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Computer Science today lacks a unified view of Computing. Instead, the main subareas, most notably artificial 

intelligence, database systems and programming languages, offer different and often competing approaches to knowledge 
representation, problem-solving and computation. 

 In this paper we propose a unifying logic-based, framework for Computing, inspired by artificial intelligence, but 

scaled down for practical database and programming applications. Computation in the framework is viewed as the task of 
generating a sequence of state transitions, with the purpose of making an agent’s goals all true. States are represented by 

sets of atomic sentences (or facts), representing the values of program variables, tuples in a coordination language, facts 

in relational databases, or Herbrand models. In the model-theoretic semantics, the entire sequence of states and events are 
combined into a single model-theoretic structure, by associating time stamps with facts. But in the operational semantics, 

facts are updated destructively, without time stamps. We show that the model generated by destructive updates is 

identical to the model generated by reasoning with facts containing time stamps. We also extend the model with 

intentional predicates and composite event predicates defined by logic programs containing conditions in first-order logic 

(FOL). We extend the notions of local stratification and weak stratification to generate the associated model.  
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1.  INTRODUCTION     

Computing today, as a scientific discipline, lacks a unifying framework. It consists, 

instead, of diverse techniques in such various areas as artificial intelligence, 

databases and programming. Logic programming was an early attempt to provide a 

unifying framework for computing, based on the use of logic for knowledge 

representation and problem-solving. Arguably, this attempt had only limited 

success, because it failed to address adequately the fundamental role of state 

transition systems in computing. 

In this paper, we present a candidate unifying framework for computing, based 

on the use of logic for representing state transition systems.  Although the approach 

has its origins in research about representing and reasoning about states, actions 

and events in artificial intelligence, it has been scaled-down to make it more like 

conventional programming languages and database and information management 

systems. 

Earlier versions of the work presented in this paper have been presented in 

[Kowalski and Sadri 2009; Kowalski and Sadri 2010;   Kowalski and Sadri 2011;   

Kowalski and Sadri 2012a;   Kowalski and Sadri 2012b]. In those papers, we 

referred to the framework as LPS, to highlight its focus on providing a Logic-based 

approach to Production Systems. In this paper, for the sake of continuity, we retain 

the name LPS, although the intended applications of the approach have been 

extended considerably.  These applications include its use as an agent programming 

language, active database language, and a language for programming concurrent 

systems. It can also be used for teleo-reactive computing [Nillson 2001; Kowalski 

and Sadri 2012a], composite (or complex) event processing, and complex processes.  

An LPS framework <R, L, D> represents the goals and beliefs of a single agent 

embedded in a global environment. The reactive rules R, which represent the 

agent’s maintenance goals, have the logical form of material implications                

X [antecedent  Y consequent]. The logic program L represents the agent’s view 

of the changing state and the state transforming events. The domain theory D, 
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which also has the form of a logic program, is a causal theory, which specifies the 

effect of concurrent sets of events on the state of the environment. 

The global environment and the agent’s own internal state are combined in a 

separate, single state S, represented by a set of atomic sentences, called facts or 

fluents. The state is like a relational database, but also like a set of program 

variables or tuples in a coordination language [Carriero and Gelernter 1989]. 

State transitions are generated by sets of concurrently occurring events. These 

events can include both the simultaneous actions of a single agent, the simultaneous 

actions of several agents, or external events of other origin. Their preconditions and 

postconditions are specified by the domain theory D. The domain theory D is similar 

to the situation calculus [McCarthy and Hayes 1969] or event calculus [Kowalski 

and Sergot 1986], but instead of using frame axioms to update states, it performs 

destructive updates on the current state, deleting facts that are terminated by the 

set of all events occurring in the state transition and adding facts that are initiated 

by the set of events. 

The logic program L = Lint  Levents  Ltimeless  Ltemp performs a supporting role. 

 

Lint defines intensional predicates in terms of extensional predicates,  

Levents defines composite events in terms of state conditions and simpler events, 

Ltimeless defines time independent predicates, and 

Ltemp defines temporal relationships, such as successor and inequality relations 

between time points.  

 

The logic program S  Lint   Ltimeless can be viewed as a deductive database state. 

The logic program Levents  Ltemp  Ltimeless superimposes a collection of composite 

events on top of the sequence of successive states and simple events. These 

composite events can be viewed as state-connecting paths, as in transaction logic 

[Bonner and Kifer 1993]. 

The reactive rules R, logic programs L and domain theory D can contain state 

conditions that are formulas of first-order logic (FOL), which are like FOL queries to 

a relational or deductive database. The semantics of these FOL conditions is given 

by generalising negative literals to FOL conditions in the definitions of local 

stratification [Przymusinski 1987] and weak stratification [Przymusinska and 

Przymusinski 1988]. 

Although the operational semantics employs destructive updates and destructive 

assignment to maintain only a current state, the model-theoretic semantics is 

defined relative to the entire sequence of states, events and paths combined into a 

single model in which facts and events are time-stamped. In the model-theoretic 

semantics, the computational task is to generate a model that makes the reactive 

rules R all true. The logic program L contributes to the definition of the model by 

adding intensional facts and composite events to the sequence of time-stamped 

extensional facts and simple events. 

In this paper, we show that, given the same initial state and the same sequence of 

state-transforming events, the model generated by LPS using destructive updates is 

identical to the “natural” model generated by using a frame axiom. We define a 

generalization of weak stratification in order to specify this natural model.  

The view of computation in LPS as model generation needs to be distinguished 

from the use of model checking for proving program properties. In a sense, the 

reactive rules are program properties that are represented explicitly in the program 

and are used operationally in the attempt to generate a model that makes them 

true. In [Kowalski and Sadri 2012a], we showed how to derive a program property 
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that is not represented explicitly. The derivation uses ordinary deduction, presented 

as a proof tree. It would be interesting to investigate the use of model checking 

techniques for the same purpose.  

The paper is organised as follows: Section 2 introduces the framework informally 

by means of examples, and aims to give a flavour of the breadth of its applications. 

Then sections 3-6 investigate the framework more formally. Section 3 defines the 

language, section 4 introduces the model theory, section 5 presents the operational 

semantics, section 6 gives further details of the model theory, and section 7 

discusses soundness and completeness. Section 8 shows that destructive updates in 

LPS generate the same models as the frame axiom. In sections 9 and 10, we discuss 

related and future work. 

Compared with earlier papers, the main contributions of this paper are its more 

rigorous treatment of the semantics of reactive rules and logic programs with FOL 

conditions, and its demonstration of the relationship between the frame axiom and 

destructive updates. We also present a preliminary approach to the treatment of 

concurrent events. 

2.     EXAMPLES 

2.1 Emergencies  

The following example is a variant of an example in [Hausmann et al. 2012]. In this 

example, a reactive agent monitors a building for outbreaks of fire. The agent 

receives inputs from a heat sensor and a smoke detector. If these inputs are 

sufficiently close together in time, then the agent recognises a possible fire, and 

attempts to deal with it. There are two alternative ways of dealing with the possible 

fire. One alternative is to activate local fire suppression devices and then to call for 

a security guard to inspect the area. The other alternative is simply to call the fire 

department.  

 The example illustrates several features of LPS, including reactivity, composite 

events, composite processes and non-determinism. The representation is an LPS 

framework <R, L, D> consisting of a main program R, which contains a single 

reactive rule, and a logic program L. However, S, Lint and the domain theory D are 

all empty. In an elaboration of the example, S  Lint   Ltimeless could include such 

additional information as the geography of the building and the location, identity 

and capabilities of the security guards. Here the variables T and Ti all represent 

time points. The predicates heat-sensed and smoke-detected represent input events 

taking place over short periods of time [Tf1, Tf2] and [Ts1, Ts2], respectively. 

We use the forward arrow  for the implication symbol in reactive rules, and the 

backward arrow  in logic programming clauses. As in Prolog, identifiers beginning 

with an upper case letter denote variables, and numbers or identifiers beginning 

with a lower case letter denote constants. 

 

R   heat-sensed(Area,  Tf1, Tf2)  smoke-detected(Area, Ts1, Ts2)   

|Tf1  – Ts1|   60 sec   max(Tf2, Ts2, T)  

 fire-response(Area, T,  T1, T2 )   T < T1  

 

Levents   fire-response(Area, T, T1, T4 )  

 activate-fire-suppression(Area, T1, T2)  T < T1   T +5 sec       

send-security-guard(Guard, Area, T3, T4)   T2 <T3  T2 + 10 sec 

http://www.pms.ifi.lmu.de/mitarbeiter/steffen-hausmann
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    fire-response(Area, T, T1, T2)   

  call-fire-department(Area, T1, T2)   T <T1   T + 120 sec 

  

All variables in a reactive rule are universally quantified with scope the entire rule, 

except for variables that are only in the consequent of a rule. These are existentially 

quantified with scope the consequent of the rule. Analogously, all variables in a logic 

programming clause that are not explicitly quantified are universally quantified 

with scope the entire clause. However, variables that occur only in the body of a 

clause and are not explicitly quantified can also be considered to be existentially 

quantified with scope the body of the clause. 

Notice that in this example the antecedent of the rule represents an unnamed 

composite event and the consequent represents a named composite action,            

fire-response. This composite action can be regarded as consisting of two alternative 

plans, each of which is represented by a clause in Levents. The first plan consists of 

two actions, and the second plan consists of a single action.  

For simplicity in this example, the events heat-sensed, smoke-detected,       

activate-fire-suppression, send-security-guard and call-fire-department are all simple 

events, which are either directly observed in the environment or directly performed 

as simple actions. In general, events that are not defined in Levents are simple events. 

 Both plans are temporally constrained. In practice, the first plan might be 

preferred and tried before the second. If any part of the first plan fails, then the 

second plan can be tried. Moreover, even if the first plan fails, it can be retried as 

long as the temporal constraints can be satisfied. If both plans fail and cannot be 

retried, then the reactive rule cannot be made true. This can be avoided by adding 

additional alternative plans for the consequent of the rule. Notice that the temporal 

constraints in the logic program ensure that, if the first plan takes too long, then the 

second plan, which involves calling the fire department, can still be tried. 

In this example, as in many others, there are potentially many different models 

that can be generated to make the reactive rule true, some of which are preferable 

to others. In theory, LPS could be augmented with a control component that decides 

what actions to perform with a view towards optimising the utility of the resulting 

model. However, in practice, it is probably sufficient for the programmer simply to 

order the alternatives, taking both time constraints and preferred outcomes into 

account. 

We will see later that LPS is incomplete because it can only generate models that 

make the consequents of reactive rules true when their antecedents become true. It 

cannot preventatively make a reactive rule true by making its antecedent false, and 

it cannot proactively make its consequent true in anticipation of its antecedent 

becoming true in the future. 

We will also see later that the explicit representation of time is necessary for the 

model-theoretic semantics. Moreover, it facilitates the representation and 

processing of temporal constraints on the timing of fluents and events. However, we 

will also see that it can be hidden in an external syntax.  

2.2 Dialogue 

In this example, an agent “me” attempts to make a reactive rule true, by generating 

an output sentence whenever it receives an input sentence from the agent “you”. 

The predicate sentence(Agent, T1, T2) represents a composite event taking place from 

time T1 to time T2.  
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R   sentence(you, T1, T2)   sentence(me, T3, T4)   T2 < T3   T3  ≤  T2 + 3 sec 

        

The temporal constraint in the consequent of the rule indicates that the composite 

output action sentence(me, T3, T4) needs to start within 3 seconds of the completed 

input.  

The utterance by an agent A of a word W is treated as a simple (or atomic) event 

that takes place over an interval of time, and is represented by an atomic sentence 

word(A, W, T1, T2). The interval is represented by its start and end times, T1 and T2, 

respectively.  

We assume that the language of LPS is sorted (or typed). In this example, the 

language would contain disjoint sorts for agents, words, and time points; and the 

different arguments of the predicate word would be restricted to terms of the 

appropriate sort. 

The following sequence of input events represents the utterance by agent “you” of 

the stream of words “what is your name”. For simplicity, time points are 

represented by positive integers:  

 

word(you, what, 1, 2)  word(you, is, 2, 3)    

word(you, your, 3, 4)  word(you, name, 4, 5)   

  

Composite events of uttering nouns, noun phrases, sentences and other parts of 

speech are represented by means of logic programs in Levents. These programs are 

similar to the logical representation of definite clause grammars [Pereira and Warren 

1980] in Prolog, and used in [Kowalski 1979] to illustrate parsing as reasoning:  

 

Levents  adjective(Agent, T1, T2)   word(Agent, my, T1, T2)   

adjective(Agent, T1, T2)   word(Agent, your, T1, T2) 

 

noun(Agent, T1, T2)   word(Agent, name, T1, T2)  

noun(Agent, T1, T2)   word(Agent, fariba, T1, T2)   

noun(Agent, T1, T2)   word(Agent, what, T1, T2) 

verb(Agent, T1, T2)   word(Agent, is, T1, T2) 

 

sentence(Agent, T1, T3) noun-phrase(Agent, T1, T2)   verb-phrase(Agent, T2, T3) 

noun-phrase(Agent, T1, T3)  adjective(Agent, T1, T2)   noun(Agent, T2, T3) 

noun-phrase(Agent, T1, T2)   noun(Agent, T1, T2) 

verb-phrase(Agent, T1, T3)   verb(Agent, T1, T2)   noun-phrase(Agent, T2, T3) 

verb-phrase(Agent, T1, T2)   verb(Agent, T1, T2)  

 

In this example, S and Lint are empty. Notice that the logic program Levents does not 

distinguish between recognising sentences and generating them.  

 The operational semantics of LPS, which we define later in paper, reasons 

forwards from the antecedents of rules to their consequents, and evaluates simple 

events and FOL state conditions in the rules in their temporal order. It decomposes 

composite events in the consequents of rules top-down into conditions and simpler 

events. But it is neutral with respect to the evaluation of composite events in the 

antecedents of rules, and it is neutral with respect to whether state conditions are 

evaluated top-down (backwards) or bottom-up (forwards).  

