
1

Towards a Logic-Based Unifying Framework

for Computing

ROBERT KOWALSKI, Imperial College London

FARIBA SADRI, Imperial College London

Computer Science today lacks a unified view of Computing. Instead, the main subareas, most notably artificial

intelligence, database systems and programming languages, offer different and often competing approaches to knowledge
representation, problem-solving and computation.

 In this paper we propose a unifying logic-based, framework for Computing, inspired by artificial intelligence, but

scaled down for practical database and programming applications. Computation in the framework is viewed as the task of
generating a sequence of state transitions, with the purpose of making an agent’s goals all true. States are represented by

sets of atomic sentences (or facts), representing the values of program variables, tuples in a coordination language, facts

in relational databases, or Herbrand models. In the model-theoretic semantics, the entire sequence of states and events are
combined into a single model-theoretic structure, by associating time stamps with facts. But in the operational semantics,

facts are updated destructively, without time stamps. We show that the model generated by destructive updates is

identical to the model generated by reasoning with facts containing time stamps. We also extend the model with

intentional predicates and composite event predicates defined by logic programs containing conditions in first-order logic

(FOL). We extend the notions of local stratification and weak stratification to generate the associated model.

Keywords: state transition system, reactive systems, composite events, model generation, frame problem,

FOL-stratification, FOL-perfect model

1. INTRODUCTION

Computing today, as a scientific discipline, lacks a unifying framework. It consists,

instead, of diverse techniques in such various areas as artificial intelligence,

databases and programming. Logic programming was an early attempt to provide a

unifying framework for computing, based on the use of logic for knowledge

representation and problem-solving. Arguably, this attempt had only limited

success, because it failed to address adequately the fundamental role of state

transition systems in computing.

In this paper, we present a candidate unifying framework for computing, based

on the use of logic for representing state transition systems. Although the approach

has its origins in research about representing and reasoning about states, actions

and events in artificial intelligence, it has been scaled-down to make it more like

conventional programming languages and database and information management

systems.

Earlier versions of the work presented in this paper have been presented in

[Kowalski and Sadri 2009; Kowalski and Sadri 2010; Kowalski and Sadri 2011;

Kowalski and Sadri 2012a; Kowalski and Sadri 2012b]. In those papers, we

referred to the framework as LPS, to highlight its focus on providing a Logic-based

approach to Production Systems. In this paper, for the sake of continuity, we retain

the name LPS, although the intended applications of the approach have been

extended considerably. These applications include its use as an agent programming

language, active database language, and a language for programming concurrent

systems. It can also be used for teleo-reactive computing [Nillson 2001; Kowalski

and Sadri 2012a], composite (or complex) event processing, and complex processes.

An LPS framework <R, L, D> represents the goals and beliefs of a single agent

embedded in a global environment. The reactive rules R, which represent the

agent’s maintenance goals, have the logical form of material implications

X [antecedent  Y consequent]. The logic program L represents the agent’s view

of the changing state and the state transforming events. The domain theory D,

2

which also has the form of a logic program, is a causal theory, which specifies the

effect of concurrent sets of events on the state of the environment.

The global environment and the agent’s own internal state are combined in a

separate, single state S, represented by a set of atomic sentences, called facts or

fluents. The state is like a relational database, but also like a set of program

variables or tuples in a coordination language [Carriero and Gelernter 1989].

State transitions are generated by sets of concurrently occurring events. These

events can include both the simultaneous actions of a single agent, the simultaneous

actions of several agents, or external events of other origin. Their preconditions and

postconditions are specified by the domain theory D. The domain theory D is similar

to the situation calculus [McCarthy and Hayes 1969] or event calculus [Kowalski

and Sergot 1986], but instead of using frame axioms to update states, it performs

destructive updates on the current state, deleting facts that are terminated by the

set of all events occurring in the state transition and adding facts that are initiated

by the set of events.

The logic program L = Lint  Levents  Ltimeless  Ltemp performs a supporting role.

Lint defines intensional predicates in terms of extensional predicates,

Levents defines composite events in terms of state conditions and simpler events,

Ltimeless defines time independent predicates, and

Ltemp defines temporal relationships, such as successor and inequality relations

between time points.

The logic program S  Lint  Ltimeless can be viewed as a deductive database state.

The logic program Levents  Ltemp  Ltimeless superimposes a collection of composite

events on top of the sequence of successive states and simple events. These

composite events can be viewed as state-connecting paths, as in transaction logic

[Bonner and Kifer 1993].

The reactive rules R, logic programs L and domain theory D can contain state

conditions that are formulas of first-order logic (FOL), which are like FOL queries to

a relational or deductive database. The semantics of these FOL conditions is given

by generalising negative literals to FOL conditions in the definitions of local

stratification [Przymusinski 1987] and weak stratification [Przymusinska and

Przymusinski 1988].

Although the operational semantics employs destructive updates and destructive

assignment to maintain only a current state, the model-theoretic semantics is

defined relative to the entire sequence of states, events and paths combined into a

single model in which facts and events are time-stamped. In the model-theoretic

semantics, the computational task is to generate a model that makes the reactive

rules R all true. The logic program L contributes to the definition of the model by

adding intensional facts and composite events to the sequence of time-stamped

extensional facts and simple events.

In this paper, we show that, given the same initial state and the same sequence of

state-transforming events, the model generated by LPS using destructive updates is

identical to the “natural” model generated by using a frame axiom. We define a

generalization of weak stratification in order to specify this natural model.

The view of computation in LPS as model generation needs to be distinguished

from the use of model checking for proving program properties. In a sense, the

reactive rules are program properties that are represented explicitly in the program

and are used operationally in the attempt to generate a model that makes them

true. In [Kowalski and Sadri 2012a], we showed how to derive a program property

3

that is not represented explicitly. The derivation uses ordinary deduction, presented

as a proof tree. It would be interesting to investigate the use of model checking

techniques for the same purpose.

The paper is organised as follows: Section 2 introduces the framework informally

by means of examples, and aims to give a flavour of the breadth of its applications.

Then sections 3-6 investigate the framework more formally. Section 3 defines the

language, section 4 introduces the model theory, section 5 presents the operational

semantics, section 6 gives further details of the model theory, and section 7

discusses soundness and completeness. Section 8 shows that destructive updates in

LPS generate the same models as the frame axiom. In sections 9 and 10, we discuss

related and future work.

Compared with earlier papers, the main contributions of this paper are its more

rigorous treatment of the semantics of reactive rules and logic programs with FOL

conditions, and its demonstration of the relationship between the frame axiom and

destructive updates. We also present a preliminary approach to the treatment of

concurrent events.

2. EXAMPLES

2.1 Emergencies

The following example is a variant of an example in [Hausmann et al. 2012]. In this

example, a reactive agent monitors a building for outbreaks of fire. The agent

receives inputs from a heat sensor and a smoke detector. If these inputs are

sufficiently close together in time, then the agent recognises a possible fire, and

attempts to deal with it. There are two alternative ways of dealing with the possible

fire. One alternative is to activate local fire suppression devices and then to call for

a security guard to inspect the area. The other alternative is simply to call the fire

department.

 The example illustrates several features of LPS, including reactivity, composite

events, composite processes and non-determinism. The representation is an LPS

framework <R, L, D> consisting of a main program R, which contains a single

reactive rule, and a logic program L. However, S, Lint and the domain theory D are

all empty. In an elaboration of the example, S  Lint  Ltimeless could include such

additional information as the geography of the building and the location, identity

and capabilities of the security guards. Here the variables T and Ti all represent

time points. The predicates heat-sensed and smoke-detected represent input events

taking place over short periods of time [Tf1, Tf2] and [Ts1, Ts2], respectively.

We use the forward arrow  for the implication symbol in reactive rules, and the

backward arrow  in logic programming clauses. As in Prolog, identifiers beginning

with an upper case letter denote variables, and numbers or identifiers beginning

with a lower case letter denote constants.

R heat-sensed(Area, Tf1, Tf2)  smoke-detected(Area, Ts1, Ts2) 

|Tf1 – Ts1|  60 sec  max(Tf2, Ts2, T)

 fire-response(Area, T, T1, T2)  T < T1

Levents fire-response(Area, T, T1, T4)

 activate-fire-suppression(Area, T1, T2)  T < T1  T +5 sec 

send-security-guard(Guard, Area, T3, T4)  T2 <T3  T2 + 10 sec

http://www.pms.ifi.lmu.de/mitarbeiter/steffen-hausmann

4

 fire-response(Area, T, T1, T2)

 call-fire-department(Area, T1, T2)  T <T1  T + 120 sec

All variables in a reactive rule are universally quantified with scope the entire rule,

except for variables that are only in the consequent of a rule. These are existentially

quantified with scope the consequent of the rule. Analogously, all variables in a logic

programming clause that are not explicitly quantified are universally quantified

with scope the entire clause. However, variables that occur only in the body of a

clause and are not explicitly quantified can also be considered to be existentially

quantified with scope the body of the clause.

Notice that in this example the antecedent of the rule represents an unnamed

composite event and the consequent represents a named composite action,

fire-response. This composite action can be regarded as consisting of two alternative

plans, each of which is represented by a clause in Levents. The first plan consists of

two actions, and the second plan consists of a single action.

For simplicity in this example, the events heat-sensed, smoke-detected,

activate-fire-suppression, send-security-guard and call-fire-department are all simple

events, which are either directly observed in the environment or directly performed

as simple actions. In general, events that are not defined in Levents are simple events.

 Both plans are temporally constrained. In practice, the first plan might be

preferred and tried before the second. If any part of the first plan fails, then the

second plan can be tried. Moreover, even if the first plan fails, it can be retried as

long as the temporal constraints can be satisfied. If both plans fail and cannot be

retried, then the reactive rule cannot be made true. This can be avoided by adding

additional alternative plans for the consequent of the rule. Notice that the temporal

constraints in the logic program ensure that, if the first plan takes too long, then the

second plan, which involves calling the fire department, can still be tried.

In this example, as in many others, there are potentially many different models

that can be generated to make the reactive rule true, some of which are preferable

to others. In theory, LPS could be augmented with a control component that decides

what actions to perform with a view towards optimising the utility of the resulting

model. However, in practice, it is probably sufficient for the programmer simply to

order the alternatives, taking both time constraints and preferred outcomes into

account.

We will see later that LPS is incomplete because it can only generate models that

make the consequents of reactive rules true when their antecedents become true. It

cannot preventatively make a reactive rule true by making its antecedent false, and

it cannot proactively make its consequent true in anticipation of its antecedent

becoming true in the future.

We will also see later that the explicit representation of time is necessary for the

model-theoretic semantics. Moreover, it facilitates the representation and

processing of temporal constraints on the timing of fluents and events. However, we

will also see that it can be hidden in an external syntax.

2.2 Dialogue

In this example, an agent “me” attempts to make a reactive rule true, by generating

an output sentence whenever it receives an input sentence from the agent “you”.

The predicate sentence(Agent, T1, T2) represents a composite event taking place from

time T1 to time T2.

5

R sentence(you, T1, T2)  sentence(me, T3, T4)  T2 < T3  T3 ≤ T2 + 3 sec

The temporal constraint in the consequent of the rule indicates that the composite

output action sentence(me, T3, T4) needs to start within 3 seconds of the completed

input.

The utterance by an agent A of a word W is treated as a simple (or atomic) event

that takes place over an interval of time, and is represented by an atomic sentence

word(A, W, T1, T2). The interval is represented by its start and end times, T1 and T2,

respectively.

We assume that the language of LPS is sorted (or typed). In this example, the

language would contain disjoint sorts for agents, words, and time points; and the

different arguments of the predicate word would be restricted to terms of the

appropriate sort.

