when
the trees x and y represent the same lists.

Use procedures Rl-4 and (a) to reduce the problem of
showing the two trees

and

represent the same lists to the problem of showing that
the subtrees named by sand t represent the same lists.

Use procedures Rl-4 and (a) to show that the problem of
showing the two trees

and M
represent the same lists, where t and s name any subtrees,
is not solvable.

d) Generalise the execution strategies employed in (b) and
(cl and describe an efficient general strategy for
executing the procedure calls in Rl-4 and (a)
cooperatively rather than sequentially.

133

CHAPl'ER 6

Plan-Formation and the Frame Problem

In the plan-formation problem we are given an initial state, a goal
state, and a set of actions which transform one state into another. The
problem is to construct a plan, consisting of an appropriate sequence of
actions, transforms the initial state into the goal state.

The plan-formation problem is identical, therefore, to the state-space
problem. The n-tuple representation of state-space problems is not
feasible, however, when the number n of individuals is large or unknown.
In this chapter, we investigate a version of the binary representation of
state space problems.

The use of logic, in both the n-ary and binary representations, runs
into the frame problem: how to deal with the fact that almost all
statements which hold true of a given state continue to hold after an
action has been performed. It has often been assumed that such facts
cannot be expressed naturally in logic and cannot be used efficiently.

The supposed inadequacies of logic have led to the development of
special systems, such as STRIPS [Pikes and Nilsson 1971] and PLANNER
[Hewitt 1969J, specifically intended to deal with the frame problem. We
shall argue that an equally satisfactory treatment of the frame problem
can be obtained in logic: by using terms to name statements and by using
the frame axiom, which describes the statements which continue to hold
after an action has been performed, top-down rather than bottom-up.

Plan-formation and the blocks world

We shall consider the simple blocks world plan-formation problem
[Sacerdoti 1977] in detail. There are three manipulatable blocks A, B
and C and three unmanipulatable places p, g and r. The location of
objects in the initial and goal states is illustrated below:

p q r p q r

Initial state Goal state

134 Chapter 6: Plan-Formation and the Frame Problem

There is a single action

which transfers x from y to z. The action can be performed in a given
state if

x is manipulatable,
x and z are clear,
x is on y, and
x is different from z.

The new statement that

x is on z and
y is clear

holds true of the new state which results when the action has been
performed. All statements which held in the previous state, except that

x is on y and
z is clear,

continue to hold in the new state.

In general, an action is defined by specifying its preconditions and
postconditions. Preconditions are statements which must hold in a state
before an action can be performed; whereas postconditions are statements
which hold in the new state after the action has been performed.
Postconditions are of two kinds: new statements which are added to the
description of the new state and old statements which continue to hold
from the previous state. The old statements are described by means of a
frame axiom which expresses that all statements which held in the old
state, except for those explicitly stated as exceptions to be deleted,
continue to hold in the new state. The explicit specification for every
action of preconditions, added statements and deleted statements is due
to STRIPS.

clausal representation of the blocks world problem

In this formulation, both states and statements are regarded as
individuals and are represented by means of terms. That a statement x
holds true in a state y is represented by a binary relationship

Holds(x,y) .

States are named by constant symbols or by composite terms. It is
convenient to let the constant symbol 0 name the initial state and to let
the term

result(u,v)

name the state which results from applying the action u to the state v.

A clausal representation of the blocks world problem 135

The representation of statements
Chapter 12 concerned with formalising
is sufficient to let the term

by means of terms is discussed in
part of the meta-language. Here it

on(x,y)

name the statement that x is on y and

clear (x)

that x is clear. An alternative representation, in which the term

atom (x,y)

names the atomic formula with predicate symbol x and list of arguments y,
is more flexible but not necessary here.

In the following clauses

Initial state 0

Pass (x)
Manip(x)
Diff (x,y)

expresses that state x is possible,
object x is manipulatable,
x is different from y.

(1) Poss(0) <-
(2) Holds (on (A,B) , 0) <-
(3) Holds (on (B,p) , 0) <-
(4) Holds(on(C,r) , 0) <-
(5) Holds (clear (A) , 0) <-
(6) Holds (clear (g) , 0) <-
(7) Holds(clear{C) , 0) <-

State-independent
assertlons (8)

(9)
(10)

Manip(A) <-
Manip(B) (-
Manip(C) (-

Goal state (11) (- Holds(on(A,B) ,w), Holds(on(B,C) ,w),
Holds(on(C,r) ,w), Poss(w)

State space and
preconditions (12) Poss{result(trans(x,y,z) ,w» (- Poss(w),

Added statements (13)
(14)

Frame axiom and deleted

Manip{x), Diff(x,z), Holds {clear (x) ,w),
Holds(clear(z) ,w), Holds(on(x,y) ,w)

Holds(on(x,z), result(trans(x,y,z), w» (-
Holds(clear(y), result{trans(x,y,z), w» (-

statements (15) Holds(u, result(trans(x,y,z), w» <-
Holds(u,w), Diff(u, on(x,y»,
Diff(u, clear{z»

Clauses (1)-(6) describe the initial state, whereas clauses (7)-(10)
describe the state independent facts about the manipulatability of blocks
and clause (11) describes the goal state. The remaining clauses describe
the action of transferring an object from one location to another. Clause
(12) defines the structure of the state-space search space. It expresses

136 Chapter 6: Plan-Formation and the Frame Problem

the preconditions which need to hold before an action can be applied to a
possible state in order to produce a new one. Clauses (13) and (14)
express the postconditions which are added by the action, whereas (15)
expresses those which hold in the new state because they held in the
previous state and were not destroyed by the action.

The relationship Oiff(s,t) holds, for variable-free terms sand t,
when sand t are syntactically distinct. It is useful to imagine that
clauses (1)-{15) are supplemented by infinitely many clauses of the form

Diff (s,t) <-

for every pair of terms sand t which do not match. Equivalently, the
same relation can be defined by the axioms

Diff(f(xl,···,xm), g(Yl'···'Yn» (-

for every pair of distinct function symbols f and g, including the cases
m = 0 and n = 0 when f and g are constant symbols, and

Diff(f(xl""'xm), f(YI""'Ym» (- Diff(xi'Yi)

for every function symbol f and for every argument i of f, excluding the
case m = 0 when f is a constant symbol. In practice, it is more efficient
to define Diff as the negation of identity

Diff(x,y) (- not-ex = y)
x = x (-

and to determine that not-ex y) holds
hold. Such an interpretation of negation
to the normal interpretation of negation
and is discussed in Chapter 11 which
expressed in terms of "if-and-only-if".

by showing that x = y fails to
as failure and its relationship

has been studied by Clark (1978)
is concerned with definitions

This formulation of the plan-formation problem is similar to the one
employed by Green [1969b], based upon proposals of McCarthy and Hayes
[McCarthy and Hayes 1969J. It differs from their formulations, however,
in its use of the Holds relation. They add an extra state parameter to
relations instead, writing, for example, On(x,y,w) to express that x is
on y in state wand Clear(x,w) that x is clear in w. The treatment of
statements as individuals, which is implied by the use of the Holds
relation, can be regarded as a formalisation of part of the meta-
language. The advantages of using logic as its own meta-language are
discussed later in Chapter 12. Here it suffices to note that treating
sentences as individuals avoids that part of the frame problem which is
concerned with expressing the frame axiom. Instead of employing a
separate frame axiom for every relation, writing, for example,

On(u, v, result(trans(x,y,z), w» (-On(u,v,w), Diff(u,x)
Clear(u, result(trans(x,y,z), w» (- Clear(u,w), Diff(u,z)

it suffices to employ a single frame axiom

Holds{u, result(v,w» (- Holds(u,w), Preserves(v,u)

where Preserves(v,u) expresses that the action v preserves the truth of

A clausal representation of the blocks world problem 137

statement u. The use of the Preserves relation separates the frame axiom
from the specification of the statements which are deleted by individual
actions. In the case of the trans-action:

Preserves (trans (x,y ,z), u) (- Diff (u, on (x,y» ,
Diff(u, clear(z»

As we shall see in the next chapter, clause (15), which combines the
frame axiom and the specification of the deleted statements, can be
obtained by macro-processing the procedure call to the relation
Preserves. Macro-processing executes procedure calls at compile time
before problems are given, rather than at run time during the course of
trying to solve them. It can be regarded as a form of middle-out
reasoning, which in turn is a special case of the resolution rule
[Robinson 1965al. Resolution also generalises top-down and bottom-up
inference and applies to non-Horn clauses as well.

It is useful to classify relations into two kinds: primitive
relations, which are independent of other relations, and defined
relations, which can be defined in terms of the primitives. In the blocks
world, the relationship which holds when one object is above another can
be defined in terms of the primitive relationship which holds when one
object is located directly on another.

Holds(above(x,y), w) (- Holds(on(x,y), w)
Holds(above(x,y), wj (- Holds(above(x,z), w),

Holds(above(z,y), w)

It suffices to specify added and deleted statements only for primitive
relations. The effect of actions on defined relationships is determined
by their effect on primitive relationships and by the definition of the
defined relations in terms of the primitives. The classification of
relations and its use in plan-formation was introduced with STRIPS.

We have treated the
more natural, however,
relation:

On and Clear relations as primitive. It would be
to define the Clear relation in terms of the On

Holds(clear(y), w) (- for all x not-Holds(on(x,y), w)

We shall discuss this possibility in Chapter 11, which investigates if-
and-only-if definitions and the interpretation of negation as failure.

The logic of the blocks world problem is separate from its use.
Clauses can be used either top-down or bottom-up. They can also be used
in a mixture of directions. If the state space axiom (12) is used bottom-
up, then the problem-solver reasons forward from the initial state,
deriving new states from old ones, until the goal state is generated. If
the axiom is used top-down, then the problem-solver reasons backward from
the goal-state, until the initial state is generated.

The second part of the frame problem arises when the frame axiom (15)
is used bottom-up to derive, from an assertion that a given statement
holds in a given state, a new assertion that the same statement holds in
a following state. For more realistic plan-formation tasks than the
blocks world problem, a typical state needs to be described by a large
number of assertions, many of which are unrelated to the problem at hand.

138 Chapter 6: Plan-Formation and the Frame Problem

In such situations it is not computationally feasible to use the frame
axiom bottom-up to copy preserved facts from state to state.

Both PLANNER
frame axiom and
can be obtained
down:

and STRIPS deal with the frame problem by abandoning the
using special-purpose procedures instead. Similar results
by retaining the frame axiom hut interpreting it top-

To determine whether a statement u holds in a state result(v,w)

(i) show u is added by v,
(ii) alternatively, if u is not deleted by V,

determine whether u holds in the previous state w.

Changing the direction of execution of the frame axiom exemplifies the
general strategy of improving an algorithm by improving its control
without changing its logic.

We shall illustrate the different
world problem by using the state
directions.

solutions determined for the blocks
space and frame axioms in different

Bottom-.!:!E execution of the state space axiom <1.1.)
The following illustration displays part or the search space of states

determined by executing (12) bottom-up.

ill ..ill. Initial State 0
p

/
El .ill

State 1 State 2 State 4

o 2_ ffi ill
---- ----

o 1 o 4 o 3

1 lIi Goal State 6

Bottom-up execution of the state space axiom (12) 139

Distinct nodes
I abe lled by the
this case, the
the same object

represent distinct states. However, distinct states
same number are characterised by the same statements. In
redundancy arises because it is never useful to pick up
twice in a row.

The assertions which are generated by bottom-up execution of the state
space axiom describe the search space of states illustrated above and are
independent of the direction of execution of the frame axiom.

execution of the frame axiom

The following assertions, concerning states which belong to the
solution path, are generated by bottom-up execution of the frame axiom.

Holds(on(B,p) , 1)
Holds (on (A,g) , 5)
Holds(on(B,C) , 6)
Holds (clear (A) , 1)
Holds (clear (13) , 5)
Holds (clear (Al , 6)

The additional assertions

Holds (on (A,g) , 1)
Holds(on(B,C) , 5)
Holds(on(A,B) , 6)

<-
<-
<-
<-
<-
<-

<-
<-
<-

Holds{on(C,r) , 1) <-
Holds{on(C,r) , 5) <-
Holds{on{C,r) , 6) <-
Holds (clear (C) , 1) <-
Holds {clear (A) , 5) <-
Holds (clear (p) , 6) <-

Holds (clear (B) , 1) (-
Holds(clear(p), 5) (-
Holds(clear(g), 6) (-

which are needed for a complete description of the same states are
instances of the clauses (13) and (14) which specify the statements added
by the trans-action. As in the previous illustration,

1 abbreviates result(trans{A,B,q), 0),
5 result(trans(B,p,C), I},
6 result(trans(A,g,B), 5).

In the general case, a search strategy
assertions concerning states which are not
well as assertions such as

might need to generate many
relevant to the solution as

Holds (on (B,p), result (trans (A,C ,B), 0» (-
Holds(on(B,p), result(trans(B,g,C), 0» (-
Holds{on(B,p), result(trans(B,B,B), 0» <-

which describe impossible states. The generation of such undesirable
assertions is avoided if the frame axiom is used top-down. It can also be
avoided when the frame axiom is used bottom-up by adding the extra
condition

Poss(result(trans{x,y,z), w)

to the frame axiom.

140 Chapter 6: Plan-Formation and the Frame Problem

Top-down execution of
execution of the state
notation:

the frame axiom may be
space exiorn. This can

combined with bottom-up
be pictured in arrow

3 1 2 2

t 11' 11'
Poss(result(trans(x,y,z), w» (- poss(w), Manip(x), Holds{clear(x), w),

Holds(clear(z}, w), Holds{on(x,y), w), Diff(x,z) n n
2 2 2

It can be simulated by top-down execution alone. It suffices to rewrite
clauses (1), (11) and (12) using a predicate symbol Nposs which is the
negation of Poss. Clauses Ill, (11) and (12) become (1'), (11') and
(12') respectively.

(1')
(11')

(12')

(- Nposs(0)
NpoSs(w) (- Holds(on(A,B), w), Holds (on(B,C) , w),

Holds(on(C,r}, w)
Nposs(w) (- Nposs(result(trans(x,y,z), w», Manip(x),

Holds(clear(x), w), Holds(clear(z), w),
Holds(on(x,y), w), Diff(x,z)

The renaming of predicate symbols, of the kind involved in rewriting
clauses (1), (11) and (12), has been investigated by Meltzer [1966] and
will be considered again in the next chapter.

A small part of the search space is illustrated below. The mixed top-
down, bottom-up execution strategy is equivalent to pure top-down
execution using clauses (1 1), (111) and (121) instead of (1), (11) and
(12). All arcs which diverge from the solution path are illustrated.
Nodes which are labelled by clauses containing unsolvable subgoals are
darkened to indicate that they are terminal failure nodes. 'I'he circled
numbers preceding underlined atoms indicate the order in which they or
their descendants are selected. Unlabelled arcs indicate execution of
procedure calls containing the predicate symbol Diff. Some nodes are left
unlabelled in order to suppress distracting details. t(x,y,z) abbreviates
trans(x,y,z) .

Notice that many alternatives to the solution path fail after only a
few steps. The alternatives which do not fail correspond to genuine
alternative actions in the search space of states.

(7)
(5)

(6)

Mixed top-down and bottom-up execution of the frame axiom 141

Poss (0) <-
(12)
Poss(result(t(x,y,z) ,0»
(5)

(8)

<-(2)Manip (x},(1') Holds (clear (x) (0) ,
,0), G Holds (on(x,y) ,0), Diff(x,z}

(2)
Poss (result{t (A,B,z) ,0» <-Q)Holds (clear (z) ,0) ,@Oiff(A,Z}
(6)
Poss(result(t(A,B,g} ,0}} (-
(12)
Poss(result{t(x,y,z) ,I)}
(14)

(9)

(15)

(3)

<-0 Manip (x) , CD Holds (clear (x) ,1) ,
Holds (clear (z) ,1),

Q)Ho1ds(on(x,y) ,1), OHf(x,z)

Poss (resul t (t (B,p, z) ,1» <-CD Holds (clear (z) ,1) ,@Oiff (B ,z)
(15)

(7)

Poss{result(t(B,p,C) ,1» <-
(12)
Poss(result(t(x,y,z) ,5»
(15)

(15)

(5)

(8)
Poss(result(t(A,y,z) (5»
(15)

<--(2)Manip (x), CDHOlds (clear (xl,S) ,
,5),

Holds(on(x,y) ,5), Diff(x,z)

<- Holds(clear(z) (5),
Holds (on (A,y) ,5) ,Diff (A, z)

(15) (13)

142

(15)

(15)

Chapter 6: Plan-Formation and the Frame Problem

Poss (resul t (t (A,q,z) ,5» <-Q)Holds (clear (2) ,5) ,(3) Diff tA, z)
(15)

(14)

Poss{result(t(A,g,B) ,5» (-
(11)
(- Q)Holds(on(A,B) ,6) ,(])Holds(on(B,C) ,6), Holds(on(C,r) ,6)
(13)

(15)

(13)

(- Holds(on{C,r) ,6)
(15)

(15)

(15)

(4)

o
The eventual failure of the alternative attempts to solve the subgoals

Holds(on(A,y) ,5)
Holds(on(A,B) ,6) and
Holds(on(B,C) ,6)

can be hastened by strengthening the restrictions on the frame axiom. The
more restrictive version of the frame axiom

Holds{u, result(trans(x,y,z), w» (- Holds(u,wl,
Diff{u, on(x,v»,
Diff (u, clear (z» ,
Diff{u, clear(y»

Mixed top-down and bottom-up execution of the frame axiom 143

in particular, fails immediately whenever one of the clauses (13) or (14)
succeeds.

execution of the state space and frame axioms

Part of the search space of states determined by executing the state
space axiom top-down is illustrated below. As in the case where the state
space axiom is executed bottom-up, redundancy arises when the same object
is picked up twice in succession. The variables y and y' name locations
which have not yet been determined.

goal state

initial state
y' p

In the following solution all clauses are executed top-down. Subgoals
are considered breadth-first and left to right in the order in which they
are written. Duplicate subgoals are deleted. To save space, steps
involving the solution of subgoals containing the predicate symbol Diff
are not illustrated.

144

13
15
15
12

13
15
12

8
15
15
15

15
12

9
14
15
15
15
13

4
1
8
5
6
2
7
3

Chapter 6: Plan-Formation and the Frame Problem

(- Holds(on{A,B) ,wl, Holds(on(B,C) ,w),
Holds(on(C,r) ,w), Poss(w)

w = result(trans(A,y,B) ,wl)

<- Holds (on (B ,C) ,wl)' Holds {on (C, r) ,wl)' POSS (wl) ,
Manip(A), Holds(c!ear(A) ,wl)' Holds (clear (B) ,wl)'
Holds(on(A,y) ,wl)' Diff(A,B)

Wl = result(trans(B,y' ,C) ,w2)

(- Holds(on(C,r) ,w2)' Pass (WZ) , Manip(B),
Holds(clear(B) ,w2)' Holds(clear(C) ,w2)'
Holds(on(B,y'),w2)' Diff(B,C), Holds(clear(A),w2)'
HO] ds (cl ear (8) Holds (on (A,yl ,w2)

W2 = result(trans(A,B,y) ,w3)

(- Holds(on(C,r) ,w3)' Pass(w3)' Manip(A),
Holds (clear (A) ,w3)' Holds (clear (y) ,w3)'
Holds (on (A,B) ,w3)' Dift (A,yl, Holds (clear (Cl ,w3)'
Holds (on (8,y') ,w3)' Holgs (eleac (Ao,w3'

o y q y' p

o

Applications of plan-formation

The principal application of plan-formation has been the construction
of plans for robot-like machinery. Plan-formation has also been applied
to the automatic construction of programs from specifications. The
description of the input and the output states constitutes a
specification of a program. The definition of the preconditions and of
the statements added and deleted by actions expresses the semantics of
the machine operations. A plan consists of a sequence of machine
operations and represents a program. More elaborate systems of plan-
formation include procedures for constructing plans with conditional
statements, loops and other operations. Horn clause plan-formation
programs written by Warren [1974, 1976J and Moss [1977] have been applied
to program construction.

An application of plan-formation to the synthesis of organic compounds
was developed by Fogel, while a high school student, at Imperial College
during the summer of 1977. Chemical compounds, like states in plan-
formation, can be described by assertions concerning the objects (atoms
and bonds) which belong to them. The statement that

Applications of plan-formation

bond b of strength s holds between the
atoms al and a2 in the compound c

can be expressed by a single n-ary relationship

Bond(b,s,al,a2'c) (-

or by several binary relationships:

b has strength s (-
b bonds al (-
b bonds a2 (-
b belongs to c (-

145

An initial compound functions as an initial state and a goal compound as
a goal state. Chemical reactions are actions which transform one compound
into another. They are defined by specifying (1) the preconditions which
must hold before a reaction can take place, (2) the new bonds which the
reaction introduces and (3) the old bonds which the reaction destroys. A
frame axiom states that bonds which are not destroyed by a reaction are
preserved by it. Both the program written by Moss and the one written by
Fogel were implemented as Horn clause programs and run on a PROLOG-like
system developed at Imperial College.

Programs for drug analysis have been written in PRO LOG at the Ministry
of Heavy Industry in Budapest [Futo, Darvas and Szeredi 1978]. These use
relational data structures similar to those in the organic synthesis
program. Because many of the properties of a given drug may be unknown,
the drug analysis programs employ binary rather than n-ary relations. The
programs have led to useful discoveries concerning previously unknown
drug interactions and concerning inconsistencies in descriptions of drugs
in the pharmaceutical literature.

Limitations

The approach taken in this chapter stores information about the
initial state explicitly and uses the frame axiom to compute information
about later states. It can be argued that this is unnatural and
potentially inefficient. The alternative, when using depth-first search
and reasoning forward from the initial state, is to store the current
state explicitly and to compute information about earlier states. The two
approaches are intuitively equivalent. The problem of formally explaining
and justifying the equivalence, however, has still to be solved.

The treatment of plans as sequences of actions is another limitation,
which creates redundancies when actions do not interact and can be
performed in parallel. Performing the actions in sequence produces the
same results redundantly in any sequence. Systems for generating plans
which are partially ordered collections of actions have been described by
Sacerdoti [1975] and Tate [1974]. A HOrn clause program which generates
partially ordered plans has also been written in PROLOG by Warren. A
survey of plan-formation systems and a comparison with the one presented
in this chapter has been made by Waldinger [1977].

146 Chapter 6: plan-Formation and the Frame Problem

Exercises

1) Formulate an n-tuple representation of the blocks world problem.
Let State(x,y,z) hold when it is possible for block A to be on x, B on y
and C on z simultaneously. Compare problem-solving strategies for the n-
tuple representation with those for the binary representation of the
problem.

2} Reformulate the water container problem investigated
as a plan-formation problem using the binary representation
in this chapter. Compare the problem-solving strategies
efficient solution of the problem in both the n-ary
representations.

3) The assigrnent statement of conventional programming
be regarded as an action which transforms one state of a
another. The new state

assign(u,v,w)

in Chapter 4
investigated
needed for
and binary

languages can
computer into

differs from the preceding state w in that the location u contains v.

Assume that A,
they contain a, b
which the initial

Band C are locations and that in
and c respectively. The problem is
values of A and B are interchanged.

the initial state 0
to find a state in

Formulate and solve the problem as a plan-formation task.

147

CHAPTER 7

Resolution

We shall extend the Horn clause model of problem-solving to non-Horn
clauses. With non-Horn clauses

(1) goals and assertions can be negative as well as positive,

(2) the application of procedures to goals can generate
assertions as well as subgoals,

(3) the solution of subgoals can require the analysis of
several alternative cases and

(4) solutions can be disjunctions: x = tl or t2 or ••. or

Top-down and bottom-up inference can be extended to non-Horn clauses.
The new rules, as well as the old ones, are all special cases of the
general resolution rule introduced by Robinson [1965a].

Negative goals and assertions

In many
clauses by
clause

cases a set of non-Horn clauses can be reexpressed as Horn
renaming predicate symbols [Meltzer 19661. The non-Horn

Pleasant{x), Nightmare{x) (- Dream{x)

for example, can be rewritten as the Horn clause

Nightmare (x) (- Dream (x), Unpleasant (x)

by reexpressing the negative atom not-Pleasant (x) as the positive atom
Unpleasant (x) .

Similarly the non-Horn clause problem of showing that every boletus is
poisonous can be transformed into a Horn clause problem by eliminating
the predicate symbol "Mushroom" and using the new predicate symbol
"Nonmushroom" instead. The unnegated atom, Nonmushroom(x), means the same
as the negated atom, not-Mushroom (x) • The new Horn clause problem
Fung'l-6 can be solved top-down or bottom-up.

148

Fung'l
Fung' 2
Fung' 3
Fung I 4
Fung'S
Fung '6

Chapter 7: Resolution

ToaastooI(x) (- Fungus (x) , Nonmushroom(x)
Poisonous (x) (- ToaastooI(x)
Fungus(x) (- Boletus(x)
Nonmushroom(x) (- Boletus(x)
Boletus ('lr) (-
<- Poisonous (,,?)

bottom-up solution:

Boletus ('ii') <- Boletus ('ii') <-

Fung' 3 Fung'4

Fungus (- Nonrnushroom ('1r) (-

Fung'!

('1r) (-

Fung'2

Poisonous ('lr) (-
Fung '6

o

!QE-down solution:

(- Poisonous (9')
Fung'2

(- Toadstool ('1r)
Fung'l

(- Fungus ("iT') I Nonmushroom ('1?)
Fung'3

(- Boletus ('l?), Nonmushroom ("i?)
Fung'S

(- Nonmushroom (9')
Fung'4

(- Boletus ("iT)
Fung'S

o

Negative goals and assertions 149

The bottom-up derivation of the assertion

Nonmushroom (-

from the Horn clauses Fung'4 and Fung'S is equivalent to the derivation
of the negative "assertion"

(- Mushroom ('l?)
directly from the original clauses Fung 4-5,

(- Boletus (x) , Mushroom (x)

Boletus (-

Similarly the top-down derivation of the positive subgoals

(- Fungus (), Nonmushroom ("ir)
from the goal statement

(- Toadstool (9)
by means of the Horn clause Fung'l is equivalent to the direct derivation
of the clause

Mushroom (x) (- Fungus{x)

from the same goal statement

(- Toadstool ()

by means of the non-Horn clause

FungI Toadstool (x) , Mushroom (- Fungus{x).

Resolution

In general, top-down and bottom-up inference for both Horn clauses and
non-Horn clauses are special cases of the resolution rule: To create a
resolvent of two clauses it is necessary first to rename variables so
that different clauses contain different variables.

Given a condition in one clause and a conclusion in the
other, the resolvent exists if the condition and the
conclusion match. The two clauses are said to be the
parents of the resolvent clause. An atom IS a condition of
the resolvent if it is obtained by applying the matching
substitution to a condition, different from the matched
condition, of one of the parents. Similarly, an atom is a
conclusion of the resolvent if it is obtained by applying
the matching substitution to a conclusion, different from
the matched conclusion, of one of the parent clauses.

The definition can be expressed by means of Horn clauses. Let

150

res(x,u,y,v)

cond (xl
conel (xl
union (x,y)

Apply(x,w,x')

Rename(x,y,w)

Chapter 7: Resolution

name the resolvent which exists when, after
appropriate renaming of variables, the condition u
in x matches the conclusion v in y,
the collection of conditions of clause X,
the collection of conclusions of clause x,
the union of x and y,

express that the result of applying to x the
substitution w is x',
the substitution w applied to clauses x and y
results in clauses which contain no variables in
common,

Match(u,v,w) substitution w matches the atoms u and v,
Member (u,x) u is a member of x,
Combine (wl,w2'w) the substitution w has the combined

first applying substitution wl and then
substitution w2'

effect of
applying

Resolves(x,u,y,v,w) the resolvent of x and y on atoms u
exists and w is the combined substitution
both renames variables and matches atoms.

and v
which

Resolves (x ,u,y,v ,w) (- Rename (x,y ,wl) ,Member (u,cond (x)) ,Apply (u,wl'u') ,
Member (v, concl (y)) ,Apply (v ,wl'v') ,Match (u' ,v' ,w2) ,
Combine (wl ,w2 ,w)

Member(z, cond(res(x,u,y,v») (- Resolves(x,u,y,v,w),
Member(z', union (cond (x) ,cond(y»),
Diff(z' ,u), Apply(z' ,w,z)

Member(z, concl(res(x,u,y,v») (- Resolves(x,u,y,v,w),
Member (z I, union (conel (x) ,concl (y») ,
Diff (z' ,v), Apply{z' ,w,z)

Member{z, union(x,y» (- Member(z,x)

Member(z, union(x,y)} (- Member (z,y)

Notice that the definition can be used either top-down or bottom-up. The
Boyer-Moore structure-sharing implementation of resolution [1972] can be
regarded as using the definition top-down but saving solved subgoals of
the form Resolves(x,u,y,v,w) as lemmas.