Given the above sequence of input events, one way of satisfying the top-level goal, 

represented by the reactive rule, is to generate the following sequence of actions: 
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  word(me, my, 6, 7)    word(me, name, 7, 8)    

  word(me, is, 8, 9)    word(me, fariba, 9, 10) 

 

Assuming that there are no further sentences uttered by “you”, the reactive rule is 

true in the resulting Herbrand model: 

 

{word(you,what, 1, 2)   noun(you,1, 2)   noun-phrase(you, 1, 2) 

word(you,is, 2, 3)    verb(you,2, 3)   noun-phrase(you, 3, 5)     

word(you,your, 3, 4)    adjective(you,3, 4)  noun-phrase(you, 3, 4) 

word(you,name, 4, 5)   noun(you,4, 5)   verb-phrase(you, 2, 5) 

sentence(you, 1, 3)    sentence(you, 1, 5) 

   

word(me, my, 6, 7)    adjective(me, 6, 7)  noun-phrase(me, 6, 8) 

word(me, name, 7, 8)   noun(me, 7, 8)   noun-phrase(me, 7, 8)  

word(me, is, 8, 9)    verb(me, 8, 9)   noun-phrase(me, 9, 10) 

word(me, fariba, 9, 10)  noun(me, 9, 10)  verb-phrase(me, 8, 10) 

sentence(me, 7, 9)    sentence(me, 7, 10) sentence(me, 6, 10)}  Temp  
 

Here Temp is the extension of the temporal inequality relation defined by            

Ltemp. Notice that the grammar would need to be refined to avoid concluding 

sentence(you, 1, 3), sentence(me, 7, 9),  sentence(me, 7, 10), which are intuitively 

unintended. 

 In some of the earlier versions of LPS, we treated events as instantaneous and 

states as having duration. However, in the remainder of this paper, we do the 

opposite and treat states as instantaneous and events as having duration. The 

different treatments are different ways of ensuring that the truth value of a fluent 

does not change within a state, but changes only in the transition from one state to 

the next. The general approach of LPS is compatible with both treatments of time.  

2.3 Blocks world 

In the previous examples, there are no internal states. Instead, events come and go 

without leaving any trace. This is not typical of programs in LPS.  

The blocks world illustrates the more typical case of a program with an internal 

state. In this example, the state can be viewed as the extensional part of a deductive 

database, in which on(Block, Place, T) is an extensional predicate, and      

clear(Place, T) is an intensional predicate. We assume that the language is order-

sorted, with sorts for blocks, places and time points. The sort places includes the sort 

blocks and contains in addition the constant table. 

Assuming, for simplicity, that the table is always clear, the predicate    

clear(Place, T) is defined by two clauses in Lint: 

 

Lint clear(table, T) 

   clear(Block, T)   X on(X, Block, T) 

 

We treat negative literals in the body of a clause as a special case of an FOL 

condition. Operationally, an FOL condition is a query to predicates defined at a 

lower stratum than the stratum of the predicate defined in the head of the clause. 

Clauses satisfying this condition (which we call FOL-stratification and define 

formally later) are a natural generalisation of locally stratified logic programs. In 
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this example, there are two strata: The lower stratum corresponds to the 

extensional part of the database, and the upper stratum corresponds to the 

intensional part. More generally, as we will see later, the intensional predicates can 

be spread over several strata. 

In general, events, including the agent’s own actions and external events, update 

only the extensional part of a database state. The intensional fluents are updated 

implicitly, as a result of updates to the extensional part.  

In general, the set of simple events taking place from T1 to T2 generate a state 

transition from the state whose fluents all hold at time T1 into the next state whose 

fluents all hold at time T2. In this example, the updates are associated with the 

simple event move(Block, Place, T1, T2), defined by the domain theory D. This is 

similar to the treatment of events in the event calculus. We assume that the 

arguments of move are typed, so that it is not possible to move the table.  

As in the event calculus, it is convenient to represent time-stamped fluents and 

events by means of meta-predicates, writing for example holds(p, t) instead of p(t) 

and happens(e, t1, t2) instead of e(t1, t2). We also combine both notations 

interchangeably.  

In general D consists of two parts, Dpost  which is concerned with the post-

conditions of events and  Dpre which is concerned with the preconditions of events. In 

this example Dpost specifies the fluents that are initiated and terminated by the 

simple event move(Block, Place), and is given below. Dpre will be described later. 
 

Dpost   initiated(on(Block, Place), T1, T2)  happens(move(Block, Place), T1, T2) 

  terminated(on(Block, Support), T1, T2)  happens(move(Block, Place), T1, T2)  

     on(Block, Support, T1) 
 

The task of putting a block on a place can be triggered by an input event requesting 

that the block be put on the place, represented by a reactive rule:  

 

R  request(on(Block, Place), T1, T2)  make-on(Block, Place, T3, T4)  T2 ≤ T3 

 

Here request(on(Block, Place), T1, T2) is a simple, external event, which does not 

initiate or terminate any fluents. Alternatively, it could initiate a fluent that stores 

a record of the request.  

In a more realistic example, additional conditions might be included in the 

antecedent of the rule, for example to check that the request is authorised, and 

additional constraints might be included in the consequent of the rule to constrain 

the amount of time that can elapse between the request and its fulfilment. 

 The predicate make-on can be defined as a composite action/event, using an 

auxiliary composite action/event make-clear: 

 

Levents make-on(Block, Place, T, T)   on(Block, Place, T) 

make-on(Block, Place, T1, T4)   ¬ on(Block, Place, T1)   

make-clear(Block, TB1, TB2)  make-clear(Place, TP1, TP2)   

   move(Block, Place, T3, T4)  T1 ≤ TB1   T1 ≤ TP1  TB2 ≤ T3   TP2 ≤ T3   

make-clear(Place, T, T)  clear(Place, T)  

make-clear(Place, T1, T4)  Place  table  on(Block, Place, T1)    

make-clear(Block, T1, T2)  move(Block, table, T3, T4)  T2 < T3 

 

Notice that the two make-clear events in the body of the second make-on clause are 

partially ordered. They can be performed in any order, as well as at the same time, 
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for example by using two hands. Notice, moreover, that, it might be desirable to add 

an extra condition to the body of the clause, constraining the make-clear events so 

that one of them starts as soon as the condition ¬ on(Block, Place, T1)  is verified. 

 The clauses in Levents are written in a teleo-reactive style, and have a base case 

corresponding to the goal of the composite action. Teleo-reactive programs facilitate 

both the re-execution of plan subgoals when plans fail, and the omission of plan 

subgoals when the environment opportunistically solves these subgoals instead. 

These features of teleo-reactive programs apply also to LPS programs more 

generally. We present an example later in this subsection. 

In an earlier version of LPS [Kowalski and Sadri 2011] we allowed “planning 

clauses”, which in the case of make-clear could have the form: 

 

 clear(Place, T3)  on(Block, Place, T1)  clear(Block,T1)   

  move(Block, table, T2, T3)  T1 < T2    

 

Such planning clauses allow a higher level of knowledge representation than the 

version of LPS presented in [Kowalski and Sadri 2012a; Kowalski and Sadri 2012b] 

and in this paper. However, the behaviour of programs containing planning clauses 

is more complicated and harder to understand.  

It is possible to transform planning clauses into composite event definitions and 

vice versa. In any case, it is important to appreciate that LPS programs do not 

perform planning from first principles, but simply execute pre-existing, explicitly 

represented conditional plans. This is similar to plans in practical BDI agent 

languages.  

 In earlier papers, we allowed only one action to be executed at a time. In this 

paper, we allow concurrent actions and other events. In the blocks world, in 

particular, we can allow several agents to pick up blocks concurrently, in which case 

an action by one agent becomes an external event for another agent.  

 In the simplest case, concurrent events are independent, and their combined 

effects are simply the collection of their individual effects. However, in other cases, 

concurrent events can have combined effects that are different from the effects of 

their individual events. For example, two concurrent events of picking up two ends 

of a table have different combined effects from the individual events of picking up 

only one end of the table. 

 In this example, we consider the case of competing events, which are prevented 

from occurring concurrently by means of integrity constraints in Dpre. These 

integrity constraints have the form of logic programming clauses with head false; 

but as we will see later, they play a different role in the semantics from other logic 

programming clauses. 

 

Dpre  false  happens(move(Block, Place), T1, T2)   

 [clear(Block, T1)  clear(Place, T1)] 

  false  happens(move(Block, Place), T1, T2)  Block = Place  

false  happens(move(Block, Place1), T1, T2)  

  happens(move(Block, Place2), T1, T2)   Place1   Place2 

false  happens(move(Block1, Place), T1, T2)  

  happens(move(Block2, Place), T1, T2)  Block1 Block2  Place table 

false  happens(move(Block1, Block2), T1, T2)  

  happens(move(Block2, Place), T1, T2) 
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The integrity constraints in Dpre also represent the preconditions of individual 

events, as exemplified by the first two constraints above. 
  Notice that, given three candidate events, say move(a, b), move(c, d) and    

move(d, e) each of which is possible in isolation, but not in combination, there are 

two possible sets of two concurrent events, {move(a, b), move(c, d)}, {move(a, b),      

move(d, e)}, three possible singleton sets {move(a, b)}, {move(c, d)}, {move(d, e)} and 

the empty set {}.  

 As a concrete example, consider two agents ag1 and ag2 with initial goals:     

make-on(a, c, T1, T2)  T1 > 0, and make-on(d, f, T3, T4)  T3 > 0, respectively. Let the 

initial state be as pictured:    

 

 

b   d 

 

    a   c     f 

 

 

The two agents can attempt to achieve their individual goals, first by incrementally 

generating a tree of subgoals, each. Here we ignore the time parameters for ease of 

reading: 

 

    ag1              ag2 

 

make-on(a, c)         make-on(d, f) 

 

make-clear(a)  make-clear(c)    make-clear(d)   make-clear(f)  

move(a,c)          move(d, f) 

 

move(b, table)  move(d, table)    clear(d)  clear(f)  move(d, f) 

move(a,c) 

             move(d, f) 

 

The tree has other branches, but we assume either that they have already been 

explored and failed, or that they can be explored in the future. 

Having generated these branches, suppose agent ag1 selects candidate actions 

{move(b, table), move(d, table)} and ag2 selects candidate action{move(d, f)} for 

execution at the same time – other variations are also possible. The three actions 

are not possible concurrently. Suppose the successful actions are move(b, table) and 

move(d, f), i.e. one action is successful for each agent. The state will be transformed 

into the following: 

 

 

    d 

 

  a   c    f             b 

 

 

  

The initial goal of agent ag2 has been achieved. However, only the first subgoal of 

the current plan of agent ag1 has been achieved. Agent ag1 can continue with its 

current plan, in which case it will unnecessarily retry the action move(d, table). Or it 
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can take advantage of the opportunistic solution by agent ag2 of the higher-level 

subgoal make-clear(c) in the higher-level, more abstract plan make-clear(a)     

make-clear(c)   move(a,c), and solve its initial goal, by performing the action 

move(a,c) in one step. 

The model-theoretic semantics of LPS defines computation as the task of 

generating a model that makes an agent’s reactive rules and initial goals all true. It 

is not concerned with optimising the generated model. In the example above, the 

chosen solution is a model that contains the fewest actions. In other applications, it 

may be desirable to generate a model that maximizes concurrency, as in the 

following example.  

2.4 The Dining Philosophers 

Although the dining philosophers’ problem was originally proposed as a problem of 

concurrent programming, the problem can also be viewed in both database and AI 

knowledge representation and problem-solving terms:  

 

In the initial state, five philosophers sit around a circular table with a bowl of 

spaghetti in the middle of the table and five forks, one to the left and one to the 

right of each philosopher. Each philosopher alternates between thinking and 

eating. In order to eat, a philosopher needs two adjacent forks. A philosopher 

can pick up the two adjacent forks if they are both available.  

 

The setting of the problem is similar to that of the blocks world. The forks are like 

blocks, having a fork is like there being an object on a block, and a fork being 

available is like a block being clear. Similar constraints apply to picking up a fork as 

apply to picking up a block: A fork cannot be picked up and moved simultaneously to 

two different locations (philosophers).  

  The solution of the dining philosophers’ problem presented below is similar to the 

solution in C-Linda [Carriero and Gelernter 1989]. Here we assume that the five 

philosophers are represented by five separate processors or agents, each of which 

has its own local copy of the same framework <R, L, D>, but shares a single copy of 

the global state. The global state acts as a coordination medium, which non-

deterministically decides which possible sets of concurrent events actually occur. 

  The only extensional predicate in the representation is the predicate 

available(Fork, T), and Lint ={}. In the initial state S0, all five forks are available. To 

facilitate updating the state destructively, the extensional fluents are represented 

without time parameters: 

 

S0 = {available(fork(0)), available(fork(1)), available(fork(2)), available(fork(3)), 

available(fork(4))}. 

 

For simplicity the predicate adjacent(fork(0), philosopher(0), fork(1)) is treated as 

time-independent:  

 

Ltimeless            adjacent(fork(0), philosopher(0), fork(1)) 

adjacent(fork(1), philosopher(1), fork(2))     adjacent(fork(2), philosopher(2), fork(3)) 

adjacent(fork(3), philosopher(3), fork(4))     adjacent(fork(4), philosopher(4), fork(0)) 

 

 The extensional fluents are like tuples in a relational database, or in a coordination 

language [Carriero and Gelernter 1989]. They are also like the values of “variables” 
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in conventional programming languages. For example, updating the state by adding 

the fluent available(fork(f)) is like executing an assignment statement 

available(fork(f)) := true, assigning the value true to the “variable” available(fork(f)).  

  The solution in C-Linda uses four tickets. To eat, a philosopher needs not only 

two forks but also one ticket. This ensures that at least one philosopher is always 

able to eat. We have programmed this solution in LPS, but here we present a 

solution using a simple action of picking up two adjacent forks simultaneously.  