The following sequence of input events represents the utterance by agent “you” of

the stream of words “what is your name”. For simplicity, time points are

represented by positive integers:

word(you, what, 1, 2) word(you, is, 2, 3)

word(you, your, 3, 4) word(you, name, 4, 5)

Composite events of uttering nouns, noun phrases, sentences and other parts of

speech are represented by means of logic programs in Levents. These programs are

similar to the logical representation of definite clause grammars [Pereira and Warren

1980] in Prolog, and used in [Kowalski 1979] to illustrate parsing as reasoning:

Levents adjective(Agent, T1, T2)  word(Agent, my, T1, T2)

adjective(Agent, T1, T2)  word(Agent, your, T1, T2)

noun(Agent, T1, T2)  word(Agent, name, T1, T2)

noun(Agent, T1, T2)  word(Agent, fariba, T1, T2)

noun(Agent, T1, T2)  word(Agent, what, T1, T2)

verb(Agent, T1, T2)  word(Agent, is, T1, T2)

sentence(Agent, T1, T3) noun-phrase(Agent, T1, T2)  verb-phrase(Agent, T2, T3)

noun-phrase(Agent, T1, T3)  adjective(Agent, T1, T2)  noun(Agent, T2, T3)

noun-phrase(Agent, T1, T2)  noun(Agent, T1, T2)

verb-phrase(Agent, T1, T3)  verb(Agent, T1, T2)  noun-phrase(Agent, T2, T3)

verb-phrase(Agent, T1, T2)  verb(Agent, T1, T2)

In this example, S and Lint are empty. Notice that the logic program Levents does not

distinguish between recognising sentences and generating them.

 The operational semantics of LPS, which we define later in paper, reasons

forwards from the antecedents of rules to their consequents, and evaluates simple

events and FOL state conditions in the rules in their temporal order. It decomposes

composite events in the consequents of rules top-down into conditions and simpler

events. But it is neutral with respect to the evaluation of composite events in the

antecedents of rules, and it is neutral with respect to whether state conditions are

evaluated top-down (backwards) or bottom-up (forwards).

Given the above sequence of input events, one way of satisfying the top-level goal,

represented by the reactive rule, is to generate the following sequence of actions:

6

 word(me, my, 6, 7) word(me, name, 7, 8)

 word(me, is, 8, 9) word(me, fariba, 9, 10)

Assuming that there are no further sentences uttered by “you”, the reactive rule is

true in the resulting Herbrand model:

{word(you,what, 1, 2) noun(you,1, 2) noun-phrase(you, 1, 2)

word(you,is, 2, 3) verb(you,2, 3) noun-phrase(you, 3, 5)

word(you,your, 3, 4) adjective(you,3, 4) noun-phrase(you, 3, 4)

word(you,name, 4, 5) noun(you,4, 5) verb-phrase(you, 2, 5)

sentence(you, 1, 3) sentence(you, 1, 5)

word(me, my, 6, 7) adjective(me, 6, 7) noun-phrase(me, 6, 8)

word(me, name, 7, 8) noun(me, 7, 8) noun-phrase(me, 7, 8)

word(me, is, 8, 9) verb(me, 8, 9) noun-phrase(me, 9, 10)

word(me, fariba, 9, 10) noun(me, 9, 10) verb-phrase(me, 8, 10)

sentence(me, 7, 9) sentence(me, 7, 10) sentence(me, 6, 10)}  Temp

Here Temp is the extension of the temporal inequality relation defined by

Ltemp. Notice that the grammar would need to be refined to avoid concluding

sentence(you, 1, 3), sentence(me, 7, 9), sentence(me, 7, 10), which are intuitively

unintended.

 In some of the earlier versions of LPS, we treated events as instantaneous and

states as having duration. However, in the remainder of this paper, we do the

opposite and treat states as instantaneous and events as having duration. The

different treatments are different ways of ensuring that the truth value of a fluent

does not change within a state, but changes only in the transition from one state to

the next. The general approach of LPS is compatible with both treatments of time.

2.3 Blocks world

In the previous examples, there are no internal states. Instead, events come and go

without leaving any trace. This is not typical of programs in LPS.

The blocks world illustrates the more typical case of a program with an internal

state. In this example, the state can be viewed as the extensional part of a deductive

database, in which on(Block, Place, T) is an extensional predicate, and

clear(Place, T) is an intensional predicate. We assume that the language is order-

sorted, with sorts for blocks, places and time points. The sort places includes the sort

blocks and contains in addition the constant table.

Assuming, for simplicity, that the table is always clear, the predicate

clear(Place, T) is defined by two clauses in Lint:

Lint clear(table, T)

 clear(Block, T)   X on(X, Block, T)

We treat negative literals in the body of a clause as a special case of an FOL

condition. Operationally, an FOL condition is a query to predicates defined at a

lower stratum than the stratum of the predicate defined in the head of the clause.

Clauses satisfying this condition (which we call FOL-stratification and define

formally later) are a natural generalisation of locally stratified logic programs. In

7

this example, there are two strata: The lower stratum corresponds to the

extensional part of the database, and the upper stratum corresponds to the

intensional part. More generally, as we will see later, the intensional predicates can

be spread over several strata.

In general, events, including the agent’s own actions and external events, update

only the extensional part of a database state. The intensional fluents are updated

implicitly, as a result of updates to the extensional part.

In general, the set of simple events taking place from T1 to T2 generate a state

transition from the state whose fluents all hold at time T1 into the next state whose

fluents all hold at time T2. In this example, the updates are associated with the

simple event move(Block, Place, T1, T2), defined by the domain theory D. This is

similar to the treatment of events in the event calculus. We assume that the

arguments of move are typed, so that it is not possible to move the table.

As in the event calculus, it is convenient to represent time-stamped fluents and

events by means of meta-predicates, writing for example holds(p, t) instead of p(t)

and happens(e, t1, t2) instead of e(t1, t2). We also combine both notations

interchangeably.

In general D consists of two parts, Dpost which is concerned with the post-

conditions of events and Dpre which is concerned with the preconditions of events. In

this example Dpost specifies the fluents that are initiated and terminated by the

simple event move(Block, Place), and is given below. Dpre will be described later.

Dpost initiated(on(Block, Place), T1, T2)  happens(move(Block, Place), T1, T2)

 terminated(on(Block, Support), T1, T2)  happens(move(Block, Place), T1, T2) 

 on(Block, Support, T1)

The task of putting a block on a place can be triggered by an input event requesting

that the block be put on the place, represented by a reactive rule:

R request(on(Block, Place), T1, T2)  make-on(Block, Place, T3, T4)  T2 ≤ T3

Here request(on(Block, Place), T1, T2) is a simple, external event, which does not

initiate or terminate any fluents. Alternatively, it could initiate a fluent that stores

a record of the request.

In a more realistic example, additional conditions might be included in the

antecedent of the rule, for example to check that the request is authorised, and

additional constraints might be included in the consequent of the rule to constrain

the amount of time that can elapse between the request and its fulfilment.

 The predicate make-on can be defined as a composite action/event, using an

auxiliary composite action/event make-clear:

Levents make-on(Block, Place, T, T)  on(Block, Place, T)

make-on(Block, Place, T1, T4)  ¬ on(Block, Place, T1) 

make-clear(Block, TB1, TB2)  make-clear(Place, TP1, TP2) 

 move(Block, Place, T3, T4)  T1 ≤ TB1  T1 ≤ TP1  TB2 ≤ T3  TP2 ≤ T3

make-clear(Place, T, T)  clear(Place, T)

make-clear(Place, T1, T4)  Place  table  on(Block, Place, T1) 

make-clear(Block, T1, T2)  move(Block, table, T3, T4)  T2 < T3

Notice that the two make-clear events in the body of the second make-on clause are

partially ordered. They can be performed in any order, as well as at the same time,

8

for example by using two hands. Notice, moreover, that, it might be desirable to add

an extra condition to the body of the clause, constraining the make-clear events so

that one of them starts as soon as the condition ¬ on(Block, Place, T1) is verified.

 The clauses in Levents are written in a teleo-reactive style, and have a base case

corresponding to the goal of the composite action. Teleo-reactive programs facilitate

both the re-execution of plan subgoals when plans fail, and the omission of plan

subgoals when the environment opportunistically solves these subgoals instead.

These features of teleo-reactive programs apply also to LPS programs more

generally. We present an example later in this subsection.

In an earlier version of LPS [Kowalski and Sadri 2011] we allowed “planning

clauses”, which in the case of make-clear could have the form:

 clear(Place, T3)  on(Block, Place, T1)  clear(Block,T1) 

 move(Block, table, T2, T3)  T1 < T2

Such planning clauses allow a higher level of knowledge representation than the

version of LPS presented in [Kowalski and Sadri 2012a; Kowalski and Sadri 2012b]

and in this paper. However, the behaviour of programs containing planning clauses

is more complicated and harder to understand.

It is possible to transform planning clauses into composite event definitions and

vice versa. In any case, it is important to appreciate that LPS programs do not

perform planning from first principles, but simply execute pre-existing, explicitly

represented conditional plans. This is similar to plans in practical BDI agent

languages.

 In earlier papers, we allowed only one action to be executed at a time. In this

paper, we allow concurrent actions and other events. In the blocks world, in

particular, we can allow several agents to pick up blocks concurrently, in which case

an action by one agent becomes an external event for another agent.

 In the simplest case, concurrent events are independent, and their combined

effects are simply the collection of their individual effects. However, in other cases,

concurrent events can have combined effects that are different from the effects of

their individual events. For example, two concurrent events of picking up two ends

of a table have different combined effects from the individual events of picking up

only one end of the table.

 In this example, we consider the case of competing events, which are prevented

from occurring concurrently by means of integrity constraints in Dpre. These

integrity constraints have the form of logic programming clauses with head false;

but as we will see later, they play a different role in the semantics from other logic

programming clauses.

Dpre false  happens(move(Block, Place), T1, T2) 

 [clear(Block, T1)  clear(Place, T1)]

 false  happens(move(Block, Place), T1, T2)  Block = Place

false  happens(move(Block, Place1), T1, T2) 

 happens(move(Block, Place2), T1, T2)  Place1  Place2

false  happens(move(Block1, Place), T1, T2) 

 happens(move(Block2, Place), T1, T2)  Block1 Block2  Place table

false  happens(move(Block1, Block2), T1, T2) 

 happens(move(Block2, Place), T1, T2)

9

The integrity constraints in Dpre also represent the preconditions of individual

events, as exemplified by the first two constraints above.
 Notice that, given three candidate events, say move(a, b), move(c, d) and

move(d, e) each of which is possible in isolation, but not in combination, there are

two possible sets of two concurrent events, {move(a, b), move(c, d)}, {move(a, b),

move(d, e)}, three possible singleton sets {move(a, b)}, {move(c, d)}, {move(d, e)} and

the empty set {}.

 As a concrete example, consider two agents ag1 and ag2 with initial goals:

make-on(a, c, T1, T2)  T1 > 0, and make-on(d, f, T3, T4)  T3 > 0, respectively. Let the

initial state be as pictured:

b d

 a c f

The two agents can attempt to achieve their individual goals, first by incrementally

generating a tree of subgoals, each. Here we ignore the time parameters for ease of

reading:

 ag1 ag2

make-on(a, c) make-on(d, f)

make-clear(a)  make-clear(c)  make-clear(d)  make-clear(f) 

move(a,c) move(d, f)

move(b, table)  move(d, table)  clear(d)  clear(f)  move(d, f)

move(a,c)

 move(d, f)

The tree has other branches, but we assume either that they have already been

explored and failed, or that they can be explored in the future.