The definition given here is less general than Robinson's which also
incorporates the factoring rule described later in the chapter.

Middle out reasoning with Horn clauses

In addition to top-down and bottom-out inference, resolution includes
middle-out reasoning with Horn clauses. The resolvent of the two clauses

Fallible(x) (- Human(x)
Mortal(x} (Fallible(x)

for example, is the clause Mortal(x} (- Human(x).

Middle out reasoning with Horn clauses 151

Middle-out can also be applied to different copies of the
same clause. From two copies of the definition of ancestor, for example

Ancestor (x,y) (- Ancestor (x,z) , Ancestor (z,y)
Ancestor (u,v) (- Ancestor (u,w) , Ancestor (w,v)

we can derive the resolvent

Ancestor (x,y) (- Ancestor(x,w) ,Ancestor(w,z),Ancestor(z,y).

Propositional example

The clauses which define the semantics of propositional logic provide
instructive examples of the resolution rule. Here if x and y name
propositions x* and y* respectively then

x & Y names the proposition x* and y*
x V y x* DC y*
X :> y if x* then y*
x<->y x* if and only if y*

x it is not the case that x*.

where &, V ,:>, «-> and ...,
stating that x is true.
reexpressed as Horn clauses

are infix function symbols. Read
The following set of clauses

by renaming predicate symbols.

T1
T2
T3
T4
T5
T6
T7
TB
T9
T10
Tll
T12
Tl3
T14

True (X&y) (- True (x), True (y)
True{x) (- True (X&y)
True (y) (- True (X&y)
True (XVy) (- True(x)
True (xVy) (- True (y)
True(x), True(y) (- True(xVy)

,True(x) (-
(- True(y)

True{y) (- True(x),
(- True(x y),

True (x::JY) (- True
True (Y::Jx) (-
True('x), True(x) (-
(- True ('x) , True (x)

Clauses Tl-3 state that

x & Y is true if and only if
x is true and y is true.

True(x) as
cannot be

Clause Tl is the if-half of the statement and clauses T2-3 are the only-
if-half. Similarly the remaining clauses state that

T4-6 x V y is true if and only if
x is true or y is true;

152

T7-9

T10-12

Tl3-14

Chapter 7: Resolution

x Y is true if and only if
if x is true then y is true;
x y is true if and only if
x y is true and y x is true;

, x is true if and only if
x is not true.

This set of clauses is based upon a more general definition of "truth"
for sentences in the standard form of logic formulated by Colrnerauer
[unpublishedl.

The if-halves of the statements are useful top-down to reduce problems
concerning the truth of a complex proposition to subproblems concerning
the truth of simpler propositions. The only-if halves, on the other hand,
are useful bottom-up to derive conclusions concerning the truth of simple
propositions from assumptions concerning the truth of more complicated
ones.

For example, to show that

P & is true if p is true and q is not true

it is natural to reason top-down from the goal

(- True (p & q)

using the assumptions

Al
A2

True(p) (-
(- True (q)

and regarding the second assumption A2 as a negative assertion.

(- True (p & -oq)

Tl

(- True(E) ,

Al

(- True { g)

Tl3

True(q) (-

A2

o

ProPOsitional logic example 153

Here the clause T13 can be regarded as reducing the problem of showing
that -q is true to the problem of showing that q is not true, which is
solved directly by assumption A2.*

On the bther hand. to show that

p is true and q is not true if p & "g is true

it is more natural to reason bottom-up from the assumption

, True (p & "'lg) (- •

The clause

G True(q) (- True(p)

can be interpreted as expressing the goal of showing that p is true and q
not true.

True(p & 'q) (-

T2 T3

True(p) <- True ("1q) (-

T14

(- True(q)

G

0

Clause T14 can be regarded as deriving the negative assertion that q is
not true, which solves the negative goal in G. Notice that the bundle of
arcs labelled G represents two successive resolution steps. The order in
which the steps are performed is not significant.

The problem of showing that

p V "p is true

illustrates another characteristic feature of top-down problem-solving
with non-Horn clauses: No method adequately solves the problem, but
several alternative methods exhaust all the cases.

*Throughout this chapter only resolution refutations are exhibited.
Search spaces will be investigated in the next chapter.

154 Chapter 7: Resolution

(- True (p V 'p)

(- True (p)

o
Methods T4 and T5 reduce the original problem to subproblems which
exhaust the two cases asserted by the non-Horn clause Tl3.

A bottom-up solution
cases. Case analysis by
however, for the problem

of the same problem
bottom-up reasoning

of showing that

r is true if p V q is true,

assuming that

would involve
can be seen

reasoning by
more clearly,

r is true if p is true, and r is true if q is true.

(1)
(2)
(3)
(4)

T6

(3)

(1)

(4)

(1)

(- True (r)
True (p V q) (-
True{r) (- True(p)
True(r) (- True(q)

True (p V g) (-

True(p), True(q) <-

True{r), True(q) (-

True (g) (-

True{r) (-

Clause T6 derives a non-Horn clause which expresses that there are two
cases. The solution reasons bottom-up, first solving the goal in the
case that p is true and then solving it in the case that q is true. It
"remembers" the second case while it is working on the first one.

Propositional logic example 155

Given a goal
non-Horn clauses
of the subgoals.
sentences of the

and a Horn clause which reduces
can be used to derive assumptions

Such non-Horn clauses typically
form

the goal to subgoals,
to assist the solution
arise from non-clausal

A (- (B (- Cl, D

in which a condition is an implication. In the problem-solving
interpretation, the clausal form of such a sentence

A, C (- D
A (- B, D

can be regarded as stating that

in order to solve A, solve D, and solve B assuming C.

The clauses T7-8 arise from such a non-clausal sentence:

True(x y) (- [True{y) (- True(x)]

To show that x y is true,
show that y is true assuming that x is true.

In some cases only one of the clauses T7-8 is needed to solve the
problem. If x is not true as in the case

(- True «p & p) J q)

then only the nOn-Horn clause T7 which derives the assertion

True (p & p) (-

is needed. But if y is true as in the case

(True (q J (p V ""p))

then only the Horn clause TB which derives the subgoal

(- True (p V ""p)

is needed.

In most cases, however, both clauses need to be used. The simplest
problem which requires the cooperation of clauses T7-B is that of showing
that p p is true.

(- True (p p)

T7 T8

True (p) (- (- True (p)

o

156 Chapter 7: Resolution

The derived subgoal of showing that p is true is solved by the derived
assertion that p is true. The bundle of arcs associated with the
resolution step is unlabelled, because only derived clauses are involved
in the inference.

The problem of showing that

p q is true if p j r is true and r q is true

is more interesting. Here it is natural to reason bi-directionally, both
forward from the two assumptions and backward from the conclusion.
Moreover, when reasoning backward from the conclusion

<- True(p j q)

it is natural to reason forward from the derived assertion

True(p) <-

and backward from the derived subgoal

(- True{g)

The following resolution proof formalises the argument.

True(p j rl (- <- True(p g) True(r g) <-

T9 T7 TB T9

True(r) (- True(p) True(p) (- (- True(g) True(q) <- True(r)

<- True(r)

o

Arrow notation for non-Horn clauses ----- --- --- ----
The arrow notation used earlier for Horn clauses, to indicate the

combination of top-down and bottom-up inference, can also be used for
non-Horn clauses. The problem-solving interpretation, in particular, of
sentences of the form

A (- IB (- Cl

can be indicated by arrows associated with the corresponding clauses

Arrow notation for non-Horn clauses 157

1 2 1

,/], 'fl' .JJ,
A, c (- A (- 8

,/],
2

The notation associated with the first clause indicates that it should
wait for a subgoal of the form A and then derive the assertion C (- . The
notation associated with the second clause indicates that it should wait
for a subgoal of the form A and then derive the subgoal B.

The use of arrow notation to control the behaviour of a problem-solver
will be investigated in the next chapter.

Disjunctive solutions to non-Horn clause problems

Plan-formation tasks, described by means of non-Horn clauses, may
require the construction of conditional plans from disjunctive solutions.

Consider, for example, the problem of putting the maximum of two
numbers A and B in a location L:

MI
M2
M3
M4
MS
M6
M7

(- Holds(val(L,x), w), Max(A,B,x)
Numb{A) (-
Numb (B) (-
Location (L) (-
u v, v u (- Numb(u), Numb (v)
Max(u,v,u) (- v (u
Max(u,v,v) (- u < v

Suppose that the only action available is the assignment operation. Given
a state w, it generates the new state

assign(u,v,w)

which results from w by putting v in location u. The "semantics" of the
action are described by specifying its preconditions and the statements
which are added and deleted when the action is performed. To simplify
matters, the single precondition, that u be a location, can be
incorporated into the clauses which specify the added (MS) and deleted
(M9) statements:

MS
M9

Holds (val (u,v), assign (u,v ,w» (- Location (u)
Holds(x, assign(u,v,w)) (- Holds(x,w), Diff(x, val(u,y»,

Location (u)

Before solving the problem top-down it is convenient to reason one
step bottom-up:

158 Chapter 7: Resolution

M2,_/M3

M10 A i B, B i A (-

The top-down solution using the derived lemma M10 requires that the two
procedures M6 and M7 cooperate to solve the single subgoal Max(A,B,x).

(- Holds (val (L,x),w) , Max(A,B,x)

w=assign(L,x,w') MS

<- Location(L), Max(A,B,x)

M4

<- Max(A,B,x)

(- 8 < A (- A < B

o
The solution is a disjunction of two possibilities

w = assign(L,A,w') or assign(L,B,w'), for any w'.

A solution exists, but it is
possibilities it is.

not determined3 which of the two

Non-determinism3 contrasts with non-determinisml" A problem is non-
deterministic3 If Its solution

is underspecified.
overspecified

or

It is non-deterministicl

x = tl and t2 and ... and

if its solution is

The treatment of program construction as an application of plan-
formation was first proposed by Green [1969b] and Lee and Waldinger
[1969J. Lee ana Walainger, in particular, present an algorithm for
extracting conditional programs, such as

If A < B then w assign(C,B,w ')
else w ; assign(C,A,w ')

from disjunctive solutions. The relationship between plan-formation and
axiomatic sem2ntics of programming languages has been investigated by
Moss [1977].

Factoring 159

Factoring

The resolution rule alone is complete for demonstrating the
inconsistency of Horn clauses. Moreover, it is also adequate for many,
but not all, non-Horn clause problems. The combination of factoring and
resolution, first described in Robinson's original, unpublished paper is
equivalent to the published version of the resolution rule [Robinson
1965a]. Consequently, the completeness proof in the published paper
establishes completeness of resolution and factoring combined.

The barber paradox is a simple example which requires the use of
factoring.

Suppose that all barbers shave all people who do not shave
themselves and no barber shaves anyone who shaves himself.
Then there are no barbers.

To establish the conclusion we assert that there is a barber and
attempt to derive a contradiction.

Bl
B2
B3

Shave{x,y), Shave(y,y) (- Barber (xl
(- Shave(x,yl, Shave(y,y), Barher{x)
Barber <Q) (-

That the three clauses are inconsistent can be demonstrated by
instantiating the first two clauses

(-
<-

deleting duplicate atoms

<-
<-

and applying resolution.

(- Barber(©) (- <-

Shave (Q ,Q) (- (- Shave <Q,g)

o
That resolution alone is inadequate for demonstrating inconsistency

can be seen more clearly by considering a simpler example:

51
52

5 (xl, 5 (yl <-
(- S(u), S{v)

The two clauses are inconsistent because they have instances

S{x), S(x) (-
(- S(u), S(u)

160 Chapter 7: Resolution

which, after removal of duplicate atoms, are directly contradictory:

SIx) <-
<- s (u)

However, no matter how many times resolution is applied to clauses 81-2
and their descendants, every resolvent contains exactly two atoms, and
consequently no resolvent is the empty clause (which contains no atoms).

The factoring rule, which needs to supplement resolution in these
examples, generates instances of clauses in order to delete duplicate
atoms. The instantiating substitution can be restricted so that it
matches the two atoms which become duplicates. Applied to the two
clauses B1 and 82, factoring generates instances which are more general
than the two instances considered before.

Bl

B'l

Shave{x,yl, Shave(y,yl (- Barber (x)
(match underlined atoms)

Shave(x,x), Sbaue(x,Xj (- Barber (x)
(delete duplicates)

Shave(x,x) (- Barber(x)

Bll is the only factor of Bl. Similarly BI2 is the only factor of B2:

B'2 (- Shave(x,x), Barber (x)

Application of factoring and the combined resolution and factoring
refutation can be exhibited in a graph.

Shave(x,y) ,Shave{y,y) (- Barber (x) (- Shave{x,y) ,Shave(y,y) ,Barber (x)

facto ring facto ring

Shave{x,x) (- Barber (x) Barber (0) (- (- Shave(x,x), Barber (x)

Shave (Q,Q)

o
Factoring is only necessary infrequently and it creates redundancy if

it is applied too often. Perhaps the most restrictive constraint on the
use of factoring, without affecting completeness, is the one incorporated
in the model elimination proof procedure [Loveland 1968, 1969, 19781.

Exercises

1) Use resolution and factoring to show that the assumptions

John likes anyone who doesnlt like himself.
John likes no one who likes himself.

Exercises 161

are inconsistent.

Use

2) Suppose I believe:

resolution

(a) There exists a dragon.
(b) The dragon either sleeps iJ. its cave or hunts in

the forest.
(c) If the dragon is hungry then it cannot sleep.
(d) If the dragon is tired then it cannot hunt.

to answer the following questions:

What does the dragon do when it is hungry?
What does the dragon do when it is tired?
What does the dragon do when it is hungry and tired?

To answer the questions it is necessary to make explicit the assumption:

If x cannot do y then x does not do y.

3) Express the following assumptions in clausal form:

Everyone admires a hero.
A failure admires everyone.
Anyone who is not a hero is a failure.

Use resolution and factoring to find a pair of individuals (not
necessarily distinct) who admire one another.

4) This problem is discussed by Moore [1975J. Suppose there are three
blocks A, Band C.

A is on B which is on C.
A is green, C is blue and
the colour of B is unknown.

A green
B
C blue

Use resolution (and factoring if necessary) to find a green block on a
block which is not green. You must assume that blue is not green. What
block does the proof find?

5) Using resolution and factoring, show that the following conclusions
follow from assumptions Tl-14.

(a) If P o(r & g) is true
then (p :::) r) & (p g) is true.

(b) If P :::) g is true
then there is an r such that (p:> r) & (r :::) q).
What r does the proof find?

162 Chapter 7: Resolution

6) The relation Plus(x,y,z) which holds when x+y
using non-Horn clauses

Plus(x,y,z), Add(0,y) (-
Plus(x,y,z) (- Add(x,z)
Add (s (x) ,5 (z» (- Add (x,z)

z can be defined

where sex) names the successor of x.
solve the problem

Use resolution and factoring to

(- Plus (X,y,5 (y», Plus (x,x,y) •

163

CHAPrER JI.

The Connection Graph Proof Procedure

The search space determined by unrestricted application of the
resolution rule is highly redundant. Redundancy can be avoided, at the
expense of flexibility, by restricting resolution to top-down or bottorn-
up inference. It can also be avoided, however, without the loss of
flexibility by employing the connection graph proof procedure.

Clauses are stored in a graph and occurrences of matching atoms on
opposite sides of the arrow are connected by arcs. Associated with each
arc in the graph is the resolvent obtained by resolving the clauses
connected by the arc. The main operation of the connection graph proof
procedure is the selection of an arbitrary arc and the incorporation of
the associated resolvent into the connection graph. Top-down inference is
performed by selecting an arc connected to a goal statement; bottom-up
inference, by selecting an arc connected to a clause which contains no
conditions. Redundancy is avoided by deleting the selected arc and by
restricting the number of new arcs which are added when the resolvent is
incorporated into the graph.

The initial connection

The first step of the connection graph proof procedure is the
construction of the initial connection graph. In addition to the initial
set of clauses, the initial connection contains an arc for every
pair of matching atoms on opposite sides of the arrow in different
clauses. The arc connects the atoms and is labelled by the matching
substitution. Later in the chapter we consider the case in which an arc
links atoms in the same clause.

The initial connection graph for a simple non-Horn clause problem is
illustrated below.

Happy(x) <- Playing(x) Happy (x) (- Working(y), x employs y

x = Bob Y:;7
Playing(Bob), Working(Bob) (-

x = John
y Bob

John employs Bob (-

164 Chapter 8: The Connection Graph Proof Procedure

Associated with each arc in the graph is the resolvent obtained by
matching the atoms linked by the arc. Conversely, for every resolvent
which can be generated from different parent clauses there is an
associated arc in the graph.

According to Robinson's purity principle fRobinson 1965a], a clause
which contains an unlinked atom can be deleted from a set of clauses
without affecting its consistency (or inconsistency). Such a clause can
not contribute to a resolution refutation because the unlinked atom can
not be resolved upon.

Deletion of clauses containing unlinked atoms is an important feature
of the connection graph proof procedure. In addition to the clause
itself, all links connected to its atoms must also be deleted from the
graph. Deletion of such links, however, may cause atoms in other clauses
to become unlinked. Thus deletion of clauses can create a chain reaction
in which a succession of clauses is deleted from the graph. Deletion of
clauses simplifies the connection graph, reduces the search space, and
makes it easier to find a solution.

The effect of deleting clauses can be illustrated by assuming that Bob
is unemployed and modifying the preceding example.

Happy (x) (- Playing (x) Happy(x) (- Working(y)

x • BObi y • ,
x employs y

Playing (Bob) , Working(Bob) (-

We delete the clause which contains the unlinked atom.

u
Happy(x) (- :l:y:::rX)

Playing (8ob) , Working (Bob) (-

The new graph contains a new unlinked atom. Deletion of clauses
continues until we are left with the empty set of clauses. The empty set
of clauses is trivially consistent, because it contains no clauses which
can be false in an interpretation. Therefore the original set of clauses
is consistent as well.

The Resolution of links in connection graphs 165

The Resolution of links in connection

The basic operation of the proof procedure is the selection of a link
ana the generation of the associated resolvent. The link is deletea and
the resolvent is aaaea to the graph. New links are aaaea connecting atoms
in the resolvent to atoms in the rest of the graph. The new links can be
constructea, without searching the graph, from the links which are
alreaay connectea to the atoms in the parent clauses.

For example, in the initial connection graph at the beginning of the
chapter, we can reason bottom-up by selecting the link which matches the
two atoms containing the preaicate symbol Playing. In the resolvent,
the atom Happy (Bob) aescends from the atom Happy (x) in the parent
clause. All new links connect ea to the new atom descena from the links
connectea to the parent atom. In this caSe the new link connecting
Happy (Bob) to Happy(u) is aerivea from the 010 link connecting
aappy(x) to Happy(u). The new connection graph, which results from
selecting the link, generating the resolvent, aaaing new links and
deleting both parent clauses (which now contain unlinkea atoms) is
illustratea below.

Happy (Bob) , Working (Bob) (- Happy{x) (- Working(y), x employs y

y Bob x
y

John
Bob

John employs Bob (-

The substitution u = Bob which labels the new link can be computed from
the substitution x = Bob which label lea the selected link and the
substitution u = x which labelled the "parent" link from which the new
link descends.

Before continuing with the example we outline the definition of the
proof procedure in general.

The connection proof proceaure begins with an initial connection
graph and processes it repeatedly until the empty clause is generated. It
processes £ connection Qy

(1) repeatedly deleting clauses containing unlinked atoms
and deleting their associated links until all such
clauses have been deleted and then

(2) selecting a link, deleting it and adding the resolVent
and its associated new links to the graph.

This definition of the top-most level of the connection graph proof
procedure is given in the "repeat-until" iterative style of algorithm
description associated with Algol-like programming languages. At the end
of the chapter, we shall reexpress the definition in the Horn clause
logic programming style.

166 Chapter 8: The Connection Graph Proof Procedure

We return to the example. Any link may be selected from the graph. we
shall continue, however, with the bottom-up analysis of the case
Playing (Bob) by selecting the link labelled u =Boh. Deletion of the
selected link leaves one of the parents with an unlinked atom. The parent
is deleted.

(- x

Working(Bob) (- Happy (x) (- Working(y), x employs y

y = Bob x
y

John
Bob

John employs Bob (-

The goal has now been solved in the first case Playing(Bob). Next we
investigate the remaInlng case Working(Bob), also reasoning bottom-up_
When the selected link is deleted, both parent clauses contain unlinked
atoms and are deleted as well.

(- Happy!u)

Happy (x) (- x employs Bob

x = JOhni

John employs Bob (-

We continue to reason bottom-up and delete both parents because they
contain unlinked atoms.

(- Happy(u)

Happy (John) (-

The resolvent associated with the remaining link is the empty clause and
both parents are deleted.

o
Notice that the proof gives a disjunctive answer to the question:

Is anyone happy?

Yes, Bob or John.

The sequence of successive connection graphs generated by the proof
procedure constitutes both a proof of inconsistency as well as a search
for the proof. In this example, every step in the search contributes to
the proof itself. In the general case, however, according to a theorem of
Ehrenfeucht and Rabin [Bundy 19711 [Meltzer 19721, it is not always

The Resolution of links in connection graphs 167

possible to avoid steps which are not relevant to the proof.

At every stage during the course of searching for a proof, any link
can be selected to generate a resolvent. The selection of different links
leads to the generation of different search spaces, some of which may be
easier to search than others. In the following sequence of connection
graphs we illustrate a top-down search for a solution to the previous
problem. Selected links are indicated by bold lines. Several links may be
marked for selection in the same graph when the order of selection does
not matter, in order to reduce the number of separate graphs displayed.
Deletion of clauses containing unlinked atoms is not exhibited
explicitly.

Happy(x) (- Playing (x) Happy(x) (- Working(y), x employs y

x = Bob Y7 x
Y

John
Bob

Playing (Bob) , Working(Bob) (- John employs Bob (-

(- Playing(u)

u = Bob

(- Worklng(y), u employs y

John
Bob 7

Playing(Bob), Working (Bob) (- John employs Bob <-

:,./ingIBOb)

Working (Bob) (-

o

As in the bottom-up search for a solution, every step contributes to the
proof.

Notice that unrestricted application of the resolution rule is
redundant in the sense that it determines a search space which contains
many unnecessary clauses including, in particular, all those which belong
to both the top-down and the bottom-up search spaces exhibited above.

16B Chapter 8: The Connection Graph Proof Procedure

Mixed !QE-down and bottom-gE search - the parsing problem

Top-down and bottom-up inference can be mixed, simply by mixing the
selection of links connected to atoms in goal statements with the
selection of links connected to atoms in clauses which contain no
conditions. In general it is useful always to select a link which results
in the least complicated new graph. This strategy applied to a version
of the parsing problem of Chapter 3 results in a mixed top-down, bottom-
up search. As in the preceding example, selected links are indicated by
bold lines. substitutions, which label links, are omitted from the
graph.

(- Sent{1,6)
I

__ ------se-n-t-(x-'-Y-I-<--lVP(Z'Y),

Vp{x,y)-<- Aux(x,z), Verb(z,y) Vp(x,y) (- Verb(x,y)

Np(x,y) <- Noun(x,yl

gyre(S,6) <- Np(x,yl <- Oet(x,u), Adj (u,vl,

Aux(x,yl <- did(X'Y)/ I Noun(x,y) <-toves(x,y) loet (x,y) <- ther'Y' Adj (x,y) <- S(ithY(X'Y)

did(4,5) (- the(1,2) (- slithy(2,3) (- toves(3,4)<-

__ -------<--iP (Z,6), NP(l'Z)l

Vp{x,y)-(- Aux(x,z) ,Verb(z,y) Vp{x,y) (-...,Yerb(x,y)

/ L-----
Aux(4,5) (- Verb(5,6) (- Np(x,y) (- Noun(x,y)

Np(x,y) (- Det{x,u), Adj (u,v),

/ /
Det(1,2) (- Adj (2,3) <-

Noue:!

Noun(3,4) (-

Mixed top-down and bottom-up search - the parsing problem 169

(- Vp(z,6), Np(l,z)

<-Verb(x,y)

Verb(5,6) <- Np(l,y) <-

Noun(3,4) (-

(- Vp(z,6), Np(l,z) " Vp(4,6) (- Vp(5,6) (- Np(1,4) (- Np(3,4) (-

(- Vp(4,6)

/
Vp(4,6) <- Vp(5,6) <-

o

Macro-processing and middle-out reasoning

In conventional programming languages, macro-processing transforms a
program by eliminating all calls to a given procedure, executing them in
advance of the particular problems to be solved. The original procedures
are replaced by the new ones. The analogue of macro-processing in logic
is middle-out reasoning combined with deletion of the parent clauses
because they contain unlinked atoms.

Macro-processing has the advantage that procedure calls are executed
once and for all before the problems are given, rather than repeatedly
during the course of trying to solve them.

Macro-processing can be illustrated by eliminating all calls to the Np
and Vp procedures in the parsing problem.

170 Chapter 8: The Connection Graph Proof

__ -< -liP I z, y), Np lx, z)

VP(x,y)-<- ux(x,z), Verb(z,y) Vp(x,y) (- Verb(x,y) / ..
Verb(x,y) (- gyre(x,y) Np(x,y <- Noun(x,y)

Adjlu,v),

Noun(x,y) (- toves(x,y)

Adj (x,y) (- slithy(x,y)

Sent (x,y) (- Noun (x,z),
Verb(z,y)

Sent(x,y) (- Noun(V,Wl\
Adj(u,v),

Det(x,y) (- the(x,y) Det(x,u),

Ad] (x,y) (- slithy{x,y) Verb(x,y) (- gyre(x,y)

<-'Det(X,U),/

Noun(x,y) (- toves(x,y) Noun(v,w),

=:verbIZ,Y),

Aux(x,y) (- did(x,y)

Sent(x,y) (-
Aux{u,v),
Verb (v ,y)I ______ ---

Arrow notation for controlling selection of links

The arrow notation, introduced informally earlier in the book, can be
used to control the selection of links in the connection graph proof
procedure. The links of a connection graph can be turned into arrows by
giving them a direction. A clause is regarded as active if all links
connected to its atoms are outgoing. A link may be selected if it is
connected to an atom in an active clause. The new links connected to
atoms in a resolvent inherit their direction from the parent links from
which they descend.

The connection graph proof procedure can be restricted to top-down
inference, by directing all arrows from conditions to conclusions. Then a

Arrow notation for controlling selection of links 171

clause is active if and only if it is a goal statement. The following
sequence of graphs illustrates the use of arrow notation to impose a top-
down problem-solving interpretation on the problem of the fallible Greek.
Despite notational similarities, there is no connection between arrow
notation in connection graphs and arcs in semantic networks.

(- Fallible(x), Greek(x)

/
Fallible(x) (- Human(x) ! Greek (Socrates) (-

Human (Turing) (- Human (Socrates) (-

(- Fallible(Socrates)

/
Fallible(x) (- Human(x)

Human (Turing) (- Human (Socrates) (-

(- Human (Socrates)

Human(Turing) (- Human (Socrates) (-

o

The proof procedure can be restricted to bottom-up inference, by
directing all arrows from conclusions to conditions. Then a clause is
active if and only if it has no conditions. The use of arrow notation for
bottom-up inference is illustrated below.

(- Fallible(x),

/
Fallible(x) (- Human (x) /,

Human (Turing) (- Human (Socrates) (-

Greek(x)

i Greek (Socrates) (-

172 Chapter 8: The Connection Graph Proof Procedure

(- Fallible{Socrates) ,
Fallible(Turing) (- Fallible (Socrates) (-

o

The arrow notation can be used with non-Horn clauses to control the
generation of assertions for use in the solution of subgoals. The oon-
Horn clause in the connection graph below, for example, generates the
assertion

(-

to assist the solution of the subgoal

(-

The two clauses from which the assertion and subgoal are derived,
together with the associated arrow notation, attempt to show that Bob is
happy by asserting that is a student of Bob and showing that
even likes logic. Since nothing else is said about the individual
if it can be shown that likes logic, then anyone who is a student of
Bob likes logic. The two clauses, therefore, state in effect that

Bob is happy if all his students like logic.

The arrows in the following connection
solution top-down from the top-level goal
bottom-up from the assertion to be used in

graph direct the search for a
and the derived subgoal, but

solving the subgoal.

<- Happy (Bob)

(-

(-

Likes{x,loglc)<-Studentof{x,Bob), Studies(x,loglC) <-Studentof(x,Bob)

Arrow notation for controlling selection of links 173

(- (-

o
Notice that Bob would also be happy if he had no students

(- Studentof(x,Bob)

or if liked logic unconditionally

Likes(x,logic) (- .

There is no guarantee that every assignment of direction preserves the
solvability of a connection graph. It seems sensible, moreover, to
restrict the direction of arrows so that all links connected to the same
atom have the same direction.

Self-resolving clauses

A self-resolving clause is one which resolves with a copy of itself.
For example, the clause

Append (x.y, z, x.y') <- Append(y,z,y')

resolves with the copy

Append(u.v, w, u.v') (- Append (v,w,v') •

For the sake of completeness, it is necessary to connect resolving
atoms in a self-resolving clause by means of a link.

