
Logical English for Law and Education

Robert Kowalski1, Jacinto Dávila2, Galileo Sator3 and Miguel Calejo4

 1 Imperial College London, 2 Universidad de Los Andes, Venezuela.
3 University of Turin, 4 logicalcontracts.com, Lisbon

Abstract. In this paper we present the key features of Logical English as syntac-

tic sugar for logic programming languages such as pure Prolog, ASP and

s(CASP); and we highlight two application areas, coding legal rules, and teaching

logic as a computer language for children.

Keywords: Logical English, Prolog, Law, Education

1 Introduction

Logical English (LE) [6-11, 15] exploits the unique feature of Prolog-like logic pro-

gramming (LP), that LP is the only programming paradigm based on the use of logic

for human thinking and communication. By exploiting this feature, LE becomes a wide-

spectrum computer language, which can be understood with only a reading knowledge

of English and without any technical training in computing, mathematics or logic.

 LE is not only a Turing-complete computer programming language. It has the

potential to represent and reason with a broad range of human knowledge, as shown by

its ability to codify the language of law. In an educational setting, it can be used to

introduce both computational and logical thinking across the whole range of subjects

taught in school, bridging STEM and non-STEM subjects alike.

Basic syntax. LE differs from pure Prolog primarily in the syntax for atomic predicates.

In LE, predicates and their argument are declared by means of templates, as in:

 a person likes *a thing*

where asterisks delimit the argument places of the predicate. In the simplest case, an

argument place can be filled by a constant or a variable. For example:

Ordinary English: Alice likes anyone who likes logic.

Logical English: Alice likes a person if the person likes logic.

Prolog: likes(alice, A) :- likes(A, logic).

A variable is a noun phrase ending with a common noun, such as “person” or “thing”

and starting with a determiner such as “a”, “an” or “the”. The indefinite determiner, “a”

or “an”, introduces the first occurrence of a variable in a sentence. The same noun

2

phrase with the indefinite determiner replaced the definite determiner, “the”, represents

all later occurrences of the same variable in the same sentence. Any other string of

words in the position of an argument place is a constant. Unlike in Prolog, upper and

lower case letters have no significance. Here is another example:

Templates: *a person* is a parent of *a person*,

a person is the mother of *a person*.

Logical English: A person is a parent of an other person

if the person is the mother of the other person.

Prolog: is_a_parent_of(A, B) :- is_the_mother_of(A, B).

These examples illustrate some of the following characteristics of the basic syntax of

LE, which are inherited from LP:

• Sentences in LE have the form of facts or rules. Facts are atomic sentences,

whereas rules are sentences of the form conclusion if conditions, where the

conclusion is an atomic sentence and the conditions are a combination of

atomic sentences, typically connected by and.

• All variables in a sentence are implicitly universally quantified with scope be-

ing the rule in which they occur. This means that variables in different rules

have no relationship with one another, even if they have the same name.

• The basic version of LE is untyped, like Prolog, and variable names are purely

mnemonic. So, the first example sentence above has the same translation into

Prolog as the meaningless sentence Alice likes a hat if the hat likes logic. We

are developing an extended version of LE in which types are represented by

common nouns, and the arguments of predicates are checked for compatibility

with types that are declared in the templates.

• LE is designed so that sentences in LE have a unique translation into pure

Prolog. But LE is also designed to be as unambiguous as possible, when un-

derstood by a human reader. For this purpose, LE deliberately eliminates the

use of pronouns, which are a major source of ambiguity, as in the sentence A

person is a parent of an other person if she is the mother of her.

• The current, basic syntax of LE does not include relative clauses, as in Alice

likes anyone who likes logic. This is another deliberate choice, because relative

clauses are another source of ambiguity. For example, the relative clause

which breathe fire is ambiguous in the sentence All dragons which breathe

fire are scary. The relative clause can be understood restrictively as meaning

that a dragon is scary if the dragon breathes fire. Or it can be understood non-

restrictively, as meaning that, not only are all dragons scary, but they also

breathe fire.

Logically, restrictive relative clauses add extra conditions to a sentence,

whereas non-restrictive relative clauses add extra conclusions to the sentence.

There are syntactic conventions for distinguishing between restrictive and

3

non-restrictive relative clauses (such as the use of commas), but not everyone

uses them correctly and consistently, and they differ between American and

British English.

Fig. 1. An LE program together with alternative scenarios and queries, displayed in a VS Code

editor. The editor provides syntax highlighting, predictive text, and a simple form of static type

checking. https://le.logicalcontracts.com/p/unvaccinated.pl.