Having generated these branches, suppose agent ag1 selects candidate actions

{move(b, table), move(d, table)} and ag2 selects candidate action{move(d, f)} for

execution at the same time – other variations are also possible. The three actions

are not possible concurrently. Suppose the successful actions are move(b, table) and

move(d, f), i.e. one action is successful for each agent. The state will be transformed

into the following:

 d

 a c f b

The initial goal of agent ag2 has been achieved. However, only the first subgoal of

the current plan of agent ag1 has been achieved. Agent ag1 can continue with its

current plan, in which case it will unnecessarily retry the action move(d, table). Or it

10

can take advantage of the opportunistic solution by agent ag2 of the higher-level

subgoal make-clear(c) in the higher-level, more abstract plan make-clear(a) 

make-clear(c)  move(a,c), and solve its initial goal, by performing the action

move(a,c) in one step.

The model-theoretic semantics of LPS defines computation as the task of

generating a model that makes an agent’s reactive rules and initial goals all true. It

is not concerned with optimising the generated model. In the example above, the

chosen solution is a model that contains the fewest actions. In other applications, it

may be desirable to generate a model that maximizes concurrency, as in the

following example.

2.4 The Dining Philosophers

Although the dining philosophers’ problem was originally proposed as a problem of

concurrent programming, the problem can also be viewed in both database and AI

knowledge representation and problem-solving terms:

In the initial state, five philosophers sit around a circular table with a bowl of

spaghetti in the middle of the table and five forks, one to the left and one to the

right of each philosopher. Each philosopher alternates between thinking and

eating. In order to eat, a philosopher needs two adjacent forks. A philosopher

can pick up the two adjacent forks if they are both available.

The setting of the problem is similar to that of the blocks world. The forks are like

blocks, having a fork is like there being an object on a block, and a fork being

available is like a block being clear. Similar constraints apply to picking up a fork as

apply to picking up a block: A fork cannot be picked up and moved simultaneously to

two different locations (philosophers).

 The solution of the dining philosophers’ problem presented below is similar to the

solution in C-Linda [Carriero and Gelernter 1989]. Here we assume that the five

philosophers are represented by five separate processors or agents, each of which

has its own local copy of the same framework <R, L, D>, but shares a single copy of

the global state. The global state acts as a coordination medium, which non-

deterministically decides which possible sets of concurrent events actually occur.

 The only extensional predicate in the representation is the predicate

available(Fork, T), and Lint ={}. In the initial state S0, all five forks are available. To

facilitate updating the state destructively, the extensional fluents are represented

without time parameters:

S0 = {available(fork(0)), available(fork(1)), available(fork(2)), available(fork(3)),

available(fork(4))}.

For simplicity the predicate adjacent(fork(0), philosopher(0), fork(1)) is treated as

time-independent:

Ltimeless adjacent(fork(0), philosopher(0), fork(1))

adjacent(fork(1), philosopher(1), fork(2)) adjacent(fork(2), philosopher(2), fork(3))

adjacent(fork(3), philosopher(3), fork(4)) adjacent(fork(4), philosopher(4), fork(0))

 The extensional fluents are like tuples in a relational database, or in a coordination

language [Carriero and Gelernter 1989]. They are also like the values of “variables”

11

in conventional programming languages. For example, updating the state by adding

the fluent available(fork(f)) is like executing an assignment statement

available(fork(f)) := true, assigning the value true to the “variable” available(fork(f)).

 The solution in C-Linda uses four tickets. To eat, a philosopher needs not only

two forks but also one ticket. This ensures that at least one philosopher is always

able to eat. We have programmed this solution in LPS, but here we present a

solution using a simple action of picking up two adjacent forks simultaneously.

 Each philosopher, philosopher(i), 0 ≤ i ≤ 4, can perform four simple actions, of

thinking, picking up forks, eating, and putting down forks. These can be combined

into a single composite action, dine:

Levents dine(philosopher(i), T1, T6)  think(philosopher(i), T1, T2) 

 adjacent(F1, philosopher(i), F2) 

 pickup-forks(F1, philosopher(i), F2, T3, T4)  T2 ≤ T3 

 eat(philosopher(i), T4, T5)  putdown-forks(F1, philosopher(i), F2, T5, T6)

Notice that the temporal constraints here allow a lapse of time between thinking

and picking up forks, because forks may not be available as soon as thinking is

completed. But no such lapse of time takes place between picking up forks and

eating and between eating and putting down forks.

 The composite action dine can be triggered by means of a reactive rule and an

event of it becoming time to eat:

 R time-to-eat(philosopher(i), T1, T2)  dine(philosopher(i), T3, T4)  T2 ≤ T3

For example, the five instances of the rule could be triggered by the five concurrent

external events:

 ev1 = {time-to-eat(philosopher(0), 0, 1), time-to-eat(philosopher(1), 0, 1),

 time-to-eat(philosopher(2), 0, 1), time-to-eat(philosopher(3), 0, 1),

 time-to-eat(philosopher(4), 0, 1)}

Additional temporal constraints could be imposed on the consequent of the rule, to

try to prevent the philosophers from starving while waiting to eat.

 The solution of the dining philosophers’ problem is shared between the reactive

rules and logic programs used by the individual philosophers and the domain theory

used to update the global state. For the philosophers’ part, it suffices for each

philosopher to employ the one reactive rule in R and the one logic programming

clause in Levents. The domain theory D defines the post-conditions and preconditions

of the simple atomic actions. In this simple formulation of the problem, the only

actions that change the state are the actions of picking up and putting down forks:

Dpost terminated(available(F), T1, T2) 

 happens(pickup-forks(F1, philosopher(I), F2), T1, T2)  (F = F1  F = F2)

 initiated(available(F), T1, T2) 

 happens(putdown-forks(F1, philosopher(I), F2), T1, T2)  (F = F1  F = F2)

Dpre false  happens(pickup-forks(F1, philosopher(I), F2), T1, T2) 

  [available(F1, T1)  available(F2, T1)]

 false  happens(pickup-forks(F1, philosopher(I), F), T1, T2) 

 happens(pickup-forks(F, philosopher(J), F2), T1, T2)

12

The first constraint in Dpre ensures that a philosopher picks up forks only if they are

available, and the second constraint ensures that two philosophers I and J do not

pick up the same fork F simultaneously.

 In general, when a simple event happens, then all fluents initiated by the event

are added and all fluents terminated by the event are deleted in the state transition.

In this sense, simple events are atomic, in that either all their effects succeed or all

their effects fail at the same time. The domain theory D and its use for defining

state transitions provides a declarative semantics for such forms of atomicity, with

details concerning roll-back and critical sections relegated to the implementation.

 The model-theoretic and operational semantics, defined later, are the semantics

of a single agent, say agent 0 for example, interacting with a single current state. In

the dining philosopher’s problem, this single state is a global state shared with

other philosophers. The domain theory is used to update this state.

In order to generate the external events for agent 0 and to correctly update the

global state, it is necessary to simulate the other agents and to generate their

candidate actions, which are external events for agent 0. It is also necessary to

arbitrate between competing candidate actions and to choose a set of concurrent

actions that satisfy the integrity constraints in Dpre. This choice of concurrent

actions is non-deterministic, but one such sequence of choices is shown below. In

fact, this is the sequence generated by our Prolog prototype of LPS.

Here S0, S1,…, S12 is the sequence of states, and ev1,…, ev12 is the sequence of

events, where evi is the set of all events that take place concurrently in the

transition from state Si-1 to state Si:

S2 = S1 = S0

ev2 = {}

ev3 = {think(philosopher(0)), think(philosopher(1)), think(philosopher(2)),

think(philosopher(3)), think(philosopher(4))}

S3 = S2

ev4 = {pickup-forks(fork(0), philosopher(0), fork(1)),

 pickup-forks(fork(2), philosopher(2), fork(3))}

S4 = {available(fork(4))}

ev5 = {eat(philosopher(0)), eat(philosopher(2))}

S5 = S4

ev6 = {putdown-forks(fork(0), philosopher(0), fork(1)),

 putdown-forks(fork(2), philosopher(2), fork(3))}

S6 = S2 = S1 = S0

ev7 = {pickup-forks(fork(1), philosopher(1), fork(2)),

 pickup-forks(fork(3), philosopher(3), fork(4))}

S7 = {available(fork(0)) }

ev8 = {eat(philosopher(1)), eat(philosopher(3))}

S8 = S7

ev9 = {putdown-forks(fork(1), philosopher(1), fork(2)),

 putdown-forks(fork(3), philosopher(3), fork(4))}

S9 = S6 = S2 = S1 = S0

ev10 ={pickup-forks(fork(4), philosopher(4), fork(0)}

S10 = {available(fork(1)), available(fork(2)), available(fork(3))}

ev11 ={eat(philosopher(4))}

S11 = S10

ev12 = {putdown-forks(fork(4), philosopher(4), fork(0))}

13

S12 = S9 = S6 = S2 = S1 = S0

In the model-theoretic semantics, all the events and states are combined into a

single Herbrand model M by adding an extra temporal argument to fluents and

events. The model M also contains the extension of the temporal inequality relation

≤ and the composite actions:

 dine(philosopher(0), 2, 6) dine(philosopher(2), 2, 6) dine(philosopher(1), 2, 9)

 dine(philosopher(3), 2, 9) dine(philosopher(4), 2, 12)

The operational semantics correctly generates a model M in which the reactive rule

R and the integrity constraints Dpre are all true. The logic program L is used to help

generate the model, and therefore is also true in M.
 Note that even though the global state has information about the availability of

all five forks, an individual agent may have access only to information about the

availability of forks adjacent to it. In fact the agent can function simply by relying

on the environment to tell it when its actions, including picking up forks, are

successful.

3. THE LANGUAGE

An LPS program <R, L, D> combines the reactive rules R and logic programs L of

an individual agent with a domain theory D that is used to perform updates on a

current state Si that is possibly shared with other agents. The shared state Si

arbitrates between the candidate actions of different agents, non-deterministically

choosing a set evi of concurrent events that satisfies the integrity constraints in Dpre,

and using Dpost to transform Si-1 into Si.

 The agent receives observations of the events evi and can query the current state

Si to generate candidate actions actsi+1 with the purpose of making the reactive

rules R all true. The truth value of R is determined with respect to a natural,

minimal model associated with the entire sequence of states S0,…, Si,…. and events

ev1,…, evi,…. augmented with higher-level predicates defined by the logic program

L = Lint  Levents  Ltimeless  Ltemp.

 The reactive rules R, logic programs L and D can contain FOL conditions, which

operationally query the extended current state. The model-theoretic semantics for

FOL conditions generalises the perfect model semantics for negative conditions. It

generalises local stratification, by restricting the strata of predicates in FOL

conditions in the body of a clause to ones that are lower than the stratum of the

predicate occurring in the head. It generalises the perfect model semantics, by

generating submodels whose predicates belong to lower strata before using them to

generate models whose predicates belong to higher strata.

 States Si are sets of atomic sentences (or simple fluents), which can be viewed as

the extensional component of a deductive database. The domain theory D updates

only these extensional predicates. The logic program Lint implicitly updates

intensional predicates as ramifications of changes to the extensional predicates. The

logic program Levents both recognises and constructs composite events.

14

In the operational semantics, fluents are represented without explicit time.

Updates associated with a set evi of events are performed destructively, using the

domain theory D to delete fluents that are terminated by evi and to add fluents that

are initiated by evi. Fluents that are neither initiated nor terminated simply persist

without reasoning that they persist, and without copying them explicitly from one

state into the next.

In a possible world semantics, as employed in modal logic or TR logic, states are

also represented by sets of fluents, but they are linked by an accessibility relation

associated with the state transforming events. However, in the model-theoretic

semantics of LPS, fluents and events are time-stamped and combined in a single,

non-modal model-theoretic structure.