Append (x.y, z, x.y') (- Append(y,z,y')

Such a link is a pseudo-link in the sense that is stands for a link
between atoms in different copies of the same clause.

Pseudo-links can be selected for processing, but it is simpler for the
purposes of exposition to restrict their use to the derivation of new
links. This is illustrated in the following example.

Append(x.y,

(- Append(A.C.nil, B.nil, w)

(-

The single atom in the resolvent descends from an atom having two links,
one of which is a pseudo-link. The pseudo-link gives rise to a descendant
which is a normal link. The other link connected to the assertion has no
descendant. The original goal statement contains an unlinked atom and
therefore is discarded when the resolvent is added to the graph.

174 Chapter 8: The Connecticn Graph Proof Procedure

<- Append (C.nil, 8.nl1, w'}

Append (x.y, z, x.y') <- Append(y,z,y') Append (nll,x,x) (-

The new graph
time, when the
descendant and

is similar to the initial connection graph. However, this
resolvent is generated, it is the pseudo-link which has no
the link to the assertion which has.

(- Append (nil, B.nil, w")

(-Append (x.y,

The resolvent of the new link is the empty clause. Independently, the
recursive clause can be deleted because its conclusion has only a pseudo-
link. Once the recursive clause has been deleted, the assertion can be
deleted as well. The resulting connection graph consists of the empty
clause alone.

o
In general, a self-resolving clause can be deleted if one of its atoms
has no normal (non-pseudo-) links. The inheritance of links and pseudo-
links in connection graphs has been studied by Bruynooghe [1977]. Note
that, although in all of the preceeding examples the final connection
graph contains only the empty clause, in the general case it may contain
other clauses as well.

Deletion of links whose resolvents are tautologies

A clause is a tautology if it contains the same atom both as a
condition and as a conclusion. The use of tautologies in top-down
problem-solving leads to loops in which a goal reoccurs as its own
subgoal. For that reason, because they do not positively contribute to
the solution of problems, tautologies can be deleted from a set of
clauses without affecting inconsistency [Robinson 1965a]. In the
connection graph proof procedure, the effect of deleting tautologies can
be obtained by deleting links whose resolvents are tautologies.

The set of clauses describing the concept of even number is an
example.

Even(0) (-

Even(x) (- Even(s(s(x)))

The two links connecting the two recursive clauses have resolvents which
are tautologies. The links are deleted from the graph:

Deletion of links whose resolvents are tautologies 175

.------........ Even (s (5 (x))) (- Even (x) Even (0) (-

---------Even(x) (- Even(s(s(x)))

The collection of three clauses is consistent because it contains no
goal statement. The two recursive clauses can be deleted because they
contain atoms with only pseudo-links. The basis assertion can then be
deleted as well. Given the goal statement

(- Even(s(s(s(s(0)))))

moreover, the
pseudo-link.
simpler graph:

condition of the second recursive clause still has no non-
Consequently, the clause can be deleted, leaving the

(- Even(s(s(s(s(0)))

Even(s(s(x))) (- Even(x) Even(0) (-

In more complex examples it is not so easy to recognise that a clause
cannot contribute to a solution. In such cases a more global analysis may
be useful. Global problem-solving strategies are investigated in the next
chapter.

The connection proof procedure

We summarise here
procedure in a style
interpretation of Horn

the definition of the connection graph proof
of English which corresponds to the procedural
clauses.

To demonstrate the
connection proof
connection graph.

inconsistency of a
procedure, generate

set
and

of clauses by the
solve its initial

The initial connection for a set of clauses contains all
clauses in the set, a (non-pseudo-) link connecting each pair of
matching atoms on opposite sides of the arrow in different clauses,
and a pseudo-link connecting atoms on opposite sides of the arrow in
the same clause if the atoms match in different copies of the clause.

A connection graph is solved if it contains the empty clause.

To solve a connection graph which does not contain the empty
clause,

176 Chapter 8: The Connection Graph Proof Procedure

either delete a link whose resolvent is a tautology, and
solve the resulting connection graph,
or delete a clause containing an unlinked
with its associated links, and solve
connection graph,

atom, together
the resulting

or select a link which is not a pseudo-link, delete it,
add the resolvent together with its new links to the
graph, and solve the resulting connection graph.

A (non-pseudo-) link connects an occurrence L of an atom in a
resolvent to an occurrence K of an atom in another clause if Land K
match, L descends from an occurrence L' of an atom in a parent
clause, and there is a link (possibly a pseudo-link) between L' and
K.

parent C' L' K D

CL/
parent

0<
resolvent resolvent

A pseudo-link connects Land K in a resolvent if Land K match, L
and K descend from L' and K' in the (same or different) parent
clauses, and there is a link between L' and K'.

parent

resolvent

L' C' K'
0<

parents

resolvent

e'L' K' D
,--...
L C K

The four different ways of solving a connection graph correspond to
four clauses having the same conclusion. Ignoring the deletion of links
whose resolvents are tautologies, the resulting three procedures express
the logic and top-down control of the iterative algorithm described at
the beginning of the chapter. The earlier algorithm can be obtained from
the new one by further specifying the control over the use of the
procedures given here. In particular,

(1) the alternative ways of solving a connection graph
should be tried one at a time in the order in which they
are written above and

(2) backtracking should not be employed, as the non-
determinisml of the procedures doesn't matter.

The proof procedure which has been described is incomplete as it
stands, because the factoring operation haS been omitted. In order to
avoid redundancy, severe restrictions need to be imposed on its use.
Since adequate restrictions have not yet been devised, and since it
simplifies the description of the proof procedure, we have decided to
ignore the factoring operation altogether. A definition of the proof
procedure including factoring can be found in the original publication
[Kowalski 1974aj.

The completeness of the connection graph proof procedure cannot be
assured if the selection of links which are needed for a proof is
postponed indefinitely. Such indefinite postponement might arise, for

The connection graph proof procedure 177

example, when the selection strategy carries out a depth-first search
along a non-terminating path of a top-down search space. The requirement
that every link eventually be scheduled for selection is the analogue of
the exhaustiveness of search strategies for more conventional proof
procedures.

A completeness proof for a variant of the connection graph proof
procedure has been constructed by Brown [unpublished]. In the case of
Horn clauses, his proof applies also to the proof procedure which has
been described here. Other completeness proofs for the general case have
been announced by Siekmann and Stephan [1976J and by Bibel [1979].

A number of proof procedures employ connection graphs but process them
in a manner different from the one described here. Noteworthy among
these are those of Sickel [1976] and Kellogg, Klahr and Travis [1978].
Closer to the connection graph procedure, however, is the unpublished
cancellation system of Colmerauer.

Exercises

1) Express the top-level of the definition of the connection graph
proof procedure by means of Horn clauses.

2) Using the methods described later in Chapter 10 for transforming
sentences from the standard form of logic into clausal form, the
definition of subset can be expressed by means of the following two
clauses:

x !& y, arb(x,y) e: x <-
x " Y <- orb(x,y) E y

Used top-down these clauses behave as procedures which given a subgoal of
the form x S y,

assert that some arbitry individual, say arb(x,y), belongs
to x and try to show that it belongs to y.

Use the connection graph proof procedure to prove the following theorems.

a) The empty set defined by

<- X £ I/>
is a subset of any set S.

b) Every set S is a subset of the universal set defined by

x £ U <-

cl Every set is a subset of itself.

d) The set A such that

178 Chapter 8: The Connection Graph Proof Procedure

a{x), b(x) (- x EA

is a subset of the set B such that

x€B<-a(x)
x E B (- b (x)
x € B (- c (x) •

This is a formulation without equality of the problem of
showing that

{arb}!; {a,b,c,}.

3) Verify the claim made in Chapter 5 that, using the connection graph
proof procedure, bottom-up execution of the definition

Fib(0, 5(0)) <-
Fib(s(s(x)), w) (- Fib(s(x), u), Fib(x,v), Plus(u,v,W)

of Fibonacci number requires only
that the Plus relation is defined
and ignore the space that would be

a constant amount of storage. Assume
by means of variable-free assertions

needed to store them.

179

CHAPTER 9

Global Problem-Solving Strategies

In this chapter we investigate problem-solving strategies which deal
with problems as a whole rather than with subproblems individually. Goal
transformation deals with the combination of goals in goal statements,
whereas analysis of differences deals with the effect of procedures on
the difference between goals and assertions.

Goal transformation consists of a number of related strategies which
are concerned with the logical relationships among subgoals. It includes
deletion of redundant 5ub90aIs, which are implied by other subgoals,
addition of implicit subgoals which are easier and more useful to solve
than those which are explicitly given, relectlon of inconsistent
subgoals, which are mutually incompatible, and rejectIOn of subgoals
which are contradicted an example.

The techniques of goal transformation are similar to those of program
transformation developed for recursion equations by Burstall and
Darlington [1977]. Program transformation transforms programs before
problems are given, whereas goal transformation transforms goals during
the course of attempting to solve them. Goal transformation techniques
have also been used in robot plan-formation, mathematical programming and
geometry theorem-proving.

Analysis of the differences between goals and assertions involves an
even more global approach to problem-solving. It attempts to identify
both procedures which reduce differences as well as those which increase
them or leave them invarIant. Preference can be given to procedures
which reduce differences over those which do not. Goals can be rejected
as unsolvable if it can be demonstrated that no procedure reduces
differences at all.

The techniques of difference analysis are similar to ones used in
program-proving. Demonstrating that programs reduce differences is
involved in proving program termination, whereas demonstrating that
programs leave properties invariant is used for proving program
properties. The strategy of selecting procedures for their effectiveness
at reducing differences is the basis, moreover, of the General Problem
Solver developed by Newell, Shaw and simon [1963].

Although the methods we describe can also be applied to non-Horn
clauses, we shall simplify matters by limiting attention to top-down
problem-solving by Horn clauses alone. Moreover, we shall not concern
ourselves with the heuristics which would be needed for the effective
utilisation of these methods.

180 Chapter 9: Global Problem-Solving Strategies

Deletion of redundant subgoals

A subgoal can be deleted from a goal statement, if the assumption that
the other subgoals have a solution implies that the redundant subgoal has
a compatible solution as well. According to this criterion, assuming the
transitivity of the relation,

x < y <- x < z, z y

the goal statement

(- r S s, s S t, r < t

contains the redundant subgoal r < t. For, assuming that the other
subgoals have a solution, it follows-that the assertions

r' < 5' (-
s' < t' (-

hold for appropriate instances ri,s' and t' of the terms r, s
respectively. But those assertions together with the transitivity
imply the assertion

r' < t I (-

and t
of .s.

which expresses that the third subgoal is compatibly solvable also. It is
unnecessary to solve the redundant subgoal explicitly. It suffices to
know that any solution of the other subgoals guarantees the existence of
a compatible solution of the third subgoal as well.

The transitivity clause does not need to be part of the program or
even a logical consequence of it. To justify deletion of the redundant
subgoal, it suffices that transitivity be a property of the program. This
is the case, for example, if the < relation is defined by the clauses

o < Y <-
s(x) < sty) (- x i y.

A statement is a property of a Horn clause program P, if it is consistent
with P and together with P implies no variable-free assertions not
already implied by P. A program property, therefore, adds no solutions to
those which can be obtained by the program itself.

Deleting a duplicate occurrence of a subgoal is a special case of
deleting a redundant subgoal, since anyone occurrence of a subgoal
implies any other Occurrence. Thus the goal statement

(- Pr Q, P

for example, can be replaced by

(- P, Q.

Addition of surrogate subgoals 181

Addition of surrogate subgoals

Although it is often useful to delete redundant subgoals, it is
sometimes beneficial to add them instead.

The strategy of deriving additional subgoals is common in mathematical
programming, where subgoals are regarded as constraints to be satisfied.
A surrogate constraint, whose solution is implied by the solution of the
orlginal constralnts. can be added and then solved before the others.
This is useful if the surrogate constraint is easier to solve and aids
the solution of the original constraints by determining the values of
some of their variables.

Consider, for example, the initial collection of two constraints
involving the variables x and y:

<- x+y = 2, x-y = 0

A sequential, top-down problem-solver would generate pairs of numbers
satisfying one of the constraints and then test whether they solve the
other. A more intelligent problem-solver, programmed by Warren in PROLOG,
coroutines between the two subgoals solving them simultaneously by
successive approximation. The program, a general-purpose, Horn clause
problem-solver, always selects a subgoal which contains fewest variables
at the top-most level.

The normal, mathematical problem-solving method, however, derives and
solves a surrogate constraint instead. It assumes that the original
constraints have a solution and concludes (by adding the two equations
together) that the additional constraint

<- 2*x = 2

must also be satisfied by the same solution. The new constraint is
redundant in the new goal statement

<- x+y = 2, x-y = 0, 2*x = 2

but it can be solved without any search. Moreover, once it has been
solved, the remaining instantiated original constraints

<- l+y = 2, l-y = 0

caD then be solved without search as well. In fact, it suffices to solve
just one of the remaining constraints, because the other constraint is
now redundant.

The strategy of surrogate subgoals is useful for
problems. Consider, for example, the problem of finding
which the robot is in the room and next to the box

<- In (Rob,room.w), NexttO{Rob,box,w).

plan-formation
a state w in

Assuming that the box is not in the room initially and that the robot is
more mobile than the box, it is useful to derive the surrogate subgoal

(- In{box,room,w)

182 Chapter 9: Global Problem-Solving Strategies

from the original subgoals using the program properties

In{x,y,w) (- In(z,y,w), Nextto(x,z,w)
Nextto(x,z,w) (- Nextto{z,x,w).

If the surrogate subgoal is added to the original goal statement

(- In(Rob,room,w), Nextto(Rob,box,w), In (box,room,w)

and is selected for solution before the others, then the
solution (where the robot pushes the box into the room) finds
which directly solves the remaining subgoals.

Rejection of inconsistent goal statements

simplest
a state w

An entire goal statement can be rejected as unsolvable, if the
assumption that it can be solved leads to contradiction.

A simple case is the one in which a goal statement is subsumed by a
program property or an integrity constraint. The goal statement

G (- On(A,B,w), Clear(B,w), On(B,C,w)

for example, is subsumed by the clause

c (- On(x,y,z), Clear(y,z)

which expresses that nothing is clear and has something on it at the same
time. In general, one clause Cl subsumes another C2 if all the
conditions and conclusions of some instance of Cl are contained among the
conditions and conclusions of C2 . The subsuming clause is more general
than the subsumed clause and possibly has fewer conditions or fewer
conclusions. In the example above, the instance of the subsuming clause C
(in which x = A, Y = 8 and z = w) contains one fewer condition than the
subsumed clause G.

A clause can be deleted from a set of clauses if it is subsumed by
another clause in the same set. Deletion of the subsumed clause does not
affect the consistency (or inconsistency) of the set of clauses as a
whole. A thorough discussion of the completeness of deleting subsumed
clauses is contained in the book by Loveland [1978].

The strategy of deleting a subsumed goal statement can be regarded as
a special case of deleting an inconsistent one. In the preceding example,
the assumption

On(A,B,s) (-
Clear(B,s) (-
On(8,C,s) (-

that there exists a solution w = s
inconsistent with C.

of the goal statement G is

Rejection of an inconsistent goal
than deletion of a subsumed one. It

statement, however, is more general
can involve an arbitrary amount of

Rejection of inconsistent goal statements

deduction. The database query

<- Teaches (John,y)

for example, is not subsumed by any of the clauses

Tl
T2
T3

Teacher (x) <- Teaches(x,y)
<- Teacher(x), Student(x)
Student (John) (-

but is unsolvable because the assumption that it is solvable, namely

Teaches (John,A) <-

say, is inconsistent with Tl-3.

183

Similar strategies for rejecting queries which are inconsistent with
type information have been developed by McSkimin and Minker [1977] who
augment a resolution theorem-pr over with a semantic network which stores
and processes type information. Subsumption of unsolvable goal statements
is also a feature of plan-formation systems developed by Dawson and
Siklossy [1977], Hewitt [1975] and, more generally, of the logic
programming system developed by Robinson and Sibert [1978].

Generalising the use of diagrams in geometry

In order to justify the addition or deletion of a redundant subgoal,
it is necessary that the assumptions used to derive the subgoal be
properties of the procedures which can be used to solve it. In order to
justify rejection of an inconsistent goal statement, however, a weaker
condition suffices: The assumptions A used to derive inconsistency need
only be consistent with the procedures P.

For, suppose that

(il
(ii)
(iii)
(iv)

P is consistent with A,
G* expresses that the goal statement G is solvable,
G* is inconsistent with P and A, but
P solves G.

Then, since P solves G, P implies G* and therefore P together with A
implies G*. But then, since P is consistent with A, G* is consistent with
P and A , contradicting (iii). It follows that

if P is consistent with A, but
G* is inconsistent with P and A, then
P does not solve G.

The use of diagrams to reject un solvable subgoals in Gelernter's
Geometry Theorem Proving Machine [1963] can be regarded as a case of
using assumptions which are consistent with the problem-solving
procedures to reject inconsistent goal statements. The axioms of
geometry function as procedures and the description of the diagram
functions as the additional assumptions. The use of a diagram is
justified, provided its description is consistent with the general axioms

184 Chapter 9: Global Problem-Solving Strategies

of geometry and with the particular hypotheses of the theorem to be
proved. Gelernter estimated that the use of diagrams reduced the size of
search spaces on the average to 1/200 their original size. The argument
above shows that the use of examples to recognise the unso!vability of
problems need not be restricted to geometry. Examples can be used to
recognise and reject unsolvable subgoals in any problem-domain.

Goals as generalised solutions

It is sometimes useful not to solve subgoals explicitly but to regard
them instead as standing for the general class of all their solutions.

ConSider, for example, an initial goal statement

<- G(x)

which eventually reduces to the subgoal

(- x > 0.

Instead of generating an arbitrary positive number x as an explicit
solution, it is more informative to report that positive number is a
solution. This can be effected by regarding the subgoal x > 0 as a
generalised solution which stands for the class of all its individual
solutions.

Solving subgoals by generalised solutions is a feature of Bledsoe's
approach to theorem-proving [1971, 19771. To be effective, it needs to
be combined with goal transformation. Given a goal statement

(- x > 0, x > 1, G(x)

for example, deletion of the redundant subgoa1 is necessary to transform
the goal statement to the new one:

(- x > 1, G (x)

Given
(- x (0, x > 1, G(x)

on the other hand, rejection of inconsistent subgoals is necessary to
recognise that the goal statement is unsolvable.

Treating certain kinds of goals as generalised solutions is also
useful for database queries, and is a feature both of Darlington's [1969]
resolution information retrieval system and of McSkimin and Minker's
[1977] semantic network theorem-prover. Given the query

Who teaches programming?
(- Teaches (x,programming)

and the general rule

All professors teach programming.
Teaches (x,programming) (- Professor (x)

Goals as generalised solutions 185

it is better to regard the resulting subgoal as a generalised solution

(- Professor (x)

than it is to report one or more of the answers which qualify as
solutions as a result of the assertions

Professor (Mary)
Professor (John) (-
Professor (Bob) (- .

Goal transformation and the information explosion

It is a characteristic of human problem-solving that the assimilation
of additional information generally improves problem-solving efficiency.
This contrasts with the simple model of problem-solving in which all
knowledge is used as problem-solving procedures. Additional information
only increases the size of the search space and makes problems harder to
solve (except in those cases where only one solution is required and the
non-determinisml doesn't matter). In the goal transformation model,
however, additional information can be used to transform goal statements
and to reduce the size of the search space.

Loop detection EY analysis of differences

Like goal transformation, analysis of differences adds to the
possib1ities of recognising that a procedure goes into a loop.

Consider, for example, the procedure

Numb(x) (- Numb(s(x»

given the goal

(- Numb(s(s(0»)

and the assertion

Numb(0) (- .

Repeated top-down execution of the procedure gives rise to the non-
terminating, infinite sequence of subgoals:

f
(- Numb{s{s(0»)

(- Numb{s{s{s(0»»)

In this case the connection graph proof procedure avoids the loop,
because the procedure call Numb(s{x» has only a pseudo-link to the head
of the procedure. It follows that the procedure is unusable and can be

186 Chapter 9: Global Problem-Solving Strategies

deleted from the graph. If the assertion Numb(0) (- is replaced by the
assertion

Numb(s(0» <-

however, application of the procedure gives rise to the same infinite
loop, but the procedure can no longer be deleted, because its procedure
call has an additional non-pseuDo-link to the new assertion. The loop can
be avoided in all these cases, though, if it can be recognised that
application of the procedure cannot reduce the difference between the
goal and the assertion. The goal differs from the assertion in that it
contains a greater number of occurrences of the function symbol s.
Application of the procedure only increases the difference by generating
subgoals which contain even more occurrences of s.

The global nature of difference analysis becomes apparent if the
assertion is replaced by the new assertion

Numb(s(s(s(s(0»» (- .

Now, application of the procedure reduces the difference between the goal
and the assertion and eventually solves the problem.

(- Numb(s(s(0»)

(- Numb(s(s(s(0»»

(- Numb(s(s(s(s(0»»)

o

A procedure might be needed for a solution even if it increases the
difference between the goal and the assertions. Given, for example, the
goal

(- Numb(s(s(s(0»»

and the assertion

Numb(0) (-

the procedure

Numb(s(s(x») (- Numb(x)

decreases the difference, whereas the procedure

Numb(x) (- Numb(s(x»

increases it. But both procedures are necessary to solve the problem.

Loop detection by analysis of differences 187

(- Numb(s(s(s(B»»

(- Numb(s(0»

(- Numb(s(s(B»)

(- Numb(0)

o
In the preceding examples the application of a procedure which

increases differences either generates a loop or else is essential for a
solution. More often, increasing differences neither contributes to a
solution nOr prevents its being found. Such is the case with the pair of
procedures

Numb(s(x» <- Numb(x)
Numb(x) <- Numb(s(x».

If one of them unnecessarily increases differences, the other can be used
to restore them to their previous state. Indeed using one procedure after
the other simply generates the kind of loop which can be avoided in the
connection graph proof procedure by deleting links whose resolvents are
tautologies.

In all of these examples,
assertions can be measured simply
function symbol s. In other cases
more complicated.

the
by

the

difference between subgoals and
the number of occurrences of the
characterisation of differences is

The factorial example

The definition of factorial is a more realistic example.
clausal sentence

Times(s{x) ,u,v) -) [Fact(x,u) <-) Fact(s(x) ,v)]

gives rise to two Horn clause procedures:

(1)
(2)

Fact(s(x) ,v) (- Fact(x,u), Times{s{x) ,u,v)
Fact(x,u) (- Fact{s(x) ,v), Times{s{x) ,u,v)

Given the assertion

Fact(0,s(0» (-

The non-

there is no goal for which the second procedure is necessary. However,
given the assertion

Fact(10,3628800) (-

instead, the second procedure is necessary for solving the problem

(- Fact(s(0) ,x)

188 Chapter 9: Global Problem-Solving Strategies

and the first procedure is unnecessary. Here the natural number n is
used as an abbreviation for the term

s (s (s (••• (") •••)))

n tlmes

containing n occurrences of the function symbol s.

More generally, it may be useful to have several assertions, e.g.

Fact(0,l) <-
Fact(10,3628800)

and, using analysis of differences, to apply
quickly narrows the gap between the problem
(I), for example, for the problem

<- Fact(3,x)

and using (2) for

<- Fact{8,x).

the procedure which most
and the assertions, using

Notice that the last example is a case of "don't care" non-
determinisml" There are several ways of finding the factorial, all of
which lead to the same result. It doesn't matter which method is chosen.
But, if backtracking is used, then it does matter (for the sake of
efficiency) that only one method is tried.

Invariant properties of procedures

The unsolvability of a problem can be detected not only by analysing
the effect of procedures on differences but also by analysing the
properties which procedures leave invariant. A problem can be recognised
as unsolvable if it can be shown that it differs from the assertions in a
property which is not affected by the procedures. A typical property of
this kind is parity.

Suppose we are given the clauses

Even (8) <-
Even(s(s(x)}} <- Even{x)
Even(x) <- Even(s(s(x))}
<- Even(17)

By analysis of differences, the second procedure can be rejected as
useless. Used alone it only increases differences. Used together with
the other procedure it only generates loops. By analysis of invariants
the first procedure can also be rejected. It reduces a problem of a given
parity to a subproblem of the same parity. No matter hQWfmany times the
procedure is used it cannot change the parity of the or1g1nal problem.
Since the original problem has an odd number of occurrences of "s" and
the assertion has an even number, the procedure cannot be used to solve
the problem. Here parity can be determined by counting occurrences of the

Invariant properties of procedures 189

function symbol "s". In more realistic cases the invariant property is
more complex.

Such the case in the following example, where the invariant
property is another form of parity. Given a sequence of six arrows (or
coins) each of which can face up or down, the problem is to transform
them from one state to another - for example, from

is

U U U D D D to U U D D U U

There is only one action available: it is possible simultaneously to
change the direction of two adjacent arrows.

A simple n-tuple representation in which

expresses that

the first arrow can have direction d1 ,
the second arrow can have direction d2'
and in general
the i-th arrow can have direction di

simultaneously, is the following.

State(U,U,U,D,D,D) (-

(- State(U,U,D,D,U,U)

State(x,y,z,u,v,w) (- State(x' ,y' ,z,u,v,w), Opp(x,x'), Opp(y,y')

State(x,y,z,u,v,w) (- State(x,y' ,z' ,u,v,w), Opp(y,y') , OPP(z,z')

State(x,y,z,u,v,w) <- State(x,y,z' ,u' ,v,w), Opp(z,z') , Dpp (u,u')

State(x,y,z,u,v,w) (- State(x,y,z,u' ,v' ,w), Opp(u,u') , Opp(v,v')

State(x,y,z,u,v,w) (- State(x,y,z,u,v' ,w'), Opp(v,v') , Opp(w,w')

Opp(U,D) (-

Opp(D,U) (-

The problem is unsolvable, because, whereas the procedures leave
invariant the parity of the number of arrows in either direction, in the
assertion there is an odd number of arrows in both directions and in the
goal there is an even number. To show that the procedures leave parity
invariant it is necessary to consider the two cases: Either the two
inverted arrows have the same direction before inversion or they have
different directions. If they have the same direction, then inversion
increases the number of arrows in one direction by two and decreases the
number in the other by two, but leaves the parity the same. If they have
different directions, then inversion leaves the number of arrows in both
directions unchanged and therefore does not affect the parity. In both
cases parity is an invariant property of the procedures.

190 Chapter 9: Global Problem-Solving Strategies

The mutilated checker board problem is similar. Given a checker-board
with two opposite corners removed,

the problem is to cover it with dominoes, each one of which covers two
adjacent squares. Since adjacent squares have different colours, the
procedures leave invariant the difference between the number of uncovered
squares of different colours. The problem is unsolvable, therefore,
because in the goal state the difference is zero, but in the initial
state it is two.

There is an obvious relationship between proving that logic procedures
leave a property invariant and proving a property of a flowchart program
using invariants. In both cases the objective is to show that if a
property holds at the beginning of a repetitive process then it holds at
the end. This is done by showing that if it holds at the beginning of one
step of the process then it holds at the end of the step. The desired
result then holds by induction.

Exercises

1) Suppose y is a function of x in the relation F(x,y), i.e.

y = z <- F(x,y), F(x,z)

where the only clause defining equality is

x = X (- •

Show how goal transformation can be used to eliminate redundancy when a
goal statement contains a pair of subgoals of the form

F(r,s) and F(r,t)

where r, sand t are terms.

2) Show that "goal transformation" can be used to justify transforming
the clause

Tower(t(x,y» (- Block(x), Tower(y), On(x,y)

Exercises 191

into the clause

Tower(t(x,y» (- Tower(y), On(x,y).

What property of the On relation is needed for the transformation?

3) In Chapter 6, the precondition Diff(x,z) can be eliminated from
the definition of the action trans(x,y,z) and its use can be replaced by
that of the integrity constraint

(- Holds(on(x,x), w)

instead. Compare the problem-solving behaviour needed for these two
alternative formulations of the plan-formation task.

SI

4) Analyse the English sentence

Reject stealing as a way of having something if you also
want to be virtuous.

as a recommendation concerning the use of the procedure

Have(u,x) (- Steal(u,x)

applied to goal statements containing two subgoals of the form

Have(r,s) and Virtuous(r).

Can the notions of goal transformation be used to establish a logical
relationship between the sentences SI, S2 and s3?

82
83

Do not steal if you want to be virtuous.
Anyone who steals is not virtuous.

5) Discuss the formalisation of the following problems and the
problem-solving strategies needed to solve them intelligently.

a) Find an assignment of digits 1,2,3, ••• ,9 to the cells of a
3 by 3 matrix such that:

row 1

row 2

row 3

(i) Exactly one digit is assigned to each cell.

(ii) No digit is assigned to more than one cell.

