NEew Ueneration Compuung, ¥ (1yv1) 3§/-400
OHMSHA, LTD. and Springer-Verlag

© OHMSHA, LTD. 1991

Logic Programs with Exceptions”

Robert A. KOWALSKI and Fariba SADRI
Department of Computing,

Imperial College,

London SW7 2BZ, U. K.

Received 2 November 1990
Revised manuscript received 1 April 1991

Abstract We extend logic programming to deal with default reason-
ing by allowing the explicit representation of exceptions in addition to
general rules. To formalise this extension, we modify the answer set seman-
tics of Gelfond and Lifschitz, which allows both classical negation and
negation as failure.

We also propose a transformation which eliminates exceptions by
using negation by failure. The transformed program can be implemented by
standard logic programming methods, such as SLDNF. The explicit repre-
sentation of rules and exceptions has the virtue of greater naturalness of
expression. The transformed program, however, is easier to implement.

Keywords: Logic Programs, Rules and Exceptions, Default Reasoning, Answer Set
Semantics, e-answer Set Semantics

§1 Introduction
In this paper we extend logic programming to include explicit representa-
tion of exceptions. Thus we can represent both general rules such as

fly(X) < bird(X)
and exceptions such as

—fly(X) < ostrich(X)
—fly(X) « penguin(X).

If John is both an ostrich and a bird, then we conclude that John does not fly,
because the exception overrides the general rule.

* This paper is a revised version of the paper presented at the Seventh International Conference
on Logic Programming, 1990, Jerusalem.

o N RUWARL anu . oaurt

Rules and exceptions are a natural way of understanding default reason-
ing. They are expecially common in the formulation of legislation and in
reasoning about inheritance in hierarchies. Our treatment of rules and excep-
tions can be regarded as an adaptation, within a logic programming framework,
of Poole’s approach'” to default reasoning.

The contribution of this paper is two-fold. We describe a semantics for
logic programming with rules and exceptions. We also present a transformation
which eliminates the distinction between rules and exceptions by using negation
as failure.

The semantics for rules and exceptions is a modification of the answer set
semantics of Gelfond and Lifschitz” for extended logic programs (defined in
Section 3.1 below). The answer set semantics is a generalisation of stable model
semantics.” Both Poole'” and Gelfond and Lifschitz” have shown close connec-
tions between their work and Reiter’s default logic.'” There is a similarly close
connection between default logic and our extension of logic programming.

Applied to the example above, the transformation gives the following
program.

fly(X) < bird(X), not —fly(X)
—fly(X) < ostrich(X)
—fly(X) « penguin(X).

«

Here, and throughout the paper, “—” denotes classical negation and “not”
denotes negation by failure. The transformation generalises a similar transforma-
tion by Asirelli et al.” for eliminating certain kinds of integrity constraints from
definite clause databases. The transformed program is equivalent to the original
in the sense that the two programs have the same semantics.

As Gelfond and Lifschitz” show, classical negation can be eliminated
from extended logic programs by means of renaming. The same renaming can be
used for rules and exceptions. For example:

fly(X) < bird(X), not nofly(X)
nofly(X) « ostrich(X)
nofly(X) < penguin(X).

Moreover, in this example the new predicate symbol and the exceptions can be
eliminated by macroprocessing (or equivalently, by unfolding or partial evalua-
tion):

fly(X) < bird(X), not ostrich(X), not penguin(X).

The resulting program is essentially equivalent to the original. It can be im-
plemented using ordinary methods for logic programs with negation by failure,
such as SLDNF? or abduction.”

To summarise, this paper presents an extension of logic programming to
include explicit representation of exceptions and a transformation which elimi-

LOBIC ITOErams witll EXCeptions JyY

nates exceptions by using negation by failure. The explicit representation
improves naturalness of expression, whereas the use of the transformation
facilitates implementation. The transformation has been implemented in
Prolog.”

The paper is structured as follows. Section 2 gives an example of rules
and exceptions from legislation. Section 3 formally describes the extension of
logic programming to include our language of rules and exceptions and its
semantics. Section 4 describes the transformation and proves that it preserves the
semantics of the original program. Section 5 discusses related work.

