
Submitted to:
ICLP 2023

© R. Kowalski and J. Dávila
This work is licensed under the
Creative Commons Attribution License.

Logical English Demonstration

Robert Kowalski
Department of Computing

Imperial College
London, UK

r.kowalski@imperial.ac.uk

Jacinto Dávila
Universidad de Los Andes

Mérida, Venezuela
jacinto@ula.ve

Logical English (LE) is a natural language syntax for pure Prolog and other logic programming
languages, such as ASP and s(CASP). Its main applications until now have been to explore the
representation of a wide range of legal texts, helping to identify ambiguities, explore alternative
representations of the same text, and compare the logical consequences of the alternatives. The texts
include portions of loan agreements, accountancy law, Italian citizenship, EU law on criminal rights,
International Swaps and Derivative contracts, and insurance contracts. The current implementation
in SWI Prolog can be accessed at https://logicalenglish.logicalcontracts.com.

1 Introduction to Logical English

The basic form of LE is simply syntactic sugar for pure Prolog[2], with predicates written in infix form
and declared by means of templates, as in:

* a b o r r o w e r * d e f a u l t s on * a d a t e *

where asterisks delimit the argument places of the predicate. Variables are signalled by the use of one of
the determiners “a”, “an” or “the”. An indefinite determiner, “a” or “an”, introduces the first occurrence
of a variable in a sentence. All later occurrences of the same variable in the same sentence are prefixed
by the definite determiner “the”.

LE has only minimal linguistic knowledge of English. Its knowledge of English vocabulary is re-
stricted to the determiners; the logical connectives “if”, “and”, “or” and “it is not the case that”; the
logical pattern “for all cases in which. . . it is the case that. . . ”; and the logical keyword “that”. The
keyword “that” identifies the use of a meta-predicate, for representing such “propositional attitudes as
prohibition, obligation, belief, desire, fear, notification, etc. Indentation, rather than parentheses, is used
to indicate the relative strength of binding of the logical connectives. LE has virtually no knowledge of
English grammar. In particular, it does not distinguish between singular and plural nouns and verbs, and
it does not know about the relationship between the different tenses of verbs. Despite these restrictions,
and because it has the same expressiveness as pure Prolog, it can be used to represent a broad range of
knowledge, as shown by its application to the representation of legal texts [3, 4, 5, 6, 7]. Here is an
example based on the loan agreement in [1]. The SWISH implementation of the example can be found
at https://logicalenglish.logicalcontracts.com/p/new_loan_with_cure.pl.

Ordinary English: The Borrower will be in default under this agreement upon the failure of the Borrower to
fulfil any obligation of this agreement, provided the failure shall remain uncured within a period of two
days after notice is given to the Borrower by the Lender of the failure (such an uncured event an “Event of
Default”).

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://logicalenglish.logicalcontracts.com
https://logicalenglish.logicalcontracts.com/p/new_loan_with_cure.pl

2 Logical English

Logical English:
t h e b o r r o w e r d e f a u l t s on a d a t e D2
i f t h e b o r r o w e r has t h e o b l i g a t i o n t h a t an e v e n t u a l i t y
and t h e b o r r o w e r f a i l s t o s a t i s f y t h e o b l i g a t i o n t h a t t h e e v e n t u a l i t y
and t h e l e n d e r n o t i f i e s t h e b o r r o w e r on a d a t e D1 t h a t

t h e b o r r o w e r f a i l s t o s a t i s f y t h e o b l i g a t i o n t h a t t h e e v e n t u a l i t y
and D2 i s 2 days a f t e r D1
and i t i s n o t t h e c a s e t h a t
t h e b o r r o w e r c u r e s on or b e f o r e D2 t h e f a i l u r e t o s a t i s f y t h e o b l i g a t i o n t h a t

t h e e v e n t u a l i t y .