(ii) The three digit number in row 3 is the sum of the three

192 Chapter 9: Global Problem-Solving Strategies

digit numbers in rows 1 and 2.

(iv) If the digit i is assigned to a cell then the digit i+l is
assigned to a cell which is horizontally or vertically
adjacent.

b) Find an assignment of digits 1,2,3, ••• ,9 to letters in the
names such that:

DONALD
+GERALD

ROBERT

(i) Exactly one digit is assigned to each letter.

(ii) No digit is assigned to more than one letter.

(iii)The 6 digit number assigned to
sum of the 6 digit numbers
"GERALD".

(iv) 5 is assigned to "0".

the word "ROBERT" is the
assigned to "DONALD" and

193

CHAPTER 10

Comparison of Clausal Form with Standard Form

Clausal form is simpler than the standard form of logic and bears
greater resemblance to other formalisrns used for databases and
programming. Moreover, the resolution rule resembles conventional rules
for information processing and problem-solving more closely than does
standard form.

Although any problem can be converted from standard form to clausal
form, the standard form is often more economical and more natural than
the resulting collection of clauses. The specification of programs, in
particular, is an area in which the standard form of logic (or some
appropriate extension of Horn clause form) is more suitable than simple
clausal form. Moreover, the derivation of programs from specifications
can be achieved more naturally by reasoning with the standard form of
logic directly. Useful inference systems for the standard form of logic,
however, may be obtained by combining inference rules for clausal form
with rules for converting from standard form to clausal form.

Introduction to the standard form of logic

We shall present only the informal semantics of the standard form of
logic, by associating expressions of English with expressions of the
symbolic language. Such notions as "consistency" for expressions in
standard form can be understood informally in terms of their English
language counterparts.

The standard form of logic provides explicit symbolism for the
propositional connectives "and", "or", "not", "if" and "if and only if"
and for the quantiflers "for all" and "there exists". The propositional
connectives construct more complex propositions from simpler ones. 'I'he
symbol

& stands for "and"
V stands for "or"

stands for "not"
-) stands for "if .•. then ... " or "implies"
<-) stands for "if and only if".

A clause

not containing variables, is written

194 Chapter 10: Comparison of Clausal Form with Standard Form

in standard form. If n=0, the standard form omits the arrow

If m=0, the arrow becomes a negation symbol.

In standard form the direction of the implication sign -) is opposite to
the one we have been using in clausal form. But like the inequality sign

(or) of arithmetic the direction of the implication sign is not
significant. Thus the expressions

A -) Band B (- A

are equivalent. But notice that

A -) B and A (- B

are not.

Sentences in standard form can also be constructed by means of the two
quantifiers.

The universal quantifier

Yx stands for "for all x".

The existential quantifier

3x stands for "there exists an xtl.

Example Some oysters can be crossed in love.

Clausal Form (-
(-

Standard form 3x [Oyster (x) & Crossed-in-Love(x)]

In the clausal formulation, in order to refer to an
necessary to give it a name. The existential
individuals to be referred to without being named.

individual, it is
quantifier allows

In clausal form
sentences are implicitly connected by "and". In standard form the
conjunction & can be written explicitly.

Example Every human has a mother.

Standard Form \lx3y [Human (x) -) Mother (y,x) 1

Clausal Form Mother (mum(x) ,x) <- Human (x)

Introduction to the standard form of logic 195

In the clausal form it is necessary to use a function symbol to name the
individual y which exists as a function of x.

Changing the order of the quantifiers changes the meaning. The
sentence

30ix[Human(x) -) Mother(y,x)]

states there is a single individual who is the mother of us all. The
clausal form uses a constant symbol to name the individual.

<- Human(x)

For the precise definition of sentence, it is necessary to define the
more general notion of formula. Formulae may contain free (unquantified)
variables, whereas sentences do not. Thus the formula

\ix3yLoves(x,y)

is a sentence, but the formula

\ixLoves(x,y)

is not. It contains the bound (quantified) variable x and the free
variable y.

Terms and atomic formulae are defined just as for clausal form.

An expression Z is a formula if and only if it is an atomic formula
or an expression of the form

IX & Y]
IX V Y]
IX -) Y] or IY (- X]
[X (-) Y]

X
\Iv X or
3v X

where X and Y are formulae and v is any variable.

Any formula Z is a subformula of itself. In the first
above, any subformula of X or Y is a subformula of Z; and
three cases, any subformula of X is a subformula of Z.

four cases
in the last

An occurrence of a variable v in a formula Z is free (or unbound) if
it belongs to no subformula of Z of the form \Iv X or 3v X. If an
occurrence of v is free in X then it is bound in '7v X and 3v X by the
quantifiers \Iv or 3v respectively.

A formula is a sentence if and only if it contains no free occurrence
of a variable.

The definitions above permit sentences such as

196 Chapter 10: Comparison of Clausal Form with Standard Form

3x [Oyster(x) & 3x Tasty(x))

in which the same variable x is bound by different
quantifier. Such sentences create complications
avoided. Consequently we shall restrict formulae
satisfy the condition that

occurrences of a
which are better
z to those which

for every variable v which occurs in Z, either all
occurrences of v in Z are free in Z or all occurrences of
v in Z are bound by the same quantifier occurrence.

Any formula Z which violates the restriction can be transformed into an
equivalent one which satisfies it by renaming variables. This can be
done by applying the equiva1ences

Yu X <-) \Iv X I

3u X (-> 3v X'
where X' is obtained from
occurrences of u by v and v

X by replacing all
does not occur in X.

to subformulae of Z. Any subformula can be replaced by an equivalent one
without affecting the meaning of the formula in which it occurs.

Notice also that the definitions permit quantification Yv X or :3v X of
a variable v which does not occur in the formula X. Such quantification
is vacuous in the sense that the resulting formula is equivalent to the
unquantified formula X. Deletion of vacuous quantifiers is justified by
the equivalences:

r-----------------------,
\Iv X (-> X
3v X <-) X
where the variable v does not occur in X.

Several conventions can be employed to improve the readability of
formulae by reducing the number of brackets. Outermost brackets can
always be omitted, writing A -) B, for example, rather than [A -) B1.

The associativity of conjunction justifies omitting brackets when
several formulae are conjoined together. Since the formulae

A & [B & Cl and
[A & 81 & C

are equivalent, it is permissible to ignore brackets altogether, writing

A & B & C.

Similarly, the associativity of disjunction justifies writing

instead of
A V B V C
A V [B V C[
[A V Bl V C.

or

Brackets can be
the quantifiers and
conventions that

reduced further by establishing
the propositional connectives.

precedence rules for
We shall follow the

Introduction to the standard form of logic

The negation symbol I and the quantifiers 3, \1 bind more
closely than the other symbols and conjunction & and
disiunction V bind more closely than implication -> and
eguivalence <->.

197

Thus we may safely write

A V B V C <- D & E & F

instead of [[A V [B Veil (- [[0 & El & F 11

for example.

Readability can be improved further by omitting universal quantifiers
at the beginning of sentences, writing, for example,

Grandparent{x,y) <- Parent(x,z) & Parent(z,y)

instead of [Grandparent (x,y) <- Parent (x,z) & Parent (z,y)]

as in clausal form. Such omission of universal quantifiers can be
performed safely only when the context makes it clear that the expression
is a sentence rather than a formula containing occurrences of free
variables.

Conversion to clausal form - --
Any sentence in standard form can be converted to clausal form. The

resulting set of clauses is consistent if and only if the sentence in
standard form is consistent. Thus conversion to clausal form can be used
to demonstrate the inconsistency of a set of sentences in standard form:

A set of sentences in standard form is inconsistent
if and only if the corresponding set of clauses
is inconsistent.

The rules for converting to clausal form can be expressed more simply,
to begin with, if implications and equivalences are reexpressed in terms
of negation, conjunction and disjunction by using the equivalences:

[X -) Y] <->"X V Y
[X <-) YJ <-) [X -) Y] & [Y -) X] i.e.
[X <-> Y] <-) V Y] & V Xl
where X and Y are any formulae.

Once implications and equivalences have been rewritten, the rest of the
conversion consists of

(1) moving negations inside the sentence past
conjunctions, disjunctions and quantifiers, until they
stand only in front of atomic formulae,

198 Chapter 10: Comparison of Clausal Form with Standard Form

(2) moving disjunctions inside the
conjunctions and quantifiers, until
atoms or negated atoms,

sentence past
they connect only

(3) eliminating existential quantifiers and

(4) reexpressing disjunctions

of atoms and their negations as clauses

AI,···,Am (- BI,···,Bn •

Negations can be moved in front of atoms by repeatedly applying the
following equivalences:

Yj (-> ,x V 'Y
YJ (-) 'X & ,y

(-) \Iv 'X
(-) 3v 'X
(-) X

where X and Y are any formulae
and v is any variable.

Disjunctions can be moved inside a sentence until they connect only
atoms and their negations by using the equivalences:

x V IY & ZI
X V 3v Y

(-> IX V Y I & IX V Z I
(-> 3v (X V YI

X V Yv Y
where the

(-> Yv IX V YI
variable v does not occur in x.

The commutativity of disjunction

x V y (-) y V X

is needed to justify the similar equivalences

(Y & ZI V X (-> (Y V XI & (Z V XI
3v Y V X (-> 3v (Y V XI
\:Iv Y V X <-) \:IV [y v xl
where v does not occur in X.

The preceding equivalences are sufficient to transform any sentence
without quantifiers in standard form into an equivalent one in clausal
form. The elimination of an existential quantifier, however, produces a
sentence which is not equivalent. It introduces a constant or function
symbol in order to name an individual which is referred to only
implicitly in the original sentence. The new sentence implies, but is
not implied by, the original sentence. Nevertheless, the elimination of
the existential quantifier does not affect the consistency of the set of
sentences as a whole.

Given a conjunction (or set)
existential quantifiers from S
sentences of the form

of sentences S, in order to eliminate
it is necessary to eliminate them from

Conversion to clausal form

belonging to S. Such a sentence can be replaced by the new sentence

Vv1'<1v2 .•• Vvn X'
where Xl is obtained from X replacing
all free occurrences of u in X by the term
f(vl""'vn) where f is a function symbol
which does not occur in S.

199

If n=0 the term f(vl' •.. 'vQ) reduces to a constant symbol. Note that the
replacement is not an equlvalence and it only applies to sentences, not
to formulae. The new conjunction (or set of sentences) is consistent (or
inconsistent) if and only if S is.

In order to transform sentences belonging to S into the correct form,
it is useful to move universal quantifiers inside conjunctions.

'<Iv [X • Yl (-> Vv X • Vv Y

Repeated application of the preceding
conjunction (or set) of sentences in standard
set) of sentences, each of which has a form

rules will convert any
form into a conjunction (or

which is equivalent to a clause

Al,···,Am (- 8l,···,8n •

The preceding rules express the logic of a family of algorithms for
converting from standard form to clausal form. All non-determinisml is
of the don't care variety. An efficient algorithm is obtained by always
applying the rules to an outermost propositional connective or
quantifier, replacing the formula on the left hand side of an equivalence
by the formula on the right hand side. Moreover, it is more convenient
in practice to leave the implication sign intact and to apply derived
equivalences. The following derived equivalences (see exercise 2) are
the most useful.

[X -) Y & Z]
[X V Y -> Zl
[X & .,y -) Z]
[X-),YVZj
[X -> [Y -> Z l l
[[x->Yl->Zl
X -) Vv Y
X -) 3v y
Vv Y -) X
3v y -) X

(-) [X -) Y] & [X -) Z]
(-> [X -> Zl • [Y -> Zl
(-) [X -) Y V Z l
(-) [X & Y -) Z]
(-) [X & Y -> Z l
(-> [X V zl • [y -> Zl
(-> Vv [X -) Yl
(-) 3v [X -) YJ
(-) 3v [Y -> Xl
(-> Vv [Y -> Xl

where v does not occur in X.

In addition, generalisations of the equivalences:

[0 • [X V Yl -> Zl (-> [0 • X -> Zl & [0 • Y -> Zl
[0 • [X -> Yl -> Zl (-) [0 -) X V Zl • [0 • Y -> Zl

200 Chapter 10: Comparison of Clausal Form with Standard Form

for example, are often useful as well. In order to apply them may
require application of the commutativity of conjunction:

X & y (-) y & X

Comparison of clausal form with standard form

Clausal form is a restricted subset of standard form. It has the
advantage that simple, efficient, and reasonably natural resolution
theorem provers have been developed for it. Standard form, however,
allows more liberal means of expression. Some kinds of sentences can be
expressed more economically and others more naturally than in clausal
form. The analysis in the next few sections, of the cases in which
standard form provides greater expressive power than clausal form,
suggests that what is needed is not full unrestricted standard form but a
limited extension of clausal form. In most cases it suffices to allow
non-atomic formulae as conditions and conclusions of implications.

Al,···,Am (- 8 1 ,···,8n

It is useful, in particular, to allow conclusions Ai which are
conjunctions of atoms and conditions Bj which are implications. In
addition it is useful to employ equivalences (-) for definitions instead
of writing the two halves separately.

The ideal system of logic would combine the advantages of clausal form
with those of standard form. In order to do so, it would need both to
reduce to resolution for sentences already in clausal form and to
resemble the natural deduction systems of Bledsoe [1971], Brown [1977],
Bibel and Schreiber (1975), and Nevins [1974]. Such a system might
result from combining the resolution rule with the rules which convert
sentences from standard form to clausal form.

The satisfactory solution of the problem of deriving Horn clause
programs from program specifications in standard form requires such a
proof procedure. The problem has been investigated by Bibe1 [19/6a,
1976b, 1978], Clark and Sickel [1977], and Bagger [1978a, 1978b, 1979].
Their derivation rules resemble both the rules for converting to clausal
form as well as the resolution rule which behaves as procedure
invocation. Proof procedures for the standard form of logic, which have
some of the necessary properties, have been developed by Murray [19781
and by Manna and Wa1dinger [1978].

In the following sections we investigate a number of examples which
illustrate the limitations of clausal form and the inadequacy of dealing
with standard form simply by converting to clausal form and applying
resolution. At the end of the chapter we shall consider the problem of
deriving Horn clause programs from non-clausal specifications.

Conjunctive conclusions and disjunctive conditions

Standard
conditions

form is more economical
imply several conclusions

than clausal form when the same
or when the same conclusion is

Conjunctive conclusions and disjunctive conditions

implied by alternative conditions.

Example Everyone makes mistakes.

Standard form Yx3y [Human(x) -) Does(x,y) & Mistake(y)]

Conversion

Clausal form

(a) Human{x) Does(x, m(x» & Mistake(m(x»

(b) 'Human(x) V [Does(x, m(x» & Mistake(m(x»]

(c) [,Human(x) V Does(x, m(x»] &
[,Human (xl V Mistake (m (x»]

(d) Does(x, m(x» (- Human (x)
Mistake (m (x» (x)

201

In the clausal form, the same condition Human(x) needs to be repeated for
each separate conclusion. Notice that using the derived conversion rules
for implication, the conversion from (a) to (d) can be done in one step.

Example One person is an ancestor of another if he is a parent of
the other or he is an ancestor of an ancestor of the
other.

Standard Form Anc{x,y) (- Par(x,y) V 3z [Anc(x,z) & Anc(z,y)]

Conversion (a) Anc(x,y) V '[Par(x,y) V 3z [Anc(x,z) & Anc(z,y)]]

(b) Anc(x,y) V [-'Par(x,y) & '3z [Anc(x,z) & Anc(z,y)]]

(c) [Anc (x,y) V "'1par (x,y) 1 &
[Anc(x,y) v'3z [Anc(x,z) & Anc(z,y)]l

(d) [Anc (x,y) V 'Par (x,y) 1 &
[Anc(x,y) V Yz ['Anc(x,Z) V'Anc(z,y)]]

(e) [Anc(x,y) V "'1Par(x,y)] &
\:Iz [Anc(x,y) V 'Anc(x,z) V'Anc{z,y)]

Clausal form (f) Anc(x,y) (- Par(x,y)
AnC(x,y) Anc(z,y)

In the clausal form, the same conclusion needs to be repeated for each
alternative condition. The conversion from standard form is simplified
if the derived eguvalences are used:

(a') [Anc(x,y) (- Par{x,y)] &
[Anc{x,y) (- 3z [Anc(x,z) & Anc(z,y)]]

(b') [Anc(x,y) (- Par(x,y)] &
Yz [Anc(x,y) & Anc(z,y)]

(c') Anc(x,y)
Anc(x,y) (- Anc(x,z), Anc(z,y)

For the sake of simplicity we shall use the derived equivalences in the
rest of the chapter.

202 Chapter 10: Comparison of Clausal Form with Standard Form

Disjunctive conclusions

Standard form is both more economical and more intelligible when the
alternatives in a conclusion are conjunctions.

Example The earth is round and finite or flat and infinite.

Standard form [Round (El & Finite(El] V [Flat (E) & Infinite (El]

Conversion (a) [[Round(E) & Finite (E)] V Flat lE)] &
[[Round (E) & Finite(E)] V Infinite (E)]

(b) [Round (E) V Flat (E)] &
(Finite(E) V Flat (E)] &
[Round (E) V Infinite (E) J &
[Finite(E) V Infinite(E)]

Clausal form Round (El, Flat (E) (-

Finite(E) , Flat(El (-

Round (El, Infinite(E) (-

Finite(E), Infinite(E) (-

We shall argue in the next chapter that Horn clauses often express
only the if-half of an if-and-only-if definition. The full if-and-only-
if definition can be expressed compactly in the standard form by using
the sign of equivalence (->. In the clausal form, the if-half and the
only-if half need to be expressed separately. The only-if half generally
expresses alternative conclusions and can be both uneconomical and
unnatural.

Example The only-if half of the if-and-only-if definition of
ancestor.

Standard form Anc(x,y) -) Par(x,y) V 3z[Anc(x,z) & Anc(z,yl]

Conversion (a) 3z [Anc(x,y) -) Par (x,y) V [Anc(x,z) & Anc(z,y) 1]

Clausal form

(b) Anc(x,y) -) Par(x,y) V
[Anelx, flx,y)) & Ane(f(x,y), y)]

(c) Anc{x,y) -) [par{x,y) V Anc(x, f(x,y»] &
[Par (x,y) V Anc (f (x,y), y)]

Par(x,y), Anc(x, f(x,y» (- Anc(x,y)
Par(x,y), Anc(f(x,y), y) (- Anc(x,y)

Implications as conditions of implications

It is common for sentences of natural language to have conditions
which are themselves implications rather than simple atoms. Such
sentences can be expressed directly and naturally in standard form, but

Implications as conditions of implications 203

may be difficult to understand in clausal form.

Example is true if y is true whenever x is true.

Standard form <- [True(y) <- True(x)]

Clausal form True(x) <-
<- True(y)

Example Bob is happy if all his students like logic.

Standard form Happy (Bob) <- \:Ix [Studentof(Bob,x) -) Likes(x,logic) 1

Conversion (a) 3x [Happy (Bob) <- [Studentof(Bob,x) -)

Clausal form

Example

Standard form

Clausal form

Standard form

Clausal form

Likes (x,logic) 1

(b) Happy (Bob) <- -)

Happy(Bob), <-
Happy (Bob) <-

A supplier is preferred if all the parts he supplies
arrive on time.

Preferred (x) <- Supplier (x) &
\ro [Supplies(x,u) -) Arriveontime(u»)

Preferred (x) <- Supplier (x) , Arriveontime(p(x»
Preferred (x) , Supplies(x, p(x» <- Supplier (x)

A set is well-ordered if and only if every non-empty
subset has a least element. A set is non-empty if and
only if it has at least one element. An element of a set
1S a least element if and only if it is less than or equal
to every element of the set.

Wellordered (x) <-) Vz [Hasleastelmt(z) <- &
Nonempty (z) 1

Nonempty(z) (-) 3u u€z

Hasleastelmt (z) (-) 3u (u€z & \:Iv [vE;z -) u.svll

Wellordered (x), arb (x) £; x <-
Wellordered(x), Nonempty(arb(x» <-
Wellordered(x) (- Hasleastelmt(arb{x»
Hasleastelmt(z) <- Wellordered(x), 2&x, Nonempty(z)
Nonempty(z) & <- u&z
select (z) E z <- Nonempty (z)
Hasleastelmt (z), el (z,u) E z (- u&z
Hasleastelmt(z) (- u < el(z,u), u€z
smallest (z) e z (- Hasleastelmt (z)
smallest(z) < u (- Hasleastelmt(z), u&z

204 Chapter 10: Comparison of Clausal Form with Standard Form

Derivation of programs from specifications

Programs can be expressed more naturally in logic if implications are
allowed as conditions. The definition of subset is a simple example:

<- \/z [2€x -> z£y]

The condition that "every element of x is an element of y" is neutral
a00ut the manner in which the elements of x are investigated and shown to
be elements of y. In particular, it is consistent with the possibility
that all elements of x are investigated simultaneously, in parallel.
Such high-level specification is not possible in normal programming
languages. It is not even possible with Horn clauses.

Suppose that sets are represented by finite lists. Then the notions
of both membership and subset can be defined recursively by means of Horn
clauses:

z € z.v (-
z € u.v <- z£v
nil Y (-

Y <- u£y, VSOY

The Horn clause program is less natural and closer to the level of the
computer than the specification in standard form. It expresses details
which are left to the initiative of the theorem pr over in the standard
form specification. It works, moreover, only for finite sets represented
by means of lists. The standard form specification, on the other hand,
works for both finite and infinite lists. Exercise (6b) demonstrates
this for the notion of ordered list.

The use of logic is more widely accepted as a specification language
than it is as a programming language. Methods for verifying conventional
programs relative to logic specifications are complicated therefore by
the need to relate two different languages. The methods of Floyd [1967],
Manna [1969], Hoare [1969] and Dijkstra [1976] express specifications in
logic and relate them to programs by defining the semantics of programs
in logic.

Verification af programs is significantly easier when programs and
specifications are expressed in the same language. This is confirmed by
the results of Boyer and Maare [19751 who use LISP for both programs and
specifications, Manna and Waldinger (1977], who use LISP for programs and
LISP augmented with universally quantified implications for
specifications, and Burstall and Darlington [19771, who use recursion
equations for both programs and specifications. More recently, using the
procedural interpretation of Horn clauses, deduction strategies for
deriving logic programs from logic specifications have been developed by
Clark and Tarnlund [1977], Bibel [1976a, 1976b, 19781, Clark and Sickel
[1977], Bogger [1978a, 1978b, 1979] and Clark and Darlington [1978]. In
addition, Manna and Waldinger [19781 have developed an extension of
resolution for deriving LISP programs from logic specifications.

The derivation of logic programs from logic specifications has the
special characteristic that deduction is used both to run programs and to
derive programs from specifications. Programs can be regarded as

Derivation of programs from specifications 205

computationally useful logical consequences of the specifications.

We shall illustrate the general method by deriving the Horn clause
program for subset from the standard form specification The inference
steps can be thought of as combining resolution with conversion to
clausal form. We start with the if-and-only-if specifications of the
subset and membership relations.

81
82
83

:lq;Y (-) \/z [ze;x -) zty]
\/z -'[Z6nil] - (Le. (- Z£nil)
z E u.v (-) z=u V zEv

The basis of the recursive Horn clause program

Y (-

can be obtained directly by resolving the clausal form of 52 with the
first of the two clauses

arb(x,yl €. x (-
(- arb(x,y) £ y

obtained by converting 51 into clausal form.

The recursive clause of the program
reasoning with the specifications in
underlined atoms in 51 and 53 we obtain

can be derived
standard form.

more naturally by
By matching the

84 u.v S; y (- \/z [[z=u V ze;v] -) zty].

It suffices, in this case, to use only the if-half
subset. We can think of 54 as obtained by letting
then using the equivalence 53 to replace z e: u.v by
begin to convert 54 to clausal form.

85 u.v y (- \/z [z=u -) zEy] &
\/z [z€V -) zty]

of the definition of
x be u.v in 51 and

z=u V z£v. Next, we

Any further conversion would result in non-Horn clauses. Fortunately the
two non-atomic conditions in SS can be replaced by equivalent atomic
ones.

86
87

Vz [z=u -) z£y] (-) uEy
\/z [ze;v -) ze;y] (-) vfiiY

Applying the two equivalences to SS we obtain the rest of the program

u.v5i Y (- U€y, vs;-y

It remains to demonstrate the equivalences 56 and 57. The second one
57 is easy; it is an instance of 51. The first equivalence is a special
case of a more general equivalence

\/z [z=u -) X]
where X' is
replacing all

(-) X'
obtained from X by

occurrences of z by u.

206 Chapter 10: Comparison of Clausal Form with Standard Form

which is useful in general.

The derivation of the subset program illustrates the use of inference
rules which apply directly to the standard form and which resemble both
resolution and the rules for converting from standard to clausal form.

Exercises

1) Express the following sentences in standard form and transform them
into clausal form.

a) A number is the maximum of a set of numbers if it belongs
to the set and is) all numbers which belong to the set.
(Hint: Define an-auxiliary relationship Dominates (x,y)
which holds when x) all numbers which belong to the set
of numbers y.) -

bl A list of numbers is ordered if
number is < all numbers in the
rest of the list is ordered.

it is empty or its first
rest of the list and the

c) A number is the greatest common divisor of numbers x and y
if it divides x and y and is all numbers which divide x
and y.

2) The derived equivalences on page 199 can be justified by converting
each half of an equivalence to the same formula, by replacing subformulae
by equivalent subformulae. For example, both halves of the equivalence

X -) [Y & Z] (-) [X -) YJ & [X -) Z]

convert to the same formula

[-, X V YJ & [, X V Z 1.

Derive the remaining eguivalences on page 199.

3) a) Express the following assumptions in standard form and
transform them into clausal form.

A dragon is happy if all its children can fly.
Green dragons can fly.
A dragon is green if at least one of its parents is green
and is pink otherwise.

b) Use resolution (and factoring if necessary) to show:

(i) Green dragons are happy.
(ii) Childless dragons are happy.

You will need to supply
assumptions.

some "obvious" missing

Exercises 207

c) What should a pink dragon do to be happy?

4) This exercise is an extension of exercise 8 of Chapter 2. Given
data in the Supplier, Part and Supply tables, express the following
queries in standard form. Use both the binary and n-ary representations.

a) What are the numbers of suppliers who supply all parts?

b) What are the names of suppliers who do not supply books?

c) What are the numbers of those suppliers who supply at
least all parts supplied by John?

5) a) Express the following assumption in standard form and
transform it into clausal form.

A logician is happy if all his arguments are sound.

b) Use resolution to show that the following conclusions are
implied by the assumption.

(i) A Logician is happy if everyone's arguments are sound.
(ii) A logician is happy if he doesn't argue.

6) a) Express the following assumptions in standard form and
transform them into clausal form.

(il A sequence z is ordered if for every x, y, i and j,
x is the i-th element of z,
y is the j-th element of z and
i i j imply x y.

(ii) If i j then u*i u*j, for all i, j and u.

(iii)The i-th element of sequence S is 3*i for all i.

b) Use resolution to show that the sequence S is ordered.
Notice that S might have infinitely many elements.

7) Assume that the following relations are already defined:

x y
x > y
Empty (xl
Split(x,y,u,v)

the tree x contains no nodes.
the tree x has root node labelled by item y,
left subtree u and right subtree v.

208 Chapter 10: Comparison of Clausal Form with Standard Form

a) Express the following definition of the relation Ord(x) in
standard form:

The tree x is ordered if for every non-empty subtree z of
x

i) all items which belong to the left subtree of z are the
item at the root of z and

ii) all items which belong to the right subtree of z are) the
item at the root of z.

You should define the
purpose.

following relations for this

Subtree(z,x)
Belongs(y,x)

z is a subtree of x
the item y belongs to tree x.

b) Transform the definition of Grd(x) into clausal form.

8) The relationship Sl{x,y), i.e. x is a sublist of y, can be
specified by:

Sl(x,y) (-) 3u3v3w[Append(u,x,v) & Append(v,w,y)]
Append(x,y,z) (-) [x=nil & y=z] V

3u3v3w[x=u.v & z=u.w & Append(v,y,w)]

Derive a recursive program for Sl(x,y), not involving Append, using the
following assumptions about equality if necessary:

x.y = U.v (-) x=u & y=v
, 3u3v U.v = nil
x = x

9) The relationship Fact*{x,y,u,v) can be specified by

a)

Fact* Ix,y,u,v) (-) [Factlx,y) -) Factlu,v) I
Fact(x,y) (-) [zero(x) & Succ(x,y) 1 V

3u3v[succ(u,x) & Fact' (u,v)
& Times (x,v ,y)]

Zero(0) (-
Succ(x, (-

Derive a recursive program for
involving Fact.

Fact*{x,y,u,v), not

b) Show that Fact{u,v) (-) Fact*{0,s(0),u,v).