This paper is a revision of an earlier report.” The main difference is that
in the report we interpreted exceptions as integrity constraints, and we associated
with each such integrity constraint a unique way of revising the rules in order
to restore consistency after a violation of integrity. In this paper we incorporate
rule-revision into a modified answer set semantics.

The main advantage of the earlier integrity constraint interpretation is
that it did not require the need to define a new semantics for rules and excep-
tions. The main advantage of the modified answer set semantics is that it greatly
simplifies the proof that the transformation preserves the meaning of the original
program.

Throughout the paper we use the following notational convention.
Predicate, function and constant symbols start in the lower case, and variables
start in the upper case.

§2 An Example from Legislation

Elsewhere'® we have argued, partly on the basis of our formalisation of
the 1981 British Nationality Act, that legislation written in natural language
approximates the form of a logic program. A closer reading, however, discloses
many provisions which have a negative form. Such provisions typically express
exceptions.

Section 12, subsection (1), for example, expresses a general rule

“If any British citizen of full age and capacity makes in the prescribed
manner a declaration of renunciation of British citizenship, then subject
to subsections (3) and (4), the Secretary of State shall cause the declara-
tion to be registered.”

Section 12, subsection (3) expresses an exception to the rule

“A declaration made by a person in pursuance of this section shall not
be registered unless the Secretary of State is satisfied that the person who
made it will after the registration have or acquire some citizenship or
nationality other than British citizenship; ...”

Formally, subsections (1) and (3) can be expressed in the form

N AN RS AWM MASEG AN A AT

P<Q
- P < not R.

Here the negation implicit in the word “unless” has been interpreted as negation
by failure, “not”, rather than classical negation

Using the transformation defined later in this paper, subsections (1) and
(3) can be transformed into rules of the form

”»

S

P <~ Q, not 7P
P <« not R

which, in turn, can be simplified to
P<Q,R
which expresses that

If any British citizen of full age and capacity makes in the prescribed
manner a declaration of renunciation of British citizenship, and the
Secretary of State is satisfied that that person will after the registration
have or acquire some citizenship or nationality other than British citizen-
ship, then, subject to subsection (4), the Secretary of State shall cause the
declaration to be registered.

At the time of our formalisation of the British Nationality Act, our
representation of the provisions of the Act was performed intuitively in an ad
hoc manner. It is now possible to see that our treatment of exceptions was an
instance of a general transformation. Other examples of negation in legislation
and its elimination by means of transformation can be found in Ref. 8).

Before defining the transformation more precisely and proving that it
preserves the semantics of the original program, we define our notation and
semantics.

§3 The Language and Its Semantics

Our semantics for rules and exceptions is a modification of the answer set
semantics of Gelfond and Lifschitz for extended logic programs. Therefore it is
convenient to present the ordinary (unmodified) answer set semantics first.

3.1 Answer Set Semantics of Extended Logic Programs
An extended logic program® is a set of formulae of the form

Lip: = Logy, w5 L, HOL Lingiais ooes DOE Loy

where n = m > 0, and each L, is a literal. In this paper, formulae of the above
form are called clauses. A literal is a formula of the form A or — A, where A
is an atom.

A clause containing variables is treated as standing for the set of all

it

LUBIG OB WL BAVEIOI v

ground instances of that clause. Therefore it is sufficient to define the notion of
answer set for ground clauses. The definition is in two parts. First we consider
the case where the program does not contain negation by failure. Then we
consider the general case.

Let [] be any set of ground clauses not containing “not”, and let Lit be
the set of all ground literals in the language of []. The answer set of [], denoted
by oc(I1), is the smallest subset S of Lit such that

(1) for any clause Ly« Ly, ..., Ly in [], if L;, ..., Ln € S, then L, € S, and
(2) if S contains a pair of complementary literals, then S = Lit.

In case (2) we say that [] is contradictory.

Now let [] be any extended logic program not containing variables. Let
Lit be defined as before. For any subset S of Lit, let [I® be the set of clauses
without “not” obtained

(1) by deleting every clause containing a condition “not L”, with L € S, and
(2) by deleting in the remaining clauses every condition “not L” if L & S.

S is an answer set of [if and only if S is the answer set of []5, i.e. if and only
if S = oc(IT%). If IT is a general program (i.e. [[does not contain classical
negation), then the definition of answer set coincides with the definition of
stable model given by Gelfond and Lifschitz in Ref. 4).