  Each philosopher, philosopher(i), 0 ≤ i ≤ 4, can perform four simple actions, of 

thinking, picking up forks, eating, and putting down forks. These can be combined 

into a single composite action, dine:  

 

Levents   dine(philosopher(i), T1, T6)  think(philosopher(i), T1, T2)  

     adjacent(F1, philosopher(i), F2)  

     pickup-forks(F1, philosopher(i), F2, T3, T4)  T2  ≤ T3   

    eat(philosopher(i), T4, T5)  putdown-forks(F1, philosopher(i), F2, T5, T6)  

 

Notice that the temporal constraints here allow a lapse of time between thinking 

and picking up forks, because forks may not be available as soon as thinking is 

completed. But no such lapse of time takes place between picking up forks and 

eating and between eating and putting down forks. 

  The composite action dine can be triggered by means of a reactive rule and an 

event of it becoming time to eat: 

 

 R  time-to-eat(philosopher(i), T1, T2)   dine(philosopher(i), T3, T4)   T2  ≤ T3   

  

For example, the five instances of the rule could be triggered by the five concurrent 

external events: 

 

 ev1  =   {time-to-eat(philosopher(0), 0, 1),   time-to-eat(philosopher(1), 0, 1), 

     time-to-eat(philosopher(2), 0, 1),   time-to-eat(philosopher(3), 0, 1), 

     time-to-eat(philosopher(4), 0, 1)} 

 

Additional temporal constraints could be imposed on the consequent of the rule, to 

try to prevent the philosophers from starving while waiting to eat. 

 The solution of the dining philosophers’ problem is shared between the reactive 

rules and logic programs used by the individual philosophers and the domain theory 

used to update the global state. For the philosophers’ part, it suffices for each 

philosopher to employ the one reactive rule in R and the one logic programming 

clause in Levents. The domain theory D defines the post-conditions and preconditions 

of the simple atomic actions. In this simple formulation of the problem, the only 

actions that change the state are the actions of picking up and putting down forks: 

 

Dpost  terminated(available(F), T1, T2)  

   happens(pickup-forks(F1, philosopher(I), F2), T1, T2)  (F = F1   F = F2) 

  initiated(available(F), T1, T2)   

   happens(putdown-forks(F1, philosopher(I), F2), T1, T2)  (F = F1   F = F2) 

 

Dpre  false  happens(pickup-forks(F1, philosopher(I), F2), T1, T2)   

      [available(F1, T1)  available(F2, T1)]  

   false  happens(pickup-forks(F1, philosopher(I), F), T1, T2)  

  happens(pickup-forks(F, philosopher(J), F2), T1, T2)  
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The first constraint in Dpre  ensures that a philosopher picks up forks only if they are 

available, and the second constraint ensures that two philosophers I and J do not 

pick up the same fork F simultaneously. 

  In general, when a simple event happens, then all fluents initiated by the event 

are added and all fluents terminated by the event are deleted in the state transition. 

In this sense, simple events are atomic, in that either all their effects succeed or all 

their effects fail at the same time. The domain theory D and its use for defining 

state transitions provides a declarative semantics for such forms of atomicity, with 

details concerning roll-back and critical sections relegated to the implementation. 

  The model-theoretic and operational semantics, defined later, are the semantics 

of a single agent, say agent 0 for example, interacting with a single current state. In 

the dining philosopher’s problem, this single state is a global state shared with 

other philosophers. The domain theory is used to update this state.  

In order to generate the external events for agent 0 and to correctly update the 

global state, it is necessary to simulate the other agents and to generate their 

candidate actions, which are external events for agent 0. It is also necessary to 

arbitrate between competing candidate actions and to choose a set of concurrent 

actions that satisfy the integrity constraints in Dpre. This choice of concurrent 

actions is non-deterministic, but one such sequence of choices is shown below. In 

fact, this is the sequence generated by our Prolog prototype of LPS.  

Here S0, S1,…, S12 is the sequence of states, and ev1,…, ev12  is the sequence of 

events, where evi is the set of all events that take place concurrently in the 

transition from state Si-1 to state Si: 

 

S2 = S1 = S0    

ev2  = {}    

ev3 = {think(philosopher(0)), think(philosopher(1)), think(philosopher(2)), 

think(philosopher(3)), think(philosopher(4))} 

S3 =  S2    

ev4 = {pickup-forks(fork(0), philosopher(0),  fork(1)),  

  pickup-forks(fork(2), philosopher(2),  fork(3))} 

S4 =  {available(fork(4))} 

ev5 = {eat(philosopher(0)), eat(philosopher(2))} 

S5 =  S4    

ev6 = {putdown-forks(fork(0), philosopher(0),  fork(1)),  

     putdown-forks(fork(2), philosopher(2), fork(3))} 

S6 =  S2 = S1 = S0    

ev7 = {pickup-forks(fork(1), philosopher(1),  fork(2)),  

      pickup-forks(fork(3), philosopher(3), fork(4))} 

S7 =  {available(fork(0)) } 

ev8 = {eat(philosopher(1)), eat(philosopher(3))} 

S8 =  S7 

ev9 = {putdown-forks(fork(1), philosopher(1),  fork(2)),  

     putdown-forks(fork(3), philosopher(3), fork(4))} 

S9 =  S6 = S2 = S1 = S0  

ev10 ={pickup-forks(fork(4), philosopher(4),  fork(0)} 

S10 = {available(fork(1)), available(fork(2)), available(fork(3))} 

ev11 ={eat(philosopher(4))} 

S11 = S10 

ev12 = {putdown-forks(fork(4), philosopher(4), fork(0))} 
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S12 =  S9 = S6 = S2 = S1 = S0   

 

In the model-theoretic semantics, all the events and states are combined into a 

single Herbrand model M by adding an extra temporal argument to fluents and 

events. The model M also contains the extension of the temporal inequality relation  

≤  and the composite actions: 

 

  dine(philosopher(0), 2, 6) dine(philosopher(2), 2, 6) dine(philosopher(1), 2, 9)

  dine(philosopher(3), 2, 9) dine(philosopher(4), 2, 12) 

 

The operational semantics correctly generates a model M in which the reactive rule 

R and the integrity constraints Dpre are all true. The logic program L is used to help 

generate the model, and therefore is also true in M. 
  Note that even though the global state has information about the availability of 

all five forks, an individual agent may have access only to information about the 

availability of forks adjacent to it. In fact the agent can function simply by relying 

on the environment to tell it when its actions, including picking up forks, are 

successful. 

3.    THE LANGUAGE  

An LPS program <R, L, D> combines the reactive rules R and logic programs L of 

an individual agent with a domain theory D that is used to perform updates on a 

current state Si that is possibly shared with other agents. The shared state Si 

arbitrates between the candidate actions of different agents, non-deterministically 

choosing a set evi of concurrent events that satisfies the integrity constraints in Dpre, 

and using Dpost to transform  Si-1 into Si. 

 The agent receives observations of the events evi and can query the current state 

Si to generate candidate actions actsi+1 with the purpose of making the reactive 

rules R all true. The truth value of R is determined with respect to a natural, 

minimal model associated with the entire sequence of states S0,…, Si,…. and events          

ev1,…, evi,…. augmented with higher-level predicates defined by the logic program         

L = Lint  Levents  Ltimeless  Ltemp. 

 The reactive rules R, logic programs L and D can contain FOL conditions, which 

operationally query the extended current state. The model-theoretic semantics for 

FOL conditions generalises the perfect model semantics for negative conditions. It 

generalises local stratification, by restricting the strata of predicates in FOL 

conditions in the body of a clause to ones that are lower than the stratum of the 

predicate occurring in the head. It generalises the perfect model semantics, by 

generating submodels whose predicates belong to lower strata before using them to 

generate models whose predicates belong to higher strata. 

 States Si are sets of atomic sentences (or simple fluents), which can be viewed as 

the extensional component of a deductive database. The domain theory D updates 

only these extensional predicates. The logic program Lint implicitly updates 

intensional predicates as ramifications of changes to the extensional predicates. The 

logic program Levents both recognises and constructs composite events.  
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In the operational semantics, fluents are represented without explicit time. 

Updates associated with a set evi of events are performed destructively, using the 

domain theory D to delete fluents that are terminated by evi and to add fluents that 

are initiated by evi. Fluents that are neither initiated nor terminated simply persist 

without reasoning that they persist, and without copying them explicitly from one 

state into the next. 

In a possible world semantics, as employed in modal logic or TR logic, states are 

also represented by sets of fluents, but they are linked by an accessibility relation 

associated with the state transforming events. However, in the model-theoretic 

semantics of LPS, fluents and events are time-stamped and combined in a single, 

non-modal model-theoretic structure.  

In the version of LPS presented in this paper, we assume that time is linear and 

discrete, and that the succession of time points is represented by the relation   

succ(s, t) defined in Ltemp (with the aid of Ltimeless) where s and t are real numbers. For 

simplicity, we assume that there is a state transition from Si-1 to Si associated with 

each instance succ(ti-1, ti), that all fluents in Si hold at time ti, and that all events in 

evi occur from time ti-1 to ti. The set evi can be empty. In other papers, we have made 

the opposite assumption, associating time points with simple events and time 

intervals with states.  The two conventions are mostly interchangeable. 

To distinguish between a fluent p without a time stamp, needed for destructive 

updates in the operational semantics,  and the same fluent with a time stamp t, 

needed for the model-theoretic semantics, we either add an extra argument p(t)  to 

p, or we treat p as a term and include it in a meta-predicate such as holds(p, t). To 

distinguish between a state Si whose fluents are all without time stamps, and the 

same state in which all the fluents have the same time stamp ti, we write Si*. 

Similarly, for a simple or composite event e without a time stamp, either we write 

e(t1, t2), or we include e as a term within a meta-predicate such as happens(e, t1, t2).  

For the concurrent occurrence of an unstamped set evi of simple events, occurring 

from time ti-1 to time ti we write evi* for the same set of events with their time 

stamps.   

3.1 Vocabulary 

We assume an order-sorted language in which the constants and variables of the 

language are assigned sorts that may be hierarchically ordered. The argument 

places of function symbols and predicate symbols are correspondingly assigned 

sorts, so that formulas are well-formed only if the argument places are filled by 

terms of the allowed sort. 

 

The predicate symbols of the language are partitioned into (disjoint) sets 

representing fluents, events, auxiliary predicates and meta-predicates: 

 

Fluent predicate symbols are partitioned into extensional predicates, which 

represent facts in the states Si, and intensional predicates defined in Lint.  

 

Event predicates are analogously partitioned into simple event predicates and 

composite event predicates. Simple events can represent either externally 

generated events or internally generated actions.  Composite event predicates 

are defined in Levents. 
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Auxiliary predicates consist of time-independent predicates, such as max and 

min and others used for arithmetic, defined in Ltimeless, as well as temporal 

predicates, such as succ, defined in Ltemp. 

 

The meta-predicates consist of   

  The predicates initiated and terminated defined by the domain theory D, 

and used for performing state transitions; and 

  The predicates holds and happens. 

Fluents and events occur as terms when they are arguments of the meta-

predicates. 

 

States Si are not represented explicitly in the language, but are represented 

implicitly by the set of all the extensional facts that are true at time ti. These 

extensional facts represent the kernel of the state Si. However, conceptually, the set 

Si*  Lint  Ltimeless, which is the kernel extended by the intensional and time-

independent predicates, can be thought of as the time-stamped extended state at 

time ti. Similarly, the sets evi of events are not represented explicitly, but are 

represented implicitly by the set of simple events that occur from time ti-1 to ti.   

3.2 Internal and external syntax 

The explicit representation of time, defined by Ltemp, underpins the model-theoretic 

semantics of the language. However, at the potential expense of restricting the 

expressive power of the language, the language can also be expressed in an external 

syntax in which time is implicit. For example, in [Kowalski and Sadri 2011], 

temporal ordering is indicated by the order in which formulas are written and by 

the use of special logical connectives. This is similar to the syntax of TR Logic 

[Bonner and Kifer 1993], in which P  Q means “do P and then do Q”. In LPS, 

depending on the context, this translates into an internal syntax with an explicit 

representation of time, for example as P(T1, T2)  Q(T2, T3) or as P(T1, T2)  Q(T3, T4) 

 T2 < T3,  if P and Q are events. 

 The internal syntax is also compatible with a modal external syntax. For 

example, P  ◊Q can similarly be translated into P(T1, T2)  Q(T3, T4)  T2 < T3,  if P 

and Q are events, and P  ○Q can be translated into P(T1, T2)  Q(T2, T3). However 

in modal logic, events and actions are not represented by formulas, but by 

parameters of modal operators, and P and Q would be restricted to fluents. If P and 

Q are fluents, then P  ◊Q can be translated into P(T1)  Q(T2)   T1 < T2, and          

P  ○Q can be translated into P(T1)  Q(T2)  succ(T1, T2). 

 Graphical notations for representing partial ordering are also possible. For 

example, a notation such as: 

 
could be used to represent P(T1)  Q(T2)  R(T3)  T1 + 2 < T3  T2 < T3   T2 + 6.     

 In the remainder of the paper, we use the internal syntax with explicit time, 

because it clarifies the model-theoretic semantics, and because it is neutral with 

respect to external syntax.  

 
 

P 

Q 
R 

(2,∞) 

(0, 6] 
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 Note that the internal syntax of LPS employs a relational syntax in which 

function symbols are used only for constructing names of composite objects. It would 

also be possible to employ an external syntax in which function symbols are used 

with equality for representing functional relations, as in colour(a) = red or    

colour(a) = colour(b). In the internal syntax, these would be translated into   

colour(a, red) and colour(a, X)  colour(b, X) respectively, together with integrity 

constraints to represent the fact that objects have only one colour. In practice, such 

integrity constraints might be emergent properties that would not have to be 

checked explicitly. 

 Notice that functional external syntax could be combined with infix notation. For 

example, T3   T2 + 6  could be regarded as shorthand for T3    T  +(T2, 6, T). 

3.3 Reactive Rules 

Reactive rules (or simply rules) in R are sentences of the logical form: 
 

X [antecedent(X) Y consequent(X, Y)]  

 

where X is the set (or tuple) of all unbound variables, including time variables, that 

occur in antecedent(X), and Y is the set (or tuple) of all unbound variables, including 

time variables, that occur only in consequent(X, Y). In addition to the variables in X 

and Y, the rule can contain other variables that are bound in FOL conditions. For 

notational convenience, we write consequent(X, Y) even though consequent(X, Y) 

need not contain all the variables that occur in antecedent(X). Because of these 

restrictions on the quantification of variables, we can omit the quantifiers X and 

Y. More formally: 
 

Definition 3.1 (Reactive rule). A reactive rule is a sentence of the form: 
 

antecedent(X) consequent(X, Y) 
 

where both antecedent(X) and consequent(X, Y) are a conjunction1 of FOL state 

conditions, event atoms and temporal constraints.  