In the version of LPS presented in this paper, we assume that time is linear and

discrete, and that the succession of time points is represented by the relation

succ(s, t) defined in Ltemp (with the aid of Ltimeless) where s and t are real numbers. For

simplicity, we assume that there is a state transition from Si-1 to Si associated with

each instance succ(ti-1, ti), that all fluents in Si hold at time ti, and that all events in

evi occur from time ti-1 to ti. The set evi can be empty. In other papers, we have made

the opposite assumption, associating time points with simple events and time

intervals with states. The two conventions are mostly interchangeable.

To distinguish between a fluent p without a time stamp, needed for destructive

updates in the operational semantics, and the same fluent with a time stamp t,

needed for the model-theoretic semantics, we either add an extra argument p(t) to

p, or we treat p as a term and include it in a meta-predicate such as holds(p, t). To

distinguish between a state Si whose fluents are all without time stamps, and the

same state in which all the fluents have the same time stamp ti, we write Si*.

Similarly, for a simple or composite event e without a time stamp, either we write

e(t1, t2), or we include e as a term within a meta-predicate such as happens(e, t1, t2).

For the concurrent occurrence of an unstamped set evi of simple events, occurring

from time ti-1 to time ti we write evi* for the same set of events with their time

stamps.

3.1 Vocabulary

We assume an order-sorted language in which the constants and variables of the

language are assigned sorts that may be hierarchically ordered. The argument

places of function symbols and predicate symbols are correspondingly assigned

sorts, so that formulas are well-formed only if the argument places are filled by

terms of the allowed sort.

The predicate symbols of the language are partitioned into (disjoint) sets

representing fluents, events, auxiliary predicates and meta-predicates:

Fluent predicate symbols are partitioned into extensional predicates, which

represent facts in the states Si, and intensional predicates defined in Lint.

Event predicates are analogously partitioned into simple event predicates and

composite event predicates. Simple events can represent either externally

generated events or internally generated actions. Composite event predicates

are defined in Levents.

15

Auxiliary predicates consist of time-independent predicates, such as max and

min and others used for arithmetic, defined in Ltimeless, as well as temporal

predicates, such as succ, defined in Ltemp.

The meta-predicates consist of

 The predicates initiated and terminated defined by the domain theory D,

and used for performing state transitions; and

 The predicates holds and happens.

Fluents and events occur as terms when they are arguments of the meta-

predicates.

States Si are not represented explicitly in the language, but are represented

implicitly by the set of all the extensional facts that are true at time ti. These

extensional facts represent the kernel of the state Si. However, conceptually, the set

Si*  Lint  Ltimeless, which is the kernel extended by the intensional and time-

independent predicates, can be thought of as the time-stamped extended state at

time ti. Similarly, the sets evi of events are not represented explicitly, but are

represented implicitly by the set of simple events that occur from time ti-1 to ti.

3.2 Internal and external syntax

The explicit representation of time, defined by Ltemp, underpins the model-theoretic

semantics of the language. However, at the potential expense of restricting the

expressive power of the language, the language can also be expressed in an external

syntax in which time is implicit. For example, in [Kowalski and Sadri 2011],

temporal ordering is indicated by the order in which formulas are written and by

the use of special logical connectives. This is similar to the syntax of TR Logic

[Bonner and Kifer 1993], in which P  Q means “do P and then do Q”. In LPS,

depending on the context, this translates into an internal syntax with an explicit

representation of time, for example as P(T1, T2)  Q(T2, T3) or as P(T1, T2)  Q(T3, T4)

 T2 < T3, if P and Q are events.

 The internal syntax is also compatible with a modal external syntax. For

example, P  ◊Q can similarly be translated into P(T1, T2)  Q(T3, T4)  T2 < T3, if P

and Q are events, and P  ○Q can be translated into P(T1, T2)  Q(T2, T3). However

in modal logic, events and actions are not represented by formulas, but by

parameters of modal operators, and P and Q would be restricted to fluents. If P and

Q are fluents, then P  ◊Q can be translated into P(T1)  Q(T2)  T1 < T2, and

P  ○Q can be translated into P(T1)  Q(T2)  succ(T1, T2).

 Graphical notations for representing partial ordering are also possible. For

example, a notation such as:

could be used to represent P(T1)  Q(T2)  R(T3)  T1 + 2 < T3  T2 < T3  T2 + 6.

 In the remainder of the paper, we use the internal syntax with explicit time,

because it clarifies the model-theoretic semantics, and because it is neutral with

respect to external syntax.

P

Q
R

(2,∞)

(0, 6]

16

 Note that the internal syntax of LPS employs a relational syntax in which

function symbols are used only for constructing names of composite objects. It would

also be possible to employ an external syntax in which function symbols are used

with equality for representing functional relations, as in colour(a) = red or

colour(a) = colour(b). In the internal syntax, these would be translated into

colour(a, red) and colour(a, X)  colour(b, X) respectively, together with integrity

constraints to represent the fact that objects have only one colour. In practice, such

integrity constraints might be emergent properties that would not have to be

checked explicitly.

 Notice that functional external syntax could be combined with infix notation. For

example, T3  T2 + 6 could be regarded as shorthand for T3  T  +(T2, 6, T).

3.3 Reactive Rules

Reactive rules (or simply rules) in R are sentences of the logical form:

X [antecedent(X) Y consequent(X, Y)]

where X is the set (or tuple) of all unbound variables, including time variables, that

occur in antecedent(X), and Y is the set (or tuple) of all unbound variables, including

time variables, that occur only in consequent(X, Y). In addition to the variables in X

and Y, the rule can contain other variables that are bound in FOL conditions. For

notational convenience, we write consequent(X, Y) even though consequent(X, Y)

need not contain all the variables that occur in antecedent(X). Because of these

restrictions on the quantification of variables, we can omit the quantifiers X and

Y. More formally:

Definition 3.1 (Reactive rule). A reactive rule is a sentence of the form:

antecedent(X) consequent(X, Y)

where both antecedent(X) and consequent(X, Y) are a conjunction1 of FOL state

conditions, event atoms and temporal constraints.

 An FOL state condition (or simply a state condition) is an FOL formula in

the vocabulary of the fluent and time-independent predicates, containing at

most a single time variable, which is unbound.

Operationally, the evaluation of a state condition can be understood as a

query to the current extended state Si*  Lint  Ltimeless, where the time

parameter refers to the current time ti.

 An event atom is an atomic formula whose predicate symbol is a simple or

composite event. Similarly an action atom is an event atom whose predicate

symbol is an action.

1 In [Kowalski and Sadri 2012b] we allowed consequents of rules to be disjunctions of such conjunctions.

This is because we focused on programs consisting of reactive rules without logic programs. In this

paper, we obtain a similar effect by allowing consequents to contain predicates defined by non-

deterministic logic programs. Alternatively, it would be easy to extend the language of this paper to

include the disjunctive consequents of the earlier paper.

17

 A temporal constraint is an atomic formula of the form succ(time1, time2),

time1 < time2 or time1 ≤ time2 where time1 and time2 represent time points,

one of which is a variable, and the other of which is a variable or a constant.

The temporal constraints contain only variables that occur in the state conditions

and event atoms of the rule, and all the time parameters that occur in the

antecedent are constrained directly or indirectly in the consequent to be earlier

than or equal to the time parameters that occur only in the consequent.

Notice that, although fluents can occur as subformulas of FOL conditions, events

can occur only as atomic conjuncts. This makes it impossible to represent, for

example, the condition that no event of a certain kind occurs within a certain

interval of time. This restriction simplifies the operational semantics, so that any

non-temporal condition in a reactive rule can be treated as a query to the extended

current state Si*  Lint  Ltimeless augmented with evi*. The restriction is not

necessary for the model-theoretic semantics, and can be removed at the expense of

complicating the operational semantics.

3.4 Goal clauses

In both the model-theoretic and operational semantics, whenever the antecedent of

a reactive rule becomes true, the consequent of the rule becomes a goal to be made

true in the future.

 In addition to satisfying such derived goals, it may also be required to make an

initial set of goals true in the future. For this purpose, and because the operational

semantics maintains a goal state containing goal clauses, we define goal clauses

here more generally:

 Definition 3.2 (Goal clause). A goal clause is an existentially quantified

conjunction of FOL state conditions, event atoms and temporal constraints. All the

variables in the temporal constraints occur in the state conditions and event atoms

of the goal clause.

Note that a goal clause can also be regarded as a reactive rule with an empty (or

true) antecedent.

3.5 Logic programs

The logic programs L = Lint  Levents  Ltimeless  Ltemp play a supporting role to the

reactive rules of an LPS program <R, L, D>. Like the antecedents and consequents

of rules, they can also contain non-atomic FOL conditions, as in the extended logic

programs of [Lloyd and Topor 1984].

Definition 3.3 (Extended logic program). An extended logic program is a set P of

sentences (or clauses) of the form:

head(X)  body(X, Y)

where X is the set of all variables that occur in head(X), and Y is set of all unbound

variables that occur only in body(X, Y). The head of the clause head(X) is an atomic

formula and the body of the clause body(X, Y) is a (possibly empty) conjunction of

18

conditions, which are atomic and non-atomic FOL formulas.2 An extended logic

program whose body is a (possibly empty) conjunction of atomic formulas is a Horn

clause program.

Clauses are implicitly quantified in the form:

X [head(X)  Y body(X, Y)]

which is more often written in the logically equivalent form:

XY [head(X)  body(X, Y)]

These quantifiers are normally left implicit, because they can always be

reconstructed unambiguously. Also, we drop the qualification “extended” and call

extended logic programs simply “logic programs”.

 Lloyd and Topor reduce logic programs with FOL conditions in their bodies to

normal logic programs whose bodies are literals, namely conjunctions of atomic

formulas and negations of atomic formulas. In contrast, we evaluate FOL conditions

using the standard definition of truth for formulas of first-order logic. However, for

this purpose, we need to ensure that that the predicates of non-atomic FOL

conditions are fully defined before the conditions are evaluated. For this purpose, we

employ a simple generalisation of local stratification, called FOL-stratification.

Later we will generalize this to weak FOL-stratification.

 FOL-stratification is exemplified by the clause that defines the subset relation 

in terms of the membership relation :

 U  V  Z [Z  U  Z  V]

Given a set of atomic sentences Memb defining the extension of the predicate , the

FOL condition in the body of the clause can be viewed as a query to the extensional

database Memb. The results of the query are used to define the predicate  in the

head of the clause.

 The relationship between the two predicates  and  in the clause can be viewed

in terms of stratification: The predicate  is defined in a lower stratum, and the

predicate  is defined in a higher stratum.

Loosely speaking, a logic program is FOL-stratified if there is a well-ordering of

the ground atoms of the language into distinct strata, such that, for every ground

instance C of a clause in the program, the non-atomic FOL conditions in the body of

C are defined in lower strata than the stratum of the head of C, and atomic

conditions in the body are defined in the same or lower strata than the head.3 In

LPS, the component programs Lint, Levents, Ltimeless and Ltemp are all FOL-stratified in

this sense.

For example, the logic program Lint can be FOL-stratified by assigning extensional

and time independent atoms to a lower stratum, and intensional predicates to a

2 Although a conjunction of FOL formulas is itself an FOL formula, we distinguish between atomic and

non-atomic FOL formulas, because non-atomic formulas generalise negative literals in normal logic

programming.

3 Replacing an FOL condition in an FOL-stratified program by one that is logically equivalent does not

affect the FOL perfect model, if the resulting program is also FOL-stratified. However, it may change a

program that is FOL-stratified into one that is not. For example, the program p  p is stratified, but the

program p   p is not.