10) Given the specification

Ord(x) (-) VtW'v[Consec{u,v,x) -)

Exercises 209

derive a Horn clause program for Ord(x), using the following assumptions:

Consec(u, v, nil)
Consec(u, v, x.nil)
Consec(u, v, x.y) (-) Consec(u,v,y) V 3z[u=x & y=v.zl

210

CHAPI'ER 11

In classical logic, definitions are expressed by means of "if-and-
only-if" (abbreviated "iff"). For example:

G* Grandparent (x,y) (-) 3z [Parent(x,z) & Parent(z,y)}

Horn clause programs and databases, however, express only the "if-halves"
of iff-definitions:

G Grandparent(x,y) (- Parent(x,z), Parent(z,y)

We have managed to avoid the full iff-form of definitions because the if-
halves alone are adequate for deriving all positive instances of the
relations. All variable-free assertions of the form

Grandparent(s,t) (-

which are implied by G* are already implied by G. It is not possible to
compute more factorials with the iff-definition

F* Factlx,y) <-) Ix=0 • y=11 V
3x'3Y' [x=x'+l & Fact{x' ,y') & y=x*y']

than with the if-half alone:

Fl
F2

Fact(x,y) (- x=0, y=l
Fact(x,y) <- x=x'+l, Fact(x' ,y'), y=x*y'

However, as we shall see in the next section, the full
definitions is needed for proving properties of programs.
needed in databases for answering queries involving universal
and negation.

iff-form of
It is also
quantifiers

In the informal use of natural language,
often employed even when the iff-definition
to the problem of distinguishing when the
definition is intended and when it is not.

the if-form of definitions is
is intended. This gives rise
missing only-if half of the

We shall argue that the problem is complicated by the fact that the
only-if halves of definitions are ambiguous.

A only if B

can be interpreted in the object language

B (- A

If-and-only-if 211

or in the met a-language

"A (- B" expresses the only condition under which A holds.

Consequently, proofs which need to appeal to the only-if
carried out either in the object language or in the
Despite this difference, however, the structure of
remarkably similar in both cases.

halves can be
meta-language.

the proofs is

The only-if halves of definitions are needed for proving program
properties and for verifying database integrity constraints. ConSider,
for example, the Horn clause program Fl-2 for computing factorials. It is
a property of the program that

The only factorial of 0 is 1,
i,e, y=l (- Fact(0,y).

To prove the property, however, requires the only-if half of the
definition of factorial as well as the property of equality that

(- 0 = u+1.

The only-if halves of definitions are also needed for answering
queries in logic databases. Consider, for example, the iff-definitions of
the Teaches and Professor relations:

T* Teaches(x,y) (-) [x=A & y=U4] V
(x=A & y=301] V
[x=B & y=2211 V
(x=C & y=105] V
[x=C & y=201] V

p* Professor (x) (-) x=A V x=B

Given, in addition, the clauses

the query

Isa(l04,programming) (-
Isa(22l,programming) (-

Do all professors teach programming?

\ix3y[Professor(x) -) Teaches(x,y) & Isa(y,programrning)]?

can be answered positively. To answer the query,
only-if half of the definition of the Professor
language and meta-language proofs of the query are
later in the chapter.

however, requires the
relation. The Object

presented and compared

212 Chapter 11: If-ano-only-if

Terms relations as data structures

The relationship between iff-definitions and their if-halves bears
upon the relationship between the use of terms and the use of relations
as data structures in logic programs. The use of terms in Horn clause
programs gives some of the power of the use of relations defined by means
of ifL

Consider, for example, the data depicted in the following scene:

Restricted to the use of Horn clauses, the On and Clear relations have to
be defined independently:

On (A,B) (-
On(D,A) (-
On(D,C) (-

Clear (D) (-
Clear(E) (-

The connection between the two relations can be expressed only by means
of an integrity constraint.

(- On{x,y), Clear(y)

By using iff-definitions, however, the Clear relation can be defined
in terms of the On relation.

Clear (y)
On (x,y) <-)

,:!x On(x,y)
[x=A & y=B) V
[x=D & y=A] V
[x=D & y=C) V

Notice, however, that in this formulation and the next everything is
clear except A, Band C. The Clear relation can be restricted, if
necessary, by adding an extra condition to the definition

Clear (y) Block (y) & ,:!x On (x,y)

and appropriately defining the new predicate Block.

lff-definitions cannot usually be expressed by means of Horn clauses.
However, some of the power of iff-definitions can be captured with Horn
clauses by using terms instead of relations as data structures. If the
data concerning the position of objects in the scene is collected in a
single term, then the Clear relation can be defined in terms of the data
about the scene. Here "On" is a predicate symbol, but "on" is a function
symbol.

Scene(on(A,B) .on(D,A).on(D,C) .nil)
On(x,y) Scene(z), Member (on(x,y) ,z,T)

Scene(z), Member (on(x,y) ,z,F)

Terms versus relations as data structures

Member(x, x.y, T) (-
Member(x, nil, F) (-
Member(x, u.v, w) <- Diff(x,u), Member (x,v,w)

213

The term representation of the data is significantly less natural than
the relational representation. However, both the iff-definition and its
simulation by means of terms have several advantages over the simple,
Horn clause if-half of the definition. Many properties of the scene, such
as the number of objects it contains, can be determined from both the
iff-definition and the term representation but cannot be determined from
the simple if-half of the definition. Moreover, any change in the
position of objects (either by altering the iff-definition of the On
relation or by altering the assertion which describes the scene)
automatically implies the appropriate modification of the Clear relation.
However, if the two relations are defined independently, then alteration
of the Scene is more difficult. Both the On and Clear relations have to
be changed explicitly and the new relationship between them needs to be
checked against the integrity constraint.

The unstated only-if-assumption

The statement of only the if-halves of definitions is common in
natural language, even when the full iff-definition is intended. Even
logicians, who normally insist on the explicit statement of all
assumptions, tolerate the unstated only-if assumption in the case of
recursive definitions. It is common for a logician to state only the if-
half of the definition of natural number, for example:

NI
N2

o is a natural number.
If x is a natural number then x+l is a natural number.

even when he intends the only-if half

N3

as well.

The only natural numbers are
those defined by statements NI-2.

Natural language, however, carries the un stated only-if assumption to
the extreme. The classical fallacy of logic is probably an example of
this. Suppose, for instance,

Ml Mortal(x) (- Human(x).

If we now assert

M2 Mortal (Bob) (-

then we may be tempted to conclude

M3 Human (Bob) (-

But M3, although it may well be true, is not a logical consequence of the
explicitly stated assumptions MI-2. The fallacy would disappear, however,
if we could to unstated assumptions - if we could assume, in

214 Chapter 11: If-and-only-if

particular, that the full iff-definition

M* Mortal(x) <-) Human(x)

was intended when only the if-half was stated explicitly.

Comparing the two examples, the if-half of the definition of number
and the incomplete characterisation MI of mortality, we are faced with
the dilemma of distinguishing when the unstated only-if assumption is
justified and when it is not. The same dilemma arises in the field of
databases where the problem is to decide whether the definition of the
data has already been closed or whether it is The problem
has been investigated by Reiter [1978] who calls the assumption that the
database contains all the information there is to know the closed world
assumption and the assumption that it may not, the open world-a5SUmptIQD7
Our proposal is to identify the closed world assumptlon with the
assumption that the missing only-if halves of definitions are intended
and to identify the open world assumption with the assumption that they
are not.

The problem of distinguishing between intended and unintended
assumptions disappears, of course, if all intentions are made explicit.
Explicit statement of intentions, moreover, makes it easy to mix closed
and open world assumptions in the same database, applying different
assumptions to different relations or even to different instances of the
same relation. We might decide, for example, to close the instances of
the Teaches relation which describe the courses taught by Bob, but to
leave open the ones taught by John.

T1
T2
T3

Teaches (Bob,x) (-) x=304 V x=323 V x=I.4
Teaches (John,2l2) (-
Teaches(John,l.l3) <-

It is curious that natural language should be so careless about
specifying whether or not only-if assumptions are intended. This may be a
consequence, in part, of the awkwardness of the iff syntax. In order to
close the definition of the courses taught by John, after adding the
assertion

T4 Teaches(John,103) <-

for example, it is necessary either to replace T2-4 by

T* Teaches (John,x) <-) x=2l2 V x=l.l3 V x=l03

or to add to T2-4 the explicit only-if half of the definition

TS Teaches(John,x) -) x=2l2 V x=l.13 V x=103.

A more convenient syntax might be one which leaves T2-4 alone and states
that

TS* all instances of Teaches(John,x) are defined by T2-4.

Ambiguity of only-if 215

Ambiguity of only-if

Our discussion of the relationship between iff-definitions and their
if-halves has been simplified by ignoring the ambiguity of the expression

A only if B.

In some cases we have interpreted it as a statement in the object
language

B <- A.

In other cases we have interpreted it in the meta-language

nA <- B" expresses the only condition under which A holds.

The only-if half of
previously expressed in
object language.

the definition of natural number, which was
the meta-language, can also be expressed in the

Numb (x) -) x = 0 V 3x' [x: x'+l & Numb(x')]

Whether the expression "A only if B" is interpreted in the object
language or the meta-Ianguage, it has similar properties. For example,
in both cases the conclusion

B (-

is a consequence of the assumptions

A only if B
A (- •

If "only-if"
follows by one
met a-language ,

is interpreted in the object language, the conclusion
step of bottom-up reasoning. If it is interpreted in the
it follows by reasoning about proofs:

If the only way of proving A is by proving B, and
A <- can be proved,
then B <- can be proved as well.

This example illustrates a general phenomenon: The two interpretations
of "only-if" justify similar conclusions in different, but structurally
similar, ways.

Object language and meta-Ianguage solutions

The problem of showing that all professors teach programming

Q \tx3y[Professor(x) -) Teaches(x,y) & Isa(y,programming)]

can be solved whether the only-if half of
Professor relation is expressed in the object
language.

the definition
language or in

P* of the
the meta-

216 Chapter 11: If-and-only-if

Suppose the only-if half of p* is expressed as a non-Horn clause

X : A, x = B (- Professor (x)

in the object language. The query itself reduces to two clauses:

01
02

(-
<- Isa(y,programming)

Bottom-up reasoning from the assertion 01 derives the non-Horn clause

= A, = B (- •

The two goals in 02 can now be solved by case analysis. In the case =
A, the first goal in Q2 is solved by

Teaches (x,y) (- x = A, Y 104
x = x <-

and the secona goal by

Isa(104,programming) (-

In the second case = B, the first goal is solved by

Teaches(x,y) (- x = B, Y = 221
x = x (-

and the second goal by

Isa(221,programming) <- •

Suppose, on the other hand, that the only-if half of P* is expressed
in the meta-language:

PI
P2
P3

Professor (x) <- X = A
Professor (x) <- x = B
PI and p2 express the only conditions under which
an individual is a member of the Professor relation.

To solve the problem, the query Q needs to be expressed in the meta-
language as well.

01*

02*

Show that for every x which solves the goal
(- Professor (x)
there is a y which solves the goals
<- Teaches(x,y), Isa(y,programming).

Top-down reasoning from the goal 01* derives only two solutions

x = A and x = B.

In the case x
clauses

A, the two goals in Q2* are solved by y using the

Object language and meta-language solutions

Teaches (x,y) (- x = A, Y = 104
x = x (-
Isa(104,programming) (- .

In the case x = B, they are solved by y = 221 using the clauses

Teaches(x,y) (- x = B, Y 221
x = x (-
Isa(22l,progr amming) (- •

217

Notice that the object language and meta-language proofs have similar
structure. In the meta-language proof, however, equality relates
variables to the terms to which they are bound in the components of
matching substitutions. In the Object language proof, equality relates
different names for the same individual. Thus the equality symbol used
for expressing the only-if halves of definitions satisfies the axioms
EI-3 of Chapter 2, page 43. In the general case, these axioms are
extremely redundant. In this case, however, they are not even necessary.

Object language and meta-Ianquage interpretations of negation

The only-if halves of definitions are necessary to show that a
negative condition

(- not-P

holds. Depending on the interpretation of "only-if", the proof can be
carried out either at the object level or at the meta-level. Clark [19781
has shown that for every meta-Ianguage proof of not-P obtained by a Horn
clause theorem-pr over augmented with negation proved by failure, there
exists a structurally similar object language proof of not-Po

Consider the problem of showing that D is clear

<- CleareD)

given the if-halves of the definitions of the On and Clear relations:

Onl
On2
On3
On4

On{A,B) <-
On(D,A) (-
On(D,C) <-
Clear(y) <- not,3x On(x,y)

In addition, the only-if half of the definition of the On relation is
necessary for a solution. However, the if-half of the definition of the
Clear relation is sufficient.

Suppose first that the only-if half of the definition is expressed in
the object language:

On5 On(x,y) -> Ix A & Y BI V
Ix D & Y AI V
Ix D & Y Cl V

The sentence is more natural in the standard form than in the clausal

218 Chapter 11: If-and-only-if

form. It is also more natural to carry out the proof using standard
form. Moreover, the standard form proof is structurally similar to the
meta-Ianguage proof, whereas the clausal form proof is not. It will be
useful to reexpress the only-if half of the definition in the equivalent
form

not-On (x,y) (- [x • A V Y Bl &
Ix • D V Y • Al &
Ix • D V Y • Cl

where 5 '" t is just an abbreviation for -[5 : t].

(- CleareD)

(- not-3x On(x,D)

(- Yx not-On (x,D)

(-Yxllx'AVD'Bl &
Ix • D V [)TAl &
Ix • D V D + Cll

o

The last step of the proof verifies the three conditions by using the
"negative assertions":

On6
On7
On8

D • B (-
o '" A (-
D * C (-

The clausal form, resolution proof is left to exercise (2).

Suppose now that the only-if half of the definition is expressed in
the met a-language:

Clauses Onl-3 express the only conditions
under which the On relation holds.

The meta-1eve1 proof shows that every way of trying to solve the goal
(-0n(x,D) fails. The structure of the proof, however, is similar to that
of the object level argument.

(- Clear (D)

(- not-3x On(x,D)

(- Every way of trying to solve (- On(x,D) fails

(- Onl-3 fail to solve (- On(x,D)

o
The last step of the proof shows that Onl-3 fail to match On(x,D),

Object language and meta-Ianguage interpretations of negation 219

because D is different from (does not match) A, Band C. The object-level
proof, however, needs to reason about equality explicitly. Clark [1978]
shows that in general explicit axioms of equality are necessary at the
object level in order to simUlate failure of the matching algorithm at
the meta-level.

Horn clauses augmented with negation interpreted as failure

The meta-Ianguage interpretation
interpretation of negation failure:

not-P holds

of nonly-if" entails

if the if-halves of definitions fail to establish P.

the

The language of Horn clauses augmented with negation as failure provides
a powerful extension of the language of Horn clauses alone. It is easy to
implement, efficient to use and has much of the expressive power of the
full standard form of logic. It is an important feature of all PROLQG
implementations that either they provide the negation operator explicitly
or else they provide means for defining it.

The expressive power of Horn clauses with negation is illustrated by
the definition of subset

x y (- Vz [z E x -> z E y],

which can be reexpressed

x y (- not-3z [z Ex, not- [z £ y]]
x is a subset of y if no z in x fails to belong to y.

The explicit existential quantifier 3z can be eliminated and the negation
sign can be moved in front of atomic formulae if an auxiliary predicate
Nosub(x,y), which holds when x is not a subset of y, is employed. The
definition of subset becomes

x 5ii Y (- not-Nosub(x,y)
Nosub(x,yl (- z E x, not- [Z E y1.

x is a subset of y if it cannot be shown
that it is not a subset of y.
x is not a subset of y if there is a z in x
which fails to belong to y.

A similar transformation can be applied to the definition of Clear block:

Clear(y) (- not-Covered(y)
Covered(y) (- On(x,y)

Clark's analysis of negation interpreted as failure assumes that
negations are so transformed that they stand only in front of atomic
formulae.

220

Clark has
do not have
The simplest

which implies

Chapter 11: If-ana-only-if

shown that Horn clauses with negation interpreted as failure
the full power of negation in the standard form of logic.
example of this is the sentence

P (- not-P

p (-

in the standard form of logic, since

P (- not-P
P, P (-
p (-

But the attempt to solve

<- P given

is equivalent to
is equivalent to

P (- not-P

does not succeed because it goes into a loop when negation is interpreted
as failure.

A more complicated infinite loop arises during the attempt to solve
the goal

(- A using i)
2)
3)

A (- P (x)
A (- not-P (x)
P(x) (- P(f(x»

with negation interpreted as failure. Both procedures (1) and (2)
introduce the procedure call

<- p (x)

which neither succeeds nor fails in finite time. But in the standard form
of logic, A <- is a resolvent of (1) and (2).

These examples suggest that the deductive power of negation as failure
can be increased by adding loop detection to the resources of the Horn
clause problem-solver. Because of the undecidability of logic [Church
1936) however, no problem-solver can recognise all situations in which a
goal is unsolvable. There is no best theorem-pr over and no limit to the
extent to which a problem-solver can improve its ability to detect loops
and to establish negation by failure.

The recognition of failure by detecting loops in the meta-Ianguage is
equivalent to using proof by induction in the object language. by adding
proof by induction to the reSOurces of the problem-solver. Proof by
induction is needed, moreover, in many cases when the only-if halves of
definitions are used to prove program properties.

Proof of program properties 221

Proof of program properties

Consider the Horn clause if-half of the definition of the Append-
relation

Al
A2

Append (nil,x,x) (-
Append(x.y, z, X.yl) (- Append (y,z,yl) •

It has the property that

Append(x,nil,x) holds for all lists x.

Proof of the property requires induction on the structure of lists. We
shall present both the object level and met a-level proofs. Both proofs
have similar structure. But the meta-Ievel proof, because it is informal,
is easier to present first.

Suppose that A is any list. We need to show that

A3 Append (A,nil,A) (-

can be proved using (AI) and (A2). The proof is by induction on the
structure of A. If A is nil, then there is a one-step proof of (A3) using
(AI) alone. If A is B.A I , then by the induction hypothesis there is some
n-step proof of

Append(AI,nil,A I) (- .

By adding an extra step to the proof, using (A2), we obtain an n+l step
proof of

Append(x.A ' , nil, x.A ') (-

for any x and therefore a proof of (A3) in particular.

For the object level proof, it is necessary to express an induction
schema for lists in the object language.

A4 F{x) (- List(x) & F(nil) & [F(z) -) F(y.z)]

where F(x) is any formula containing free occurrences of only the
variable x, and F(t), for any term t, is obtained by replacing all free
occurrences of x in F by t. The object level proof can be carried out in
clausal formi but a non-clausal proof is more natural. We negate the
theorem to be proved and reason backward from the goal:

AS List(A) (-
(- Append (A,nil,A)

By A4, letting F(x) be Append(x,nil,x):

By AS and AI:

(- List(A), Append(nil,nil,nil),
) Append (y.z, nil, y.z)]

-) Append(y.z, nil, y.z)]

222 Chapter 11: If-and-only-if

This reduces to an assertion and a subgoal:

A6 Append (A' ,nil,A') <-

<- Append(B.A', nil, B.A')

A2 f
A6

<- Append (A' ,nil,A')

o
The method of proving

induction axioms expressed
Clark and Tarnlund [1977}.

properties of logic programs by means of
in the object language has been developed by

The monotonicity criticism of logical conseguence

Logic has often been the subject of criticism. One of the most recent
and influential of these criticisms is that formulated by Minsky [19751
concerning the monotonicity of logical consequence.

Onl
On2
On3

Consider again the blocks world example

On (A,B) <-
On(D,A) (-
On(O,e) (-
Clear(y) (- not-3x On(x,y)

supplemented by the unstated only-if half of the definition of the On
relation. These assumptions imply the conclusion

Clear (D) <- •

The monotonicity of logical consequence entails that the same conclusion
continues to hold no matter what new assumptions are added. In
particular, if we add the new assumption

On4 On (E,D) (-

the previous conclusion that D is clear still holds, even though it is
obviously inconsistent with the new information.

The critics argue that the monotonicity of logical consequence
contradicts common sense. Given the new assumption On(E,D) (- common
sense abandons the previous conclusion Clear (D) <- . Logic, because it
requires that the conclusion continues to hold, is unacceptable as a
model of human reasoning.

The argument is mistaken, in our opinion, because it oversimplifies
what is involved when a new assumption is added to a logic database. We
shall argue in the last chapter that, when a database becomes
inconsistent, consistency needs to be restored by rejecting or suitably
modifying an assumption in the database. In this example, either we
reject the new information or we reject or modify the only-if half of the
definition of the On relation. It is probably most natural either to
replace the original only-if assumption by the new assumption that only

The monotonicity criticism of logical consequence 223

Onl-4 define the On relation or else to abandon the only-if assumption
altogether. In either case the previous conclusion Clear (D) <- no longer
holds in the new database.

Logic avoids the monotonicity criticism of logical consequence, if
proper account is taken of only-if assumptions and a realistic view is
taken of the way in which databases change in time.

Exercises

1) Use the only-if half of the definition of factorial together with
the assumption

(- 0 ; u+l

to show that the only factorial of 0 is 1.

2) Show that

not-Append (nil, a.nil, nil)

is a consequence of the iff-definition of the Append relation. Compare
the object language and meta-language proofs and identify the axioms of
equality needed for the object language proof.

3) Transform assumptions On4-8 into clausal form and use resolution to
show that

CleareD)

is a consequence.

4) Show by means of resolution and factoring that

Append(A,nil,A)

is implied by the iff definition of Append together with the appropriate
induction and equality axioms expresed in clausal form.

5) Using negation as failure, reformulate the definions of arch and
tower given in Chapter 4 so that the problem

(- Arch(w)

has only two solutions

w a(t(B,A), D, C) and
w aCe, D, t(B,A»)

224 Chapter 11: If-and-only-if

for the scene described by A4-12.

6) Given the Horn clauses

Append (nil,x,x) (-
Appned(x.y, z, x.u) (- Append (y,z,u)
Memher(x, x.y) (-
Memher(x, y.z) (- Member (x,z)

show by means of induction in the meta-language that

Ni
N2

7)

show that

for all x, u, v and w,
if Append(u,v,w) and Memher(x,w)
then Member (x,u) or Member (x,vl •

a) Given the assumptions

x y (- not-Nosub(x,y)
Nosub(x,y) (- z £ x, not-[z £ y]

a £ A (-
a £: B (-
b € B <-

A B

interpreting negation as failure.

b) Let membership in
of Horn clauses.
can be shown that

i) A c,; B

the sets A and B be expressed by means
Discuss the circumstances under which it

ii) rp S B
where there is no clause expressing membership

iii)A!;U
given x E U (-

iv) AS A.

225

CHAPTER 12

Formalisation of Provability

The meta-language interpretation of "only-if" and its combination with
the object language can be achieved by formalising the meta-language and
amalgamating it with the object language. Such a combination of object
language and meta-Ianguage prOduces a system of logic which is closer to
natural language than the conventional systems which keep the two
languages distinct. In natural language, however, the combination of
object language and met a-language leads to such paradoxes as the self-
referential sentence:

This sentence is false.

We shall see that
amalgamated formal
sentence:

the attempt to
language leads

reconstruct the paradoxes in the
instead to a true but unprovable

This sentence is unprovable.

'I'he construction and proof of unprovability are based on those in
proof of the incompleteness of formal arithmetic [Godel 1931]. Instead
of the incompleteness of arithmetic, however, we have the impossibility
of any attempt to completely formalise the notion of provability. The
proof of incompleteness, moreover, is simpler for provability than it is
for arithmetic.

Our purpose in combining the object language and meta-Ianguage,
however, is primarily a practical one. The amalgamated language is more
expressive and has greater problem-solving power than the object language
alone. It provides essential facilities for such applications of logic
programming as natural language understanding, database management, job
control and editing of programs.

The amalgamated language combines object language and meta-language
while preserving the normal semantics of logic. Thus all of the theory of
problem-solving, formulated in the previous chapters for the object
language alone, applies without change to the more powerful combination
of object language and meta-language.

The combination of object language and meta-language is a special case
of a more general construction. Given any two languages (i.e. systems of
logic with their associated proof procedures) it may be possible to
simulate the proof procedure of one language Ll within the other The
simulation is accomplished by defining in L2 the binary relatlonship
which holds when a conclusion can be derived from assumptions in Ll'
Sentences in Ll need to be named by terms in L2 and the provability
relation needs to be named by a binary predicate symbol, say

226 Chapter 12: Formalisation of Provability

"Demonstrate", and defined by means of sentences Pr in L2" Provided the
definition El correctly represents the provability relatlon of Ll'
simulation by means of Pr in L2 is equivalent to direct execution of
the proof procedure of L1 " LZ' the language in which---pr- simulates Ll1
is a meta-lan9Uag€ for the obJect language L10 To serve as meta-Ianguage,
L2 needs to possess sufficient expressive power. For any object language,
tfie language of Horn clauses is already adequate.

There are a number of cases of special interest. In the case in which
the meta-language is restricted to the Horn clause subset of logic, but
the object language encompasses the whole standard form, the meta-
language improves its own problem-solving abilities by simulating the
more powerful object language. In general, a simple unsophisticated
problem-solver can improve itself by using simulation to behave like a
more sophisticated one.

In the case in
identical the single
provability relation
met a-language.

which the object language and meta-language
language augmented by the definition Pr of its
is an amalgamation of an object language with

Correct representability

are
own
its

The condition of correct representability is the same in principle for
the definition ef the provability relation as it is for the definition of
the addition of natural numbers.

In order to define addition in logic, it is necessary to name numbers
by means of terms. The easiest way to name the non-negative integers, for
example, lS by means of a constant symbol 0 for zero and a one-place
function symbol s for the successor function.

If t names the integer n
then set) names the integer n+l.

The following Horn clause definition correctly represents the addition
relation, named by the predicate symbol "Plus".

Plusl
Plus2

Plus (0,x,x) (-
Plus(s(x) ,y,s(z» (- Plus(x,y,z)

Plusl-2 correctly represents the addition relation in the sense that

whenever 1, m and n are non-negative integers
sand t respectively, the relationship l+m
and-only-if Plusl-2 implies Plus(r,s,t) (-

named by r,
n holds if-

Notice that correct representability does not require that

Plusl-2 implies ,Plus(r,s,t) (- when l+m = n does not
hold.

In order to define
other expressions by
variety of ways and we

provability it is
means of terms.
shall not concern

necessary
This can
ourselves

to name sentences and
be accomplished in a
with the details here.

Correct representability 227

Given a representation of sentences by means of terms,
in a language L2 correctly represents the provability
"Demonstrate", of a language LI if-and-only-if

a definition Pr
relation, named

whenever X and Y are sentences of Ll named by terms Xl and
y' of L2 respectively, conclusion Y can be derived from
assumptions X in LI if-and-only-if conclusion
Demonstrate(XI,Y') can be derived from assumptions Pr in
L2 0

Correct representability,
,Demonstrate(X' ,Y') in L2

however, does not require that
when X does not imply Y in Ll.

implies

Given a language LI , the construction of a definition which correctly
represents its proof procedure is not a particularly difficult matter.
Since proof procedures can be implemented by means of computer programs,
they can be implemented by means of Horn clause programs in particular.
Moreover, any Horn clause program which correctly implements a proof
procedure correctly represents its provability relation.

A simple definition of provability relation

We shall present the top-level of
provability relation for a Horn clause
regarded as programs and conclusions as
increase readability, we use lower case

a Horn clause definition of the
language in which assumptions are
collections of goals. In order to
character strings, such as

prog, goals, sub,

as variables and ones beginning with an upper case character, such as

NIL, Zeus, A,

as constants.

The first clause of the program states that

any program demonstrates the solvability of an
empty collection of goals.

The second clause, interpreted top-down, says that

to demonstrate the solvability of a collection of goals:
select a goal;
find an appropriate procedure in the program;
rename the variables in the procedure so that they are
distinct from the variables in the collection of goals;
match the selected goal with the head of the procedure;
add the body of the procedure to the rest of the goals;
apply the matching substitution to obtain a new collection
of goals; and
demonstrate that the program solves the new collection of
goals.

228

01
02

Chapter 12: Formalisation of provability

Demonstrate (prog,goals) (- Empty (goals)
Demonstrate (prog,goaIs) (- Select(goals,goal,rest),

Member (procedure,prog) ,
Renamevars(procedure,goals,

procedure') ,
Parts(procedure',head,body) ,
Match (goal,head,sub) ,
Add (body,rest,intergoals) ,
Apply (intergoals,sub,newgoals) ,
Demonstrate (prog,newgoaIs)

To complete the definition it is necessary to define the lower-level
relations and to settle upon data structures for naming programs, goals,
collections of goals and substitutions. Rather than define these in
general, we shall present only an interface for the top-level with a
simple data structure for the problem of the fallible Greek.

We shall name an atomic formula whose predicate symbol is named P and
list of arguments is named t by the term

atom(p,t) .

Bodies of procedures and collections of goals are named by lists of the
names of the atomic formulae they contain. Programs and procedures are
named by constants. The following clauses define the interface between
the top-level of the definition of Demonstrate and the data structures
for the problem of the fallible Greek.