 

 An FOL state condition (or simply a state condition) is an FOL formula in 

the vocabulary of the fluent and time-independent predicates, containing at 

most a single time variable, which is unbound.  

Operationally, the evaluation of a state condition can be understood as a 

query to the current extended state Si*  Lint  Ltimeless, where the time 

parameter refers to the current time ti.     

 

 An event atom is an atomic formula whose predicate symbol is a simple or 

composite event. Similarly an action atom is an event atom whose predicate 

symbol is an action.  

                                                           
1 In [Kowalski and Sadri 2012b] we allowed consequents of rules to be disjunctions of such conjunctions. 

This is because we focused on programs consisting of reactive rules without logic programs. In this 

paper, we obtain a similar effect by allowing consequents to contain predicates defined by non-

deterministic logic programs. Alternatively, it would be easy to extend the language of this paper to 

include the disjunctive consequents of the earlier paper. 
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 A temporal constraint is an atomic formula of the form succ(time1, time2), 

time1 < time2 or time1 ≤ time2 where time1 and time2 represent time points, 

one of which is a variable, and the other of which is a variable or a constant.  

 

The temporal constraints contain only variables that occur in the state conditions 

and event atoms of the rule, and all the time parameters that occur in the 

antecedent are constrained directly or indirectly in the consequent to be earlier 

than or equal to the time parameters that occur only in the consequent.  

 

Notice that, although fluents can occur as subformulas of FOL conditions, events 

can occur only as atomic conjuncts. This makes it impossible to represent, for 

example, the condition that no event of a certain kind occurs within a certain 

interval of time. This restriction simplifies the operational semantics, so that any 

non-temporal condition in a reactive rule can be treated as a query to the extended 

current state  Si*  Lint  Ltimeless augmented with evi*.  The restriction is not 

necessary for the model-theoretic semantics, and can be removed at the expense of 

complicating the operational semantics.  

3.4 Goal clauses  

In both the model-theoretic and operational semantics, whenever the antecedent of 

a reactive rule becomes true, the consequent of the rule becomes a goal to be made 

true in the future.  

 In addition to satisfying such derived goals, it may also be required to make an 

initial set of goals true in the future. For this purpose, and because the operational 

semantics maintains a goal state containing goal clauses, we define goal clauses 

here more generally: 

 

 Definition 3.2 (Goal clause). A goal clause is an existentially quantified 

conjunction of FOL state conditions, event atoms and temporal constraints. All the 

variables in the temporal constraints occur in the state conditions and event atoms 

of the goal clause. 

 

Note that a goal clause can also be regarded as a reactive rule with an empty (or 

true) antecedent.  

3.5 Logic programs  

The logic programs  L = Lint  Levents  Ltimeless  Ltemp play a supporting role to the 

reactive rules of an LPS program <R, L, D>. Like the antecedents and consequents 

of rules, they can also contain non-atomic FOL conditions, as in the extended logic 

programs of [Lloyd and Topor 1984]. 

 

Definition 3.3 (Extended logic program).  An extended logic program is a set P of 

sentences (or clauses) of the form: 
 

head(X)  body(X, Y) 

 

where X is the set of all variables that occur in head(X), and Y is set of all unbound 

variables that occur only in body(X, Y). The head of the clause head(X) is an atomic 

formula and the body of the clause body(X, Y) is a (possibly empty) conjunction of 
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conditions, which are atomic and non-atomic FOL formulas.2 An extended logic 

program whose body is a (possibly empty) conjunction of atomic formulas is a Horn 

clause program.  

Clauses are implicitly quantified in the form: 
 

X [head(X)  Y body(X, Y)]  

 
which is more often written in the logically equivalent form: 
 

XY [head(X)  body(X, Y)]  
 

These quantifiers are normally left implicit, because they can always be 

reconstructed unambiguously. Also, we drop the qualification “extended” and call 

extended logic programs simply “logic programs”. 

 Lloyd and Topor reduce logic programs with FOL conditions in their bodies to 

normal logic programs whose bodies are literals, namely conjunctions of atomic 

formulas and negations of atomic formulas. In contrast, we evaluate FOL conditions 

using the standard definition of truth for formulas of first-order logic. However, for 

this purpose, we need to ensure that that the predicates of non-atomic FOL 

conditions are fully defined before the conditions are evaluated. For this purpose, we 

employ a simple generalisation of local stratification, called FOL-stratification. 

Later we will generalize this to weak FOL-stratification. 

 FOL-stratification is exemplified by the clause that defines the subset relation   

in terms of the membership relation : 

 
  U  V  Z [Z  U  Z  V] 
 

Given a set of atomic sentences Memb defining the extension of the predicate , the 

FOL condition in the body of the clause can be viewed as a query to the extensional 

database Memb. The results of the query are used to define the predicate   in the 

head of the clause. 

 The relationship between the two predicates  and  in the clause can be viewed 

in terms of stratification: The predicate  is defined in a lower stratum, and the 

predicate   is defined in a higher stratum.  

Loosely speaking, a logic program is FOL-stratified if there is a well-ordering of 

the ground atoms of the language into distinct strata, such that, for every ground 

instance C of a clause in the program, the non-atomic FOL conditions in the body of 

C are defined in lower strata than the stratum of the head of C, and atomic 

conditions in the body are defined in the same or lower strata than the head.3 In 

LPS, the component programs Lint, Levents, Ltimeless and Ltemp are all FOL-stratified in 

this sense. 

For example, the logic program Lint can be FOL-stratified by assigning extensional 

and time independent atoms to a lower stratum, and intensional predicates to a 

                                                           
2 Although a conjunction of FOL formulas is itself an FOL formula, we distinguish between atomic and 

non-atomic FOL formulas, because non-atomic formulas generalise negative literals in normal logic 

programming. 

 
3 Replacing an FOL condition in an FOL-stratified program by one that is logically equivalent does not 

affect the FOL perfect model, if the resulting program is also FOL-stratified. However, it may change a 

program that is FOL-stratified into one that is not. For example, the program p  p is stratified, but the 

program p   p is not. 
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higher stratum. As a consequence, FOL conditions in the bodies of clauses can be 

evaluated without using the intensional predicates. However, the stratification can 

be extended to multiple levels. For example, if the predicate clear is intensional, 

then the predicate shallow can be defined as an intensional predicate at a higher 

stratum than the stratum of clear. 

 

shallow(Place, T)  Block [on(Block, Place, T)  clear(Block, T)] 

 

Similarly, the logic program Levents can be FOL-stratified by assigning fluent, simple 

event and time-independent predicates to a lower-stratum than composite event 

predicates. FOL conditions involving the lower-stratum predicates can be viewed as 

queries to the extended current state  Si*  Lint  Ltimeless augmented with evi*.   

 We will define FOL-stratification and its semantics more formally later. 

 

 Definition 3.4 (The logic programs L).  Ltimeless is an FOL-stratified logic program 

containing only predicates without time parameters.  

 

Ltemp is an FOL-stratified logic program defining the temporal predicates succ,  ≤ and  

<, as a discrete total ordering.   

 

Lint is an FOL-stratified logic program, consisting of clauses of the form          

head(X, T)  body(X, Y, T) in which the predicate in the head is an intensional 

predicate, and the predicates in the body are intensional, extensional or time-

independent predicates. The intensional predicates are assigned to higher strata 

than the extensional and time-independent predicates. Each clause in Lint contains 

exactly one time parameter T that is a variable.  

 

Levents is an FOL-stratified logic program, consisting of clauses of the form        

head(X, T1, T2)  body(X, Y, T1, T2) in which the predicate in the head is a 

composite event predicate,  and  the predicates in the body are composite event, 

simple event, fluent, time-independent or temporal predicates. The composite event 

predicates are all assigned to a higher stratum than the simple event, fluent and 

time-independent predicates. T1 and T2 represent the interval over which the 

composite event takes place, and are constrained to be, respectively, the earliest and 

latest time variables occurring in a fluent or event atom in body(X, Y, T1, T2)4.  

 The time variables in temporal constraints must all occur in the head or unbound 

in fluent or event atoms in the body.   

 

Note that the body of a clause in Levents is equivalent in form both to a goal clause, 

and to an antecedent or consequent of a reactive rule. 

3.6 The domain theory D  

The domain theory D of an LPS program <R, L, D> has two components                  

D = Dpost  Dpre. The first component Dpost is an FOL-stratified logic program that 

specifies the extensional fluents that are initiated and terminated by simple events. 

The second component Dpre is a set of integrity constraints restricting the occurrence 

and co-occurrence of simple events. 

 

                                                           
4 Note that X might include other time parameters, as in the emergency example of section 2. 
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Definition 3.5 (Domain theory D). Dpost is a set of clauses of the form: 

 

head(T2)  body(T1, T2) 

 

and Dpre  is a set of integrity constraints of the form: 

 

false  body(T1, T2) 

 

head(T2) is an atom of the form initiated(P, T2) or terminated(P, T2), where P is an 

extensional fluent. body(T1, T2) is an FOL formula containing only simple event 

predicates with time parameters T1 and T2, fluent predicates with time parameter 

T1, and time-independent predicates.  

 

In the operational semantics, body(T1, T2) is a query to the augmented current state 

Si*  Lint  Ltimeless  evi*  at time ti. An answer to the query is a ground 

instantiation of the free variables in body(T1, T2), leaving bound variables to be 

treated according to the classical semantics of universal and existential quantifiers. 

 The FOL-stratification of Dpost consists of two strata: The predicates defined by  

Si*  Lint  Ltimeless  evi* constitute the lower stratum, and the meta-predicates 

initiated(P, T2) and terminated(P, T2), constitute the higher stratum 

 

3.7 The environment  

 

An LPS framework <R, L, D> represents the goals R and beliefs L of an individual 

agent embedded in an environment, which consists of a current state Si  and current 

set evi of events. For simplicity, the current state includes both the agent’s own local 

state and the whole of the external, global state. Similarly, the current events 

include both the agent’s own local actions and all external, global events.  

In a multi-agent system, the global components are shared among all the agents, 

but the local components are encapsulated. In a closed system, consisting of a single 

agent with no external environment, the entire state is internal, and all events are 

internal actions. 

 Dpost uses the events evi to update the state Si, and Dpre ensures that the set evi of 

events is possible. Dpost updates both the local and global components of the state, 

using both local and global events. In the case of purely internal actions, these 

updates are performed entirely by the agent itself. In the case of concurrent events 

whose effects depend on both internal actions and external events, the updates are 

performed by the external environment. 

 The computational task for LPS is defined in terms of making the goals R  G0 of 

an individual agent true in a model that is determined by the combined local and 

global components of the environment. This ensures that, in a multi-agent setting, 

all the agents have the same consistent (and co-ordinated) view of the shared 

components of the environment. However, it does not mean that all the agents have 

unrestricted access to all the information in the environment. An agent’s access to 

the environment is restricted inherently by its vocabulary. Moreover, the external 

environment might also impose further restrictions of its own. 

In a more refined formalization of LPS, it might be desirable to decompose the 

environment into separate local and global components. However, to simplify the 

treatment in this paper, we combine the local and global components of the 

environment into a single entity.  
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4. THE MODEL-THEORETIC SEMANTICS OF LPS   

In this section, we present two alternative semantics: The first involves an event 

theory ET that uses a frame axiom to express that any fluent that is not terminated 

by a state transition persists from one state to the next. The second uses destructive 

state updates. In section 8, we show that the two semantics generate the same 

intended models. 

4.1 The event theory ET 

The event theory ET is a logic program that, given Dpost  L  S0*  ev*, defines 

when an extensional fluent P holds at a time point T > 0: 

 

 Definition 4.1 (Event theory ET). The event theory ET consists of the two clauses:

  

holds(P, T2)  initiated(P, T1, T2)  

holds(P, T2)  holds(P, T1)   succ(T1, T2)  ¬ terminated(P, T1, T2)  

 

ET is a hybrid of the situation calculus and the event calculus. The second clause is 

a frame axiom in the spirit of the situation calculus. However, because states are 

not represented explicitly in LPS, the ontology of ET is that of the event calculus. 

 With the aid of ET, we can give a simple characterization of the computational 

task for LPS: 

 

 Definition 4.2 (Computational task according to ET). Given an LPS program     

<R, L, D>, an initial state S0 and initial set of goal clauses G0, the computational 

task is to generate, for every set exti  of external events, where i  1, a set actsi+1 of 

actions, such that: 

 

            ET  Dpost  L  S0*  ev* entails R  G0   Dpre 

 

where    ev*   =  ev1*    ev2*     …      evi*     …    

      evi   = exti   actsi, for  i  1, and  act1   = {}. 

 

The notion of entailment here is deliberately unspecified, and many different 

notions of entailment have been proposed for similar event theories, mainly to give 

them a non-monotonic semantics. The semantics that we will define later is also 

non-monotonic, and is expressed in terms of the truth of R  G0   Dpre in a uniquely 

determined, intended model of ET  Dpost  L  S0*  ev*. 

 But, independent of the definition of entailment, reasoning with ET is 

computationally infeasible. It is not practical either to reason forwards with frame 

axioms, duplicating facts that hold from one state to the next, or to reason 

backwards, to determine whether a fact holds in a given state by determining 

whether it held in previous states. As a consequence, frame axioms are rarely used 

in practical applications, and destructive assignment or destructive updates are 

generally used instead. 

 The computational infeasibility of reasoning with the frame axiom(s) has received 

hardly any attention. For example, [Shanahan 1987], in Solving the Frame Problem, 

explicitly excludes consideration of “implementation issues” on page 7. In this paper, 
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we consider computational feasibility to be one of the core issues related not only to 

implementation, but also to the semantics of state transition systems.  