2 The SWISH implementation of LE

The current implementation of LE in SWISH [20] translates LE programs and queries

into Prolog or s(CASP) [15]. The implementation uses Prolog or s(CASP) to answer

queries, and it translates answers and explanations into LE syntax. Figure 1 displays an

example in a VS Code editor. The example illustrates some important additional fea-

tures, which are not in the basic syntax of LE.

https://le.logicalcontracts.com/p/unvaccinated.pl

4

Negation as failure for rules and exceptions. LE uses negation as failure to cater for

exceptions, as in the negative condition on lines 21 and 22 of figure 1. In contrast,

ordinary natural language often omits such explicit negative conditions for exceptions,

and relies instead on stating separately that the conclusion of a rule does not apply, as

in Proleg [16, 17]. For example, instead of stating that a meeting is excused if the meet-

ing is a meeting of the cabinet ministers, it may be more natural to state that it is not

the case that a meeting is prohibited if the meeting is a meeting of the cabinet ministers.

We are exploring the possibility of extending LE, to include such a treatment of excep-

tions for legal applications.

Metapredicates for propositional attitudes. LE inherits the feature of Prolog that sen-

tences can occur as arguments of meta-predicates. LE uses this to represent deontic

modalities (obligation, prohibition, permission) and other propositional attitudes (noti-

fication, belief, desire, dislike), introduced by the keyword that. For example, in line

24 of figure 1 the keyword that introduces the proposition the person pays £100 as an

argument of the meta-predicate A person has an obligation. Similarly, the keyword that

in line 27 introduces the proposition the meeting is prohibited as an argument of the

meta-predicate the person is notified.

The implementation of LE translates the sentence on lines 24-27 into the Prolog rule:

 has_an_obligation_that(A, pays(A, '£_100')) :-

 attends(A, B), is prohibited(B), is_notified_that(A, is_prohibited(B)).

It translates the sentence on lines 29-32 into the Prolog rule:

 'An_arrest_warrant_is_issued_for'(A) :-

 has_an_obligation_that(A, pays(A, B)), not pays(A, B).

Notice that the sentence expresses the deontic character of an obligation by represent-

ing the less-than-ideal consequence of violating the obligation.

Scenarios and queries. Figure 1 also includes a number of scenarios and queries,

which can be combined and posed to the system, as shown in figure 2.

 In the combination of query one and scenario one, Novak is obligated to pay £100,

but Boris is not, because, although both have attended a prohibited party (thanks to

Novak), only Novak has been notified of the prohibition.

In the combination of query one and scenario two, Boris is obligated to pay £100,

but Novak is not, because this time it is Boris, rather than Novak, who is notified of the

prohibition.

In the combination of query two with scenario one, no arrest warrant is issued, be-

cause Novak, the only person obligated to pay £100, pays the required amount.

In the combination of query two with scenario two, Boris is issued an arrest warrant,

because he pays an incorrect amount. An explanation for issuing the arrest warrant to

Boris is displayed in figure 3.

5

Fig. 2. A log of combined queries and scenarios together with their answers.

Fig. 3. An explanation for the answer to query two with scenario two.

3 Logical English for Legal Applications

We have been using LE to explore the representation of a wide range of legal texts,

helping to identify ambiguities, explore alternative representations of the same text, and

compare the logical consequences of the alternatives. The texts include portions of loan

agreements, accountancy law, Italian citizenship, EU law on criminal rights, Interna-

tional Swaps and Derivative contracts, and insurance contracts.

The Italian Citizenship Example. We are also developing analogues of LE for other

natural languages, such as Italian and Spanish. Figure 4 shows both an LE and a Logi-

cal Italian (LI) representation of Article 1 of Act No. 91 of 5 February 1992:

6

E’ cittadino per nascita: a) il figlio di padre o di madre cittadini; b) chi e’ nato

nel territorio della Repubblica se entrambi i genitori sono ignoti o apolidi, ov-

vero se il figlio non segue la cittadinanza dei genitori secondo la legge dello

Stato al quale questi appartengono.

Both representations in figure 4 were generated manually. In contrast with the manually

generated LE representation in figure 4, google translate gives the following translation

of the original Italian text into English:

Citizen by birth: a) the child of a citizen father or mother; b) who was born

in the territory of the Republic if both parents are unknown or stateless, or if

the child does not follow the citizenship of the parents according to the law

of the state to which these belong.

Both the Italian text and its English translation are ambiguous: In particular, both the

English condition "the child does not follow the citizenship of the parents according to

the law of the state to which these belong" and its Italian counterpart, taken literally,

seem to cover only the case where both parents have the same citizenship. Moreover,

both the Italian "ovvero se" and the corresponding English "or if" seem to relate to a

separate alternative from the alternatives that precede it. These readings of the natural

language texts leave uncovered such deserving cases as the child having one parent

who is stateless or unknown, and another parent who cannot pass on its citizenship to

its child. It seems doubtful that these omissions would have been intended by the law.