Member (Fl, F) (-
Member (F2, F) (-
Member (F3, F) (-
Member (F4, F) (-
Parts(Fl, atom(Fallible,X.NIL), atom (Human,X.NIL) .NIL) (-
Parts(F2, atom (Human,Turing.NIL) , NIL) (-
Parts{F3, atom (Human,Socrates.NIL) , NIL) (-
Parts(F4, atom{Greek,Socrates.NIL), NIL) (-

The top-level goal is described by the clause

(- Demonstrate(F, atom(Fallible,X.NIL).atom(Greek,X.NIL) .NIL).

The constant symbol X names the variable x.

Direct execution versus simulation

Let Pr consist of the clauses Dl-2 together with whatever lower-
level clauses are needed to complete the definition of Demonstrate.
Suppose that Pr correctly represents the provability relation of a
language Ll and lS expressed ln a language L2 (which may be identical to
L1)' Correct representabllity guarantees that direct execution in Ll and
Slmulation in L2 are equivalent and interchangable:

Direct execution versus simulation

Given sentences X and Y of Ll named by terms X' and yl
respectively of L2 , direct execution of the proof
procedure of Ll to determine whether Y can be derived from
X in Ll is equIvalent to simulation of Ll by showing that
Demonstrate (X' ,y') can be derived from Pr in L2'

229

The equivalence of direct execution and simulation is identical to the
reflection principles investigated by Weyhrauch [1978].

Correct representability of the provability relation means that the
object language and meta-language can cooperate to solve problems. A
problem in the object language can be solved by simulation in the meta-
language. Conversely, a problem of the form

Demonstrate (X' ,Y')

in the meta-language can be solved by showing that

Y can be derived from X

in the object language. This has the advantage that direct execution is
generally more efficient than simulation in the meta-language.

Simulation in the meta-language, however, can be more powerful than
direct execution. It may be possible, in particular, to replace several
proofs of different, but similar, theorems in the object language by a
single proof in the meta-!anguage. As a trivial example, all of the
problems below need to be solved separately in the object language, but
can be solved once and for all in the meta-language.

Mortal (Socrates) <-
Human (Socrates) <-
Mortal(x) <- Human(x)

can be derived from
and

Poisonous ("iT') <- can be derived from
Boletus ('iT) <- and
Poisonous (x) <- Boletus(x)

Animal (Puff) <- can be derived from
Dragon(Puff) <- and
Animal (x) (- Dragon{x)

In the meta-language it is possible with a single proof to show that

for any variable x, predicate symbols P and Q,
and term t of the object language,

Q(t) (-
Pit) (-
Q(xl (-

can
and

P (xl.

be derived from

The meta-language is more powerful than the object language in another
sense. The object-level proof procedure can only show that

X can be derived from Y

when both X and Y are given as input. The meta-level proof procedure,

230 Chapter 12: Formalisation of Provability

however, can solve Demonstrate goals of any pattern of input ana output.

Given, for example, an appropriate definition of what constitutes an
interesting sentence, the meta-level goal statement

(- Demonstrate(X',y), Interesting(y)

can be used, in theory at least, to generate interesting consequences of
a given set of assumptions X. Moreover, by solving the two problems
cooperatively rather than sequentially, it is possible for the criteria
characterising interesting sentences to guide the generation of
consequences of X.

The goal statement

(- Demonstrate(t,Y'),

where Y' names a given consequence and t is a partially instantiated term
which names a given collection of assumptions X together with unknown
additional assumptions x, can be used to find the missing assumptions x.
The goal statement

<- Demonstrate (t'YI ') ,Demonstrate(t'Y2') , ... ,Demonstrate(t,Ym')

moreover, can be used to find missing assumptions which together with the
given assumptions X imply all of the conclusions In the
simplest case, if the conclusions are sufficiently simllar, the missing
assumptions may be an inductive generalisation of the conclusions.
Provided the proof procedure is sufficiently constrained it will avoid
generating useless assumptions such as Yl&Y2&"'&Ym' which trivially
imply the conclusions.

Addition and suppression of assumptions

Languages in the PLANNER family and most versions of PROLOG achieve
some of the power of the Demonstrate relation by providing facilities for
adding and suppressing statements during the course of a demonstration.
Instead of explicitly trying to solve a goal of the form

Demonstrate(X',Y')

in these languages it is necessary to

add the statements X to the program,
try to show Y, and then
suppresS-X-afterwards.

Since assumptions change dynamically during the course of a single
demonstration, such programs can be exceedingly dangerous.

Addition and suppression of assumptions can be accomplished more
safely by means of the Demonstrate relation. Moreover, efficiency can be
achieved by directly executing the proof procedure recursively on the
same machine or cooperatively on another machine instead of simulating it
with the definition. On the other hand, Demonstrate goals of other

Addition and suppression of assumptions 231

input-output patterns, which can not be solved by addition and
suppression of assumptions, can be solved by using the definition.
Addition and suppression of assumptions can only be used when the object
language and meta-!anguage are the same. But, provided the
is sufficiently powerful, the Demonstrate relation can be used to connect
any two languages.

Bootstrapping

The meta-language L2 may differ in sophistication from the object
language Ll • If it is less sophisticated to start with, then it can use
its definition Pr of provability in Ll to simulate Ll and to increase
its own sophistication. This is bootstrapping: the language L2 pulling
itself up by its own bootstraps, using the definition Pr to solve
problems more intelligently than it would otherwise, acting the way it
thinks a more intelligent proof procedure would behave.

Bootstrapping can be effective even if the more sophisticated language
L"l does not have an independent existence of its own. The definition, if

t is consistent, can serve as a construction which causes the language
LI to come into existence.

Bootstrapping, and more generally, defining an implementation of one
language within another is a common technique in computing. An
implementation of a language is created by writing a program which
functions as a translator or interpreter for it in another existing
language.

The clauses 01-2, which define the top-level of a Horn clause proof
procedure Ll can be used to boots trap a simple top-down Horn clause proof
procedure L2 which executes procedure calls sequentially in the order in
which they are are written. By means of appropriate definitions of the
rest of the program and of the procedure Select in particular, it is
possible to define a proof procedure which executes procedure calls
cooperatively. Although L2 executes procedure calls sequentially, the new
proof procedure Ll executes procedure calls as coroutines according to
the criteria specified in the procedure Select. By appropriate
modification of the definition, other improvements, such as loop
detection, intelligent backtracking and goal transformation, can also be
incorporated in the new proof procedure Ll • More modestly, the definition
of Demonstrate might only enhance the input syntax of L2' defining infix
notation for predicate symbols and function symbols, for example. More
ambitiously, it might define a proof procedure for a richer version of
logic, full clausal form or standard form, for example.

PROLOG systems and programs have used the bootstrapping technique
since their first implementation in 1972 in Marseille. They have been
used primarily for improving the input syntax and for coroutining. A
variety of Horn clause programs defining Horn clause provability have
also been written at Imperial College. Simple Horn clause programs
typically run about times slower when simulated by using such
definitions than they do when executed directly. PROLOG programs have
also been written for non-Horn clause provability and by Broda for the
standard form of logic. The PROLOG compiler written in PROLOG by
Warren, Pereira, and Pereira [1977) and Colmerauer's [1977) interpreter

232 Chapter 12: Formalisation of Provability

for a restricted subset of natural language can also be regarded as
applications of bootstrapping.

Combining the object language and meta-language

So far we have assumed an asymmetric relationship between the two
languages Ll and L20 There is no reason in principle, however, why one
language should know more about its companion than the other. Both
languages might possess a definition of the other's proof procedure.
Each language could serve as the other's and could simulate
its proof procedure.

There is no reason either why the two languages should not be
identical in all respects. It is possible therefore to have a single
language equipped with a definition Pr which is a correct
representation of its own proof procedure. Given a problem of the form

Demonstrate (X I, Y ')

it can use the definition to simulate itself or equivalently it can show
that

Y can be demonstrated from X

directly. Solving the problem by direct execution is equivalent to the
proof procedure calling itself recursively.

Such a relationship between object language and meta-language is
already familiar in the programming language LISP [McCarthy et al 1962].
The function of a LISP interpreter or compiler is

to evaluate an expression y in an environment x, which
defines the values of the symbols occurring in y,
producing a result z which is the value of y in the
environment x.

In functional notation this can be expressed

eval (x,y) = z,

which is like Demonstrate, except that the additional parameter z nameS
the output. We shall argue later that it is useful to extend Demonstrate
to a four argument relation

Demonstrate(x,y,u,z)

which holds when

given the assumptions named x,
the conclusion named y and
the control named u,
the proof procedure generates the output named z.

The function eval can be defined in LISP, like Demonstrate can be
defined in logic. In the same way that Demonstrate-goals with appropriate

Combining the object language and meta-language 233

input can be solved either by using the definition or by direct
execution, eval-function calls can be evaluated in LISP either by using
the definition of eval or by recursive invocation of the LISP evaluation
mechanism. Since LISP functions have fixed input parameters, explicit use
of the definition of eval can always be relaced by recursive invocation.
Indeed, it was a study of the analogue in logic of eval in LISP which led
the author and Ken Bowen to propose the amalgamation of object language
and meta-language presented in this chapter.

Incompleteness of the combined object and meta-lanquaqe

The combination of object language and meta-language
paradoxes of self-reference in natural language. The
reconstruct them leads instead to the construction of
unprovable sentence:

avoids
attempt

a true

the
to

but

o Demonstrate(Pr' ,D)

which mentions its own name D. The term Pr' nameS the definition Pr of
Demonstrate.

It is easy to show that, if Pr is consistent and correctly
represents the provability relatIOn, then -neither the sentence named Q
nor its denial be derived from Pr.

Proof:
Consider the two cases:

(1) The sentence named D can be derived from Pr.
(2) Its denial Demonstrate(Pr' ,D) can be derived from Pr.

Case (1) By the assumption of correct representability, (1)
impl ies that

Demonstrate(Pr',D)
both the sentence
Pr, contradicting
consistent.

can be
and its

the

derived from Pr. But then
denial can be derived from

assumption that Pr is

Case(2) By the assumption of correct representability (2)
implies that

the sentence named D can be derived from Pr.

Again, both the sentence and its denial can be derived from Pr,
contradicting the assumption that Pr is consistent.

Since both cases lead to contradiction, neither the sentence
named D nor its denial can be derived from Pr.

But the proposition

The sentence named D can be derived from Pr.

234 Chapter 12: Formalisation of Provability

or equivalently (by correct representability)

Demonstrate{Pr' ,D)

is either true or false of the provability relation. We have just shown
(Case 1) it is not true. Therefore its denial

D , Demonstrate(Pr',D)

is true, though unprovable.

The sentence named 0 is related to negation interpreted as failure.
Given the problem

Dernonstrate(Pr' ,D)

the proof procedure neither succeeds nor fails in finite time. (Finite
failure would imply that

D , Demonstrate (Pr , ,0)

could be proved from the iff-definition of pr.) Thus the proof procedure
does not terminate in its attempt to solve the problem, and therefore its
denial

D , Demonstrate (Pr , ,D)

truly states that the problem cannot be solved.

The sentence named 0 can be constructed in a variety of ways including
the one used in Gadel's original incompleteness proof.

More comprehensive form of the Demonstrate relation

To simplify the discussion we have assumed that a proof procedure
determines a two-place relation between assumptions and conclusions. In
reality proof procedures are more complicated. They also accept control
specifications which guide the proof strategy and they return output. It
is more realistic, therefore, to regard a proof procedure as determining
a four-place relation

Demonstrate(x,y,u,z)

which holds when

given the assumptions named x,
the conclusion named y and
control named u,
the proof procedure generates the output named z.

The control parameter u might specify, for example,

(1) whether one proof method or another should be applied,
(2) whether one, all or "best" solutions are required, and
(3) whether a proof, trace of the search,

More comprehensive form of the Demonstrate relation

substitution for variables in the conclusion, or
simple Yes-No answer is required for the output z.

235

The trace of a proof procedure consists of the sequence of sentences
and other expressions generated by the proof procedure during the course
of searching for a solution. Thus the proof procedure may successfully
return as output the trace of an unsuccessful search for a solution. It
may also return a simple No-answer if it can determine that the search
space contains no solutions.

The more comprehensive form of the Demonstrate relation is useful for
obtaining and processing lists of all solutions. This is especially
useful in database applications to count all answers to a query or to
print the list of all answers as a table. Given a Horn clause database S
of suppliers and parts, for example, the Demonstrate relation can be used
both to formulate and answer the question

How many suppliers of stationery are located in London?

(- Demonstrate(s, atom(Supplies,X.Stationery.NIL).
atom(Location,X.London.NIL).NIL, all(X),z),

Count(z,w) .

Here all(X) specifies that a list
substitutions for the variable
Count(z,w) can be defined by

of all distinct answers, consisting of
X, is required for the output z.

Count(NIL, 0) (-
Count(u.v, w) (- Count(v,w'), Plus(w' ,l,w).

Instead of counting the list of all answers, a procedure

Format (z,w)

could rearrange the
characters, so that
appearance of a table.

list
the

z, inserting new page, new line and space
resulting list w, when printed, has the

Exercises

1) The top-level Dl-2 of the definition of the Horn clause provability
relation can be tested for the problem of the Fallible Greek without
defining the lOWer-level procedures in full. It suffices to supply
assertions which solve the sub-problems which arise during the course of
trying to solve the top-level problem. The following assertions are
sufficient for renaming the procedures Fl-4 and for finding the parts of
the resulting procedures.

Renamevars(FI, goals, Fll) (-
Renamevars(F2, goals, F2) (-
Renamevars(F3, goals, F3) (-
Renamevars(F4, goals, F4) (-
Parts(Fl l , atom(Fallible,Y), atom(Human,Y).NIL) (-

236 Chapter 12: Formalisation of provability

a) Supply assertions or simple procedures for the remaining
conditions in D1-2.

b) Using the assertions and simple procedures from (a), test
01-2 for the problem of the Fallible Greek by using top-
down inference and backtracking to find a solution.

2) Complete the definition 01-2 of the
defining the lower-level procedures in full.
useful to employ a different data structure for
object language:

Demonstrate relation
For this purpose it

naming expressions of

by
is

the

a) Predicate symbols and function symbols can be named by
constant symbols.

bl Constant symbols can be named
names a number, e.g. 0, s(0),

by terms const(t)
etc.

where t

cl Variables can be named by terms var(t) where t names a
number.

dl Composite terms
term(s,t) where
list of terms.

can be named by
s names a function

terms of the form
symbol and t names a

e) Atoms and lists of atoms in goal statements and procedure
bodies can be named as before.

f) Procedures can be named by terms proc(s,t) where s names
the head and t the body of the procedure.

g) Programs can be named by lists of the procedures they
contain.

hi Substitutions can be named by lists
components of the form sub(s,t) where s
and t names a term.

of substitution
names a variable

Notice that a simple way to rename the variables in a procedure is to

i) find T the maximum t such that var(t) occurs in the goals
and

ii) replace every occurrence of a variable var(s) in the
procedure by an occurrence of the variable var(r) where
r = s+T.

The simple definition of the Match relation

Match (exprl,expr2,sub) <- Apply(exprl,sub,expr3),
Apply (expr2,sub,expr3)

is liable to go into a loop when the two expressions do not match. A
safer definition is the one which employs two substitution parameters,
one for the current substitution which matches the parts of the two
expressions which have been examined so far and another for the final

Exercises 237

matching substitution.

3) Modify the definition of the Demonstrate relation, defining the
relationship

Demonstrate (prog,goals,sub)

which holds
substitution
solution.

when the
of terms

program solves
for the variables

the goals and generates
occurring in the goal as

a
a

This can be done at the top-level simply by adding extra conditions to
02. The substitution required in the head of the clause can be obtained
by appropriately combining the substitution obtained by the recursive
call to the Demonstrate procedure in the body of the clause together with
the output component the substitution which matches the selected goal
with the head of the procedure.

4) Define the top-level of a deterministicl Horn clause interpreter
for Horn clause programs. The interpreter can be made deterministic by
explicitly managing the search through the top-down search space one
branch at a time.

Branches of a search space can be represented by lists of nodes. Each
node consists of

i) the list of goals at the node,

ii) the selected goal, and

iii) the list of untried procedures which have not yet been
applied to the goal.

To solve the initial collect of goals, process the branch whose only
node consists of the initial goal statement, selected goal and the
appropriate list of untried procedures.

Any program successfully processes a branch whose tip contains the
empty list of goals.

To process a branch whose tip
untried procedures for the selected
head of the first untried procedure.

node contains a non-empty list of
goal try to match the goal with the

i) If the match fails, remove the procedure from the list of
untried procedures and process the new branch.

i i) If the match succeeds, remove
of untried procedures, add a
goal statement obtained by
procedure, and process the new

the procedure from the list
new tip containing the new
applying the successful

branch.

To process a branch whose tip node has an empty list of untried
procedures for its selected goal, backtrack by deleting the tip from the
branch and processing the new branch.

238 Chapter 12: Formalisation of Provability

5) Show that for any set of clauses S there exists a corresponding set
of Horn clauses S* such that S is consistent (or inconsistent) if and
only if S· is. Thus any problem which can be expressed in clausal form
can be expressed by means of Horn clauses using the correspondence *.

The correspondence can be established by showing that the provability
relation for clauses in general can be defined by means of Horn clauses.

239

CHAPTER 13

Logic, Change and Contradiction

Logic can be used to represent information and to solve problems. But
information changes and its representation needs to change accordingly.
In this chapter we consider the processes by means of whiCh an
information system needs to change in time. The information systems
considered include not only programs and datahases but also more complex
systems of the kind involved in scientific theories and computer-based
natural language understanding. We shall consider in detail the role
that contradiction plays in guiding the direction of change.

Information systems

Throughout this chapter the terminology information system, and
sometimes belief system, is used to refer to any collection of

(or beliefs) expressed in logic together with a proof
maintenance procedures, which manage the way the

system deals with change.

Information systems include both assumptions which are explicit as
well as consequences which are implicit. In practice whether a sentence
is an implicit consequence is a matter of degree. The accessibility of a
consequence depends upon the complexity of finding a derivation. The more
complex the derivation, the more inaccessible its consequence. If a
oerivation is too complex. its consequence is as inaccessible as if it
were not implied at all. Thus different information systems may entail
the same logical consequences but differ significantly in their pragmatic
value. Useful consequences may be efficiently accessible in one system
but practically inaccessible in another.

Databases can be regarded as simple information systems. A database
might change as the result of internal reorganisation or in response to
incoming data and queries. The proof procedure is used not only to answer
queries but also to assimilate new data into the database. There are
four possibilities:

The new data might already be implied by the database,
imply existing data,
be independent from it, or
inconsistent with it.

It is the last case which is most important. It includes both the case in
which new data violates integrity constraints as well as the one in which
it is an exception to a general rule.

240 Chapter 13: Logic, Change and Contradiction

Programs together with their specifications can also be regarded as
information systems. A program which is inconsistent with its
specification can be made consistent by modifying either the program or
the specification. A program which is consistent with its specification
can be changed by replacing an inefficient procedure with a more
efficient one. It can also be changed by adapting it to a different
purpose.

In text comprehension, the information system consists of the reader's
understanding of the text which has been read so far. It needs to change
when new information needs to be assimilated. The new information might
be the reader's interpretation of the next sentence in the text or it
might be an hypothesis needed to explain information previously obtained
from the text. In both cases the new information might be one among
several alternatives. The new sentence might be ambiguous and admit
alternative interpretations or the previous information might be
explained by alternative hypotheses. If the new information is
inconsistent with the current information system an alternative to the
new information or to previously assimilated information may need to be
considered.

scientific theories can be interpreted as information systems which
organise past experience and predict future ones. A theory may need to
change in the light of new experience or as the result of a new
hypothesis. An ambiguous experience can be reported in alternative ways,
and alternative hypotheses might explain the same phenomena. The
alternatives need to be compared by evaluating their effect on the state
of the scientific theory as a whole. If an alternative renders the theory
inconsistent then consistency can be restored by restricting or suitably
modifying any of the premises which contribute to the contradiction. This
includes both the case in which the new sentence is rejected and replaced
by an alternative as well as the one in which the new sentence is
accepted and an old one is rejected instead.

Dynamics of information system change

Both the situation in which an information system records its
interaction with the environment and the situation in which it generates
its own hypotheses result in the need to assimilate new information.
There are four possible deductive relationships between the new
information and the current information system. Each possibility suggests
different candidates for the new system.

(1) The new information already be derived the current
informatIOn system. The information system successfully anticipates the
new information and the new system is the same as the old one.
Assumptions which participate in the derivation can be identified and
their utility can be evaluated. More generally, assumptions can be
evaluated by assessing the extent to which they contribute to the
derivation of useful consequences. The evaluation of assumptions
according to utility can be used later to help determine which
assumptions should be abandoned or modified when a contradiction occurs.

(2) Part of the information in the current system can be derived from
the new--rnformatlon together with the information in the rest of the

Dynamics of information system change 241

system. The explicit assumptions of the new system consist of the new
information together with the explicit assumptions of the old system
without the part that can be derived. The new system subsumes the old
one. It implies the same consequences and possibly new ones as well. The
assessed utility of the assumptions which participate in the derivations
can be increased by an amount which takes into consideration the number
of derived consequences, the complexity of the derivations and the
utility of the derived consequences themselves.

The simplest example is the one in which the new information is an
inductive generalisation of existing information. The situation in which
it is an abductive assumption [Peirce 1931] is more complicated. Suppose,
for example, that the current system already contains the information

(1)
(2)

A & B & C (- D
A

Then the new information

D

is an abductive hypothesis. Together with (I) it implies (2). Moreover,
it also implies Band C. In order to justify its incorporation into the
information system, the hypothesis D may need to prove its utility. It
can do so, for example, by showing that B or C is already redundantly
contained in the existing database or by predicting them when they are
introduced as new information later on. Generation of abductive
hypotheses is similar to reasoning by means of defaults [Minsky 1975],
[Reiter 1978b]. If A is given, then D is assumed by default unless it
leads to contradiction or does not lead to sufficiently many useful
consequences.

Notice that cases (I) and (2) might
better than the other depends upon the
information system.

both apply. whether one case is
overall utility of the resulting

(3) The new information is consistent with the information system but
is independent of it. The new information can neither be derived from
the current system nor be used to derive existing information. This is
potentially an undesirable situation which may lead the system to seek an
explanatory hypothesis, which together with the information in the rest
of the system implies the new information. Of course, the hypothesis
itself would also be independent and to justify its acceptance would have
to imply other useful consequences in addition to the one which motivated
its generation. The preceding example illustrates the situation. Suppose
the information system contains the assumption

A & 8 & C (- 0

and the new information A is independent. If this leads the system to
generate the hypothesis D, then D itself is independent and there is no
net gain unless at least one of the additional consequences B or C can be
independently confirmed.

It is not always possible to determine in a reasonable time whether
one or other of the four deductive relationships apply. In such cases,

242 Chapter 13: Logic, Change and contradiction

whether the new
information system
added to it.

information is logically related to the existing
or not, it will need to be treated as independent and

(4) The new information is inconsistent with the information system.
A contradiction can be derived when the new information is introduced.
The assumptions which contribute to the refutation can be identified, and
consistency can be restored by rejecting or modifying one or more of the
assumptions which lead to the contradiction. The previous record of the
utility of assumptions can be used to help determine which assumptions
should be changed.

It is this last case, in which a contradiction occurs, which is the
most important.

Restoration of consistency

Contradiction and its reconciliation play an important role in
philosophy and in theories of problem-solving. It is the driving force
behind change (thesis, antithesis and synthesis) in the Hegelian
dialectic and the main instrument for advancing knowledge (conjectures
and refutations [Popper 1963] and proofs and counter-examples [Lakatos
1973J) in the Popperian philosophy of science and mathematics. In
problem-solving, it is an advanced form of intelligent backtracking and
an important component of truth maintenance problem-solving systems
[Doyle 1978], [Stallman and Sussman 1977J.

It is a major feature of Quine1s [1953] argument against the
distinction between necessary and contingent truths that, when a
contradiction arises, consistency can be restored by rejecting or
modifying any assumption which contributes to the derivation of
contradiction. No belief is immune from possible alteration. Even the
laws of mathematics and logic, to the extent that they are included among
the assumptions of information systems, are subject to critical
assessment and change.

This does not mean that any belief can be altered as easily as any
other. Psychological attachment and even computational commitment may
vary from one belief to another. Nor is it pragmatically desirable to
treat different beliefs the same. Some contribute to the derivation of
useful consequences more often than others; and some participate more
often in the derivation of contradictions. It benefits the well-
functioning of the belief system as a whole, therefore, to abandon, among
the beliefs which lead to contradiction, the one which contributes least
to the derivation of useful consequences. In the longer term, if
contradictions continue and the assessed utility of beliefs changes, it
may be necessary to backtrack, reinstate a previously abandoned belief
and abandon an alternative instead.

Thus the deriVation of inconsistency contributes to the search space
of alternative information systems. For each assumption which contributes
to the derivation of a contradiction there exists at least one
alternative new belief system obtained by abandoning or suitably
modifying the assumption. The space can be searched in depth-first
fashion, backtracking when a contradiction arises, or several branches

Restoration of consistency 243

can be investigated in parallel. Parallel exploration of alternatives has
the advantage that the consequences of abandoning a belief can be
explored before a decision is made. Such parallel exploration of several
internally consistent, but mutually inconsistent, belief systems may, of
course, give an external the illusion of a single inconsistent
system.

The derivation of inconsistencies plays an important role in the
development of computer programs and databases. Generally, when an
inconsistency arises between a program and its specification or between
data and integrity constraints, it is the program or the data which is
rejected. Indeed, by definition, it is a main function of specifications
and integrity constraints to rule out incorrect programs and data. None
the less there are frequent occasions when it is necessary to abandon or
modify the specification or integrity constraint instead. For example,
given the conflict which arises between the integrity constraint

No vehicles are allowed in the park.

and the need for police and other emergency services to have access to
the park, it is likely that preference will be given to the police and
that the integrity constraint will have to be modified instead:

No unauthorised vehicles are allowed in the park.

Preference is also given to incoming data when it is treated as an
exception to general rules. Early versions of a university department's
timetable, for example, might be described by ambitiously general rules:

All first year lectures are held in room 144.
All lectures attended by more than
80 students are held in room 145.

Subsequent additions to the database

The first year logic lectures
are attended by 100 students.

might result in contradiction. Consistency can be restored
the new data as an exception to a general rule, replacing
rule by a more restricted one

All first year lectures, except
logic, are held in room 144.

by treating
the original

Notice in this last example that the assumption which has been
modified is not necessarily the one which has been least useful in the
past. What matters in general is not simply the utility of a belief but
rather the difference between its utility and that of its replacement.
Treating new data as an exception to a general rule when a contradiction
arises has the advantage of avoiding the contradiction while pr'eserving
most of the useful consequences of the existing information system.

Contradiction also plays an important role in text comprehension. It
helps to disambiguate sentences by rejecting interpretations which are
inconsistent with the current interpretation of the text-so-far, and it
helps to reject inconsistent explanatory hypotheses. If all

244 Chapter 13: Logic, Change and Contradiction

interpretations of a new sentence lead to contradiction, the system may
attempt to restore consistency by altering a previous hypothesis or an
interpretation of a previous sentence instead.

Perhaps the classical example in which an information system needs to
cope with contradiction is the case in which the report of an empirical
observation or experiment contradicts a scientific theory. Whether it is
more beneficial to reject the report or a statement of the theory depends
on the overall effect on the information system. It is even possible that
several alternatives might lead to incomparable, equally viable, but
mutually incompatible, theories.

As Lakatos [1974] argues, in a mature theory with a history of useful
consequences it is generally more useful to reject an anomalous
conflicting report than it is to abandon the theory as a whole.

But it is almost never the case that a whole theory needs to be
abandoned anyway. A complex information system is a collection of
cooperating individual beliefs, some of which are more useful and more
firmly held than others. Propositions which reside in the central core of
a theory are more firmly held than those which are located closer to the
periphery, where rival hypotheses may coexist as mutually incompatible
alternatives. Reports of empirical observations can help to accumulate
evidence in favour of one alternative over another.

Even without restoring consistency, an inconsistent system can still
organise useful information. Although in theory inconsistent assumptions
imply any conclusion, in practice efficient proof procedures derive only
relevant conclusions with varying degrees of accessibility. Indeed, it
can be argued that practical provability, acheived by efficient
resolution-based proof procedures, satisfies all of the criteria
necessary for relevant entailment [Anderson and Belnap 1962].

Thus contradiction, far from harming an information system, helps to
indicate areas in which it can be improved. It facilitates the
development of systems by successive approximation - daring conjectures
followed by refutation and reconciliation. It favours bold, easily
falsified beliefs, which can be weakened if the need should arise, over
safe, timid beliefs, which are difficult to strenthen later on. Better to
make mistakes and to correct them than to make no progress at all.

logic program for natural language

As a test of the theory of information systems outlined in this
chapter, a logic program for managing a natural language front-end to a
logic database has been designed by the author with Jaqueline Shane and
Karen Ritchie. A pilot version is being implemented using a theorem-
prover for the standard form of logic written by Krysia Broda.