 In contrast with the use of the frame axiom to reason about change of state in ET, 

computation in LPS is performed by using destructive change of state. 

 To avoid repetition, we use the following notation in definition 4.3 and elsewhere 

for the sequences of time stamped events and states: 

 

    ev*   =  ev1*    ev2*     …      evi*     …      

    evi   = exti   actsi, for  i  1, where  act1   = {} 
    S*  = S0*   S1*   …     Si*    …       

 

 Definition 4.3 (Informal specification of the computational task). Given an LPS 

program <R, L, D>, an  initial state S0 and initial set of goal clauses G0, the 

computational task is to generate, for every set exti  of external events where i  1, a 

set actsi+1 of actions such that R  G0   Dpre is true in the intended model of:  

 
    L  S*  ev*   

 

where for  i  1, Si is obtained from Si-1  by deleting all the fluents in  Si-1   

terminated by evi   and adding all the fluents initiated by evi  as determined by D.  

 

In this specification, the computational task is shared between an agent attempting 

to execute a collection of candidate-actsi to make R  G0  true and the environment, 

maintaining Dpre, by arbitrating between the agent’s candidate-actsi and other 

candidate actions of other agents. The result of this arbitration is a set of events,    

evi   = exti   actsi, selected by the environment, where actsi is the subset of 

candidate-actsi that have succeeded, and exti is the set of all other successful events. 

 This specification is incomplete. It needs to be augmented with a definition of the 

intended model, and with a more precise statement of the definition of Si in terms of 

Si-1. We present the augmented specification in the next subsection.  

4.2 An abstract specification of the computational task   

In general, a logic program P can be viewed as an intensional definition of the 

predicates that occur in the heads of clauses in P in terms of the predicates that 

occur in the bodies of clauses in P. These head predicates can also be represented 

extensionally as a set sem(P) of ground atoms. The set sem(P) has a dual 

interpretation: syntactically as a set of sentences, and semantically as a model-

theoretic structure. Viewed in semantic terms, sem(P) is a Herbrand interpretation, 

which represents the set of all the ground atoms that are true in the interpretation.  

In the simplest case, when P is a set of Horn clauses, there exists an extensional 

representation sem(P) = min(P) of P that is also minimal (with respect to set 

inclusion) [van Emden and Kowalski 1976]. This case does not cater for logic 

programs that contain non-atomic FOL conditions. Later we define two semantics 

that do cater for such FOL conditions. Both semantics are defined for the case in 

which non-atomic FOL conditions in the body of a clause are defined in lower strata 

than the stratum of the head of the clause. The first semantics generalizes local 

stratification, and the second semantics generalizes weak stratification.  

The following definition expands the specification of the computational task in 

4.3, and presents it in an abstract form that is independent of the semantics sem. 



23 

 

The only assumption is that sem associates a unique Herbrand interpretation with 

every logic program in the class of programs under consideration.5 

 

 Definition 4.4 (Abstract specification of the computational task). Let sem be a 

mapping from logic programs P to sets of ground atoms that are instances of the 

heads of clauses in P. Given an LPS program <R, L, D>, an initial state S0 and 

initial set of goal clauses G0, the computational task is to generate, for every set exti 

of external events, where i  1, a set actsi+1 of actions, such that R  G0   Dpre is 

true in the Herbrand interpretation: 

 

    sem(L  S*  ev*) , where for  i  1: 

 

Si = (Si-1  – {p | terminated(p, ti-1, ti)  sem(Dpost  Lint  Ltimeless  Si-1*  evi*)})  

           {p | initiated(p, ti-1, ti)  sem(Dpost  Lint  Ltimeless  Si-1*  evi*)}. 

 

In this definition, the clauses in Dpost can be viewed as querying the augmented 

current state Lint  Ltimeless  Si-1*  evi* to determine the fluents that have been 

initiated and the fluents that have been terminated by the set evi of events that take 

place in the transition from Si-1 to Si. 

 The definition appeals to the notion of truth in a Herbrand interpretation. This 

notion requires, in turn, the concept of the Herbrand universe: 

 

 Definition 4.5 (Herbrand universe and Herbrand base). Given the vocabulary of a 

sorted language, the Herbrand universe is the set of all well-sorted ground terms 

that can be constructed from the vocabulary. The Herbrand base is the set of all 

well-sorted ground atoms that can be constructed from the vocabulary.  

 

 Definition 4.6 (Herbrand interpretation and Herbrand model). A Herbrand  

interpretation  is a subset of the Herbrand base. A Herbrand model M of a set S of 

sentences is a Herbrand interpretation such that every sentence s in S is true in M. 

 

The truth value of a sentence s in a Herbrand interpretation M depends not only 

upon M, but also upon the Herbrand universe U: 

 

 Definition 4.7 (Truth). If s  H is an atomic sentence, then s is true in M if and 

only if s  M, and  s is true in M  if and only if s  H.  

 For any formula s(X) with free variables X, X s(X) is true in M if and only if s(x) 

is true in M for every x  U, and X s(X) is true in M if and only if s(x) is true in M 

for some x  U. 

 

The truth values of all other FOL sentences of the language are defined as usual in 

classical FOL. In particular, the negation  s of a sentence is true in M if and only if 

s is not true in M. Thus negation is classical negation, but also has the flavour of 

negation as failure, because  s is true in M if and only if s fails to be true in M. 

 It is possible to extend the definition of truth to include sentences with 

aggregation operators, which construct such objects as the set of all terms that 

satisfy a given formula, the number of such terms, or their sum. This extension is 

necessary for defining the postconditions of concurrent events whose effects are 

                                                           
5 This includes the stable model semantics [Gelfond and Lifschitz 1988], if we take sem to be the 

intersection of all stable models, and if we allow the mapping to be partial in case there are no models. 
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cumulative (like pushing a block in different directions). We do not explore this 

possibility further in this paper. 

4.3 The simplified case in which L and Dpost are sets of Horn clauses 

The abstract semantics of definition 4.4 specializes naturally to the simplified case 

in which L and Dpost are Horn clause programs. In this case, the semantic mapping 

sem is given by the minimal model. In general, every set of Horn clauses has a 

minimal Herbrand model: 

 

Definition 4.8 (Minimal model). Given a set of Horn clauses P with Herbrand 

base H, the  minimal model min(P) of P is the smallest set M   H such that, for 

every ground instance head  body of a clause in P, head  M if body is true in M.  

 

Notice that with this definition, the minimal model of P is equivalent to the minimal 

model of ground(P), the set of all ground instances of P.  

Since the body of a Horn clause is a conjunction of atomic formulas, the condition 

that body is true in M is equivalent to the condition that atom  M for every atomic 

condition atom in body. As we will see in section 6, the formulation in terms of the 

truth of body in M has the advantage that it also applies to FOL-stratified clauses 

whose bodies contain FOL conditions belonging to strata that are lower than the 

stratum of the head of the clause. 

Here we instantiate the semantics of LPS for the simplified case where L and 

Dpost are Horn clause programs: 

 

 Definition 4.9 (Computational task for Horn clauses). Given an LPS program    

<R, L, D>, in which L and Dpost are sets of Horn clauses, the computational task is 

as given in definition 4.4 with sem = min. 

 

Later in the paper, we instantiate the abstract semantics for more general logic 

programs containing non-atomic FOL conditions. In the meanwhile, we use the 

more abstract semantics sem, to evaluate conditions in the operational semantics. 

5.    THE OPERATIONAL SEMANTICS 

The operational semantics (OS) can be thought of as a potentially non-terminating 

cycle, in which external events and internal actions are merged, the state is 

destructively updated, and the agent thinks and decides what to do next. Thinking 

can be interrupted to observe changes in the environment, and to perform actions. 

 The cycle is relatively abstract, and is compatible with many different 

implementations. In particular, although the OS is defined for programs written 

with an explicit representation of time, it can also be implemented, as in [Kowalski 

and Sadri 2011], directly for programs written in an external syntax in which 

temporal order is indicated by the order in which conditions and events are written.  

The cycle is also only semi-constructive. Extended states can contain a countably 

infinite number of ground atoms, and an FOL query can have a countably infinite 

number of answers. In practice, these infinities can be avoided, for example by 

eliminating function symbols, as in Datalog. None the less, it simplifies the 

treatment if we do not impose any theoretically unnecessary restrictions. 
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We assume that the i-th cycle coincides with the i-th state Si, and that states are 

instantaneous, holding at the time point ti. The set of events evi takes place from 

time ti-1 to time ti, transforming the state Si-1 into the state Si. This is equivalent to 

assuming that the state Si-1 holds fixed between times ti-1 and ti, and that the events 

evi take place instantaneously at time ti. 

As we will see, actions are selected for possible execution at the end of the cycle, 

but are combined with external events at the beginning of the next cycle. In the case 

of conflict between the selected actions and external events, the environment 

determines which sets of concurrent events actually occur.  

5.1 Goal States 

In addition to maintaining the current state Si, the OS maintains a goal state Gi, 

which is a set (or conjunction) of goal trees. Every node in a goal tree is a goal clause 

representing an alternative way of solving the top-level goal clause at the root of the 

tree. This top-level goal clause is either an initial goal clause, or an instance of the 

consequent of a reactive rule introduced when the antecedent of the rule becomes 

true. To solve the computational task, all the goal trees must eventually be reduced 

to true. 

 

Definition 5.1 (Goal state).  A goal state is a set (or conjunction) of goal trees. 

A goal tree for a goal clause C0 is a set (or disjunction) of goal clauses organized as 

nodes in a tree. The root of the tree is the goal clause C0. Every child node Ci  is 

obtained from its parent node Ci-1 by goal-reduction in steps 2.1 and 2.2 of cycle. 

A branch of a goal tree is a sequence of nodes C0, C1, … Cn, n ≥ 0, starting with 

the root node C0, and such that every node Ci is a child of the previous node Ci-1.  

The top-level goal clause C0 of a goal tree is reduced to true if and only if there is a 

branch C0, C1, … Cn of the tree with Cn = true. In this case we also say that the goal 

tree is reduced to true. 

The top-level goal clause C0 of a goal tree is reduced to false if and only if every 

branch C0, C1, … Cn of the tree contains a goal clause Cn = false. In this case we also 

say that the goal tree is reduced to false. 

 

Logically, a goal state is the (possibly infinite) conjunction of its goal trees, and a 

goal tree is the disjunction of the (finitely many) goal clauses that are its nodes. An 

empty goal state is logically equivalent to true, and a goal tree that is reduced to 

false is logically equivalent to false. Operationally, each goal tree is a separate 

thread, independent of other goal trees.  

To simplify the OS, we will assume that composite events in the antecedents of 

reactive rules have been pre-processed, by performing backward reasoning (with 

Levents) in advance, reducing composite events to conjunctions of simple events, FOL 

conditions and temporal constraints. In the general case, this could give rise to an 

infinite set of reactive rules.  

 Although a practical implementation can work only with finite sets, in theory the 

OS can handle such infinite sets. At the expense of complicating the OS, composite 

event definitions could also be executed in the forward direction, as in many of the 

integrity checking methods developed for deductive databases. Alternatively, 

backward reasoning could be used at “run time” to reduce composite event 

predicates to simpler event predicates. For simplicity, we ignore these (and other) 

possibilities in this paper. 
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In addition to maintaining a goal state, the OS maintains a current set of reactive 

rules Ri. A new rule is added to Ri when a conjunct in the antecedent of a rule 

becomes true. The new rule represents an instance of the rest of the original rule 

that needs to be true in the future.  

5.2 The OS Cycle 

Given an LPS program <R, L, D>, the i-th iteration of the OS cycle uses the set 

evi of combined external events exti and actions acti to transform the state Si-1, rules 

Ri-1 and goal state Gi-1 at time ti-1 into Si, Ri and Gi at time ti, generating a possibly 

empty set candidate-actsi+1 of candidate actions to be merged with external events 

and executed at the beginning of the next cycle. Initially i = 1, R0 = R, act1 = {}, and 

G0, if it is not empty, consists of a one-node tree rooted at an initial goal clause C0.   

To be faithful to the model-theoretic semantics, it is not possible to restrict the 

amount of time that can be spent on step 0 of the cycle, which updates the state, and 

on step 1, which processes the antecedents of reactive rules. In a practical system, it 

would be necessary to ensure that these steps can be performed in a timely manner, 

before the next time in the succession of time points. 

 Assuming that this assurance can be given for steps 0 and 1, it is also necessary, 

to restrict the amount of time spent on goal reduction in step for the same reasons, 

2. This can be done in a number of different ways. If the time of the next iteration of 

the cycle is known in advance, then the number of goal-reduction steps can simply 

be restricted so that the time is not exceeded. Alternatively, the number of goal 

reduction steps can be limited by a maximum amount Max, and this amount could 

be decreased every time goal reduction is performed. We have implemented this 

latter approach in our Prolog prototype, and it is the one we assume here. 

 With these assumptions, the i-th iteration of the cycle consists of the following 

steps:  

 

Step 0. Update the current state. The environment arbitrates among the various 

candidate actions submitted by different agents, together with any other externally 

generated events, returning a set evi  =  exti  actsi  that includes both external 

events exti and a subset actsi  of  the submitted candidate actions candidate-actsi, 

such that Dpre is true in sem(Si-1*  Lint  Ltimeless  evi*). 
 State Si-1 is transformed into Si, by deleting any fluents p such that                

terminated(p, ti-1, ti)    sem(Dpost  Lint  Ltimeless  Si-1*  evi*)  and adding any  

fluents p such that initiated(p, ti-1, ti)  sem(Dpost  Lint  Ltimeless  Si-1*  evi*). 

 Let Gi   = Gi-1, Ri   = Ri-1  and candidate-actsi+1   = {}.  

 

Step 1. Process antecedents of rules. For every reactive rule in Ri, construct 

every parsing of the rule into the form: 

 

   early-antecedents  other-antecedents  consequent 

 

where early-antecedents is a conjunction of state conditions and simple events such 

that all the time parameters in early-antecedents can be unified with the current 

time ti, without making any temporal constraints in other-antecedents false, and 

without constraining any of the time parameters in state conditions or events in 

other-antecedents to be equal to or earlier than ti. 