A general logic program may have more than one stable model and
therefore more than one answer set. For example, the program

IT: P < not Q
Q< notP

has two answer sets

{P} which is also the answer set of [T, = {P}, and
{Q} which is also the answer set of [T,'¥ = {Q}.

A general logic program may have no answer sets. For example,
I P < not P.

Similarly an extended logic program may have more than one answer set or no
answer sets. Moreover, an extended logic program may also be contradictory.
For example,

11 P
P,

The answer set semantics treats clauses L < K as inference rules

from K
derive L

o O DRUWEIDRT auu T, 9aunt

inhibiting use of the contrapositive, so that the inference

from —L
derive 7K

is not allowed. Similarly, inferences such as

from L<K
and 2L+« K
derive K

are also not allowed.

3.2 Answer Sets for Rules and Exceptions

To represent rules and exceptions we use the syntax of extended logic
programs, but change the semantics. The syntactic difference between rules and
exceptions is that rules have positive literals in the conclusion, whereas excep-
tions have classically negated literals in the conclusion. In the sequel we call
theories containing rules and exceptions logic programs with exceptions, and
sometimes just programs when the context makes the intended meaning clear.

The intuition behind reasoning with rules and exceptions is that excep-
tions have a higher priority than rules. That is if a contradiction arises between
a rule and an exception, the exception overrides the rule. To capture this
intuition, we modify the ordinary answer set semantics so that potential contra-
dictions between rules and exceptions are avoided by preferring classically
negated literals L to their positive counterparts L. This is done by changing
the definition of]® by adding a third provision for deleting any rule in []
having conclusion L, with 7L € S.

More formally we define a new set *[[in place of [[°. As before we
assume that [] is variable-free. For any subset S of Lit, let 5[] be the set of
clauses without “not” obtained

(1) by deleting every clause containing a condition “not L”, with L & S, and

(2) by deleting in the remaining clauses every condition “not L”, if L & S,
and

(3) by deleting every rule having a positive conclusion L, with =L € S.

Clearly °T][differs from [I® only in the extra condition (3).

For variable-free programs [[not containing “not”, let o<(I]) denote the
answer set of [], as defined for ordinary answer set semantics. Then, for any
variable-free program [], S is an e-answer set if and only if S = oc(°[]).

We show in Theorem 2, below, that e-answer sets never contain contradic-
tions. Thus condition (2) of the definition of oc is unnecessary for e-answer sets.
In Theorem 1, we show that if an extended logic program has a non-
contradictory answer set, then that answer set is also an e-answer set. As a
corollary, for logic programs without classical negation, stable models, answer

LVBIV DIOBIAIy Wil SACCPUUS I3

sets, and e-answer sets coincide.

Examples
The extended logic program

1 P
=P

which is contradictory according to the answer set semantics, has one e-answer
set

{—P}.

The following example shows that rules and exceptions can be used for default
reasoning.

11« Rules pacifist «<— quaker
hawk <« republican
quaker
republican

Exceptions

—pacifist < hawk
—“hawk <« pacifist

I1s has two e-answer sets

S1 = {quaker, republican, pacifist, “hawk}
S2 = {quaker, republican, hawk, —pacifist}.

The two e-answer sets correspond to two different extensions in Reiter’s default
logic.'"” Extension SI can be eliminated by removing the second exception. S2
can be eliminated by removing the first.

Theorem 1
If TI is a variable-free extended logic program and S is a non-contradictory
answer set for [], then S is an e-answer set for [].

Proof
Assume S is a non-contradictory answer set for [[. Then S = oc(I]%). But

I = IPPAL +~ Ls, ... Lm| 7LE S}
Because S is non-contradictory, for any clause C such that

€= L&L;;.:; Lo [T
L ¢ S.

But then C makes no contribution to oc(I]%). Therefore oc(IT%) = o<(°]]) = S.
So S is an e-answer set for []. O

ava ™AL RNUWAINKRT auu UL ouurn

Theorem 2

Let [T be a variable-free logic program with exceptions. Then] is non-
contradictory in the sense that it has no e-answer set S containing contradictory
literals.