The top-level of the program

Process(x,y,z,x')

starting with an initial logic database x, processes a list y of natural
language input sentences, producing a correlated list z of output

A logic program for natural language

sentences, finishing with a new database x' at the end of the session.

Process (db, nil, nil, db) (-
Process (db, input.restin, output.restout, newdb) (-

Represents (input, logic, control),

245

Assimilate (db, logic, control, output, interdb),
Process (interdb, restin, restout, newdb)

Here as in the previous chapter, lower case character strings (e.g. "db",
"input", "restin") are variables.

Represents {input, logic, control) holds when the natural language
can be interpreted as consisting of a
statement together with a control component.

input
logic

Assimilate(db, logic, control, output, interdb) holds when assimilating
the logic statement and associated control into
the logic database results in an appropriate
output and a new intermediate database.

At the simplest level, control simply indicates whether a sentence is
a declarative statement or a question. Here clause (1) deals with the
case that the input is a question. The result of attempting to answer the
question mayor may not be a proof. (2) deals with the case that the
input is a declarative sentence already implicitly contained in the
database. In both cases, (1) and (2), assimilation of the new information
does not change the database. In the case A3, the next database consists
of the new information together with part (stay) of the existing
database. The new database implies all the data in the part (go) of the
old database which is no longer explicitly contained in the new database.
A4 adds the new information to the database if it cannot be derived or be
used to derive existing information. AS deals with the case in which the
new information is inconsistent with the current database. The new
database results from analysing the proof of contradiction and restoring
consistency.

Al Assimilate(db,logic,control,output,db) (- Question(control),
Demonstrate(db,logic,control,result) ,
ExtractOutput(result,output)

A2 Assimilate (db,logic,control,output,db) (- Declarative (control) ,
Demonstrate(db,logic,control,result),
Proof(result), IAlreadyKnowThat(output)

A3 Assimilate(db,logic,control,output,nextdb) (- Declarative (control) ,
db = stay u go,
nextdb = stay u {logic},
Vdata [data & go -)

3result [Demonstrate (nextdb,data,control,result) &
Proof(result)ll,

ThanksForTellingMe(output)

A4 Assimilate (db,logic,control,output,nextdb) (- Declarative (control) ,
Independent (db,logic,control) ,
nextdb = db u {logic},
Acknowledge (output)

246 Chapter 13: Logic, Change and Contradiction

A5 Assimilate (db,logic,control,output,nextdb) (- Declarative (control) ,
incon ; db U {logic},

proof(result),
AnalyseFailureRestoreConsistency(incon,result,output,nextdb)

This is only a top-level sketch of part of the natural language
program. Important lower level procedures need to be defined and
specifications, such as A3, need to be transformed into efficient
procedures.

Our intention has been to deal with a restricted subset of natural
language suitable for untrained database users. However we do not insist
that input sentences be completely unambiguous. Certain ambiguities can
be dealt with by allowing Represents to be non-deterministicl: others,
such as those resulting from anaphora (nhe","she","it",etc.l, by adding
extra parameters to the Represents relation in order to deal with the
context of the previous natural language input.

For users interacting with a database it can be required that all
information included in the database be described explicitly. Implicit
assumptions, however, cannot be avoided in normal conversation and text
comprehension, where hypothesis generation schemes, such as frames
[Minsky 1975] and scripts [Schank 1975] are needed to fit sentences into
a coherent framework. The natural language program can be extended, in
theory at least, to accommodate the abductive generation of assumptions
by adding extra procedures. Here, in the case that the input is
independent from the existing database, clause A6 generates and adds to
the database a new assumption which together with the rest of the
database implies the new information. To be worth the effort, the new
information must be sufficiently more useful than the incoming
information itself.

A6 Assimilate(db,logic,control,output,nextdb) (- Declarative (control) ,
Independent (db,logic,control) ,

Conclusion

nextdb ; db U {newassump},
Demonstrate (nextdb,logic,control,result) ,
Proof (result) ,
newassump is more useful in db than logic,
Ias5ume(newassump,output)

The theory of information systems attempts to combine the traditional
role which logic plays in epistemology and the philosophy of science with
its new role in computing. It attempts to reconcile the use of logic
without computational considerations with the use of complex, computer-
based computational systems without logical foundations. By exploiting
the computational interpretation of logic, it hopes to contribute to a
more useful communication of techniques between logic and computing.

References 247

References

Amarel, S., (1966], On Machine Representations of Problems of Reasoning
about Actions - the Missionaries and Cannibals Problem. Machine
Intelligence 3, Edinburgh University Press, New York, (B. Meltzer and
D. Michie, Eds.) pp. 131-171.

Anderson, A.R., Belnap, N.D., [1962], The Pure Calculus of Entailment.
Journal of Symbolic Logic, Vol. 27, No.l, pp. 19-52.

Anderson, D.B., Hayes, P.J. [19721, An Arraignment of Theorem-proving or
the Logicians' Folly. D.C.L. Memo No.54, University of Edinburgh.

Bergman, M., Kanoui, H. [1973],
Proving to Symbolic Calculus.
Advanced Computing Methods in
Marseilles, June 1973.

Application of Mechanical Theorem
Third International Symposium on

Theoretical Physics, C.N.R.S.,

Bibel, W., [1976a1, Synthesis of Strategic Definitions and their Control.
Techn. Univ. Munchen, Abt. Mathem., Bericht Nr. 7610.

[1976b], A Uniform Approach to Programming. Techn. Univ. Milnchen,
Abtl. Mathern., Bericht Nr. 7633.

[1978), On Strategies for the Synthesis of Algorithms. Proe. AISB/GI
Conf. on AI, Hamburg, July 18-20, 1978.

Bledsoe, W.W., {1971], Splittir.g and Reduction Heuristics in Automatic
Theorem proving. Artificial Intelligence 2, pp. 55-77.

[1977), Non-resolution Theorem Proving. Artificial Intelligence, Vol
9. pp. 51-35.

Bobrow, D.G.,
Artificial
No.3. pp.

Raphael, B., [1974],
Intelligence Research.

153-174.

New programming Languages
ACM Computing Surveys, Vol.

for
6,

Boyer, R.S., Moore, J.S., [1972), The Sharing
Proving Programs. Machine Intelligence
Press, New York, (B. Meltzer and D. Michie,

of Structure in Theorem
7, Edinburgh University
Eds.) pp. 101-116.

[1975], Proving Theorems about LISP Functions. J. ACM, Vol.22, No.l
pp. 129-144.

Brand, D., [1976], Analytic Resolution in Theorem Proving. Artificial
Intelligence Vol. 7. pp. 285-318.

Brough, D.B., [1979], Loop Trapping in Logic Programs, Dep. Rep. 79/9
Dep. of Computing and Control, Imperial College, London.

248 References

Brown, F.M., [1973] The use of
Resolution with Sets of Horn

Several
Clauses.

Models as
Department
63.

a Refinement of
of Computational

Logic, University of Edinburgh, Memo No.

[1974], SLM. Dep. of Comp. Logic Memo No. 72, Univ. of Edinburgh.

[1977), A Theorem prayer for Elementary Set Theory. International
Joint Conference on Artificial Intelligence,S,

Bruynooghe, M., [1976], An Interpreter for Predicate Logic Programs, Part
1. Report CW 10, Applied Maths and Programming Division. Katholieke
Univ., Leuven, Belgium.

[1977J, The Inheritance of Links in a Connection
Relation to Structure Sharing. Applied Mathematics
Division, Katholieke Universiteit, Leuven, Belgium.

Graph and its
and Programming

[1978], Intelligent Backtracking for an Interpreter of Horn Clause
Logic Programs. Report CW 16. Applied Maths and Programming
Division, Katholieke University, Louven, Belgium. Also in Proc.
Collogium on Mathematical Logic in Programming, Hungary, Sept. 1978.

Bundy, A., [1971], There Is No Best Proof Procedure. Sigart Newsletter,
December 1971. p6.

[1976], My Experiences with Pro10g.
University of Edinburgh.

DAI Working Paper No. 12,

(editor) [1978], Artificial Intelligence, Edinburgh University Press.

Bundy, A.,8yrd, L., Luger, G., Mellish, C., Milne, R., Palmer, M.,
[1979J, MECHO: A Program to Solve Mechanics Problems. DAI Working
Paper No. 50, Univ. of Edinburgh.

Burstall, R.M., Darlington, J., [1977], Transformation for Developing
Recursive Programs. J. ACM Vol.24 No.l. pp. 44-67.

Chang, C.L., [1976], DEDUCE: A Deductive Query Language for Relational
Data Bases. Pattern Recognition and Artificial Intelligence (C. H.
Chen Ed.), Academic Press, New York, pp. 108-134.

Chang, C.L., Lee, R.C.T., [1973], Symbolic Logic and Mechanical Theorem
Proving. Academic Press, New York.

Chomsky, N., [19571, Syntactic Structures, Mouton and Co., The Hague.

Church, A., [1936], A Note on the Entscheidungsproblem. Journal of
Symbolic Logic, Vol.l pp. 40-41, Correction ibid., ppl01-l02.

Clark, K.L., [1978J, Negation as Failure. Logic and Data Bases. (H.
Gal1aire and J. Minker, Eds.), Plenum Press, New York" pp. 293-322.

Clark, K.L., Darlington, J., [1978], Algorithm Classification through
Synthesis. To appear in Computer Journal.

Clark, K.L., McKeeman, W., Sickel,
to Numerical Integration.

S., [1978], Logic Programming Applied
Technical Rep. 78-8-004, Univ. of

References

California Santa Cruz.

Clark, K.L.,
Programs.

Tarnlund, S-A., [1977] A First Order Theory of
Proceedings IFIP 77, North Holland, pp. 939-944.

249

Data and

Clark, K.L., McCabe, F., [1979]' Programmers' Guide to IC-1>rolog. CCD
Rep. 79/7, Imperial College, LOndon.

Codd, E.F., [1970], A Relational Model for Large Shared Data Bases. CACM
Vol. 13, No. 6 (June 1970), pp. 377-387.

[19721, Relational Completeness of Data Base Sublanguages. Data Base
Systems (R. Rustin, Ed.), Prentice-Hall, Englewood Cliffs, N.J., pp.
65-98.

Coelho, H., Pereira, L., [1975], The Dialectic
PROLOG Geometry Theorem Prover. Dept. of
Edinburgh.

Development of GEOM, a
Art. Int., Univ. of

Colmerauer, A., [19731, Les systemes-Q ou un Formalisme pour Analyser et
Synthetiser des Phrases sur Ordinateur. Publication Interne No.43,
Dept. d'Informatique, Universite de Montreal.

[1977], An Interesting Natural Language Subset. Proc. Workshop on
Logic and Data Bases. Toulouse.

[1978], Metamorphosis Grammars. Natural
Computers, (L. Bolc, Ed.), Lecture Notes
Springer-Verlag, Berlin. Heidelberg, New

Language Communication with
in Computer Science No. 63,

York. pp. 133-189.

Colmerauer, A., Kanoui, H., Pasera, R., Roussel, P., [1973], Un
de Comunication Homme-machine en Francais. Rapport,
Intelligence Artificielle, Universite d'Aix Marseille, Luminy.

Systeme
Groupe

Cox, P., [1978],
2nd National
Intelligence,

Locating the Source of Unification Failure. Proc. of
Conf. Canadian Soc. for Computational Studies of

Toronto, pp. 20-29.

Cox., P., Pietrzykowski,
Department of Computer
Canada.

T., [1976], A Graphical Deduction
Science, University of Waterloo,

System.
Ontario,

Dehl, V., Sambuc, R.,
du Premier Grdre,
Rapport, Groupe d'
Luminy.

[1976], Un Systeme de Bases de Donnees
en Vue de sa Consultation en Langue
Intelligence Artificielle, Universite

en Logique
Naturelle.
Marseille-

Darlington, J., [1975J,
Synthesis. Proc. IRIA
et-Senans, France, pp.

Application of
Symp. on Proving
133-144.

Transformation to Program
and Improving Programs, Arc-

Darlington, J., Burstall, R.M., [1976], A System that Automaticaly
Improves Programs. Acta Informatica, Vol.6, pp. 41-60.

Darlington, J .L., [1969], Theorem Proving and Information Retrieval.
Machine Intelligence 4, (B. Meltzer and D. Michie, Eds.), American
Elsevier Co., New York.

25@ References

Davies, J., [I973}, Popler 1.5 Reference Manual. T.P.D. Report No. 1,
University of Edinburgh, May 1973.

DaW50n, C., Siklossy, L., [19771, The
-solving Systems. International
Intelligence, 5, pp. 465-471.

Role of Preprocessing
Joint Conference on

in Problem
Artificial

Deliyanni, A., Kowalski, R.A., [1979], Logic and Semantic Networks.
Camm. ACM. Vol. 22, No. 3, pp. 184-192 •.

Derkson, J. t

Applied to
1181-1192.

Rulifson, J.F., Waldinger, R.J., [1972J, QA4 Language
Robot Planning. AFIPS Fall Joint Computer Conference, pp.

Dijkstra, E.W., [1976], A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, New Jersey.

Doran, J.E.,
Program.

Michie, D., [19661, Experiments with the Graph Traverser
Prec.R. Soc.A., Vol.294. pp. 235-259.

Doyle, J., [1978J, Truth Maintenance Systems for Problem Solving.
TR-419, MIT AI Lab., Also IJCAI 5 pp. 247.

Earley, J., 11970), An Efficient Context-free Parsing Algorithm. CACM,
pp. 94-1@2.

Elcock, E.W., Foster, J.M., Gray, P.M.D., McGregor, J.J., Murray, A. M.,
[1971], ABSET, a Programming Language Based on Sets; Motivation and
Examples. Machine Intelligence 6, Edinburgh University Press, New
York, (8. Meltzer and D. Michie, Eds.), pp. 467-492.

Ernst, G.W.,
Proving.

[1971], The Utility of Independent
Information and Control, April 1971.

Subgeals in Theorem

Feldman, J.A., Low, J.R., Swinehart, D.C., Taylor, R.B., [1972], Recent
Developments in SAIL an Algol-based Language for Artificial
Intelligence. IJCAI 5 pp. 235-246.

Fikes, R.E., Hendrix, G.G., [1975J, A Network-based Knowledge
Representation and its Natural Deduction System. SRI Memo.

Fikes, R.E., Ni1sson, N.J., [1971]' STRIPS: A New Approach to the
Solving. Artificial Application of Theorem-proving to Problem

Intelligence Vol 2., pp. 189-208.

Fi11more, C.J., [1968J, The Case for Case. Universa1s in Linguistic
Theory, (Bach and Harms, Eds.), Halt, Rinehart and Winston, Chicago.

Fishman, D.H., Minker, J., [1975],
Representation for Parallel Search.
No.2, pp. 1@3-127.

Pi Representation. A Clause
Artificial Intelligence, Vol. 6,

Floye, R.W., [1967], Assigning Meanings to Programs. Prec. Symposia in
Applied Mathematics, Vol.19, American Maths Society, pp. 19-32.

Foster, J.M.,
Elsevier.

[1970], Automatic Syntactic Analysis. Macdonald /

References 251

Foster, J.M., Elcock, E.W., [1969], ABSYS 1: An Incremental Compiler for
Assertions. Machine Intelligence 4, Edinburgh University Press, New
York, (B. Meltzer and D. Michie, Eds.). pp. 423-439.

Friedman, D.P., Wise, D.S., [1978],
for parallel processing. IEEE
289-296.

Aspects of
Trans Comp.

Applicative Programming
C-27 (April 78), pp.

Futo, I, Darvas, F., Cholnoky, E., (1977), Practical Application of an AI
Language 2. Proceedings of the Hungarian Conference on Computing,
Budapest. pp. 385-400.

Futo, I, Darvas, F., Szeredi, P., [1978], The Application of
the Development of QA and DBM Systems. Logic and Data
Gallaire and J. Minker, Eds.), Plenum Press, New York, pp.

PROLOG to
Bases. (H.
347-375.

Gallaire, H., Minker, J., (Editors), [1978), Logic and Data Bases.
Plenum Press, New York,

Gallaire, H., Minker, J., Nicholas, J.M.,
Introduction to Logic and Data Bases.
Gallaire and J. Minker, Eds.), Plenum
3-30.

[1978], An OVerview
Logic and Data Bases

Press, New York 1978.

and
(H.
pp.

Gelernter, H., {1963], Realization of a Geometry-Theorem Proving
Reproduced in Computers and Thought, (Feigenbaum and
Eds.) ,McGraw Hill, New York. pp. 134-152.

Machine.
Feldman,

Gilmore, P.G., [1977],
Parallel Computers -
17-23.

Defining and Computing Many-valued Functions.
Parallel Mathematics. (M. Feilmeier, ed.) pp.

Gode1, K., [19311, Uber Formal Unentscheidbare Satze der Principia
Mathematica und verwandter System 1. Monatshefte fur Mathematik und
Physik 38. pp. 173-198. English translation in From Frege to G6'del:
A Sourcebook in Mathematical Logic 1879-1931. (Ed. by van
Heijenoort), Harvard University Press, Cambridge, Mass., pp. 596-616.

Golomb, S., Baumert, L., [1965], Backtrack Programming.
pp. 516-524.

J. ACM Vol.12,

Green, C.C., 11969a1,
Question-Answering
University Press,
183-205.

Theorem
Systems.

New York,

Proving by Resolution as a Basis for
Machine Intelligence 4. Edinburgh

(B. Meltzer and D. Michie, Eds.) pp.

[1969b], Application of Theorem-Proving
Int. Joint Cont. on AI, Washington,
Norton, Eds.), pp. 219-240.

to Problem
DC. (D.E.

Solving. Proc.
Walker ,and L.M.

Hayes, P.J., [1973], Computation and Deduction. Froc.2nd MFCS Symp.
Czechoslovak Academy of Sciences, pp. 105-118.

[1977), In Defense of Logic. International Joint Conference on
Artificial Intelligence, 5, pp. 559-565.

Henderson, P., Morris, J., [1976], A Lazy Evaluator. 3rd. Symp. on

252 References

principles of programming languages. Atlanta. pp. 95-103.

Hendrix, G.G., (1975), Expanding the Utility of Semantic Networks through
Partitioning. IJCAI 4, Tiblisi, Georgia. pp. 115-121.

Herbrand, J. t {1930], Recherches sur la Theorie de la Demonstration.
Travaux de la Societe des Sciences et des Letters de Varsovie, Classe
Ill, Science Mathematigue et Physique, No. 33.

Hewitt, C., [1969J, PLANNER: A Language for Proving Theorems in Robots.
Proe. IJCAI, washington, D.e., pp. 295-301.

(1975], How to use what you know. Proe. IJCAI, Tbilisi, Georgia, pp.
189-198.

Hill, R., [1974],
University of
1974.

LUSH Resolution and its Completeness. DeL Memo No. 78,
Edinburgh, School of Artificial Intelligence, August

Hoare, C.A.R., [1961], Algorithm 64. CACM, Vol. 4, pp. 321.

[1969], An Axiomatic Basis for Computer Programming. CACM, Vol. 12,
No.HI pp. 576-583.

[1972J, Proof
Informaticco 1.

of Correctness
pp. 271-281.

of Data Representation. Acta

Hodges, W., [1977], Logic. Penguin Books, Middlesex, England.

Hogger, C.J., [l978a], Goal Oriented Derivation of Logic Programs. Proc.
MFCS Conf., Polish Academy of Sciences, Zakopane.

[1978b], Program Synthesis in Predicate Logic. Proc. AISB/GI Conf.
on AI, Hamburg, July, 18-20.

[1979], Derivation of Logic Programs. Ph.D. Thesis, Imperial
College.

Horn, A., [1951], On Sentences which are True of Direct Unions of
Algebras. JournDl of Symbolic Logic, 16, pp. 14-21.

Kellogg, C., Klahr, P., Travis, L., [1978J, Deductive Planning and
Pathfinding for Relational Data Bases. Logic and Data Bases, (H.
Gallaire and J. Minker, Eds.), Plenum Press, New York, pp. 179-200.

Rowalski, R.A., [1969], Search Strategies for
Intelligence 5, Edinburgh University Press,
D. Michie, Eds.), pp. 181-201.

Theorem-proving. Machine
New York, (8. Meltzer and

[1972] ,
Search.
York, (B.

And-or Graphs, Theorem Proving Graphs and Si-directional
Machine Intelligence 7, Edinburgh University Press, New
Meltzer and D. Michie, Eds.) pp. 167-194.

[1974a], A Proof Procedure Using Connection Graphs. J. ACM 22, pp.
572-595.

[1974b], Logic for Problem Solving. Memo No. 75, Dept. of

References 253

Computational Logic, University of Edinburgh.

[1974c], Predicate Logic as Programming Language. Proc. IFIP 74,
North Holland Publishing Co., Amsterdam. pp. 569-574.

[1978], Logic for Data Description. Logic and Data Bases. (H.
Gallaire and J. Minker, Eds.), Plenum Press, New York, pp. 77-102.

[19791, Algorithm = Logic + Control. CACM, August 1979.

Kowa1ski, R.A., Hayes, P.J., [1968], Semantic Trees in
proving. Machine Intelligence 4, (B. Meltzer and
Edinburgh University Press, pp. 87-101.

Automatic Theorem-
D. Michie, Eds.),

Kowalski, R.A., Kuehner, D., [1971], Linear Resolution with Selection
Function. Artificial Intelligence Vol 2, pp. 227-260.

Kuehner, D., [1972], Some Special Purpose Resolution Systems. Machine
Intelligence 7, Edinburgh University Press, New York, (B. Meltzer and
D. Michie, Eds.) pp. 117-128.

Lakatos, I., [1963], Proofs and Refutations. British Journal for the
Philosophy of Science,Vol. 14, pp. 1-25,120-139, 221-243, 296-342.

[1974), History of Science and its Rational Reconstructions. The
Interaction between Science and Philosophy. (Y. Elkana, Ed.>,
Humanities Press, Atlantic Heights, N.J., pp. 195-241.

Lawler, E., wood, D. Branch and Bound Methods: A Survey. Oper. Res. Vol
14, No 4, pp. 699-719

Lee, R.C.T., Waldinger, R.J., [1969], PROW: A Step Toward Automatic
Program Writing. Proc. IJCAI, Washington D.C.

Loveland, D.W., [1968], Mechanical Theorem Proving by Model Elimination.
JACM 15, April 1968, pp. 236-251.

[1969), A Simplified Format for the Model Elimination Procedure. J.
ACM, July 1969, pp. 349-363.

[1970), A Linear Format for
Demonstration, Lecture Notes in
pp. 147-162.

Resolution.
Math 125,

symposium on Automatic
Springer-Verlag, Berlin,

[19721, A Unifying view of Some Linear Herbrand Procedures. JACM 19,
(April 1972). pp. 366-384.

[1978], Automated Theorem Proving: A Logical Basis.
Publishing Co., Amsterdam, New York and Oxford.

North Holland

Loveland, D.W., Stickel, M.E.. [19731, A Hole in Goal Trees: Some
Guidance from Resolution Theory. Reproduced in IEEE on
Computers, C-25, April 1976, pp. 335-341.

Luckham, D., [19701, Refinement Theorems in Resolution Theory. Symp. on
Automatic Demonstration, Notes in Math 125, Springer-Ver1ag,
Berlin, pp. 163-190.

254 References

Manna, Z., [1969J, The Correctness of Programs. J. Computing and System
Science, Vol. 3, pp. 119-127.

Manna, Z., Waldinger, R.J.,
Synthesis. Artificial
175-2eB.

[1975], Knowledge and Reasoning
Intelligence Journal, Vol. 6,

in Program
No. 2., pp.

[1977], The Automatic Synthesis of Systems of Recursive Programs.
Prae. IJCAI Conf. pp.

[1978], A Framework for Deductive Programming. Computer Science
Dept, Stanford Univ, and SRI International.

Harku5Z, Z., [1977], How to design variants of
programming language PROLQG based on mathematical
77 North Holland, Amsterdam, pp. 885-889.

flats
logic.

using the
Pree. IFIP

Martelli, A' I Montanari, V., [1977], Theorem Proving with Structure
Sharing and Efficient Unification. International Joint Conference on
Artificial Intelligence, 5, pp. 543.

McCarthy, J., [1963J, A Basis for a Mathematical
Computer Programming and Formal Systems,
Hirschberg, Eds.), North Holland, Amsterdam.

[1968aJ, Programs with Common Sense.
Processing, (Minsky,M., Ed), MIT Press,
4e3-41B.

Theory of Computation.
(P. Srafford and D.

pp. 33-7e.

Semantic
Cambridge,

Information
Mass., pp.

[1968bl, Situations, Actions and Causal Laws. Semantic Information
Processing, (M. Minsky, Ed.) MIT Press, Cambridge, Mass. pp.
4le-417.

McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., Levin, M.I.,
[1962J, LISP Programmers Manual. MIT Press. Cambridge, Mass.

McCar thy, J., Hayes, P.J., [1969], Some Philosophical
Standpoint of Artificial Intelligence. Machine
Edinburgh University Press, New York, (B. Meltzer
Eds.), pp. 463-502.

Problems from the
Intell igence 4,
and D. Michie,

McDermott, D., ooyle, J., [1978], Non-monotonic Logic I. AI Memo 486,
August 1978, AI Lab., MIT.

McDermott, n.v., Sussman, G.J., (1972), The Conniver Reference Manual.
AI Memo No.259, MIT, Project MAC.

McSkimin, J.R., Minker, J., [1977], The Use of a Semantic Network in a
Deductive Question-answering System. International Joint Conference
on Artificial Intelligence, 5, pp. 50-58.

Mel tzer, B., [1966), Theorem
Resolution and Renaming.
341-343.

Proving for computers: Some Results on
Computing Journal 8, (January 1966), pp.

[1972), The Impossibility of Perfect Proof Procedures. AISB European
Newsletter, Issue 15, Nov. 1973. pp. 28-29.

References 255

Michie, D., Ross, R., Shannan, G.J.,
Intelligence 7, Edinburgh University
D. Hichie, Eds.) pp. 141-165.

[19721, G-Deduction. Machine
Press, New York, (B. Me1tzer and

Minker, J., [1975], Performing Inferences over Relational Data Bases.
Proceedings of 1975 ACM SIGMOD International Connference on
Management of Data, pp. 79-91.

Minker, J., Fishman, D.H., and McSkimin, J.R., [1973], The Q* Algorithm-
a Search Strategy for a Deductive Question-answering system.
Artificial Intelligence, Vol 4. pp. 225-243.

Minsky, M.L., [1968], Problem Solving.
Semantic Information
Cambridge, Mass., pp.

Descriptive
Processing,

413-424.

Languages and
(M. Minsky, Ed.), HIT Press.

[1975], A Framework for the
Psychology of Computer Vision,
York, pp. 211-280.

Representation of Knowledge. The
(P. Winston, Ed.), McGraw Hill, New

Moore, R.C., (1975), Reasoning from Incomplete Knowledge in a Procedural
Deduction System. Memo Al-TR-347, Artificial Intelligence Lab., MIT.

Moss, C.D.S., [1977], A Comparison of Hoare 1 s Axiomatic Approach to
Semantics and Plan Formation Studies. Imperial College, Dept. of
Computing and Control, M.Sc.Thesis.

[19791, A New Grammar for Algol 68.
College, London.

Dep. Rep. 79/6, Imperial

Murray, N., [1978], A Proof Procedure for Non-Clausal First Order Logic.
Research Report, University of syracuse, New York.

My10poulos, J., Cohen, P., 80rgida, A., and sugar, L., [1975], Semantic
Networks and the Generation of Context, 4th IJCAI, Tiblisi, Georgia.
pp. 134-142.

Nevins, A.J., [1974], A HUman-Oriented Logic for Automatic Theorem
Proving. JACM, Vol 21, PP. 606-621.

Newell, a., Shaw, J.C. and Simon, H.A., [1963[, Empirical Explorations
with the Logic Theory Machine: A Case Study in Heuristics.
Reproduced in Computers and Thought, (Feigenbaum and Feldman, Eds.),
McGraw Hill, New York, pp. 109-133.

Newel1, A.,
Thought.
Feldman,

Siroon, H., [1963], GPS, A Program that
Reproduced in Computers and Thought,

Eds.), McGraw Hill, New York, pp. 279-296.

simulates Human
(Feigenbaum and

Nicholas, J.M., Gallaire, H., [1978], Data Base:
Interpretation. Logic and Data Bases, (H. Gallaire
Eds.), plenum Press, New York, pp. 33-54.

Theory vs.
and J. Minker

Nicholas, J.M., Syre, J.C., [1974], Natural Question-answering and
Automatic Deduction in the System SYNTEX. Proceedings IFIP Congress
1974, North Holland, Amsterdam. pp. 595-599.