For each such parsing, and each ground instance early-antecedents σ that is true in 

sem(Lint  Ltimeless  Si*  evi*), generate the corresponding “resolvent”: 
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   other-antecedents σ  consequent σ 

 

simplify the temporal constraints in the resolvent, and add the simplified resolvent 

as a new reactive rule to Ri.  

For simplification, it is sufficient to delete any temporal constraints that are true 

in sem(Ltemp  Ltimeless). If after simplification, other-antecedents σ is an empty 

conjunction (equivalent to true), then the simplified resolvent is deleted from Ri and 

added to Gi as a new top-level goal, starting a new goal tree (or thread).  

 

Step 2. Process goal clauses. If the number of steps that can be performed has 

reached Max, or if there are no new steps that can be performed in this iteration of 

the cycle, then this iteration of the cycle terminates. 

 Otherwise, while the number of goal-reduction steps performed so far has not 

reached Max, and there are new steps that can be performed in this iteration of the 

cycle, choose any goal clause C in Gi and perform one of the steps 2.1, 2.2 or 2.3. 

 

Step 2.1. Reduce a composite event. Select a composite event atom in C, unify 

the composite event atom with the head of some clause in Levents and update Gi by 

adding the resolvent to Gi  as a child of C. Note that there are no restrictions on the 

time parameters in this step. This allows the goal-reduction of composite events to 

look-ahead into the future, which is a kind of forward planning. 

 

Step 2.2. Reduce a conjunction of state conditions and simple events. Select 

a parsing of C of the form: 

 

   early-consequents  other-consequents 

 

where early-consequents is a conjunction of state conditions and simple events such 

that all the time parameters in early-consequents can be unified with the current 

time ti, without making any temporal constraints in other-consequents false, and 

without constraining any of the time parameters in state conditions or events in 

other-consequents to be equal to or earlier than ti. 

If there is a ground instance early-consequents σ that is true in                     

sem(Lint  Ltimeless  Si*  evi*), then choose one such instance, generate the 

“resolvent” other-consequents σ, simplify the temporal constraints, and update Gi  by 

adding the simplified resolvent to Gi  as a child of C.  

If after simplification, the resolvent is an empty conjunction (equivalent to true), 

then the entire goal tree containing the goal clause can be deleted, because the top-

level goal clause in the tree is then also true.  

 

Step 2.3. Choose a conjunction of simple actions for attempted execution.  

Select a parsing of C of the form: 

 

   actions  other-consequents 

 

where actions is a conjunction of simple actions happens(a, T1, T2) such that all the 

time parameters T1, T2 can be unified with the times ti and ti+1  respectively, 

without making any temporal constraints in other-consequents false, and without 

constraining any of the time parameters in state conditions or events in other-

consequents to be equal to or earlier than ti. 
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  Add all of the simple actions happens(a, T1, T2)  in actions to candidate-actsi+1. 

Using the successful execution of these actions to resolve these and other action 

subgoals takes place in step 2.2 of the next iteration of the cycle. 

 

Notes:  

 

1. Steps 1 and 2 of the OS are the operational semantics of a single agent, possibly 

interacting with other agents, both by observing changes in the environment and by 

performing actions. In the multi-agent case, step 0 is global to all the agents, and as 

a simplifying assumption the different agent cycles are all synchronized, so that all 

of the agents try to perform their actions at the same time. Step 0 non-

deterministically selects a single possible set of concurrent events and updates the 

current state for all the agents. In this way, the global state serves as a 

coordination medium, in the manner of the Linda programming paradigm [Carriero 

and Gelenter 1989] and the blackboard model [Hayes-Roth 1985].  

 In the special case of a single agent maintaining only an internal state without 

any interaction with the external environment, the internal state serves the same 

function as the global state. In such a case, the agent needs to take responsibility 

itself for ensuring that the collection of selected candidate actions               

candidate-actsi+1 = actsi+1 = evi+1  is possible as specified by Dpre.  
 

2. Step 2.3 allows the possibility that the selected actions may contain variables 

other than time variables. This could be useful in the case of external actions where 

the variables can give feedback about the result of the action. For example, the 

variable X in the action move-forward(X, T) might be instantiated by the 

environment indicating how far the action succeeded.  

 Alternatively, and in the case of internal actions, we can insist that only ground 

simple actions are selected for attempted execution. In the case of external actions, 

feedback from the environment can be given instead by means of the change of state 

resulting from the selected actions and other external events. 

   

3. In steps 1, 2.2 and 2.3, different parsings amount to different ways of sequencing 

state conditions and simple events in the same conjunction. For example, the 

conjunction p(T1)  q(T2)  r(T3)   T1  ≤  T3  T2 ≤  T3 has the four correct parsings: 

 

  p(T1)  q(T2)  r(T3) at the same time 

p(T1)  q(T2)  at the same time and before r(T3) 

p(T1) before q(T2)  r(T3) 

q(T2) before p(T1)  r(T3) 

 

The three parsings in which r(T3) is selected before p(T1) or q(T2)  are incorrect and 

not allowed. Moreover, they are useless, because selecting r(T3) before p(T1) or q(T2)  

makes it impossible to evaluate p(T1) or q(T2)  in the future.  

 

4. If a goal clause becomes false, then there is no point in trying to solve other 

subgoals in the same goal clause. If an entire goal tree is reduced to false, then the 

top-level goal clause in the tree is false, the instance of the reactive rule that 

generated it is false, and the reactive rule itself is also false. In theory, the OS 

should terminate in failure. However, in practice, we may want to allow the OS to 

continue, trying to make all instances of the rules true in the future. Moreover, we 
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also have the option of providing a fail-safe, alternative way of solving any goal that 

is vulnerable to failure. 

 

5. In the various repetitions of step 2 within a given iteration of a cycle, the OS can 

select any goal clause C in Gi. It can jump from one goal tree to another, attempting 

to solve different top-level goal clauses concurrently. Or it can focus on one goal tree 

at a time. Within a given goal tree, it can jump from one branch to another, trying 

alternative ways of solving the same top-level goal clause concurrently. Or it could 

focus on one way of solving a top-level goal clause, extending one branch of the goal 

tree at a time. 

 

6. In different iterations of a cycle, in step 2, the OS can re-select the same goal 

clause C. In step 2.1, however, it may do so only to try to unify the selected 

composite event atom in C with the head of a clause in Levents not tried in previous 

iterations of the cycle. In step 2.2 it can re-try the same parsing early-consequents 

of conditions and simple event atoms, because the relevant part of the augmented 

current state Lint  Ltimeless  Si*  evi* may have changed. For similar reasons, in 

step 2.3 it can re-try the same conjunction of actions, because actions that were not 

possible before may become possible in the new current state. 

6. FOL-STRATIFICATION  

The operational semantics appeals to the abstract semantics sem. In this section, we 

define FOL-stratification and instantiate sem to the FOL-perfect model semantics. 

FOL-stratification is a generalisation of local stratification in which the restriction 

on negative literals is generalised to non-atomic FOL formulas. The construction of 

FOL-perfect models similarly generalises the construction of perfect models.  

 As usual in logic programming, we treat a logic program P with variables as 

standing for the set ground(P) of all its ground instances over the Herbrand 

universe. By a ground instance of a clause head(X)  body(X, Y) we mean a clause 

of the form head(x)  body(x, y), where x and y are sets of ground terms substituted 

for the sets of variables X and Y respectively. The variables in X and Y do not 

include any variables bound by quantifiers in FOL conditions in body(X, Y). 

 

 Definition 6.1 (FOL-stratification). Let P be a ground logic program. Let               

H = 0≤i≤α Hi, be a partitioning and ordering of the Herbrand base H of P. For          

A  H, let stratum(A) = i if and only if A  Hi. Then P is FOL-stratified with respect 

to Hi, 0≤i≤α, if and only if for every clause head  body in P and for every condition 

C in body: 

 

 if C is an atomic condition, then stratum(C) ≤ stratum(head) 

if C is a non-atomic FOL condition, then stratum(A) < stratum(head)  

for every atomic subformula A of C. 

 

The definition of FOL-perfect model iteratively uses the perfect model of lower 

stratum predicates to evaluate FOL conditions in the bodies of clauses, reducing the 

clauses to Horn clauses, and generating the perfect model of the next higher 

stratum as the minimal model of the reduced clauses: 
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Definition 6.2 (FOL-perfect model). Let P be an FOL-stratified ground logic 

program with respect to Hi, 0≤i≤α. Let Pi be the set of all clauses head  body in P 

such that stratum(head) =  i. Then P0 is a set of Horn clauses.  

The FOL-perfect model of P is defined by: 

 

1. perfect(P0) =  min(P0).  

2. perfect(Pi+1) =  min(Pi+1  perfect(Pi)).   

3. If β is a limit ordinal, then perfect(Pβ) = 0≤ i<β perfect(Pi).  

4. perfect(P) = perfect(Pα). 

 

Case 2 of the definition appeals to the notion of the minimal model of a program Pi+1 

possibly containing FOL conditions defined by perfect(Pi). The definition of the 

minimal model of a set of Horn clauses generalises naturally to this case: 

 

Definition 6.3 (Minimal model of program with FOL conditions). Let P = I  E be 

a ground logic program with Herbrand base H, where E is a set of ground atoms 

defining all the predicates in HE    H that occur in FOL conditions in the clauses I. 

Then the minimal model min(P) of P is the smallest set M   H such that, for 

every clause head  body in P, head  M if body is true in M, where an FOL 

condition all of whose predicates belong to HE is true in M if and only if the 

condition is true in E. 

 

Notice the definition exploits the dual interpretation of the Herbrand interpretation 

E both syntactically as a set of sentences in P = I  E, and semantically as 

determining the truth of FOL conditions whose predicates belong to HE. 

Notice also that the generation of min(P) can be regarded as a two-stage process:  

First the FOL conditions whose predicates all belong to HE are evaluated in E, 

resulting in a set of Horn clauses reduct(P, E), then min(P) is generated as the 

minimal model of reduct(P, E). The reduct reduct(P, E) generalises the treatment of 

negative literals in the Gelfond and Lifschitz [1988] reduct to FOL-conditions: 

 

Definition 6.4 (Reduct).  Let P = I  E be a ground logic program with Herbrand 

base H, where E is a set of ground atoms defining all the predicates in HE    H that 

occur in FOL conditions in the clauses in I. 

 reduct(P, E) is the set of Horn clauses generated from P by deleting all FOL 

conditions in the bodies of clauses in I that are true in E and deleting all clauses in I 

that have an FOL condition that is false in E.  

 

Note that E is contained in reduct(P, E). Thus case 2 of the definition of FOL-perfect 

model could be rewritten alternatively as: 

 

2. perfect(Pi+1) =  min(reduct(Pi+1, perfect(Pi)) 

 

where min is the usual minimal model of a set of Horn clauses. We will see later 

that this alternative formulation of the definition has the advantage that it extends 

naturally to the case in which the program P is not statically FOL-stratified, but 

becomes FOL-stratified dynamically during the construction of the perfect model. 

 The definition of FOL-perfect model reduces to the definition of perfect model if 

all non-atomic FOL conditions are simply negative literals. As in the case of perfect 
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models of locally stratified programs, FOL-perfect models of FOL-stratified 

programs do not depend upon the stratification, always exist and are unique. 

With the definitions of FOL-stratification and  FOL-perfect model now in place, 

we can instantiate the abstract specification of the computational task, given in 

definition 4.4, to the case in which all the different components of an LPS 

framework <R, L, D> are individually FOL-stratified. 

Recall that definition 4.4 requires a specification of the semantics of the following 

combinations of the components of the framework: 

  

   sem(L  S*  ev* )  and 

   sem(Dpost  Lint  Ltimeless  Si-1*  evi*) , for all i > 0 

 

Thus we need to show that each of the combined programs 

 

    L  S*  ev*  and   

    Dpost  Lint  Ltimeless  Si-1*  evi*, for all i > 0,  

 

is also FOL-stratified. 

 In the case of the first program, it suffices to put the Herbrand base of S*  ev* in 

the lowest stratum followed by the stratifications of the head predicates of Ltimeless, 

Lint, Ltemp, and Levents, in that order.6 

 Similarly in the case of the programs Dpost  Lint  Ltimeless  Si-1*  evi*, it suffices 

to put the Herbrand base of Si-1*  evi* in the lowest stratum followed by the 

stratifications of the head predicates of Ltimeless, Lint and Dpost, in that order.  

 With these stratifications, the computational task is well-defined: 

 

 Definition 6.5 (Computational task for FOL-stratified programs). Given an LPS 

program <R, L, D>, in which L and Dpost are FOL-stratified, the computational task 

is as given in definition 4.4 with sem = perfect. 

7.      SOUNDNESS AND COMPLETENESS 

In this section we discuss the soundness and completeness of the operational 

semantics OS of LPS for the case sem = perfect.  

 

 THEOREM 7.1 (SOUNDNESS) Given an LPS program < R, L, D>, an initial 

state S0, and initial goal state G0, suppose for every set exti of external events, where 

i  1, the OS generates a set actsi+1 of actions.  

 Let S* and  ev* be the resulting sequences of states and events. Then R  G0   is 

true in perfect(L  S*  ev*), if  for every top-level goal clause C added in a goal state 

Gi, i ≥ 0, there exists a goal state Gj  such that i ≤ j and C is reduced to true in Gj. 

 

Note that, in the special case where the sequence ev* is finite, the theorem states 

that if the goal state eventually becomes true, then R  G0 is true. Note also that the 

theorem refers to R  G0, rather than to R   G0    Dpre, because the requirement 

that Dpre  be true in  perfect(L  S*  ev*) is covered by step 0 of the OS.  

 

                                                           
6 Note that other stratifications produce the same result: for example, the order Ltimeless, Ltemp, Lint, and Levents. 
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 SKETCH OF PROOF.  The statement of the theorem mimics the definition of 

truth for reactive rules and goal clauses. In particular, a sentence in the form of a 

reactive rule X [antecedent  Y consequent] is true in a model, if whenever an 

instance of the antecedent becomes true the corresponding instance of the 

consequent becomes true.  