19

higher stratum. As a consequence, FOL conditions in the bodies of clauses can be

evaluated without using the intensional predicates. However, the stratification can

be extended to multiple levels. For example, if the predicate clear is intensional,

then the predicate shallow can be defined as an intensional predicate at a higher

stratum than the stratum of clear.

shallow(Place, T)  Block [on(Block, Place, T)  clear(Block, T)]

Similarly, the logic program Levents can be FOL-stratified by assigning fluent, simple

event and time-independent predicates to a lower-stratum than composite event

predicates. FOL conditions involving the lower-stratum predicates can be viewed as

queries to the extended current state Si*  Lint  Ltimeless augmented with evi*.

 We will define FOL-stratification and its semantics more formally later.

 Definition 3.4 (The logic programs L). Ltimeless is an FOL-stratified logic program

containing only predicates without time parameters.

Ltemp is an FOL-stratified logic program defining the temporal predicates succ, ≤ and

<, as a discrete total ordering.

Lint is an FOL-stratified logic program, consisting of clauses of the form

head(X, T)  body(X, Y, T) in which the predicate in the head is an intensional

predicate, and the predicates in the body are intensional, extensional or time-

independent predicates. The intensional predicates are assigned to higher strata

than the extensional and time-independent predicates. Each clause in Lint contains

exactly one time parameter T that is a variable.

Levents is an FOL-stratified logic program, consisting of clauses of the form

head(X, T1, T2)  body(X, Y, T1, T2) in which the predicate in the head is a

composite event predicate, and the predicates in the body are composite event,

simple event, fluent, time-independent or temporal predicates. The composite event

predicates are all assigned to a higher stratum than the simple event, fluent and

time-independent predicates. T1 and T2 represent the interval over which the

composite event takes place, and are constrained to be, respectively, the earliest and

latest time variables occurring in a fluent or event atom in body(X, Y, T1, T2)4.

 The time variables in temporal constraints must all occur in the head or unbound

in fluent or event atoms in the body.

Note that the body of a clause in Levents is equivalent in form both to a goal clause,

and to an antecedent or consequent of a reactive rule.

3.6 The domain theory D

The domain theory D of an LPS program <R, L, D> has two components

D = Dpost  Dpre. The first component Dpost is an FOL-stratified logic program that

specifies the extensional fluents that are initiated and terminated by simple events.

The second component Dpre is a set of integrity constraints restricting the occurrence

and co-occurrence of simple events.

4 Note that X might include other time parameters, as in the emergency example of section 2.

20

Definition 3.5 (Domain theory D). Dpost is a set of clauses of the form:

head(T2)  body(T1, T2)

and Dpre is a set of integrity constraints of the form:

false  body(T1, T2)

head(T2) is an atom of the form initiated(P, T2) or terminated(P, T2), where P is an

extensional fluent. body(T1, T2) is an FOL formula containing only simple event

predicates with time parameters T1 and T2, fluent predicates with time parameter

T1, and time-independent predicates.

In the operational semantics, body(T1, T2) is a query to the augmented current state

Si*  Lint  Ltimeless  evi* at time ti. An answer to the query is a ground

instantiation of the free variables in body(T1, T2), leaving bound variables to be

treated according to the classical semantics of universal and existential quantifiers.

 The FOL-stratification of Dpost consists of two strata: The predicates defined by

Si*  Lint  Ltimeless  evi* constitute the lower stratum, and the meta-predicates

initiated(P, T2) and terminated(P, T2), constitute the higher stratum

3.7 The environment

An LPS framework <R, L, D> represents the goals R and beliefs L of an individual

agent embedded in an environment, which consists of a current state Si and current

set evi of events. For simplicity, the current state includes both the agent’s own local

state and the whole of the external, global state. Similarly, the current events

include both the agent’s own local actions and all external, global events.

In a multi-agent system, the global components are shared among all the agents,

but the local components are encapsulated. In a closed system, consisting of a single

agent with no external environment, the entire state is internal, and all events are

internal actions.

 Dpost uses the events evi to update the state Si, and Dpre ensures that the set evi of

events is possible. Dpost updates both the local and global components of the state,

using both local and global events. In the case of purely internal actions, these

updates are performed entirely by the agent itself. In the case of concurrent events

whose effects depend on both internal actions and external events, the updates are

performed by the external environment.

 The computational task for LPS is defined in terms of making the goals R  G0 of

an individual agent true in a model that is determined by the combined local and

global components of the environment. This ensures that, in a multi-agent setting,

all the agents have the same consistent (and co-ordinated) view of the shared

components of the environment. However, it does not mean that all the agents have

unrestricted access to all the information in the environment. An agent’s access to

the environment is restricted inherently by its vocabulary. Moreover, the external

environment might also impose further restrictions of its own.

In a more refined formalization of LPS, it might be desirable to decompose the

environment into separate local and global components. However, to simplify the

treatment in this paper, we combine the local and global components of the

environment into a single entity.

21

4. THE MODEL-THEORETIC SEMANTICS OF LPS

In this section, we present two alternative semantics: The first involves an event

theory ET that uses a frame axiom to express that any fluent that is not terminated

by a state transition persists from one state to the next. The second uses destructive

state updates. In section 8, we show that the two semantics generate the same

intended models.

4.1 The event theory ET

The event theory ET is a logic program that, given Dpost  L  S0*  ev*, defines

when an extensional fluent P holds at a time point T > 0:

 Definition 4.1 (Event theory ET). The event theory ET consists of the two clauses:

holds(P, T2)  initiated(P, T1, T2)

holds(P, T2)  holds(P, T1)  succ(T1, T2)  ¬ terminated(P, T1, T2)

ET is a hybrid of the situation calculus and the event calculus. The second clause is

a frame axiom in the spirit of the situation calculus. However, because states are

not represented explicitly in LPS, the ontology of ET is that of the event calculus.

 With the aid of ET, we can give a simple characterization of the computational

task for LPS:

 Definition 4.2 (Computational task according to ET). Given an LPS program

<R, L, D>, an initial state S0 and initial set of goal clauses G0, the computational

task is to generate, for every set exti of external events, where i  1, a set actsi+1 of

actions, such that:

 ET  Dpost  L  S0*  ev* entails R  G0  Dpre

where ev* = ev1*  ev2*  …  evi*  …

 evi = exti  actsi, for i  1, and act1 = {}.

The notion of entailment here is deliberately unspecified, and many different

notions of entailment have been proposed for similar event theories, mainly to give

them a non-monotonic semantics. The semantics that we will define later is also

non-monotonic, and is expressed in terms of the truth of R  G0  Dpre in a uniquely

determined, intended model of ET  Dpost  L  S0*  ev*.

 But, independent of the definition of entailment, reasoning with ET is

computationally infeasible. It is not practical either to reason forwards with frame

axioms, duplicating facts that hold from one state to the next, or to reason

backwards, to determine whether a fact holds in a given state by determining

whether it held in previous states. As a consequence, frame axioms are rarely used

in practical applications, and destructive assignment or destructive updates are

generally used instead.

 The computational infeasibility of reasoning with the frame axiom(s) has received

hardly any attention. For example, [Shanahan 1987], in Solving the Frame Problem,

explicitly excludes consideration of “implementation issues” on page 7. In this paper,

22

we consider computational feasibility to be one of the core issues related not only to

implementation, but also to the semantics of state transition systems.

 In contrast with the use of the frame axiom to reason about change of state in ET,

computation in LPS is performed by using destructive change of state.

 To avoid repetition, we use the following notation in definition 4.3 and elsewhere

for the sequences of time stamped events and states:

 ev* = ev1*  ev2*  …  evi*  …

 evi = exti  actsi, for i  1, where act1 = {}
 S* = S0*  S1*  …  Si*  …

 Definition 4.3 (Informal specification of the computational task). Given an LPS

program <R, L, D>, an initial state S0 and initial set of goal clauses G0, the

computational task is to generate, for every set exti of external events where i  1, a

set actsi+1 of actions such that R  G0  Dpre is true in the intended model of:

 L  S*  ev*

where for i  1, Si is obtained from Si-1 by deleting all the fluents in Si-1

terminated by evi and adding all the fluents initiated by evi as determined by D.

In this specification, the computational task is shared between an agent attempting

to execute a collection of candidate-actsi to make R  G0 true and the environment,

maintaining Dpre, by arbitrating between the agent’s candidate-actsi and other

candidate actions of other agents. The result of this arbitration is a set of events,

evi = exti  actsi, selected by the environment, where actsi is the subset of

candidate-actsi that have succeeded, and exti is the set of all other successful events.

 This specification is incomplete. It needs to be augmented with a definition of the

intended model, and with a more precise statement of the definition of Si in terms of

Si-1. We present the augmented specification in the next subsection.

4.2 An abstract specification of the computational task

In general, a logic program P can be viewed as an intensional definition of the

predicates that occur in the heads of clauses in P in terms of the predicates that

occur in the bodies of clauses in P. These head predicates can also be represented

extensionally as a set sem(P) of ground atoms. The set sem(P) has a dual

interpretation: syntactically as a set of sentences, and semantically as a model-

theoretic structure. Viewed in semantic terms, sem(P) is a Herbrand interpretation,

which represents the set of all the ground atoms that are true in the interpretation.

In the simplest case, when P is a set of Horn clauses, there exists an extensional

representation sem(P) = min(P) of P that is also minimal (with respect to set

inclusion) [van Emden and Kowalski 1976]. This case does not cater for logic

programs that contain non-atomic FOL conditions. Later we define two semantics

that do cater for such FOL conditions. Both semantics are defined for the case in

which non-atomic FOL conditions in the body of a clause are defined in lower strata

than the stratum of the head of the clause. The first semantics generalizes local

stratification, and the second semantics generalizes weak stratification.

The following definition expands the specification of the computational task in

4.3, and presents it in an abstract form that is independent of the semantics sem.

23

The only assumption is that sem associates a unique Herbrand interpretation with

every logic program in the class of programs under consideration.5

 Definition 4.4 (Abstract specification of the computational task). Let sem be a

mapping from logic programs P to sets of ground atoms that are instances of the

heads of clauses in P. Given an LPS program <R, L, D>, an initial state S0 and

initial set of goal clauses G0, the computational task is to generate, for every set exti

of external events, where i  1, a set actsi+1 of actions, such that R  G0  Dpre is

true in the Herbrand interpretation:

 sem(L  S*  ev*) , where for i  1:

Si = (Si-1 – {p | terminated(p, ti-1, ti)  sem(Dpost  Lint  Ltimeless  Si-1*  evi*)})

  {p | initiated(p, ti-1, ti)  sem(Dpost  Lint  Ltimeless  Si-1*  evi*)}.

In this definition, the clauses in Dpost can be viewed as querying the augmented

current state Lint  Ltimeless  Si-1*  evi* to determine the fluents that have been

initiated and the fluents that have been terminated by the set evi of events that take

place in the transition from Si-1 to Si.

 The definition appeals to the notion of truth in a Herbrand interpretation. This

notion requires, in turn, the concept of the Herbrand universe:

 Definition 4.5 (Herbrand universe and Herbrand base). Given the vocabulary of a

sorted language, the Herbrand universe is the set of all well-sorted ground terms

that can be constructed from the vocabulary. The Herbrand base is the set of all

well-sorted ground atoms that can be constructed from the vocabulary.

 Definition 4.6 (Herbrand interpretation and Herbrand model). A Herbrand

interpretation is a subset of the Herbrand base. A Herbrand model M of a set S of

sentences is a Herbrand interpretation such that every sentence s in S is true in M.

The truth value of a sentence s in a Herbrand interpretation M depends not only

upon M, but also upon the Herbrand universe U:

 Definition 4.7 (Truth). If s  H is an atomic sentence, then s is true in M if and

only if s  M, and  s is true in M if and only if s  H.

 For any formula s(X) with free variables X, X s(X) is true in M if and only if s(x)

is true in M for every x  U, and X s(X) is true in M if and only if s(x) is true in M

for some x  U.