Proof

Suppose, on the contrary, that S is an e-answer set containing contradictory
literals. Then S must contain a pair of literals L and — L such that °[] contains
two clauses

L <K
L =K

where all the literals in K and K’ belong to S.

However, by provision (3) in the definition of][, because =L € S, *I] cannot
contain any clauses with conclusion L. So S cannot contain contradictory
literals. ©

§4 The Transformation
We define the transformation separately for the ground case, where the
program contains no variables, and for the general case, where it does.

4.1 The Ground Transformation
The transformation is easy to define for programs [[containing no
variables:

for any rule in [] with conclusion L, if [] contains an exception with
conclusion 7L, then add not — L to the conditions of the rule.

For example, program [, is transformed into

pacifist <— quaker, not —pacifist
hawk <« republican, not " hawk
quaker
republican

—pacifist < hawk

—hawk < pacifist.

This can be simplified to

pacifist <— quaker, not hawk
hawk < republican, not pacifist
quaker
republican

—pacifist < hawk

—hawk < pacifist.

LOBIC FTOgrams with Excepuons 305

This program has the same two e-answer sets as the original program [],. Except
for the last two clauses, this has the form of a conventional logic program, which
can be executed by ordinary methods. Unfortunately, in this case SLDNF goes
into an infinite loop when given the query ?pacifist or ?hawk. The abduction
procedure of Eshghi and Kowalski,” on the other hand, computes both e-answer
sets. However, it is not complete in the general case.

The transformation preserves the semantics of the original program, as
shown by the following theorem.

Theorem 3

Let] be a logic program with exceptions containing no variables, and let [T’
be the extended logic program obtained from [T by applying the transformation.
Then S is an e-answer set for [] if and only if S is an e-answer set for []’.

Proof
We shall show more generally that

STI = S[I, for any S € Lit.

For any clause C € [], let C’ denote the result of applying the transformation
to C. Let °C and °C’ denote the result of applying (1), (2), (3) of the definition
of *TT to the clauses C and C’ respectively. It suffices to show that SC and SC’ are
identical for all C & [I.

This is obviously the case when C = C’. It remains to consider the case where
C has conclusion L and C’ differs from C in having an extra condition not L.
There are two subcases:

(a) "LeSs,
(b) —Le&S.

In subcase (a), C is deleted because of provision (3) and C’ is deleted because
of provision (1). So °C and °C’ are identical.

In subcase (b), not 7L is deleted from C” by provision (2). After deletion of this
condition from C’, the two clauses become identical. So °C and °C’ are identical.
o

4.2 The General Transformation

For programs containing variables, we transform the rules by considering
each exception in turn and transforming the rules with respect to each exception.

Let 7p(t) <= B, be an exception and let p(t) < C be a rule, where t and
t" are vectors of terms and the two clauses have no variables in common. The set
of all ground instances of the rule can be partitioned into two disjoint sets, one
to which the exception applies, and one to which it does not. These two sets can
be represented by general rules.

In the case where t and t" do not unify, the exception is not applicable,
the first set is empty, and the second set consists of all the ground instances of

f— O ROWRISKD ana 1. daari

the original rule. Therefore the transformation in this case leaves the original
rule intact.

In the case where t is an instance of t’, the exception applies to all
instances of the rule, and therefore the transformation replaces the original rule
by the single rule

p(t) < C, not —p(t).
In all other cases, the rule is transformed into two rules. The first rule
[p(t) < C, not 7p(1)] 4

where @ is the most general unifier of t and t’, represents the set of all instances
to which the exception applies. The second rule

p(t) < C,not IX t=1t

represents the set of all instances to which the exception does not apply. Here X
is the vector of all variables occurring in t'. This second rule can be rewritten as
two clauses by introducing a new predicate symbol, say unif:

p(t) < C, not unif(t)
unif(t’).

These three cases complete the definition of the transformation for one
rule with respect to one exception. To transform a logic program with excep-
tions in general, we successively transform each rule in the program with respect
to each exception.

Note that, although we have presented the transformation as three sepa-
rate cases in order to give it an intuitive justification, the first two cases can be
regarded as special cases of the third.