The LE and LI representations in figure 4 incorporate only one interpretation of Ar-

ticle 1.1. Of course, other interpretations are possible, and they could also be repre-

sented in LE and LI. For comparison, see the similar case of children found abandoned

in the UK, covered by the 1981 British Nationality Act, as formulated both in the orig-

inal English and in an earlier, unimplemented variant of LE [7].

Fig. 4. LE and LI representations of Article 1 of Act No. 91 of 5 February 1992.

https://le.logicalcontracts.com/p/italian_citizen_new.pl

https://le.logicalcontracts.com/p/cittadinanza_italiana.pl

https://le.logicalcontracts.com/p/italian_citizen_new.pl
https://le.logicalcontracts.com/p/cittadinanza_italiana.pl

7

Figure 4 illustrates several features of LE that were not demonstrated earlier:

• LE uses indentation, rather than brackets, to represent the relative strength of

binding of the logical connectives and and or.

• Variables can be given symbolic names, such as A and B in this example.

• Conditions can have the form for all cases in which conditions it is the case

that conclusion, which are translated into forall(conditions, conclusion).

In figure 4, the possibility that a parent is unknown is expressed positively (as a kind of

“strong” negation), to reflect the wording of the original legal text. Alternatively, the

same possibility could be expressed using negation as failure, to conclude that a parent

of a person is unknown if there is no information about the parent. In fact, with the

representation in figure 4, it is possible to know that a person is born in Italy, but not to

know who the parents are. In such a case, the for-all condition would be satisfied vac-

uously, and the person would be an Italian citizen by default.

4 Logical English for Education

By eliminating ambiguity from natural language, LE forces a writer to think more

clearly about the relationship between sentences and their meanings. Thinking about

meaning is unavoidable when writing sentences for translation into computer-executa-

ble code. But it also helps to avoid misunderstandings in communication among hu-

mans. Moreover, it helps to bridge the gap between the sciences and the humanities, by

showing that clarity of language and thought is important in all academic disciplines.

 The Italian citizenship example shows in a simple case how the use of symbolic

names, which is associated with STEM disciplines, can be used to improve the clarity

of communication in a non-STEM area. But the logical use of natural language, asso-

ciated with LE and with some non-STEM disciplines, is also an important skill for use

in STEM subjects, to make technical information more accessible to a wider audience.

The definition of subset. Figure 5 shows both an LE and an LS (Logical Spanish)

representation of the definition of subset. Arguably, the definition can be understood

by a reader without any training in mathematics or logic, but with only a reading

knowledge of English or Spanish. Figure 6 shows all answers to the LE query which

set is a subset of which other set, first with the scenario named facts, and then with the

scenario named lists.

 The subset example illustrates several features that have not been seen earlier:

• Because in the current version of LE variable names are purely mnemonic, the

conditions that A and B are sets, on lines 13 and 14, need to be stated explic-

itly. These conditions would not be necessary if common nouns were treated

as types. We plan to extend LE to include such types in the near future.

• The notion of set in lines 12-18 is an abstract notion, which is neutral with

respect to how sets are represented concretely. Scenarios one and two employ

different concrete representations. Scenario sets represents sets by facts that

8

define the belongs to relation explicitly. Scenario lists represents sets by

Prolog-style lists, and the belongs to relation is defined in terms of the is in

relation, which is LE syntax for the Prolog member predicate. In both scenar-

ios, there are only two sets. In both scenarios, there is no empty set.

Fig. 5. A definition of the subset relation in LE and LS. https://le.logicalcon-

tracts.com/p/sets%20with%20lists.pl

https://le.logicalcontracts.com/p/conjunto.pl

Fig. 6. All subsets with sets represented by facts or by lists.

Reading versus writing. It is natural to associate teaching computer science with

teaching students how to write computer programs. But this overlooks the fact that most

people will never need to write computer programs in their adult life. Some people may

want to read programs, to convince themselves that the programs meet their require-

ments. Some may want to understand explanations for answers to queries, and they may

want to modify assumptions to obtain better answers. But hardly anyone will need to

write programs themselves from scratch.

https://le.logicalcontracts.com/p/sets%20with%20lists.pl
https://le.logicalcontracts.com/p/sets%20with%20lists.pl
https://le.logicalcontracts.com/p/conjunto.pl

9

Focussing on teaching students how to write computer programs also overlooks the

fact that learning to write well in any language, whether it be a natural language or a

computer language, is much harder than learning to read. In this respect, LE has an

advantage over other computer languages, because it can exploit a much wider range

of examples requiring only a reading knowledge of natural language.