The truth values of all other FOL sentences of the language are defined as usual in

classical FOL. In particular, the negation  s of a sentence is true in M if and only if

s is not true in M. Thus negation is classical negation, but also has the flavour of

negation as failure, because  s is true in M if and only if s fails to be true in M.

 It is possible to extend the definition of truth to include sentences with

aggregation operators, which construct such objects as the set of all terms that

satisfy a given formula, the number of such terms, or their sum. This extension is

necessary for defining the postconditions of concurrent events whose effects are

5 This includes the stable model semantics [Gelfond and Lifschitz 1988], if we take sem to be the

intersection of all stable models, and if we allow the mapping to be partial in case there are no models.

24

cumulative (like pushing a block in different directions). We do not explore this

possibility further in this paper.

4.3 The simplified case in which L and Dpost are sets of Horn clauses

The abstract semantics of definition 4.4 specializes naturally to the simplified case

in which L and Dpost are Horn clause programs. In this case, the semantic mapping

sem is given by the minimal model. In general, every set of Horn clauses has a

minimal Herbrand model:

Definition 4.8 (Minimal model). Given a set of Horn clauses P with Herbrand

base H, the minimal model min(P) of P is the smallest set M  H such that, for

every ground instance head  body of a clause in P, head  M if body is true in M.

Notice that with this definition, the minimal model of P is equivalent to the minimal

model of ground(P), the set of all ground instances of P.

Since the body of a Horn clause is a conjunction of atomic formulas, the condition

that body is true in M is equivalent to the condition that atom  M for every atomic

condition atom in body. As we will see in section 6, the formulation in terms of the

truth of body in M has the advantage that it also applies to FOL-stratified clauses

whose bodies contain FOL conditions belonging to strata that are lower than the

stratum of the head of the clause.

Here we instantiate the semantics of LPS for the simplified case where L and

Dpost are Horn clause programs:

 Definition 4.9 (Computational task for Horn clauses). Given an LPS program

<R, L, D>, in which L and Dpost are sets of Horn clauses, the computational task is

as given in definition 4.4 with sem = min.

Later in the paper, we instantiate the abstract semantics for more general logic

programs containing non-atomic FOL conditions. In the meanwhile, we use the

more abstract semantics sem, to evaluate conditions in the operational semantics.

5. THE OPERATIONAL SEMANTICS

The operational semantics (OS) can be thought of as a potentially non-terminating

cycle, in which external events and internal actions are merged, the state is

destructively updated, and the agent thinks and decides what to do next. Thinking

can be interrupted to observe changes in the environment, and to perform actions.

 The cycle is relatively abstract, and is compatible with many different

implementations. In particular, although the OS is defined for programs written

with an explicit representation of time, it can also be implemented, as in [Kowalski

and Sadri 2011], directly for programs written in an external syntax in which

temporal order is indicated by the order in which conditions and events are written.

The cycle is also only semi-constructive. Extended states can contain a countably

infinite number of ground atoms, and an FOL query can have a countably infinite

number of answers. In practice, these infinities can be avoided, for example by

eliminating function symbols, as in Datalog. None the less, it simplifies the

treatment if we do not impose any theoretically unnecessary restrictions.

25

We assume that the i-th cycle coincides with the i-th state Si, and that states are

instantaneous, holding at the time point ti. The set of events evi takes place from

time ti-1 to time ti, transforming the state Si-1 into the state Si. This is equivalent to

assuming that the state Si-1 holds fixed between times ti-1 and ti, and that the events

evi take place instantaneously at time ti.

As we will see, actions are selected for possible execution at the end of the cycle,

but are combined with external events at the beginning of the next cycle. In the case

of conflict between the selected actions and external events, the environment

determines which sets of concurrent events actually occur.

5.1 Goal States

In addition to maintaining the current state Si, the OS maintains a goal state Gi,

which is a set (or conjunction) of goal trees. Every node in a goal tree is a goal clause

representing an alternative way of solving the top-level goal clause at the root of the

tree. This top-level goal clause is either an initial goal clause, or an instance of the

consequent of a reactive rule introduced when the antecedent of the rule becomes

true. To solve the computational task, all the goal trees must eventually be reduced

to true.

Definition 5.1 (Goal state). A goal state is a set (or conjunction) of goal trees.

A goal tree for a goal clause C0 is a set (or disjunction) of goal clauses organized as

nodes in a tree. The root of the tree is the goal clause C0. Every child node Ci is

obtained from its parent node Ci-1 by goal-reduction in steps 2.1 and 2.2 of cycle.

A branch of a goal tree is a sequence of nodes C0, C1, … Cn, n ≥ 0, starting with

the root node C0, and such that every node Ci is a child of the previous node Ci-1.

The top-level goal clause C0 of a goal tree is reduced to true if and only if there is a

branch C0, C1, … Cn of the tree with Cn = true. In this case we also say that the goal

tree is reduced to true.

The top-level goal clause C0 of a goal tree is reduced to false if and only if every

branch C0, C1, … Cn of the tree contains a goal clause Cn = false. In this case we also

say that the goal tree is reduced to false.

Logically, a goal state is the (possibly infinite) conjunction of its goal trees, and a

goal tree is the disjunction of the (finitely many) goal clauses that are its nodes. An

empty goal state is logically equivalent to true, and a goal tree that is reduced to

false is logically equivalent to false. Operationally, each goal tree is a separate

thread, independent of other goal trees.

To simplify the OS, we will assume that composite events in the antecedents of

reactive rules have been pre-processed, by performing backward reasoning (with

Levents) in advance, reducing composite events to conjunctions of simple events, FOL

conditions and temporal constraints. In the general case, this could give rise to an

infinite set of reactive rules.

 Although a practical implementation can work only with finite sets, in theory the

OS can handle such infinite sets. At the expense of complicating the OS, composite

event definitions could also be executed in the forward direction, as in many of the

integrity checking methods developed for deductive databases. Alternatively,

backward reasoning could be used at “run time” to reduce composite event

predicates to simpler event predicates. For simplicity, we ignore these (and other)

possibilities in this paper.

26

In addition to maintaining a goal state, the OS maintains a current set of reactive

rules Ri. A new rule is added to Ri when a conjunct in the antecedent of a rule

becomes true. The new rule represents an instance of the rest of the original rule

that needs to be true in the future.

5.2 The OS Cycle

Given an LPS program <R, L, D>, the i-th iteration of the OS cycle uses the set

evi of combined external events exti and actions acti to transform the state Si-1, rules

Ri-1 and goal state Gi-1 at time ti-1 into Si, Ri and Gi at time ti, generating a possibly

empty set candidate-actsi+1 of candidate actions to be merged with external events

and executed at the beginning of the next cycle. Initially i = 1, R0 = R, act1 = {}, and

G0, if it is not empty, consists of a one-node tree rooted at an initial goal clause C0.

To be faithful to the model-theoretic semantics, it is not possible to restrict the

amount of time that can be spent on step 0 of the cycle, which updates the state, and

on step 1, which processes the antecedents of reactive rules. In a practical system, it

would be necessary to ensure that these steps can be performed in a timely manner,

before the next time in the succession of time points.

 Assuming that this assurance can be given for steps 0 and 1, it is also necessary,

to restrict the amount of time spent on goal reduction in step for the same reasons,

2. This can be done in a number of different ways. If the time of the next iteration of

the cycle is known in advance, then the number of goal-reduction steps can simply

be restricted so that the time is not exceeded. Alternatively, the number of goal

reduction steps can be limited by a maximum amount Max, and this amount could

be decreased every time goal reduction is performed. We have implemented this

latter approach in our Prolog prototype, and it is the one we assume here.

 With these assumptions, the i-th iteration of the cycle consists of the following

steps:

Step 0. Update the current state. The environment arbitrates among the various

candidate actions submitted by different agents, together with any other externally

generated events, returning a set evi = exti  actsi that includes both external

events exti and a subset actsi of the submitted candidate actions candidate-actsi,

such that Dpre is true in sem(Si-1*  Lint  Ltimeless  evi*).
 State Si-1 is transformed into Si, by deleting any fluents p such that

terminated(p, ti-1, ti)  sem(Dpost  Lint  Ltimeless  Si-1*  evi*) and adding any

fluents p such that initiated(p, ti-1, ti)  sem(Dpost  Lint  Ltimeless  Si-1*  evi*).

 Let Gi = Gi-1, Ri = Ri-1 and candidate-actsi+1 = {}.

Step 1. Process antecedents of rules. For every reactive rule in Ri, construct

every parsing of the rule into the form:

 early-antecedents  other-antecedents  consequent

where early-antecedents is a conjunction of state conditions and simple events such

that all the time parameters in early-antecedents can be unified with the current

time ti, without making any temporal constraints in other-antecedents false, and

without constraining any of the time parameters in state conditions or events in

other-antecedents to be equal to or earlier than ti.

For each such parsing, and each ground instance early-antecedents σ that is true in

sem(Lint  Ltimeless  Si*  evi*), generate the corresponding “resolvent”:

27

 other-antecedents σ  consequent σ

simplify the temporal constraints in the resolvent, and add the simplified resolvent

as a new reactive rule to Ri.

For simplification, it is sufficient to delete any temporal constraints that are true

in sem(Ltemp  Ltimeless). If after simplification, other-antecedents σ is an empty

conjunction (equivalent to true), then the simplified resolvent is deleted from Ri and

added to Gi as a new top-level goal, starting a new goal tree (or thread).

Step 2. Process goal clauses. If the number of steps that can be performed has

reached Max, or if there are no new steps that can be performed in this iteration of

the cycle, then this iteration of the cycle terminates.

 Otherwise, while the number of goal-reduction steps performed so far has not

reached Max, and there are new steps that can be performed in this iteration of the

cycle, choose any goal clause C in Gi and perform one of the steps 2.1, 2.2 or 2.3.

Step 2.1. Reduce a composite event. Select a composite event atom in C, unify

the composite event atom with the head of some clause in Levents and update Gi by

adding the resolvent to Gi as a child of C. Note that there are no restrictions on the

time parameters in this step. This allows the goal-reduction of composite events to

look-ahead into the future, which is a kind of forward planning.

Step 2.2. Reduce a conjunction of state conditions and simple events. Select

a parsing of C of the form:

 early-consequents  other-consequents

where early-consequents is a conjunction of state conditions and simple events such

that all the time parameters in early-consequents can be unified with the current

time ti, without making any temporal constraints in other-consequents false, and

without constraining any of the time parameters in state conditions or events in

other-consequents to be equal to or earlier than ti.

If there is a ground instance early-consequents σ that is true in

sem(Lint  Ltimeless  Si*  evi*), then choose one such instance, generate the

“resolvent” other-consequents σ, simplify the temporal constraints, and update Gi by

adding the simplified resolvent to Gi as a child of C.

If after simplification, the resolvent is an empty conjunction (equivalent to true),

then the entire goal tree containing the goal clause can be deleted, because the top-

level goal clause in the tree is then also true.

Step 2.3. Choose a conjunction of simple actions for attempted execution.

Select a parsing of C of the form:

 actions  other-consequents

where actions is a conjunction of simple actions happens(a, T1, T2) such that all the

time parameters T1, T2 can be unified with the times ti and ti+1 respectively,

without making any temporal constraints in other-consequents false, and without

constraining any of the time parameters in state conditions or events in other-

consequents to be equal to or earlier than ti.

28

 Add all of the simple actions happens(a, T1, T2) in actions to candidate-actsi+1.

Using the successful execution of these actions to resolve these and other action

subgoals takes place in step 2.2 of the next iteration of the cycle.