Prolog:
d e f a u l t s _ o n (t h e _ b o r r o w e r , A) : −

h a s _ t h e _ o b l i g a t i o n _ t h a t (t h e _ b o r r o w e r , B) ,
f a i l s _ t o _ s a t i s f y _ t h e _ o b l i g a t i o n _ t h a t (t h e _ b o r r o w e r , B) ,
n o t i f i e s _ o n _ t h a t (t h e _ l e n d e r , t h e _ b o r r o w e r , C ,

f a i l s _ t o _ s a t i s f y _ t h e _ o b l i g a t i o n _ t h a t (t h e _ b o r r o w e r , B)) ,
i s _ d a y s _ a f t e r (A, 2 , C) ,
n o t c u r e s _ o n _ o r _ b e f o r e _ t h e _ f a i l u r e _ t o _ s a t i s f y _ t h e _ o b l i g a t i o n _ t h a t (t h e _ b o r r o w e r , A, B) .

Notice that the original English suggests that an Event of Default occurs retroactively on the date D0 of
the failure to fulfil an obligation. However, elsewhere the loan agreement states that “upon the occur-
rence of an Event of Default all outstanding payments under this agreement will become immediately
due and payable”. To avoid inconsistency, the LE version represents the intended interpretation as being
that the default occurs on the date D2, two days after the notification of the failure on date D1.

Figure 1: Rules and payment scenario

R. Kowalski and J. Dávila 3

Figure 1 illustrates a scenario, called “payment”, in which the borrower fails to satisfy the obliga-
tions, on lines 22 and 23, to pay the lender 550 on 2015-06-01 and 525 on 2016-06-01. The lender does
not notice the first failure, but notices the second failure, and gives notice to the borrower of the second
failure on 2016-06-04. The borrower attempts to cure the failure, by paying the correct amount 525
and by notifying the lender of the payment within the two day period of grace. But unfortunately, the
borrower notifies the lender incorrectly that the payment was made on the date of notification rather than
on the date of payment.

Figure 2: Querying LE

Figure 2 illustrates the result of answering the combination of the stored query, called “defaults” with
the scenario. An LE document can contain several stored scenarios and several stored queries, which can
be combined in the SWISH query pane.

The SWISH implementation also generates explanations in response to commands of the form
answer(de f aults,with(payment), le(E),R) as shown in figure 3. For VSC users there exist extensions
for syntax highlighting and remote execution on a SWISH server. It is also possible to call the LE parser
without the SWISH environment, as a standalone Prolog application. All the sources and further infor-
mation are available at https://github.com/LogicalContracts/LogicalEnglish/.

Figure 3: Explanations in LE

2 Acknowledgements

Many thanks to Miguel Calejo, Galileo Sartor, Andrew Noble, John Cummins, Fariba Sadri and Nilokai
Merritt for their support and contributions to this work.

References
[1] Flood, M.D. and Goodenough, O.R., 2017. Contract as automaton: The computational representation of finan-

cial agreements. Office of Financial Research Working Paper, (15-04).

https://github.com/LogicalContracts/LogicalEnglish/

4 Logical English

[2] Kowalski, R.: Logical English, In Proceedings of Logic and Practice of Programming (LPOP) (2020).
[3] Kowalski, R., Datoo, A.: Logical English meets legal English for swaps and derivatives. Artificial Intelligence

and Law, 30(2), 163-197 (2022).
[4] Kowalski, R., Dávila, J., Calejo, M., Logical English for legal applications. XAIF, Virtual Workshop on Ex-

plainable AI in Finance (2021).
[5] Kowalski, R., Dávila, J., Sartor, G., Calejo, M.: Logical English for Law. In Proceedings of the Workshop on

Methodologies for Translating Legal Norms into Formal Representations (LN2FR), JURIX, (2022).
[6] Kowalski, R., Sadri, F., Calejo, M., Dávila, J.: Combining Logic Programming and Imperative Programming

in LPS. In: Warren, D., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next
50 Years. LNCS, vol. 13900. Springer, Heidelberg (2023).

[7] Sartor, G., Dávila, J., Billi, M., Contissa, G., Pisano, G., Kowalski, R.: Integration of Logical English and
s(CASP), 2nd Workshop on Goal-directed Execution of Answer Set Programs (GDE’22) (2022).

	Introduction to Logical English
	Acknowledgements

