
Logic Programming
Robert Kowalski

MIT Encyclopaedia of Cognitive Science
(eds. R A Wilson and F C Keil)
MIT Press, 1999, pp. 484-486.

Logic programming is the use of logic to represent programs and of deduction to execute
programs in logical form. To this end, many different forms of logic and many varieties of
deduction have been investigated. The simplest form of logic, which is the basis of most logic
programming, is the Horn clause subset of logic, where programs consist of sets of
implications: A0 if A1 and A2 and ... and An. Here each Ai is a simple (i.e. atomic) sentence.

It is usual to write such implications backward. This is because deduction by backward
reasoning interprets them as procedures: to solve the goal A0, solve the subgoals A1 and A2
and ... and An. The number of conditions, n, can be 0, in which case the implication is simply
a fact, which behaves as a procedure which solves goals directly without introducing
subgoals.

The procedural interpretation of implications can be used for declarative programming,
where the programmer describes information in logical form and the deduction mechanism
uses backward reasoning to achieve problem solving behavior. Consider, for example, the
implication

 X is a citizen of the USA

if X was born in the USA.

Backward reasoning treats the sentence as a procedure

 To show X is a citizen of the USA,
 show that X was born in the USA.

In fact, backward reasoning can be used, not only to show a particular person is a citizen, but
it can also be used to find people who are citizens by finding people who were born in the
USA.

Logic programs are non-deterministic in the sense that many different procedures might apply
to the same goal. For example, naturalisation and being the child of a citizen provide
alternative procedures for obtaining citizenship.

The non-deterministic exploration of alternative procedures, to find one or more which solve
a given goal, can be performed by many different search strategies. In the logic programming
language Prolog, search is performed depth-first, trying procedures one at a time, in the order
in which they are written, backtracking in case of failure.

Declarative programming is an ideal. The programmer specifies what the problem is and what
knowledge should be used in solving problems, and the computer determines how the
knowledge should be used.

The declarative programming ideal works in some cases where the knowledge has a
particularly simple form. But it fails in many others, where non-determinism leads to an
excessively inefficient search. This failure has lead many programmers to reject logic
programming in favor of conventional, imperative programming languages.

The following example shows the kind of problem that can arise with declarative
programming:

 There is a path from X to Y if there is a step from X to Y.

 There is a path from X to Y if there is a path from X to Z
 and there is a path from Z to Y.

Given no other information and the goal of showing whether there is a path from a node a to
to a node b, Prolog fails to find a step from a to b, using the first procedure. It therefore tries
to find a path from a to some Z, using the second procedure. There is no step from a to any Z,
using the first procedure. So Prolog tries to find a path from a to some Z’, using the second
procedure. Continuing in this way, it goes into an infinite loop, looking for paths from a to Z,
to Z’, to Z’’,....

The alternative to rejecting logic programming because of such problems or of restricting it to
niche applications, is for the programmer to take responsibility for both the declarative
correctness and the procedural efficiency of programs.

The following is such a correct and efficient logic program for the path-finding problem. It
incrementally constructs a path of nodes already visited and ensures that no step is taken
which revisits a node already in the path. The goal of showing there is a path from X to Y is
reformulated as the goal of extending the path consisting of the single node X to a path
ending at Y. For simplicity, a path is regarded as a trivial extension of itself.

 the path P can be extended to a path ending at Y
 if P ends at Y.

 the path P can be extended to a path ending at Y
 if P ends at X
 and there is a step from X to Z
 and Z is not in P
 and P’ extends P by adding Z to the end of P
 and the path P’ can be extended to a path ending at Y.

It is usual to interpret the negation in a condition, such as “Z is not in P” above, as negation
by failure: a subgoal of the form “not A” is deemed to hold if and only if the positive subgoal
“A” cannot be shown to hold. Programs containing such negative conditions, extending the
Horn clause subset of logic programming, are called normal logic programs,

The use of negation as failure renders logic programming a NONMONOTONIC LOGIC: The
addition of new information may cause a previously justified conclusion to be withdrawn. A
simple example is the sentence

 X is innocent if not X is guilty.

The condition “not X is guilty” is interpreted as “it cannot be shown that X is guilty”.

Many extensions of normal logic programming have been investigated. Among the most
important of these is the extension to include METAREASONING. For example, the
following implication is a fragment of a metalevel logic program which can be used to reason
about the interval of time for which a conclusion holds:

 “R” holds for interval I
 if “R if S” holds for interval I1
 and “S” holds for interval I2

 and I is the intersection of I1 and I2.

Similar metalevel programs are used to construct explanations and to implement resource-
bounded reasoning and reasoning with uncertainty.

Among the other extensions of logic programming being investigated are extensions to
incorporate constraint processing, a second “strong” form of negation, disjunctive
conclusions and abductive reasoning. Methods are being developed both to execute programs
efficiently and to transform inefficient programs into more efficient ones. Applications range
from natural language processing and legal reasoning to commercial knowledge management
systems and parts of the Windows NT operating system.

Apt, K. and Turini, F. eds. (1995) Meta-Logics and Logic Programming. MIT Press.

Bratko, I. (1988) Prolog Programming for Artificial Intelligence. Addison Wesley.

Clark, K. L. (1978) Negation by failure, in "Logic and databases", Gallaire, H. and

Minker, J. [eds], Plenum Press, (293-322).

Colmerauer, A., Kanoui, H., Pasero, R. and Roussel, P. (1973) Un systeme de

communication homme-machine en Francais. Research report, Groupe
d’Intelligence Artificielle, Universite d’Aix-Marseille II, Luminy.

Flach, P. (1994) Simply Logical: Intelligent Reasoning by Example. John Wiley

and Sons.

Gabbay, D., Hogger, C. and Robinson, J.A. (1993) Handbook of Logic in Artificial

Intelligence and Logic Programming. Vol. 1: Logic Foundations. Oxford:
Clarendon Press.

Gabbay, D. , Hogger, C. and Robinson, J.A. (1997) Handbook of Logic in

Artificial Intelligence and Logic Programming. Vol. 5: Logic
Programming. Oxford: Clarendon Press.

Gillies, D. (1996) Artificial Intelligence and Scientific Method. Oxford University
Press.

Kowalski, R.(1974) "Predicate Logic as Programming Language", in Proceedings

IFIP Congress, Stockholm, North Holland Publishing Co. (569-574).

Kowalski, R.(1979) "Logic for Problem Solving", North Holland Elsevier.

Kowalski, R.(1992) "Legislation as Logic Programs", in Logic Programming in

Action (eds. G. Comyn, N. E. Fuchs, M. J. Ratcliffe), Springer-Verlag
(203-230).

Lloyd J. W. (1987): "Foundations of logic programming", second extended edition, Springer-
Verlag.