Notes:

1. Steps 1 and 2 of the OS are the operational semantics of a single agent, possibly

interacting with other agents, both by observing changes in the environment and by

performing actions. In the multi-agent case, step 0 is global to all the agents, and as

a simplifying assumption the different agent cycles are all synchronized, so that all

of the agents try to perform their actions at the same time. Step 0 non-

deterministically selects a single possible set of concurrent events and updates the

current state for all the agents. In this way, the global state serves as a

coordination medium, in the manner of the Linda programming paradigm [Carriero

and Gelenter 1989] and the blackboard model [Hayes-Roth 1985].

 In the special case of a single agent maintaining only an internal state without

any interaction with the external environment, the internal state serves the same

function as the global state. In such a case, the agent needs to take responsibility

itself for ensuring that the collection of selected candidate actions

candidate-actsi+1 = actsi+1 = evi+1 is possible as specified by Dpre.

2. Step 2.3 allows the possibility that the selected actions may contain variables

other than time variables. This could be useful in the case of external actions where

the variables can give feedback about the result of the action. For example, the

variable X in the action move-forward(X, T) might be instantiated by the

environment indicating how far the action succeeded.

 Alternatively, and in the case of internal actions, we can insist that only ground

simple actions are selected for attempted execution. In the case of external actions,

feedback from the environment can be given instead by means of the change of state

resulting from the selected actions and other external events.

3. In steps 1, 2.2 and 2.3, different parsings amount to different ways of sequencing

state conditions and simple events in the same conjunction. For example, the

conjunction p(T1)  q(T2)  r(T3)  T1 ≤ T3  T2 ≤ T3 has the four correct parsings:

 p(T1)  q(T2)  r(T3) at the same time

p(T1)  q(T2) at the same time and before r(T3)

p(T1) before q(T2)  r(T3)

q(T2) before p(T1)  r(T3)

The three parsings in which r(T3) is selected before p(T1) or q(T2) are incorrect and

not allowed. Moreover, they are useless, because selecting r(T3) before p(T1) or q(T2)

makes it impossible to evaluate p(T1) or q(T2) in the future.

4. If a goal clause becomes false, then there is no point in trying to solve other

subgoals in the same goal clause. If an entire goal tree is reduced to false, then the

top-level goal clause in the tree is false, the instance of the reactive rule that

generated it is false, and the reactive rule itself is also false. In theory, the OS

should terminate in failure. However, in practice, we may want to allow the OS to

continue, trying to make all instances of the rules true in the future. Moreover, we

29

also have the option of providing a fail-safe, alternative way of solving any goal that

is vulnerable to failure.

5. In the various repetitions of step 2 within a given iteration of a cycle, the OS can

select any goal clause C in Gi. It can jump from one goal tree to another, attempting

to solve different top-level goal clauses concurrently. Or it can focus on one goal tree

at a time. Within a given goal tree, it can jump from one branch to another, trying

alternative ways of solving the same top-level goal clause concurrently. Or it could

focus on one way of solving a top-level goal clause, extending one branch of the goal

tree at a time.

6. In different iterations of a cycle, in step 2, the OS can re-select the same goal

clause C. In step 2.1, however, it may do so only to try to unify the selected

composite event atom in C with the head of a clause in Levents not tried in previous

iterations of the cycle. In step 2.2 it can re-try the same parsing early-consequents

of conditions and simple event atoms, because the relevant part of the augmented

current state Lint  Ltimeless  Si*  evi* may have changed. For similar reasons, in

step 2.3 it can re-try the same conjunction of actions, because actions that were not

possible before may become possible in the new current state.

6. FOL-STRATIFICATION

The operational semantics appeals to the abstract semantics sem. In this section, we

define FOL-stratification and instantiate sem to the FOL-perfect model semantics.

FOL-stratification is a generalisation of local stratification in which the restriction

on negative literals is generalised to non-atomic FOL formulas. The construction of

FOL-perfect models similarly generalises the construction of perfect models.

 As usual in logic programming, we treat a logic program P with variables as

standing for the set ground(P) of all its ground instances over the Herbrand

universe. By a ground instance of a clause head(X)  body(X, Y) we mean a clause

of the form head(x)  body(x, y), where x and y are sets of ground terms substituted

for the sets of variables X and Y respectively. The variables in X and Y do not

include any variables bound by quantifiers in FOL conditions in body(X, Y).

 Definition 6.1 (FOL-stratification). Let P be a ground logic program. Let

H = 0≤i≤α Hi, be a partitioning and ordering of the Herbrand base H of P. For

A  H, let stratum(A) = i if and only if A  Hi. Then P is FOL-stratified with respect

to Hi, 0≤i≤α, if and only if for every clause head  body in P and for every condition

C in body:

 if C is an atomic condition, then stratum(C) ≤ stratum(head)

if C is a non-atomic FOL condition, then stratum(A) < stratum(head)

for every atomic subformula A of C.

The definition of FOL-perfect model iteratively uses the perfect model of lower

stratum predicates to evaluate FOL conditions in the bodies of clauses, reducing the

clauses to Horn clauses, and generating the perfect model of the next higher

stratum as the minimal model of the reduced clauses:

30

Definition 6.2 (FOL-perfect model). Let P be an FOL-stratified ground logic

program with respect to Hi, 0≤i≤α. Let Pi be the set of all clauses head  body in P

such that stratum(head) = i. Then P0 is a set of Horn clauses.

The FOL-perfect model of P is defined by:

1. perfect(P0) = min(P0).

2. perfect(Pi+1) = min(Pi+1  perfect(Pi)).

3. If β is a limit ordinal, then perfect(Pβ) = 0≤ i<β perfect(Pi).

4. perfect(P) = perfect(Pα).

Case 2 of the definition appeals to the notion of the minimal model of a program Pi+1

possibly containing FOL conditions defined by perfect(Pi). The definition of the

minimal model of a set of Horn clauses generalises naturally to this case:

Definition 6.3 (Minimal model of program with FOL conditions). Let P = I  E be

a ground logic program with Herbrand base H, where E is a set of ground atoms

defining all the predicates in HE  H that occur in FOL conditions in the clauses I.

Then the minimal model min(P) of P is the smallest set M  H such that, for

every clause head  body in P, head  M if body is true in M, where an FOL

condition all of whose predicates belong to HE is true in M if and only if the

condition is true in E.

Notice the definition exploits the dual interpretation of the Herbrand interpretation

E both syntactically as a set of sentences in P = I  E, and semantically as

determining the truth of FOL conditions whose predicates belong to HE.

Notice also that the generation of min(P) can be regarded as a two-stage process:

First the FOL conditions whose predicates all belong to HE are evaluated in E,

resulting in a set of Horn clauses reduct(P, E), then min(P) is generated as the

minimal model of reduct(P, E). The reduct reduct(P, E) generalises the treatment of

negative literals in the Gelfond and Lifschitz [1988] reduct to FOL-conditions:

Definition 6.4 (Reduct). Let P = I  E be a ground logic program with Herbrand

base H, where E is a set of ground atoms defining all the predicates in HE  H that

occur in FOL conditions in the clauses in I.

 reduct(P, E) is the set of Horn clauses generated from P by deleting all FOL

conditions in the bodies of clauses in I that are true in E and deleting all clauses in I

that have an FOL condition that is false in E.

Note that E is contained in reduct(P, E). Thus case 2 of the definition of FOL-perfect

model could be rewritten alternatively as:

2. perfect(Pi+1) = min(reduct(Pi+1, perfect(Pi))

where min is the usual minimal model of a set of Horn clauses. We will see later

that this alternative formulation of the definition has the advantage that it extends

naturally to the case in which the program P is not statically FOL-stratified, but

becomes FOL-stratified dynamically during the construction of the perfect model.

 The definition of FOL-perfect model reduces to the definition of perfect model if

all non-atomic FOL conditions are simply negative literals. As in the case of perfect

31

models of locally stratified programs, FOL-perfect models of FOL-stratified

programs do not depend upon the stratification, always exist and are unique.

With the definitions of FOL-stratification and FOL-perfect model now in place,

we can instantiate the abstract specification of the computational task, given in

definition 4.4, to the case in which all the different components of an LPS

framework <R, L, D> are individually FOL-stratified.

Recall that definition 4.4 requires a specification of the semantics of the following

combinations of the components of the framework:

 sem(L  S*  ev*) and

 sem(Dpost  Lint  Ltimeless  Si-1*  evi*) , for all i > 0

Thus we need to show that each of the combined programs

 L  S*  ev* and

 Dpost  Lint  Ltimeless  Si-1*  evi*, for all i > 0,

is also FOL-stratified.

 In the case of the first program, it suffices to put the Herbrand base of S*  ev* in

the lowest stratum followed by the stratifications of the head predicates of Ltimeless,

Lint, Ltemp, and Levents, in that order.6

 Similarly in the case of the programs Dpost  Lint  Ltimeless  Si-1*  evi*, it suffices

to put the Herbrand base of Si-1*  evi* in the lowest stratum followed by the

stratifications of the head predicates of Ltimeless, Lint and Dpost, in that order.

 With these stratifications, the computational task is well-defined:

 Definition 6.5 (Computational task for FOL-stratified programs). Given an LPS

program <R, L, D>, in which L and Dpost are FOL-stratified, the computational task

is as given in definition 4.4 with sem = perfect.

7. SOUNDNESS AND COMPLETENESS

In this section we discuss the soundness and completeness of the operational

semantics OS of LPS for the case sem = perfect.

 THEOREM 7.1 (SOUNDNESS) Given an LPS program < R, L, D>, an initial

state S0, and initial goal state G0, suppose for every set exti of external events, where

i  1, the OS generates a set actsi+1 of actions.

 Let S* and ev* be the resulting sequences of states and events. Then R  G0 is

true in perfect(L  S*  ev*), if for every top-level goal clause C added in a goal state

Gi, i ≥ 0, there exists a goal state Gj such that i ≤ j and C is reduced to true in Gj.

Note that, in the special case where the sequence ev* is finite, the theorem states

that if the goal state eventually becomes true, then R  G0 is true. Note also that the

theorem refers to R  G0, rather than to R  G0  Dpre, because the requirement

that Dpre be true in perfect(L  S*  ev*) is covered by step 0 of the OS.

6 Note that other stratifications produce the same result: for example, the order Ltimeless, Ltemp, Lint, and Levents.

32

 SKETCH OF PROOF. The statement of the theorem mimics the definition of

truth for reactive rules and goal clauses. In particular, a sentence in the form of a

reactive rule X [antecedent  Y consequent] is true in a model, if whenever an

instance of the antecedent becomes true the corresponding instance of the

consequent becomes true.

 But whenever an instance of the antecedent becomes true, the corresponding

instance of the consequent is added as a top-level goal clause C to the current goal

state Gi. The fact that the corresponding instance of the consequent becomes true is

equivalent to there existing a goal state Gj where i ≤ j and C is reduced to true in Gj.

The only-if half of the theorem also holds under certain conditions on the non-

deterministic choices made in step 2 of the OS. In particular, the OS should perform

every goal-reduction that is possible in step 2.2, to ensure that any sub-goals that

are true in the model generated so far are recognized as being true by reducing

them to true. Similarly, the bound MAX on the amount of time available for

reducing composite events in step 2.1 should be large enough, to ensure that any

subgoals that are true in the model generated so far are recognized as true.

 As pointed out in [Kowalski and Sadri 2012b], the operational semantics is

incomplete. In particular, it cannot (1) preventively make a reactive rule true by

making its antecedent false, or (2) proactively make a reactive rule true by making

its consequent true before its antecedent becomes true.

Examples of these two kinds of incompleteness include:

1. attacks(X, you, T1)  ¬ prepared-for-attack(you, T1)

 surrender(you, T2)  T1 < T2  T1 + 

The OS cannot make the rule true by performing actions to make

prepared-for-attack(you, T) true and so ¬ prepared-for-attack(you, T) false.