How to be a happy dragon. By focusing on reading rather than writing, examples of

programming language constructs that would ordinarily be considered too difficult to

teach at an introductory level can be included from the very beginning. Figure 7 illus-

trates such an example. Here the first sentence uses recursion, the second uses negation

as failure, and the third uses universal quantification, achieving the same effect as iter-

ation, while-loops or recursion in conventional programming languages.

Fig. 7. An LE program for introducing young children to logic and computing.

https://le.logicalcontracts.com/p/happy_dragon.pl

Although this style of English may seem artificial, it can be made more natural, while

remaining unambiguous, by treating common nouns as types. For example, the sentence

on lines 13-16 could be written more naturally and more simply as:

A dragon smokes if an other dragon is a parent of the dragon

and the other dragon smokes.

All the examples we have seen until now can be understood without any knowledge

about how LE is executed. Moreover, that understanding can be enhanced by experi-

menting with different scenarios and queries, and by exploring the logical conse-

quences. In this example, a student can learn that alice is happy, because her only child,

https://le.logicalcontracts.com/p/happy_dragon.pl

10

bob, is healthy; bob is healthy because he does not smoke; and bob does not smoke,

because his parent alice does not smoke. It might be harder to convince a student that

bob is a happy dragon too. But at least it shows that Logic and Computing can be in-

troduced to children at an early age without having to use examples, such as controlling

a robot or manipulating images on a screen, which can be implemented just as well, or

maybe even better, in an imperative programming language.

The Euclidean Algorithm. As a computer language, LE combines in one language the

features of a programming language, database language, and knowledge representation

and problem-solving language. All the examples we have seen so far are examples of

its use for knowledge representation and problem solving. The representation in figure

8 of the Euclidean algorithm for computing the greatest common divisor (gcd) of two

numbers illustrates its use for programming. It uses the built-in Prolog predicates for

subtraction and for testing inequalities.

Notice that a query such as which number is the gcd of 1946 and which other number

cannot be answered, because the Prolog predicate for inequality can be used only when

the two numbers are both given as input. On the other hand, the same program can be

used both to test that a given number is the gcd of two other given numbers, as well as

to generate the gcd. This capability would need two separate programs in a conventional

imperative programming language.

Fig. 8. The Euclidean algorithm. https://le.logicalcontracts.com/p/Euclid.pl

On the other hand, the LE representation is not an algorithm. The Euclidean algorithm

is the behaviour obtained by using the LE representation to reason top-down (or back-

ward), as in Prolog. This behaviour can be described imperatively:

 To find the gcd D of two given numbers N and M:

 If N = M, then D = N.

 If N > M, replace N by N-M, find the gcd D’ of N-M and M, then D = D’.

 If M > N, replace M by M-N, find the gcd D’ of N and M-N, then D = D’.

One of the advantages of the declarative representation is that it is written in the same

logical style as the natural definition (or specification) of gcd, illustrated in figure 9.

https://le.logicalcontracts.com/p/Euclid.pl

11

Compared with the imperative representation, the LE representation in figure 8 makes

it much easier to reason that the Euclidean algorithm correctly computes the gcd. As

David Warren points out [19], this can be done by using mathematical induction, ex-

ploiting the fact that the bottom-up (inductive) interpretation of the program in figure 8

computes the same gcd relation as the top-down (algorithmic) interpretation.

 Notice that the specification of gcd, illustrated in figure 9, is also executable, alt-

hough it is much less efficient than the Euclidean algorithm.

Fig. 9. The definition of gcd. https://le.logicalcontracts.com/p/gcd.pl

5 Related and future work

LE can be regarded as a controlled natural language, which is similar in spirit to ACE

[3] and PENG [18], which are also implemented in Prolog. But, whereas LE is syntactic

sugar for pure Prolog, ACE and PENG are syntactic sugar for first-order logic.

PENGASP [4], on the other hand, which is syntactic sugar for ASP, is closer to LE, but

also closer to natural English.

 LE inherits the wide spectrum use of LP as a computer language for programming,

program specification, databases and knowledge representation and reasoning. How-

ever, in its current form, it is not entirely general-purpose. It lacks the ability of imper-

ative languages to represent an agent’s goals and the ability of an agent to satisfy goals

by executing actions in reaction to external events.