256

Nilsson, N.J.,
Intelligence.

References

[1971], Problem Solving
McGraw Hill, New York.

Methods in Artificial

Peterson, M.S., wegman, M.N., [19761, Linear Unification. Proe. 8th
Annual ACM Symp. on Theory of Computing. pp. 181-186.

Peirce, C.S" [19311, Collected Papers
Vol.2, 1931 -1958, (C. Hartshorn et
Press, Cambridge, Mass.

of Charles
ai, Eds.),

Saunders Peirce.
Harvard University

Pereira, F.r Warren, D.H.D., [1978], Definite Clause Grammars Compared
with Augmented Transition Networks. Research Report, Dept. of AI,
Edinburgh.

Pereira, L.M., Monteiro, L.F., [1978J, The Semantics
Coroutining in Logic Programming. Colloquium on
in Programming, Salgo'tarjan, Hungary.

of Parallelism and
Mathematical Logic

Pirotte, A., [1978], High Level Data
Data Bases, (H. Gallaire and J.
York, pp. 409-436.

Base Query Languages. Logic and
Minker, Eds.), Plenum Press, New

Fohl, I., [1970J, Heuristic Search Viewed as Pathfinding in a Graph.
Artificial Intelligence Vol.l, pp. 193-204.

[1972], Bi-directional search. Machine Intelligence 7,
University Press, New York, (S. Meltzer and D. Michie,
127-140.

Edinburgh
Eds.), pp.

Pople, H., [1973], On the Mechanisation of Abductive Logic, Proc. IJCAI
3, pp. 387-419.

Popper, K.R., [1963J, Conjectures and Refutations; The Growth of
Scientific Knowledge. Rouledge and Kegan Paul, London.

Pratt, V.R., [1977J, The Competence/ Performance Dichotomy in
Programming. 4th ACM SIGACT / SIGPLAN Symp. on Principles of
Programming Languages, Santa Monica, California, pp. 194-200.

Prawitz, D., [1960], An Improved Proof Procedure. Theoria 26, pp.
102-139.

Quillian, M.R., [1968], Semantic
Processing, (Minsky, M., Ed.),
227-270.

Memory. Semantic Information
Mass., pp. MIT Press, Cambridge,

Quine, W.V.O., [1941, Revised 1965], Elementary Logic. Harper and Row,
New York.

[1953], Two Dogmas of Empiricism. In "From a Logical Point of View".
Hutchinson, London.

Quine, W.V.O., U11ian, J.S., [1978], The Web of Belief, 2nd Edition,
Random House, New York.

Raphael, E., [1971], The Frame Problem in Problem
Artificial Intelligence and Heuristic Programming.

Solving Systems.
(Findler, N. V.,

References 257

Meltzer, B., Eds.), Edinburgh University Press, Edinburgh, pp.
159-169.

Reboh, R., Sacerdoti, E., [1973], A Preliminary Qlisp Manual. Technical
Note 81. SRI Project 8721.

Reiter, R., [1971], Two Results on Ordering for Resolution with Merging
and Linear Format. J. ACM 18 (October 1971), pp. 630-646.

[1972], The Use of Models in Automatic Theorem Proving. Technical
Report 72-09, Dept.of Computer Science, University of British
Columbia.

{197Ba], Deductive Questioning-Answering on Relational Data Bases.
Logic and Data Bases, (H. Gallaire and J. Minker, Eds.) Plenum Press,
New York, pp. 149-177.

[197Bb], On Reasoning by Default. Proc. 2nd Symp. on Theoretical
Issues in Natural Language Processing. Urbana, Illinois.

[197Bc], On Closed World Data Bases. Logic and Data Bases, (H.
Gallaire and J. Minker, Eds.), Plenum Press, New York, pp. 55-76.

Robinson, J.A.,
Principle.

[1965a], A Machine Oriented Logic Based on the Resolution
J. ACM 12 (January 1965), pp. 23-41.

(l965b], Automatic Deduction with Hyper-Resolution. Intern. Journal
of Computer Math. 1, pp. 227-234.

[1967], A Review of Automatic Theorem-Proving. Annual Symposia in
Applied Math. XIX, American Math. Society, Providence, pp. I-lB.

[1968], The Generalised Resolution Principle.
3, (Dale and Michie, Eds.), Oliver and Soyd,
77-93.

Machine Intelligence
Edinburgh 1968, pp.

[1971], Computational Logic: The Unification Computation. Machine
Intelligence 6, Edinburgh University Press, New York, (B. Meltzer and
D. Michie, Eds.). pp. 63-72.

[1979], Logic: Form and Function. Edinburgh University Press.

Robinson, J.A., Sibert, E.E.,
Progress Report. School
Syracuse University.

[1978}, Logic Programming in
of Computer and Information

LISP: A
Science,

Roussel, P., 11975], PROLOG: Manuel de Reference et d'Uti1isation.
Groupe d'Intelligence Artificielle, Universite d'Aix-Marseille,
Luminy, Sept. 1975.

Rulifson, J.F., Derekson, J.A.C., Waldinger, R.J., [1973), QA
Procedural Calculus for Intuitive Reasoning. Technical Note
Artificial Intelligence Center, SRI.

4: A
73,

Sacerdoti, E.D., [1975), The Non-linear Nature of Plans. Proc. IJCAI 4,
Tiblisi, Georgia, USSR. pp. 206-214.

258 References

[1977], A Structure for Plans and Behaviour. EIseviP[North Holland,
New York.

Schank, R.e., [1973],
Natural Language.
(R.C.Schank and K.
pp. 187-247.

Identification of Conceptualizations
Computer Models of Thought and

Colby, Eds.) W.H.Freeman and Co., San

Underlying
Language.

Francisco.

[1975J, Conceptual Information Processing. North Holland Publishing
Co., Amsterdam. American Elsevier Publishing Co., New York.

Schrnidt, C.F., Sridharan, N.S., Goodson, J.L., [1978],
Recognition Problem: An Intersection of Psychology and
Intelligence. Artificial Intelligence, Vol. 11, Nos. 1,2.
pp. 45-83.

The Plan
Artificial
Aug. 1978,

Schubert, L.K., [19761, Extending the Expressive Power of Semantic
Networks. Artificial Intelligence, Vol 7. pp. 163-198.

[1977], Inferences on Quantified Semantic Networks. Tech. Rep. NL32,
University of Texas, February 1977.

Schwartz, J., [1977], Using Annotations to Make Recursion Equations
Behave. Research Memo, Dept. of Artificial Intelligence, University
of Edinburgh.

Shapiro, S.C., [1971], A Net
Deduction and Retrieval.
London. pp. 512-523.

Structure for Semantic Information Storage,
Proc. IJCAI, The British Computer Society,

[1977J,
Network.
Systems.

Sickel, S.,
Graphs.
Theorem

Representing
Proc. of

ACM/SIGART

and Locating
the workshop

Newsletter No.63.

Deduction Rules in a
on Pattern-directed

pp. 14-18.

Semantic
Inference

[1976], A Search Technique for Clause Interconnectivity
IEEE Transactions on Computers, Special Issue on Automatic

Proving, C-25, 8, August 1978. pp. 823-835.

[1978], Invertibility of Logic Programs. Technical Rep.
Univ. of California, Santa Cruz.

Siekmann, J., Stephan, W., [1976], Completeness and Soundness of the
Connection Graph Proof Procedure. Interner Bericht Nr. 7/76, Inst.
fur Informatik I, Universitat Karlsruhe.

Simmons, R.F., [1973], Semantic Networks: Their Computation and Use for
Understanding English Sentences. Computer Models of Thought and
Language, (Schank R. C., and Colby, K., Eds.), W. H. Freeman and Co.,
San Francisco, pp. 63-113.

Simmons, R.F.,
Networks.
5, p267.

Chester, D., [1977], Inferences in Quantified Semantic
International Joint Conference on Artificial Intelligence,

Stallman, R.M., Sussman, G.J., [1977], Forward Reasoning and Dependency-
directed Backtracking in a System for Computer-aided Circuit
Analysis. Artificial Intelligence, Vol.9, No.2, pp. 135-196.

References 259

Sussman, G.J., [1975], A Computer Model of Skill Acquisition. American
Elsevier Publishing Co., Amsterdam.

Sussman, G.J.,
Planning.

McDermott, D.V., [1972a], Why Conniving is
AI Memo No. 255, MIT Project Mac, April 1972.

Better than

[1972b], From PLANNER
Joint Computer Conf.

to CONNIVER - a Genetic
pp. 1171-1179.

Approach. AFIPS Fall

Sussman, G.J., Winograd, T., Charniak, E., [1971], MICRO-PLANNER
Reference Manual. AI Memo 203a, AI Lab, MIT.

Tarnlund, S-A., [1975a], An Interpreter for the Programming Language
Predicate Logic. Froc. IJCAI, Tiblisi, pp. 601-608.

[1975b], Logic Information Processing. TRITA-IBADB 1034, Department
of Information Processing and Computer Science, The Royal Institute
of Technology and The University of Stockholm, Sweden.

[1976], A Logical Basis for Data Bases. TRITA -IBADS 1029, Dept. of
Computer Science, Royal Institute of Technology, Stockholm.

[1977], Horn Clause computability. BIT 17, 2, pp. 215-226.

Tate, A., [1974], INTERPLAN: A Plan Generation System that Can Deal with
Interactions between Goals. Memo MIP-R-109, Machine Intelligence
Research Unit, University of Edinburgh.

Van der Brug, G.J., Minker,
and Theorem Proving
1975), pp. 107-115.

J., [1975], State space,
Some Relationships. C.

Problem Reduction
ACM 18, (February

Van Emden, M.H., [1976], Verification Conditions as Representations for
Programs. Proc. Third Int. Col. on Automata, Languages and
Programming, Edinburgh University Press. pp. 99-119.

[1977], Programming in Resolution Logic. Machine Intelligence 8, pp.
266-299.

[19781, Computation and Deductive Information Retrieval.
Description of Programming Concepts, (E. Neuhold, Ed.),
Holland, pp. 421-440.

Formal
North

Van Emden, M.H., Kowalski, R.A., [1976], The Semantics of Predicate Logic
as a Programming Language. J. ACM, Vol 23, No 4, pp. 733-742.

Wa1dinger, R., [1977], Achieving Several Goals Simultaneously. Machine
Intelligence 8, (Elcock, E. W., Michie, D, Eds.), Ellis Horwood Ltd.
and John Wiley. pp. 94-136.

Warren, D.H.D., [1974], WARPLAN: A System for Generating Plans. DCL Memo
76, Dept. of Artificial Intelligence, University of Edinburgh.

[1976], Generating Conditional Plans and Programs. Proc. AlSB Summer
Conference, Edinburgh. pp. 344-354.

[1977a), Implementing Prolog. Res. Rep. 39, 40. Dept. of A.I., Univ.

260 References

of Edinburgh.

[1977bl, Logic Programming and compiler writing. Research Rep. 44,
Dep. of A.I., Univ. of Edinburgh.

Warren, D.H.D., Pereira, L.M., Pereira, F., [1977], PROLOG- The Language
and its Implementation Compared with LISP. PrDe. Symp. on AI and
Programming Languages, SIGPLAN Notices, Vol. 12, No.B, and SIGART
Newsletters No, 64, August 1977. pp. le9-lIS.

Welham, R., [1976]. Geometry Problem Solving. DAI Research Report No.14.
University of Edinburgh.

Weyhrauch, P., [1978], Prolegomena. to a Theory of Formal Reasoning.
Report AIM-315, Computer Science Department, Stanford University.

Winograd, T., [1972], Understanding Natural Language. Academic Press.

[1975] , Frame Representation
Controversy. Representation and
Eds.), Academic Press.

and the Declarative-procedural
Understanding, (Bobrow and Collins,

Winston, P.H., [1977], Artificial Intelligence. Addison-Wesley, Reading,
Mass.

Wong, H.K.T ••
Survey of
Management.

Mylopoulos, J., [1977], Two
Data Models in Artificial

INFOR, Vol. 15, No.3

Views of Data Semantics: A
Intelligence and Database

woods, W.A., [1975]. What's in a link Foundations for
Networks. Representation and Understanding, (D. Bobrow
Collins, Eds.), Academic Press, New York. pp. 35-582.

Semantic
and A.

Yates, R., Raphael, B., Hart, T., [1970], Resolution Graphs. Artificial
Intelligence 1, (Winter 1970), pp. 257-289.

Zloof, M.M., [1975], Query-by-Example. Proceedings AFIPS 1975 NCC, Vol
44, AFIPS Press, Montvale, N. J., pp. 431-348.

Zloof, M.M., de Long,
(SBA): Programming
385-396.

S.P., [1977], The System for
Language. CACM Vol 20, No.

Business Automation
6 (June 1977), pp.

Index

262

abductive hypothesis241

accessibility of consequences239

actions133

active clause170

added statementsJ34

addition of assumptions230

Index

addition of surrogate subgoals179, 181

admissible pairs probleml16

algorithrn102, 125

alpha-beta95

alternative conditions201

ambiguity23, 210

ambiguity of only-if21S

analogyHI4

analysis49
case structure34

analysis of differences179, 185

analysis of invariants188

analytic resolution?1

and-or tree75, 85
extended88

Anderson244

answer extraction42

antecedent theorem128

applicetion of procedure88

application of 5ubstitution15, 70

Index

arch recognition 105, 121

argument6

array112

arrow inversion prob1eml04, 189

arrow notation101, 140, 156, 170

artificial intelligence75, 128

assertion29, 85

assignment146, 157

assimilation of informationl85, 245

associativity of conjunctionl96

associativity of disjunctionl96

assumption8

atom6

atomic formula2, 6

atomic sentence 1

axiom
frame138
state spacel37

backtracking62, 96, 112, 113, 130, 176
intelligent1l4

belief system239

Belnap244

Bergman41, Ill, 125

bi-directional problem-solving99, 101

bi-directional reasoning156

bi-directional search103

Bibell26, 129, 177, 200, 204

binary predicate syrnbo122

263

264

binary relationship33

binary representation34, 133, 145

tree108, 132

Bledsoeiv, 71, 100, 164, 200

blocks world probleml33, 146

bootstrapping231

bottom-up7

bottom-up derivation68

bottom-up executionllB, 123

bottom-up inference69

bottom-up parsing49

bottom-up refutationS3

bound variable195

BoyerlS0,

branch-and-bound8S

Brand?!

breadth-first search61, 84

Brough95

Brown?1, 177, 200

Bruynoogheiii, 99, 174

bundle of arcs85

Bundyiii, 41, 166

Burstall122, 127, 179, 204

calculation12

calculus
relationa139

call by needll?

Index

cancellation system of Colmerauer177

case ana1ysis154, 216

case structure analysis34

Changiv

Charniak128

Chomsky57

Church220

Index

Clarkiii, 126, 127, 136, 204, 217, 219, 222

clausal formS

clause2, 5
deletion of164
empty88
empty set of164
Horn16
non-Hornli, 147
non-restrictive relative24
restrictive relative24
self-resolvingl?3

closed world assumption214

co-operating sequential proceEs117

Codd3?, 39, 108, 123, 129

Coelho41

Colmeraueriii, 40, 41, 57, 99, 107, 231
systeml77

common instance70

commutativity of

completeness63, 66, ?1
of connection graph proof procedure176

complier-writing41

component
of substitution70

composite terms6

computation107, 109, 129

computer-aided design41

265

266

conceptual analysis of actions46

conclusionl, 5

conditionl, 5
selection of63

conjunction197

connection graph95, 119, 122

Index

connection graph proof proceaure71, 1"2, 163
completeness176

connectives4
propositional193

CONNlVER99, 128

('00527, Ifj8

consequent theorem128

consistency15, 164, 183, 193

constant symbo12, 6

consumer-producer126

context-free grammarS?, 94

context-sensitive grammarS?

control cornponent125, 127

control language127

controlled deduction129

conversion to clausal form197

coroutinel17, 127, 181

coroutines1l7

correct representability226

correctness?1

Cox99

Dah140, 41

Index

Darlington40, 122, 126, 127, 179, 184, 204

Darvas41, 145

data flow1l7

data structures107, 113, 122, 212
recursive107
separation of12l

database37, 108, 128, 239
departmenta141
relationa137, 123

database formalisms124

database query128

Daviesl28

Dawsonl83

default reasoning241

defined

definition of factorial187, 210, 211

definition of natural number2l3

definition of subsetl77, 204, 219

deleted statements134

deletion of clausesl64

deletion of redundant subgoals179,

deletion of vacuous quantifiers196

Deliyanni32, 113

deLong12S

Demonstrate relation227

denial3

departmental database41

dependent subgoals91, 93

267

268

depth-first search61, 84, 96, 177

derivation
bottom-up68
top-down67

derivation of inconsistency242

derivation of programs193

derived equivelences199

Diff relation43, 136

Dijkstral14,

direct execution226, 228

discourse
universe of12, 14

disjunction197

disjunctive conclusions202

disjunctive solutions157

cocum€ntatior.J 22

Index

don't C2rc non-determinisrnlllZ, 188

don't know non-determinisml ll3

Doran75

Doyle99, 242

drug an?lysis41, 145

duplicate subgoa194, 99

Earley94. 119

Earley parsing procedure94, 119

efficiency126, 128

Ehrenfeucht - Rabin 'l'heoreroI66

eight-queens probleml31

eljmination of existential quantifiers198

empty clause6, 15, BB

empty set of clauses15, 164

equalityll, 42, 211

equivalence196, 197
derived199

equivalence of progcams12B, 126

evaluation functionB4

exception to general rules243

exclusive interpretation of "or"16

execution
bottom-upllB, 123

exhaustive search strategy66, 177

existence25, 27

existential quantifiers194
elimination ofI98

expressionlS, 70

extended and-or tree88

extended semantic network33

Index

factorial definitionlB, 118, 120, 187, 210, 211

factoring71, 94, 150

failure
negation as136, 137

fallacy of 109ic2l3

falsity14

farmer, wolf, goat and cabbage problem104

fault diagnosis128

Feldman128

Fibonacci numberl18, 178

269

Fikes133

Fillmore34

Fishman1l3

Floya204

formalisation of provability225

forrnula195
atomic2

Foster49

frame axiom138

frame probleml33

frames246

free variable195

Friedman1l7

functionll3, 127
evaluation84

function symbo12, 6, 26, 96, 195
cons27
infix109

functional notation42

Futo41, 145

G-deduction71

game playing95

Gelernter75, 183

general law39, 125

General Problem Solver75, 179

geometry
use of diagrams183

Index

Geometry Theorem Proving Machine75, 183

geometry theorem-proving41

gosl state75

goal statement88

goal transformation179

goals as generalised solutions184

Gode1225

grammar
context-freeS7, 94
context-sensitive57

Tnnpv

graph representation of a search space79

Graph Traverser7S

Green40, 136, IS8

guarded commandl14

Hayes127, 129, 136

Henderson1l7

Hendrix32

Herbrandiii

heuristic search84

Hewitt10, 99, 128, 129, 133, 183

Hil171

Hoare107, 120, 204

Hodgesii

Hoggerl26, 200, 204

Holds relationl36

Horn16

Horn clause16
problem-solving interpretation of8S

human memory3l

hyper-resolution71

if-anrl-on1y-if31, 136, 137, 210

271

272 Index

implication3, 9, 28, 29, 197

inclusive interpretation of "or"16

incompleteness of formal arithmetic225

incompleteness of the formalisation of provability233

inconsistency9, 14, 197

independent subgoals89

inc i v idua 12

induction schema221

inductive generalisation241

inference
bottom-up69
top-down67

inference rules60

inference system
completeness of71
correctness of71

infinite search64

infix function symbol109

infix notation22, 109

information retrieval184

information system239

inheritance of links174

initial state75

input89, 108, 123

input componentB9

input parameterl10

instancel3, 15. 70
common70

instantiationlS

integration
symbolic41

Index

integrity 124, 191, 211, 243

intelligent bDcktracking98, 114, 242

inter-connectivity graph resolution71

interfacing procedures122

interpretation9, 12

invariants
analysis ofl88

iterationl12, 118, 119

Kahn1l7

Kanoui41, Ill, 125

177

key38

Klahr40, 177

Kowalskiv, 32, 71, 75, 85, 95, 107, 113, 129, 176

Kuehner71, 75

Lakatos242, 244

Lawler85

laws125

learningl"3

Leeiv, 158

Leroma94
negative94

linear resolution?l

link175

LISP1"7, 109, 123, 127, 2"4, 232

list109, 112

273

274 Index

logic
propositional15l
standard form127, 152, 193

logic component125

logic program107

Logic Theorist75

logical imp1ication9

loop94, 174, 185, 220

loop detection185

Lovelandiii, iv, 71, 75, 94, 160, 182

Luckham71

macro-processingI22, 137, 169

maintenance procedure239

Mannal27, 200, 2e4

Markusz41

Martelli60

matching54

matching proceaure88

matching substitution70, 89

mathematical programming18l

McCabeiii, 127

McCarthy103, 107, 136, 232

McDermott99, 128

MCSkimin40, 183, 184

meaning4, 8

mechanics problems41

Meltzerl40, 147, 166

memory
human31

merit ordecing85

Index

meta-1anguage44, 135, 136, 211, 215, 226

Michie71, 75

MICROPLANNER128

middle-out reasoning137, 169

mini-max95

Minker40, 75, 113, 183, 184

Minsky103, 222, 241, 246

model elimination71, 94

modus ponens54

rtlOdus tollens56

monotonicity criticism222

Moore150, 161, 204

MonisH 7

Mossl11, 144, 158

most general substitution54, 59

most general unifier70

Murray200

mutilated checker board pcoblem190

n-ary cepcesentation34

name of an individuall94

natural deduction systerns200

natural language31, 129, 210, 213, 225, 233, 244

275

276 Index

negation28, 197, 217

negation as failure136, 137, 217, 234

negative goals and assertions147

negative lemrna94

network
extended semantic33
semantic31

Nevins200

Newe1l75, 179

Nicolas40

NiIssoniii, 75, 85, 133

non-determinismlll, 176
don't carelBB
don't know188

non-determinism}lll, 113

non-determinism2 114

non-Horn clausel7, 147

non-restrictive relative clause24

notation
functiona142
infix22
prefix22

object language44, 210, 215, 226

omission of universal quantifiers197

only-if3l

only-if halves of definitions202

open world assumption214

operators75

or
exclusive interpretation16
inclusive interpretation16

ordered linear reolution71

organic compounds
synthesis of144

output89, 108, 109

output component88, 89

output parameterl10

palindrome72

paradox of self-reference225, 233

parallel execution126

parallel search113

parallelism116

parameter
inputl10
output1l0

parent clause149

parity19

parse tree50

parsing problem49, 123, 168

partial output109, 120

Paterson60

path-finding75, 77, 85

path-finding prob1em1m2, 114, 130

path-finding search strategiesS3

Peirce241

Pereiraiii, 41, 107, 231

Pietrzykowski99

Pirotte39

Index

plan-formation41, 133, 181, 183, 191

277

278 Index

PLANNERIB, 99, 129, 133, 138, 230

Poh1l00

Pople75

POPLER128

Popper242

postconditions134

pragmatics120

Pratt129

Prawi tzi ii, 60

precedence relation
among function symbolsl09
among quantifiers and connectives196

preconditions134

predicate2

predicate symbol3, 6
binary22
renaming of140, 147
unary22

prefix notation22

primitive relationsl37

principle of eager considerationS3

principle of procrastination93

problem
admissible pairsl16
arch recognition96, 121
arrow inversion104, 189
blocks worldl33, 146
farmer, wolf, goat and cabbagelB4
framel33
mutilated checker board190
parsing123
path-finding102, 114, 120, 130
plan-formationl33
sortingl15, 120
state-spacel33
symbolic integration125
water containers75, 81, 138, 146

8-queens131

problem-reduction75, 85
search strategies for95

problem-solving75
global strategies179

problem-solving by examplel04

Index

problem-solving interpretation of Horn clauses56, 63, 88

problem-solving method88

procedural interpretation107

procedure85, 88, 107

procedure body107

procedure invocation107

procedure name107

procrcstination
principle of93

program12, 107

program correctness126

program derivation204

program designl21, 125

program equivalence120, 126

program properties40, 211
proof of220

program proving179, 190

program semantics204

program specification124, 144, 200

program termination179

program transformationl22, 126, 179

219

289 Index

program verification204

PROLOG41, 99, 107, 199, 125, 127, 145, 219

pronoun
relative24

proofl

proof by induction221

proof procedure60
connection graph?1, 102
trace235

proof theory71

property2

propositional connectives193

propositional logic151

provability
formalisation of225

pseudo-linkl73, 175, 185

purity principle164

Q-systemS7

QA412B

QLISP128

quantifiers193
existential194
universa1l94

query
languages39

query-by-example39, 125

question-answering40, 41

Quillian34

Quineii, 242

Rabin166

Index

Reboh12B

recursion1l9

recursion equationsl27, 179, 204

recursion theory123

recursive data structuresl07

recursive definition213

redundancy71, 90, 113, 139, 143, 145, 167

reflection principle229

refutation56, 67
bottom-upS3
top-down 55

refutation procedure60

Reiter71, 214, 241

rejection of inconsistent goal statements179, 182

rejection of subgoals contradicted by an examp1e179

re1ation2, 12, 122, 212
Diff136
Holds136

relational calculus39, 42

relational database37, 123

relationshipl
binary33

relative pronoun24

renaming of predicate symbols140, 147

renaming of variablesl49, 196

representation
binary34
n-ary34

137, 147
analytic7l
inter-connectivity graph71
linear71
ordered linear7l
structure-sharing implementation150

281

282 Index

resolvent149

restoration of consistency242

restrictive relative clause24

rewriting systems57

Robinsoniii, iv, 60, 71, 137, 147, 159, 164, 174, 183

Rousseliii, 41, 99, 107

Rulifson128

Sacerdoti128, 133, 145

SAIL128

Sambuc40, 41

Schank34, 46, 246

Schmidt98

Schreiber2'HI

Schubert32

Schwarz127, 129

scientific

script246

search
breadth-firEt61, 84
depth-first61, 84, 96
heuristic84
infinite64

search space60
graph representation of79

search strategy60, 113
exhaustive66, 177
for path-findingS3
for problem-reduction spaces95

selection strategy67

self-referential sentence225

Index

self-resolving clause173

semantic network31, 102, 113, 163, 164
extended33

semantics6, 71, 144, 151, 193

semantics of programs204

sentence195
atomicl

separation of data structures121

separation of logic from control125

sequential searchl12

Shapiro32

Shaw75, 179

Sibert183

Sicke171, 126, 177, 200, 204

Siekmannl77

S ik lossy183

Sirnrnons34

Simon75, 179

SIMULA1l7

simulation225, 228

SL-resolution7l, 95

solution
disjunctivel57

sorting problem115,

soundness7l

specification 1anguage120, 204

specification of programsl93

splitting89

Stallman99, 242

283

284 Index

standard form of logic29, 127, 152, 193
conversion to clausal farmI97
semantics193

state84, 95
goC'175
initia175

state space axioml37

state space probleml33

Stephanl77

Sticke175

strategy
for subgoal selection93
last-in-first-out68
search60
selection67

STRIPS133, 134, 137, 138

structure-sharing implementation of resolution150

subformula195

subgoa195

subgoal selection strategy92

subset
definition ofl?7, 219

substitution10, 15, 70
application of IS, 70
matching70, 89
most genera154, 59

substitution componentlS, 70

subsumptionlS2

successor7

surrogate constraint181

Sussman98, 99, 128, 242

symbol
constant2, 6
function2, 6, 26

predicate3, 6

symbolic integration41, 125

syntax5, 8

synthesis49

synthesis of organic compounds144

Syre40

Szeredi41, 145

tables37

Tarnlund126, 204, 222

Tate145

tautology174, 187

terms6, 107, 122, 212
composite6

text comprehension240

timesharing103, 116

top-down7

top-down derivation67

top-down inference67

top-down parallel refutation56

top-down parsing49

top-down refutation55

trace of a proof procedure235

transitivity25, 180

Travis40, 177

tree
and-or75, 85

Index

tree-representation of search spaces79

285

286 Index

tr iangle49, 57

truth14, 152

truth maintenance242

types23, 24

unary predicate symbo122

unaecidability of logic220

unification70

unification algorithm60

unifier
most general?0

universal quantifier194

universe of discourse12, 14

unstated only-if assumption213

util ity240

Van der Brug75

Van Emden39, 120

variable2, 6, 23

variant4, 60, 67

verification of programs204

vQcabulary18

Waldinger127, 145, 158, 200, 204

Warreniii, 41, 107, 144, 231

water containers problem75, 81, 84, 13e, 146

Wegman60

Welharn41

Weyhrauch229

Winograd128, 129

Winstoniii

Wise1l7

Wood85

Zloof39, 125

Index 267

	Chapter0
	Chapter1
	Chapter10
	Chapter11
	Chapter12
	Chapter13
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Chapter6
	Chapter7
	Chapter8
	Chapter9
	References
	Index