 But whenever an instance of the antecedent becomes true, the corresponding 

instance of the consequent is added as a top-level goal clause C  to the current goal 

state Gi. The fact that the corresponding instance of the consequent becomes true is 

equivalent to there existing a goal state Gj  where i ≤ j and C is reduced to true in Gj.  

 

The only-if half of the theorem also holds under certain conditions on the non-

deterministic choices made in step 2 of the OS. In particular, the OS should perform 

every goal-reduction that is possible in step 2.2, to ensure that any sub-goals that 

are true in the model generated so far are recognized as being true by reducing 

them to true. Similarly, the bound MAX on the amount of time available for 

reducing composite events in step 2.1 should be large enough, to ensure that any 

subgoals that are true in the model generated so far are recognized as true. 

 As pointed out in [Kowalski and Sadri 2012b], the operational semantics is 

incomplete. In particular, it cannot (1) preventively make a reactive rule true by 

making its antecedent false, or (2) proactively make a reactive rule true by making 

its consequent true before its antecedent becomes true. 

Examples of these two kinds of incompleteness include: 

 

1. attacks(X, you, T1)  ¬ prepared-for-attack(you, T1)  

 surrender(you, T2)  T1 < T2   T1 +  

 

The OS cannot make the rule true by performing actions to make  

prepared-for-attack(you, T) true and so ¬ prepared-for-attack(you, T) false. 

 

2. enter-bus(T1)  have-ticket(T2)  T1 < T2  T1 +  

 

The OS cannot make the rule true by performing actions to make have-ticket(T2) 

true before enter-bus(T1). 

 

We have investigated the completeness of LPS with respect to the generation of 

more restricted supported models. Informally speaking and ignoring composite 

events, a Herbrand model M = perfect(L  S*  ev* ) of a set of reactive rules R is 

supported if for every action in every acti in M there is an instance of a reactive rule 

in R of the form: 

 

  antecedent  early-consequents  action   other-consequents 

 

such that antecedent  early-consequents is true in M. It is possible to show that, 

under certain conditions, the OS can generate all such supported models. However, 

we do not discuss this issue further in this paper. 
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8.    SOLVING THE COMPUTATIONAL ASPECT OF THE 

FRAME PROBLEM 

In this section, we show that the models obtained by destructive updates in LPS are 

identical to the models obtained by using the event theory ET: 

 

holds(P, T2)  initiated(P, T1, T2)  

holds(P, T2)  holds(P, T1)   succ(T1, T2)  ¬ terminated(P, T1, T2)  

 

We also define a generalization of FOL-stratification, which is needed to define the 

natural, intended model of Q = ET    Dpost  L  S0*  ev*. We will then show that 

the intended model of Q is identical to the FOL-perfect model of L  S*  ev*. 

8.1 Weak stratification and weakly perfect models  

The intended model of Q is constructed by partitioning the Herbrand base H of Q 

into strata associated with the succession of time points t0,..., ti, ti+1,... determined by 

succ(ti, ti+1)  perfect(Ltemp  Ltimeless): 

 

H0 =   {holds(p, t0) |  p is an extensional fluent}    

   {a | a is an atom with a time-independent predicate}  

   {a | a is an atom with a temporal predicate, including succ}  

   {happens(e, t, u) | e is a simple event, and t and u are time points} 

For i  0,  H3i+1 = {holds(p, ti) | p is an intensional fluent} 

H3i+2 = {initiated(p, t, ti+1) | p is an extensional fluent, and t is a time point}  

{terminated(p, t, ti+1) | p is an extensional fluent, and t is a time point}  

H3i+3 = {holds(p, ti+1) | p is an extensional fluent} 

H+1 = {happens(e, t, u) | e is a composite event, and t and u are time points}  
 

The sets H0 and H3i+1 are themselves stratified: H0 is partitioned into strata 

corresponding to the stratification of Ltimeless  Ltemp, and H3i+1 is partitioned into 

strata corresponding to the stratification of Lint. 

Applied to the predicates in the heads of clauses in Q, this stratification of H 

determines an associated stratification of ground(Q): 

 

Q0 =   S0*   ground(Ltimeless)  ground(Ltemp)  ev* 

For i  0,   Q 3i+1 = {holds(p, ti)  body  ground(Lint)} 

Q3i+2 = {initiated(p, t, ti+1)  ← body  ground(Dpost)}  

   {terminated(p, t, ti+1)  ← body  ground(Dpost)} 

Q3i+3 = {holds(p, ti+1)  body  ground(ET)}  

Q+1 = ground(Levents)  

 

Unfortunately, Q is not FOL-stratified, because Q3i+3 contains unstratified instances 

of the frame axiom: 

 

 holds(p, ti+1)  holds(p, tj)  succ(tj, ti+1)    terminated(p, tj, ti+1)  

 

where  j > i+1 and holds(p, tj) is at a higher stratum than holds(p, ti+1). The problem 

and its solution are similar to those for the program [Apt and Bol 1994]:  
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Succ:    successor(X, s(X)) 

Even:    even(0) 

      even(Y)  successor(X, Y)   even(X)  

 

The program has a natural stratification with all ground instances of Succ in the 

lowest stratum, and with even(s(n)) in the stratum one higher than the stratum of 

even(n). However, the program is not locally stratified, because there are ground 

instances of the second clause in Even, for example even(0)  successor(s(0), 0)      

 even(s(0)), where the negative condition is at a higher stratum that the head. 

 The problem is that the definition of local-stratification is too static, and does not 

take into account the dynamic stratification obtained by the use of the reduct in the 

construction of the perfect model. If we ignore the fact that the original program is 

not locally stratified, and attempt to generate its perfect model, we see that the 

second clause in Even is replaced in effect by the locally stratified clauses: 

 

    even(s(t))   even(t)  for all t such that successor(t, s(t))  min(Succ). 

 

This dynamic variant of local stratification is called weak stratification, and it can 

also be applied more generally to programs with FOL conditions. The definition is 

virtually identical to the definition of perfect model, with perfect replaced by weakly-

perfect, and without requiring the program to be statically stratified in advance: 

 

 Definition 8.1 (Weak FOL-stratification and weakly FOL-perfect model). Let P be 

a ground logic program. Let H = 0≤i≤α Hi, be a partitioning and ordering of the 

Herbrand base H of P. Let Pi be the set of all clauses head  body in P such that 

stratum(head) = i.  

  

1. If P0 is a set of Horn clauses all of whose conditions are in H0, then: 

 

   weakly-perfect(P0) = min(P0).       

 

2. If  Pi is weakly FOL-stratified, with intended model weakly-perfect(Pi), and if 

reduct(Pi+1, weakly-perfect(Pi)) is a set of Horn clauses all of whose conditions are 

in Hi+1, then Pi+1 is weakly FOL stratified and:  

 

   weakly-perfect(Pi+1) = min(reduct(Pi+1, weakly-perfect(Pi))).  

 

3. If β is a limit ordinal, and for all 0≤ i< β,  Pi is weakly FOL-stratified with 

intended model weakly-perfect(Pi), then Pβ is weakly FOL-stratified and:  

 

   weakly-perfect(Pβ) = 0≤ i<β weakly-perfect(Pi). 

 

4.  weakly-perfect(P)  =  weakly-perfect(Pα) 

  

It is possible to show that if a program is weakly FOL-stratified with respect to one 

stratification, then it is weakly FOL-stratified with respect to every other 

stratification, and consequently the weakly FOL-perfect model is unique.  

 In the case of the program Q, the use of the reduct in the construction of the 

weakly-perfect model eliminates the unstratified instances of Q3i+3 and replaces 

them by the stratified instances: 
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      holds(P, ti+1)  holds(P, ti)    terminated(P, ti, ti+1)  

      for all ti, ti+1 such that succ(ti, ti+1)  perfect(Ltemp  Ltimeless). 

8.2 The Frame Theorem  

The following theorem links the two characterizations of the semantics of LPS.  

 

 THEOREM 8.2 (FRAME THEOREM).   

        

      perfect(L  S*  ev*) =  weakly-perfect(ET  Dpost  L  S0*  ev*) 

             –   {head | head  body  ground(Dpost)}. 

Equivalently,  perfect(Dpost  L  S*  ev*)  

     =  weakly-perfect(ET  Dpost  L  S0*  ev* 

 

 SKETCH OF PROOF.  It suffices to show that  

  

      perfect(Dpost  Lint  Ltimeless  Ltemp  S*  ev*)  

     =  weakly-perfect(ET   Dpost   Lint  Ltimeless  Ltemp  S0*  ev*). 

 

This is because, in both models, Levents is used only in the last strata to superimpose 

composite events on the underlying sequence of states and simple events. 

 Note that ground(ET)   = Q3  Q6  …  Q3i+3 ..., where 

 

Q3i+3 = {holds(p, ti+1)  body  ground(ET)}  

 

It suffices to show that for all i > 0, 

 

     perfect(Dpost  Lint  Ltimeless  Ltemp  S0*  S1* ...  Si+1*  ev*)  

    =  weakly-perfect(Dpost  Lint  Ltimeless  Ltemp  S0*  Q3 … Q3i+3   ev*). 

 

This can be proved by induction on i. 

9.      COMPARISON WITH OTHER WORK 

LPS evolved from our attempts to reconcile and combine conflicting approaches to 

computing in such different areas as logic programming, production systems, active 

and deductive databases, agent programming languages, and the representation of 

causal theories in AI. 

 

9.1 Deductive databases 

 

Our attention was first drawn to the distinction between reactive rules and logic 

programs by the distinction made by [Nicolas and Gallaire 1978] between deduction 

rules and integrity constraints in deductive databases, both of which have a logical 

semantics. However, the exact nature of the relationship between their semantics 

was the subject of considerable debate in the early 1980s. 

The two main views, to begin with, were the consistency view and the theorem-

hood view, both of which were defined relative to the completion of the database 

[Clark 1978]. In the consistency view, an integrity constraint is satisfied if it is 
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consistent with the completion of the database. In the theorem-hood view, it is 

satisfied if it is a theorem, logically entailed by the completion. 

[Reiter 1988] also proposed an epistemic view, according to which integrity 

constraints are statements about what the database knows. However, [Reiter 1988] 

also showed that in many cases all three views are equivalent. For relational 

databases, in particular, the three views are also equivalent to the standard view 

that a database satisfies an integrity constraint if it is true in the database regarded 

as a Herband model. The semantics of LPS is an extension of this idea in two ways: 

First, it extends the idea of a database defined by a set of ground atomic sentences 

to the idea of the database defined by an FOL-stratified logic program. Second, it 

extends the notion that an integrity constraint is true in a model representing a 

database state to the idea that the integrity constraint is true in a model 

representing the entire collection of states and events.  

The use of logic programs in LPS with FOL conditions was largely inspired by 

transaction logic [Bonner and Kifer 1993], which uses such programs to define 

database transactions. Although transaction logic focuses primarily on performing 

composite actions, reactive rules can also be programmed using transactions. Like 

LPS, transaction logic also employs destructive updates. But it employs a possible 

world semantics, in which the semantics of transactions is defined in terms of paths 

between possible worlds.  

 

9.2 Abductive logic programming 

 

The distinction between logic programs and integrity constraints also underpins 

abductive logic programming (ALP) [Kakas et al. 1998; Denecker and Kakas 2002]. 

In ALP, a program consists of a triple <L, IC, A>, where L is a logic program, IC is 

a set of integrity constraints, and A is a set of “abducible” predicates, not defined by 

L. A goal G is an observation to explain or a state to achieve. The goal is solved by 

generating a set  of ground atoms in the vocabulary of the abducible predicates 

such that L   entails G, and L   satisfies the integrity constraints IC. Similarly 

to the case of deductive databases, different notions of entailment and integrity 

constraint satisfaction have been proposed. 

 LPS is a variant of ALP, in which the abducible predicates are restricted to 

simple actions, and observations are events and fluents that can be queried in the 

global state and do not require explanation. Moreover, the semantics is simplified so 

that entailment and integrity satisfaction are understood in the same way, as 

meaning that G  IC is true in the FOL-perfect model of L  . The operational 

semantics of LPS is a variant of the IFF proof procedure [Fung and Kowalski 1997], 

originally developed for Kunen’s three valued completion semantics [Kunen 1987]. 

 

9.3 Logic programming semantics 

 

The inclusion of FOL conditions in LPS is an important feature, motivated by their 

use in transaction logic to query databases states during the course of performing 

database updates.  FOL-stratification and weak-FOL stratification with their 

associated models provide a natural setting for evaluating such FOL conditions. 

Moreover, weak FOL-stratification also provides a natural semantics for event 

theories such as ET. But stratification goes against current trends in logic 

programming, where the dominant approaches are the well-founded semantics [Van 

Gelder et al. 1991] and stable model semantics [Gelfond and Lifschitz 1988]. 



37 

 

 It may, of course, be possible to redo the semantics of FOL conditions in other 

approaches. In particular, there may be a natural way to represent alternative sets 

of possible concurrent events and the resulting states as alternative stable models. 

It may also be possible to modify the evaluation of FOL conditions to use a three-

valued semantics. 

On the other hand, the extension of stratification and perfect models to the case 

of FOL conditions may have other uses. For example, the application of Datalog to 

declarative networking [Loo et al 2009; Hellerstein 2010; Loo et al 2012] makes 

heavy use of stratification, and the extensions of stratification in this paper might 

also be useful in that domain. 

 

9.3 Agent systems 

 

LPS is a direct descendant of our work on ALP agents [Kowalski and Sadri 1999, 

Kowalski 2011], which embed ALP in the thinking component of a BDI-like agent 

[Rao and Georgeff 1995] cycle. In ALP agents, the logic program L represents the 

agent’s beliefs, and the goals and integrity constraints G  IC represents the 

agent’s desires. The logic program L includes a deductive database that represents 

the agent’s view of its environment. The database is updated by means of an event 

theory, which uses frame axioms. The ALP agent approach was developed further 

in the KGP agent model [Kakas et al. 2004; Mancarella et al. 2009]. In contrast, 

LPS and most practical agent systems employ a destructively updated database 

that represents the current state. 