 To remedy this disability, we developed the language LPS (Logic Production Sys-

tem) [12-14] as an extension of LP. In fact, the earliest implementation of LE was for

a smart contract using the rock-paper-scissors game [2] written in LPS. We plan to

extend LE to include the reactive rules and causal laws of LPS. Other proposed exten-

sions include a more natural representation of rules and exceptions, following the ap-

proach of [16-17], as well as natural language analogues of object-oriented types and

embedded functions and relations as in Ciao [1,5].

 In the meanwhile, the current version of LE and its natural language cousins, such

as LI and LS, indicate the future potential of logic-based computer languages with a

natural language syntax. In this paper, we have highlighted legal applications and edu-

cation as two major areas in which the benefits of such languages can be exploited

already today.

https://le.logicalcontracts.com/p/gcd.pl

12

References

1. Casas, A., Cabeza, D., Hermenegildo, M.V.: A syntactic approach to combining functional

notation, lazy evaluation, and higher-order in LP systems. In: Functional and Logic Pro-

gramming: 8th International Symposium, FLOPS 2006, pp. 146-162. Springer (2006).

2. Davila, J.: Rock-Paper-Scissors https://demo.logicalcontracts.com/p/rps-gets.pl (2017).

3. Fuchs, N.E., Schwitter, R.: Attempto controlled English (ACE). arXiv preprint cmp-

lg/9603003 (1996).

4. Guy, S.C., Schwitter, R. The PENGASP system: architecture, language and authoring

tool. Lang Resources & Evaluation 51, 67–92 (2017).

5. Hermenegildo, M., Morales, J., Lopez-Garcia P., Carro, M.: Types, modes and so much

more – the Prolog way. In: Warren, D., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R.

and Rossi, F. (eds.) Prolog - The Next 50 Years. LNCS, vol. 13900. Springer (2023).

6. Kowalski, R.: English as a logic programming language. New Generation Computing 8(2).

91–93 (1990),

7. Kowalski, R.: Legislation as Logic Programs. In: G. Comyn , N. E. Fuchs, M. J. Ratcliffe

(eds.), Logic Programming in Action, pp. 203-230, Springer (1992).

8. Kowalski, R.: Logical English, In Proceedings of Logic and Practice of Programming

(LPOP) (2020).

9. Kowalski, R., Datoo, A.: Logical English meets legal English for swaps and derivatives.

Artificial Intelligence and Law, 30(2), 163-197 (2022).

10. Kowalski, R., Dávila, J., Calejo, M., Logical English for legal applications. XAIF, Virtual

Workshop on Explainable AI in Finance (2021).

11. Kowalski, R., Dávila, J., Sartor, G., Calejo, M.: Logical English for Law. In Proceedings of

the Workshop on Methodologies for Translating Legal Norms into Formal Representations

(LN2FR), JURIX, (2022).

12. Kowalski, R., Sadri, F.: Reactive Computing as Model Generation. New Generation Com-

puting, 33(1), 33-67 (2015).

13. Kowalski, R., Sadri, F.: Programming in logic without logic programming. Theory and Prac-

tice of Logic Programming, 16(03), pp.269-295 (2016)

14. Kowalski, R., Sadri, F., Calejo, M., Dávila, J.: Combining Logic Programming and Imper-

ative Programming in LPS. In: Warren, D., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski,

R., Rossi, F. (eds.) Prolog - The Next 50 Years. LNCS, vol. 13900. Springer, Heidelberg

(2023).

15. Sartor, G., Dávila, J., Billi, M., Contissa, G., Pisano, G., Kowalski, R.: Integration of Logical

English and s(CASP), 2nd Workshop on Goal-directed Execution of Answer Set Programs

(GDE’22) (2022).

16. Satoh, K., Asai, K., Kogawa, T., Kubota, M., Nakamura, M., Nishigai, Y., Shirakawa, K.,

Takano, C., PROLEG: An implementation of the presupposed ultimate fact theory of Japa-

nese civil code by PROLOG technology", LNCS, 6797, pp 153-164. Springer (2010).

17. Satoh, K.: PROLEG: Practical Legal Reasoning System, In: Warren, D., Dahl, V., Eiter, T.,

Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. LNCS, vol.

13900. Springer, Heidelberg (2023).

18. Schwitter, R.: English as a formal specification language. In: Proceedings. 13th International

Workshop on Database and Expert Systems Applications pp. 228-232, IEEE (2002).

19. Warren, D.S.: Writing Correct Prolog Programs. In: Warren, D., Dahl, V., Eiter, T., Herme-

negildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. LNCS, vol. 13900.

Springer, Heidelberg (2023).

https://demo.logicalcontracts.com/p/rps-gets.pl

13

20. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice of

Logic Programming 12(1-2), 67-96 (2012).