Example

ILs: p(X, a) < q(X)
p(b, Y) < r(Y)
“ip(e, Z) < s(X, Z)

The rule can be transformed with respect to the first exception, giving two rules:

p(b, a) < q(b), not —1p(b, a)
p(X, a) < q(X), not X = b

which can be further transformed with respect to the second exception giving the
following rules:

p(b, a) < q(b), not ~p(b, a)
p(c, a) < q(c), not ¢ = b, not —1p(c, a)
p(X, a) < q(X), not X = b, not X =c.

Logic Programs with Exceptions 397

As a further simplification, the second condition not ¢ = b of the second rule
can be deleted.

As mentioned earlier, two further transformations, renaming and macro-
processing, can be performed. Renaming eliminates classical negation and
converts an extended logic program into a conventional logic program by
introducing a new predicate symbol p” for every negated predicate symbol p and
replaces every occurrence of an atom —1p(t) by an atom p’(t). Gelfond and
Lifschitz” have shown that such renaming respects the semantics of the original
program. In many cases the new predicates can be eliminated from the condi-
tions of clauses by macroprocessing as illustrated earlier.

The following theorem shows that the general transformation preserves
the semantics of the original program.

Theorem 4

Let T be a logic program with exceptions and let []” be the result of applying
the transformation to []. Then there is a one to one correspondence between
e-answer sets of [] and e-answer sets of [[”. Under this correspondence the two
e-answer sets are identical, except for literals involving the new predicates
introduced by the transformation.

Proof
It suffices to show that [[* = []"*
where [[* is the set of ground instances of [],

[T* is the result of applying the ground transformation to []*,
IT"* is the set of ground instances of []’, and
[I"*7¢ is the result of evaluating in []"* all conditions of the form “not
unif(t)” where unif is a new predicate symbol introduced by the
transformation, and then ignoring all clauses defining unif.
The proof of this equality is an elaboration of the justifications given to
motivate the definition of the general transformation. The details of the proof
are straightforward, and need not be presented here. O

§5 Comparison with Other Work

The e-answer set semantics presented in this paper is clearly an adapta-
tion of the answer set semantics of Gelfond and Lifschitz. In their semantics,
positive and classically negative literals have the same status, and contradictions
can occur as a result. In our semantics, contradictions are avoided by giving
preference to classically negative literals whenever they conflict with positive
literals.

Thus, in the flying birds example, whereas the answer set semantics
derives a contradiction from the assumption that John is both an ostrich and a
bird, the e-answer set semantics avoids contradiction by deriving the negative
conclusion that John does not fly in preference to the positive conclusion that
he does.

avo R. A. Kowalski and F. Sadri

Our treatment of rules and exceptions is in the spirit of Poole’s'” distinc-
tion between default rules and facts. In his semantics a default rule is assumed
to hold provided it does not conflict with the facts. He does not discriminate
between positive literals and classically negative literals, and he does not use
negation by failure.

In our approach clauses with positive conclusions correspond to default
rules. Exceptions, with negative conclusions, correspond to facts.

In contrast with Poole’s treatment of default rules and facts as ordinary
sentences of logic, the answer set and e-answer set semantics treat clauses as
inference rules. Thus, for example, given the default rule

fly(X) < bird(X)

and the fact
—fly(john)

Poole would be-able to derive the logical consequence
—bird(john),

whereas we would not. In order to inhibit this inference, Poole uses constraints,
which are not necessary in our approach.

This difference between the semantics of clauses regarded as inference
rules and the semantics of clauses regarded as sentences of logic does not arise
in the ordinary logic programming case where there is no classical negation.

Treating clauses as inference rules makes our semantics for rules and
exceptions similar to Reiter’s default logic."® This is especially clear when the
rules have been transformed with respect to the exceptions. A transformed clause
of the form

| PR (P P () et 1
corresponds to the default

Li, ..., Lm: ML
L

where ML means that L is consistent, or equivalently that =L is not provable,
i.e. not 7L.

The semantics of a default theory are defined in terms of logical conse-
quence in one of its extensions. Gelfond and Lifschitz” show that the answer sets
for an extended logic program coincide with the extensions of the corresponding
default theory.

An alternative approach, extending logic programming to deal with
default reasoning, has been proposed by Pereira and Aparicio.'” In our
approach the semantics incorporates the assumption that exceptions have higher
priority than the rules. In their approach priorities are expressed explicitly by

Logic Programs with Exceptions 399

sentences in the theory.