 A number of other authors have also developed agent languages and systems 

within a logic programming context. For example in both DALI [Costantini and 

Tocchino 2004; Costantini and Tocchino 2006] and EVOLP [Brogi et al. 2002], 

events transform an initial agent logic program into a sequence of logic programs. 

The semantics of this evolutionary sequence is given by the associated sequence of 

models of the sequence of programs.  In LPS, this sequence is represented by a 

single model by using time stamps. 

 In EVOLP, the sequence of logic programs is non-deterministic and allows for a 

directed graph of possible state evolutions, because stratification is not imposed. In 

LPS, non-determinism arises from the possibility of choosing different actions to 

generate state transitions, while still imposing stratification. Moreover, EVOLP 

allows rules to be updated, and not only fluents as in LPS. 

 FLUX [Thielscher 2005] is an agent language with several features similar to 

LPS, including the use of destructive assignment to update states. In FLUX, these 

states are not represented by atomic sentences as in LPS, but are reified as terms 

in a list-like structure.  

 [Thielscher 2010] provides a declarative semantics for AgentSpeak by defining 

its cycle and procedures by means of a meta-interpreter represented as a logic 

program. Like LPS, the resulting agent language incorporates a formal transition 

theory. However, unlike LPS, the language does not distinguish between different 

kinds of AgentSpeak procedures, according to their different functionalities. LPS, in 

contrast, distinguishes between reactive rules, and logic programs, representing 

different kinds of procedures in different ways. Somewhat closer to LPS is the 

agent architecture of [Hayashi et al. 2005; Hayashi et al 2009], which separates the 

representation of reactive rules and planning clauses. Planning is done by means of 

Hierarchical Task Networks, which are like logic programs that reduce composite 

events to simpler events in LPS.  
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 [Eiter et al. 1999]] define an extension of logic programming in which the 

clauses represent the conditions under which actions are permitted, forbidden, 

obliged or waived. All reasoning takes place and is completed within a single 

iteration of the agent cycle. In the LPS cycle, reasoning can be interrupted both to 

assimilate events and to generate actions.  

 In contrast with approaches that map agent programs into logic programs, 

MetaTEM [Fischer 1994] maps agent programs into temporal modal logic sentences 

of the form “past or present conditions imply present or future conclusions”. As in 

LPS, computation attempts to generate a model in which such agent programs are 

true. In contrast with MetaTEM, which employs a possible world semantics and 

frame axioms for updating states, LPS uses a language with an explicit 

representation of time, an extension of the perfect model semantics, and an 

operational semantics with destructive updates. 
 

9.4 Active databases 

 

As pointed out by [Bailey et al. 1995], although they differ in their intended 

applications and research communities, agent systems and active databases employ 

similar approaches to programming reactive systems. For example, AgentSpeak 

[Rao 1996] employs agent programs that are plans consisting of a triggering event, 

a context, which specifies the conditions that should hold when the plan is 

triggered, and a body, which specifies the goals the agent should achieve or test, 

and the actions the agent should execute. Active databases employ similar event-

condition-action (ECA) rules to react to events, test conditions and perform actions. 

Both agent system plans and ECA rules maintain a destructively updated database 

state, but lack a declarative semantics. 

 A number of researchers, working mainly in the deductive database area, have 

addressed the problem of developing a declarative, logic-based semantics for active 

databases. In the majority of these approaches ECA rules are mapped into logic 

programs to provide them with a logic programming semantics. 

[Zaniolo 1993], for example, uses a situation calculus-like representation with 

frame axioms, and reduces ECA rules to logic programs. Statelog [Lausen et al. 

1998] also uses a situation-calculus-like representation for the succession of 

database states. Like Zaniolo, Statelog represents ECA rules as logic programs, and 

gives them a semantics based on logic programming. 

[Fernandes 1997] also views ECA rules in terms of change of state, but use the 

event calculus as the basis for an ECA language coupled with a deductive database. 

The event calculus is used to evaluate the condition part of the ECA rules and to 

provide a specification for the effects of executing the action part. The ECA language 

also allows the recognition of complex events from an event history. 

ERA (Evolving Reactive Algebraic Programs) [Alferes et al. 2006] extends the 

dynamic logic programming system EVOLP [Brogi et al. 2002] by adding complex 

events and actions as well as external actions. ERA combines ECA and logic 

programming rules, and the firing of the ECA rules can generate actions that add or 

delete ECA or logic programming rules, as well as external actions. In the 

operational semantics the ECA and logic programming rules maintain their distinct 

characteristics, but in the declarative semantics the ECA rules are translated into 

logic programs. The declarative semantics is based on a variant of stable models 

developed for EVOLP. 

[Caroprese et al.2006] also transform active integrity constraints into logic 

programs. They characterise the set of “founded” repairs for the database as the 
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stable model of the database augmented by the logic programming representation of 

the active integrity constraints. [Fraternali and Tanca 1995] also consider active 

databases but provide a logic-based core syntax for representing low-level, 

procedural features of active database rules. They provide procedural semantics for 

core rules and show how this can capture the procedural semantics of known active 

database systems.  

 

9.5 Production systems 

 

Arguably, production systems [Newell 1973], in which programs are expressed as 

condition-action rules, are the simplest example of a reactive system, and the 

earliest ancestor both of agent systems and active databases. It was the attempt to 

understand the difference and relationship between production rules and logic 

programming rules that eventually led to our development of LPS. Several other 

authors have made related attempts, with the aim of providing production rules 

with a declarative semantics. In the majority of these approaches production rules 

are mapped into logic programs.  

[Raschid 1994] focuses on the use of production rules as reactive rules and as 

forward-reasoning logic rules. She first maps rules that add facts into logic 

programs, and rules that delete facts into integrity constraints. She then transforms 

the resulting combination of logic programs and integrity constraints into normal 

logic programs, and uses the fixed point semantics of logic programming to chain 

forward and simulate the production system cycle. [Baral and Lobo 1995] translate 

production rules into the situation calculus represented as a logic program with the 

stable model semantics. Their use of the situation calculus is similar to our 

characterization of the computational task using the event theory ET, and thus uses 

a frame axiom. [Dung and Mancarella 2002], on the other hand, use an 

argumentation theoretic framework to provide semantics for production rules 

extended with negation as failure. 

Recently, there has been a revival of work on implementing production systems 

in logic programming terms. For example, [Damasio et al. 2010] use incremental 

Answer Set Programming (ASP) to realize different conflict resolution strategies for 

the RIF-PRD production system dialect. [Eiter et al 2012] simulate production 

systems in ACTHEX, an ASP framework with an interface to an external 

environment. The simulation does not use an explicit representation of state, but 

achieves state changes by updating and accessing the environment via action atoms 

and external atoms. [Rezk and Kifer 2012] combine production rules and ontologies, 

using transaction logic.  

In comparison with other approaches that map reactive rules into logic programs, 

our approach has been to develop a semantics that respects the distinct natures of 

logic programs and reactive rules. In LPS, reactive rules and logic programs are 

both expressed in logical form, but logic programs represent beliefs that determine 

model theoretic structures, and reactive rules represent goals that are meant to be 

true in those models.  

 

9.6 Causal theories in AI 

 

ALP agents [Kowalski and Sadri 1999; Kowalski 2011] and the KGP agent model 

[Kakas et al. 2004] employ the event calculus to represent and reason about the 

relationship between fluents, actions and other events. Unlike the situation 

calculus, which reifies global states or situations, the event calculus reifies time 
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points and events. However, in both the situation calculus and event calculus, 

axioms are used to derive atomic sentences representing states of the world. 

Destructive updates are not possible, because it is not possible to change the axioms 

in the middle of a proof. 

However, because ALP agents are embedded in an agent cycle, they can also 

directly observe the current state of the world, and thereby avoid the need to reason 

about it. In other words, the world can serve as its own representation, as advocated 

by [Brooks 1991]. This ability of an agent to observe the world instead of reasoning 

about its representation highlights the fact that the world is a semantic structure 

that gives meaning to an agent’s thoughts. Because the world is a semantic 

structure, it is not constrained by the restrictions of axioms that are not allowed to 

change during the course of a proof.  

Adopting this view of the world as a semantic structure is compatible with a 

model-theoretic semantics of ALP, in which the logic program L and set of 

assumptions  determines a model of L   that makes the goal and integrity 

constraints G  IC all true. Moreover, it justifies the destructive updates and model-

theoretic semantics of LPS. To the best of our knowledge, LPS is the only framework 

employing a causal theory that combines destructive updates with a logic-based 

semantics. 

We do not claim that the use of destructive updates eliminates all need to reason 

with frame axioms. On the contrary, frame axioms are needed to prove certain 

properties of LPS programs. This is an area of work that we are currently 

investigating. 

 

9.7 Parallelism and concurrency 

 

LPS combines an AI approach to the representation of concurrent actions with a 

Linda-like use of a shared state as a coordination medium. The AI component comes 

from the use of the domain theory D, to reason about the combined effects of 

concurrent actions, in the spirit of [Reiter 1996]’s treatment of concurrent actions in 

the situation calculus and [Miller and Shanahan 2002]’s treatment in the event 

calculus. 

 Recently, [Khandelwal and Fox 2012] have extended Miller and Shanahan’s 

approach, to define the effects of multiple actions by using aggregate formulas in 

first-order logic. Our approach can be regarded as an approximation to theirs, and 

would benefit from a similar extension using aggregate formulas. 

 Unlike some other approaches that use message passing to handle concurrency, 

LPS uses a Linda-like shared state, which is similar also to the blackboard 

architecture used in AI. Our assumption that the environment non-deterministically 

decides which sets of possible concurrent events actually occur is similar to the use 

of a “supervisor” in [Dovier et al. 2012], to arbitrate between the conflicting actions 

of different agents in the pursuit of different goals. In addition, [Dovier et al. 2012] 

also provides communication primitives, to allow agents to resolve conflicts through 

negotiation. The semantics is defined in terms of state transitions, but does not 

provide an explicit treatment of reactivity. 

Although the approach to concurrency behaves naturally with such challenging 

problems in concurrent programming as the dining philosophers’ problem, we need 

to investigate more deeply the relationship with the treatment of parallelism and 

concurrency in databases management systems and conventional programming 

languages more generally. In this respect, it is encouraging to note the recent 

developments [Hellerstein 2010] in the use of Datalog and the explicit 
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representation of time for programming distributed and parallel systems. Although 

frame axioms are represented explicitly in [Hellerstein 2010], they are not used in 

the implementation, using instead “traditional storage technology rather than re-

deriving tuples each timestep”. Our frame theorem can be regarded as a justification 

for the use of such technology. 

 

9.8 Reactive systems 

 

An LPS framework <R, L, D> is essentially a reactive system in which logic 

programs L and causal theories D play a supporting role to reactive rules R. [Harel  

1986] contrasts reactive systems with “transformational systems”, which transform 

inputs into outputs in a mathematically well-behaved manner. In contrast with 

transformational systems, reactive systems are “event-driven, continuously having 

to react to external and internal stimuli”. He further characterises them as being an 

extension of state transition systems, having the general form “when event  occurs 

in state A, if condition C is true at the time, the system transfers to state B”. [Harel 

2009] notes that StateCharts, a graphical language for reactive systems, is “the 

heart of the UML - what many people refer to as its driving behavioral kernel”. 

As [Reisig 2012] puts it, an initialized, deterministic transition system is “a triple 

C = (Q, I, F) where Q is a set (its elements are denoted as states), I ⊆  Q (the initial 

states), and F : Q → Q (the next-state function)”. Transition systems can be 

extended to reactive systems in which the transition from one state to the next is 

“not conducted by the program, but by the outside world”.  

But even in their simpler “initialized, deterministic” form, transition systems 

have been proposed as a general model of Computing. Reisig points out that in 

[Knuth 1973], the first volume of The Art of Computer Programming, Donald Knuth 

suggests their use as a general semantics for algorithms. 

LPS can be viewed as an attempt to reconcile Harel’s two kinds of computational 

formalism, with reactive rules providing the main reactive component of the system, 

and logic programs providing structure for the “transformational part”. In addition, 

LPS also attempts to incorporate deductive database functionality and features of 

causal theories in AI. 

 

10  Future work 

 
LPS has its origins in AI knowledge representation and reasoning languages, but for 

the sake of efficiency and to focus on the features required for database and 

programming applications, the AI features have been deliberately restricted and 

simplified. For example, the abductive explanation of observations, which was one of 

the main motivations of ALP, has been deliberately left out. Similarly, the ability to 

perform preventative maintenance, which is a feature of the IFF proof procedure for 

ALP, has also been left out.  

There are two complementary, directions for future work. One direction is to 

reintroduce into LPS some of the more powerful, but also more expensive features of 

ALP agents – for example the planning clauses in some of the earlier versions of 

LPS.  Such features might also include more expressive integrity constraints, 

bearing in mind that reactive rules are just a species of integrity constraint in ALP.  

The other direction is to further restrict the framework to make it more efficient 

or to specialize it for particular application domains – for example, by restricting the 

use of function symbols, as in Datalog. This direction also includes further 
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development of the operational semantics – for example to specify efficient 

strategies for executing composite events in the antecedents and consequents of 

rules. 

There is also a third direction, which combines the other two, by adding more 

powerful features for particular classes of applications. This includes extending the 

syntax of FOL conditions to include the use of aggregation operators and more 

complex kinds of composite events.  

The extension to include aggregation operators should not be too difficult, because 

it requires only extending the definition of the truth of a sentence in a Herbrand 

interpretation. Moreover, it can be implemented in a similar manner to the 

implementation of aggregate operators in relational database systems, Prolog and 

ASP. 

The extension to include more complex composite events does not require any 

extension of the semantics, but requires only extending the current state to include 

a window of previous events. This window can then be queried along with other 

facts in the current state using arbitrary FOL conditions, augmented perhaps with 

aggregation operators. 

We have implemented a prototype of LPS in LPA Prolog, which includes some of 

the details necessary for a more complete language. For example, the 

implementation uses a Prolog-like depth-first search to choose goal clauses for goal 

reduction. Some obvious additional improvements include the use of a constraint 

solver for handling temporal constraints and the use of a UML-like graphical 

external syntax. 
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