This paper is a revision of an earlier report.” Because the report is
discussed in the Gelfond and Lifschitz” paper, we outline here the main changes
between this paper and the earlier report. Most of these changes are due to the
simplifications made possible by using classical negation and by basing our
semantics on answer sets.

In the earlier report we viewed exceptions as integrity constraints and
presented the transformation as a way of eliminating integrity constraints from
deductive databases. We were influenced in this point of view by the work of
Asirelli et al.,"”” who proposed a transformation to eliminate certain restricted
forms of integrity constraints from definite clause databases. Our transformation
is an extension of theirs.

In the earlier report we outlined a proof theoretic proof of the equiva-
lence between the original and the transformed programs. This proof required
that the resulting program be locally stratified and that we identify a unique
“retractable” condition in each integrity constraint in order to restore consis-
tency. Thus, for example, we did not allow both

=P«
—\Q<—P

in the set of integrity constraints (exceptions). In this paper we have been able
to give a simpler model theoretic proof of the equivalence, without the local
stratification and retractibility restrictions.

Although, compared with the approach in our earlier report,” the
modified answer set semantics significantly simplifies the proof of equivalence,
it does so at the expense of complicating the semantics. It would be interesting
to determine whether the proof can be simplified without changing the seman-
tics.

The model theoretic techniques developed in this paper can be extended
to deal with a number of more general cases. It is possible, for example, to
associate exceptions with individual rules rather than with entire predicates. It
is also possible to deal with rules having negative conclusions and exceptions
having positive conclusions. The techniques can also be extended to cater for
hierarchies of exceptions. Discussion of these extensions is beyond the scope of
this paper.

Acknowledgements

This work was supported by the Science and Engineering Research
Council and the Esprit Basic Research Project, Compulog. We are grateful to
Hendrik Decker, Tony Kakas, John Lloyd, Luis Pereira, and the referees for
helpful comments on earlier drafts of this paper.

uw

K. AL ROWAISKI ana r. daari

References

1)
2)
3)

4)

5)

6)

7)

8)

9)
10)
11)
12)

13)

Asirelli, P., De Santis, M. and Martelli, M., “Integrity Constraints in Logic Databases,”
J. Logic Programming, 2,3. pp.221-232, 1985.

Clark, K. L., “Negation as Failure,” in Logic and Databases (Gallaire, H. and Minker,
J., eds.), Plenum Press, pp. 293-322, 1978.

Eshghi, K. and Kowalski, R. A., “Abduction Compared with Negation by Failure,”
Proc. of the Sixth International Logic Programming Conference, MIT Press, 1989.
Gelfond, M. and Lifschitz, V., “The Stable Model Semantics for Logic Programs,” Proc.
of the Fifth International Conference and Symposium on Logic Programming
(Kowalski, R. A. and Bowen, K. A, eds.), 2, pp. 1070-1080, 1988.

Gelfond, M. and Lifschitz, V., “Logic Programs with Classical Negation,” Proc. of the
Seventh International Logic Programming Conference, MIT Press, 1990.

loannides, A. J., “Transformation Algorithms for Representing Knowledge without
Integrity Constraints,” M. Sc. thesis, Department of Computing, Imperial College,
London, 1989.

Kowalski, R. A. and Sadri, F., “Knowledge Representation without Integrity Con-
straints,” Department of Computing, Imperial College, London, 1988.

Kowalski, R. A., “The Treatment of Negation in Logic Programs for Representing
Legislation,” Proc. ?{ the Second International Conference on Artificial Intelligence
and Law, pp. 11-15, 1989.

Lloyd J. W., Foundatins of Logic Programming, 2nd extended edition, Springer-
Verlag, 1987.

Pereira, L. M. and Aparicio, J. N., “Default Reasoning as Abduction,” Technical
Report, Al Centre/Uninova, 2825 Monte da Caparica, Portugal, 1990.

Poole, D., “A Logical Framework for Default Reasoning,” Artificial Intelligence, 36,
pp- 27-47, 1988.

Reiter, R., “A Logic for Default Reasoning,” Artificial Intelligence, 13, pp. 81-132,
1980.

Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond, P. and Cory, H. T,
“The British Nationality Act as a Logic Program,” CACM, 29, 5, pp. 370-386, 1986.

#l