2. enter-bus(T1)  have-ticket(T2)  T1 < T2  T1 + 

The OS cannot make the rule true by performing actions to make have-ticket(T2)

true before enter-bus(T1).

We have investigated the completeness of LPS with respect to the generation of

more restricted supported models. Informally speaking and ignoring composite

events, a Herbrand model M = perfect(L  S*  ev*) of a set of reactive rules R is

supported if for every action in every acti in M there is an instance of a reactive rule

in R of the form:

 antecedent  early-consequents  action  other-consequents

such that antecedent  early-consequents is true in M. It is possible to show that,

under certain conditions, the OS can generate all such supported models. However,

we do not discuss this issue further in this paper.

33

8. SOLVING THE COMPUTATIONAL ASPECT OF THE

FRAME PROBLEM

In this section, we show that the models obtained by destructive updates in LPS are

identical to the models obtained by using the event theory ET:

holds(P, T2)  initiated(P, T1, T2)

holds(P, T2)  holds(P, T1)  succ(T1, T2)  ¬ terminated(P, T1, T2)

We also define a generalization of FOL-stratification, which is needed to define the

natural, intended model of Q = ET  Dpost  L  S0*  ev*. We will then show that

the intended model of Q is identical to the FOL-perfect model of L  S*  ev*.

8.1 Weak stratification and weakly perfect models

The intended model of Q is constructed by partitioning the Herbrand base H of Q

into strata associated with the succession of time points t0,..., ti, ti+1,... determined by

succ(ti, ti+1)  perfect(Ltemp  Ltimeless):

H0 = {holds(p, t0) | p is an extensional fluent} 

 {a | a is an atom with a time-independent predicate} 

 {a | a is an atom with a temporal predicate, including succ} 

 {happens(e, t, u) | e is a simple event, and t and u are time points}

For i  0, H3i+1 = {holds(p, ti) | p is an intensional fluent}

H3i+2 = {initiated(p, t, ti+1) | p is an extensional fluent, and t is a time point} 

{terminated(p, t, ti+1) | p is an extensional fluent, and t is a time point}

H3i+3 = {holds(p, ti+1) | p is an extensional fluent}

H+1 = {happens(e, t, u) | e is a composite event, and t and u are time points}

The sets H0 and H3i+1 are themselves stratified: H0 is partitioned into strata

corresponding to the stratification of Ltimeless  Ltemp, and H3i+1 is partitioned into

strata corresponding to the stratification of Lint.

Applied to the predicates in the heads of clauses in Q, this stratification of H

determines an associated stratification of ground(Q):

Q0 = S0*  ground(Ltimeless)  ground(Ltemp)  ev*

For i  0, Q 3i+1 = {holds(p, ti)  body  ground(Lint)}

Q3i+2 = {initiated(p, t, ti+1) ← body  ground(Dpost)} 

 {terminated(p, t, ti+1) ← body  ground(Dpost)}

Q3i+3 = {holds(p, ti+1)  body  ground(ET)}

Q+1 = ground(Levents)

Unfortunately, Q is not FOL-stratified, because Q3i+3 contains unstratified instances

of the frame axiom:

 holds(p, ti+1)  holds(p, tj)  succ(tj, ti+1)   terminated(p, tj, ti+1)

where j > i+1 and holds(p, tj) is at a higher stratum than holds(p, ti+1). The problem

and its solution are similar to those for the program [Apt and Bol 1994]:

34

Succ: successor(X, s(X))

Even: even(0)

 even(Y)  successor(X, Y)   even(X)

The program has a natural stratification with all ground instances of Succ in the

lowest stratum, and with even(s(n)) in the stratum one higher than the stratum of

even(n). However, the program is not locally stratified, because there are ground

instances of the second clause in Even, for example even(0)  successor(s(0), 0) 

 even(s(0)), where the negative condition is at a higher stratum that the head.

 The problem is that the definition of local-stratification is too static, and does not

take into account the dynamic stratification obtained by the use of the reduct in the

construction of the perfect model. If we ignore the fact that the original program is

not locally stratified, and attempt to generate its perfect model, we see that the

second clause in Even is replaced in effect by the locally stratified clauses:

 even(s(t))   even(t) for all t such that successor(t, s(t))  min(Succ).

This dynamic variant of local stratification is called weak stratification, and it can

also be applied more generally to programs with FOL conditions. The definition is

virtually identical to the definition of perfect model, with perfect replaced by weakly-

perfect, and without requiring the program to be statically stratified in advance:

 Definition 8.1 (Weak FOL-stratification and weakly FOL-perfect model). Let P be

a ground logic program. Let H = 0≤i≤α Hi, be a partitioning and ordering of the

Herbrand base H of P. Let Pi be the set of all clauses head  body in P such that

stratum(head) = i.

1. If P0 is a set of Horn clauses all of whose conditions are in H0, then:

 weakly-perfect(P0) = min(P0).

2. If Pi is weakly FOL-stratified, with intended model weakly-perfect(Pi), and if

reduct(Pi+1, weakly-perfect(Pi)) is a set of Horn clauses all of whose conditions are

in Hi+1, then Pi+1 is weakly FOL stratified and:

 weakly-perfect(Pi+1) = min(reduct(Pi+1, weakly-perfect(Pi))).

3. If β is a limit ordinal, and for all 0≤ i< β, Pi is weakly FOL-stratified with

intended model weakly-perfect(Pi), then Pβ is weakly FOL-stratified and:

 weakly-perfect(Pβ) = 0≤ i<β weakly-perfect(Pi).

4. weakly-perfect(P) = weakly-perfect(Pα)

It is possible to show that if a program is weakly FOL-stratified with respect to one

stratification, then it is weakly FOL-stratified with respect to every other

stratification, and consequently the weakly FOL-perfect model is unique.

 In the case of the program Q, the use of the reduct in the construction of the

weakly-perfect model eliminates the unstratified instances of Q3i+3 and replaces

them by the stratified instances:

35

 holds(P, ti+1)  holds(P, ti)   terminated(P, ti, ti+1)

 for all ti, ti+1 such that succ(ti, ti+1)  perfect(Ltemp  Ltimeless).

8.2 The Frame Theorem

The following theorem links the two characterizations of the semantics of LPS.

 THEOREM 8.2 (FRAME THEOREM).

 perfect(L  S*  ev*) = weakly-perfect(ET  Dpost  L  S0*  ev*)

 – {head | head  body  ground(Dpost)}.

Equivalently, perfect(Dpost  L  S*  ev*)

 = weakly-perfect(ET  Dpost  L  S0*  ev*

 SKETCH OF PROOF. It suffices to show that

 perfect(Dpost  Lint  Ltimeless  Ltemp  S*  ev*)

 = weakly-perfect(ET  Dpost  Lint  Ltimeless  Ltemp  S0*  ev*).

This is because, in both models, Levents is used only in the last strata to superimpose

composite events on the underlying sequence of states and simple events.

 Note that ground(ET) = Q3  Q6 … Q3i+3 ..., where

Q3i+3 = {holds(p, ti+1)  body  ground(ET)}

It suffices to show that for all i > 0,

 perfect(Dpost  Lint  Ltimeless  Ltemp  S0*  S1* ...  Si+1*  ev*)

 = weakly-perfect(Dpost  Lint  Ltimeless  Ltemp  S0*  Q3 … Q3i+3  ev*).

This can be proved by induction on i.

9. COMPARISON WITH OTHER WORK

LPS evolved from our attempts to reconcile and combine conflicting approaches to

computing in such different areas as logic programming, production systems, active

and deductive databases, agent programming languages, and the representation of

causal theories in AI.

9.1 Deductive databases

Our attention was first drawn to the distinction between reactive rules and logic

programs by the distinction made by [Nicolas and Gallaire 1978] between deduction

rules and integrity constraints in deductive databases, both of which have a logical

semantics. However, the exact nature of the relationship between their semantics

was the subject of considerable debate in the early 1980s.

The two main views, to begin with, were the consistency view and the theorem-

hood view, both of which were defined relative to the completion of the database

[Clark 1978]. In the consistency view, an integrity constraint is satisfied if it is

36

consistent with the completion of the database. In the theorem-hood view, it is

satisfied if it is a theorem, logically entailed by the completion.

[Reiter 1988] also proposed an epistemic view, according to which integrity

constraints are statements about what the database knows. However, [Reiter 1988]

also showed that in many cases all three views are equivalent. For relational

databases, in particular, the three views are also equivalent to the standard view

that a database satisfies an integrity constraint if it is true in the database regarded

as a Herband model. The semantics of LPS is an extension of this idea in two ways:

First, it extends the idea of a database defined by a set of ground atomic sentences

to the idea of the database defined by an FOL-stratified logic program. Second, it

extends the notion that an integrity constraint is true in a model representing a

database state to the idea that the integrity constraint is true in a model

representing the entire collection of states and events.

The use of logic programs in LPS with FOL conditions was largely inspired by

transaction logic [Bonner and Kifer 1993], which uses such programs to define

database transactions. Although transaction logic focuses primarily on performing

composite actions, reactive rules can also be programmed using transactions. Like

LPS, transaction logic also employs destructive updates. But it employs a possible

world semantics, in which the semantics of transactions is defined in terms of paths

between possible worlds.

9.2 Abductive logic programming

The distinction between logic programs and integrity constraints also underpins

abductive logic programming (ALP) [Kakas et al. 1998; Denecker and Kakas 2002].

In ALP, a program consists of a triple <L, IC, A>, where L is a logic program, IC is

a set of integrity constraints, and A is a set of “abducible” predicates, not defined by

L. A goal G is an observation to explain or a state to achieve. The goal is solved by

generating a set  of ground atoms in the vocabulary of the abducible predicates

such that L   entails G, and L   satisfies the integrity constraints IC. Similarly

to the case of deductive databases, different notions of entailment and integrity

constraint satisfaction have been proposed.

 LPS is a variant of ALP, in which the abducible predicates are restricted to

simple actions, and observations are events and fluents that can be queried in the

global state and do not require explanation. Moreover, the semantics is simplified so

that entailment and integrity satisfaction are understood in the same way, as

meaning that G  IC is true in the FOL-perfect model of L  . The operational

semantics of LPS is a variant of the IFF proof procedure [Fung and Kowalski 1997],

originally developed for Kunen’s three valued completion semantics [Kunen 1987].

9.3 Logic programming semantics

The inclusion of FOL conditions in LPS is an important feature, motivated by their

use in transaction logic to query databases states during the course of performing

database updates. FOL-stratification and weak-FOL stratification with their

associated models provide a natural setting for evaluating such FOL conditions.

Moreover, weak FOL-stratification also provides a natural semantics for event

theories such as ET. But stratification goes against current trends in logic

programming, where the dominant approaches are the well-founded semantics [Van

Gelder et al. 1991] and stable model semantics [Gelfond and Lifschitz 1988].

37

 It may, of course, be possible to redo the semantics of FOL conditions in other

approaches. In particular, there may be a natural way to represent alternative sets

of possible concurrent events and the resulting states as alternative stable models.

It may also be possible to modify the evaluation of FOL conditions to use a three-

valued semantics.

On the other hand, the extension of stratification and perfect models to the case

of FOL conditions may have other uses. For example, the application of Datalog to

declarative networking [Loo et al 2009; Hellerstein 2010; Loo et al 2012] makes

heavy use of stratification, and the extensions of stratification in this paper might

also be useful in that domain.

9.3 Agent systems

LPS is a direct descendant of our work on ALP agents [Kowalski and Sadri 1999,

Kowalski 2011], which embed ALP in the thinking component of a BDI-like agent

[Rao and Georgeff 1995] cycle. In ALP agents, the logic program L represents the

agent’s beliefs, and the goals and integrity constraints G  IC represents the

agent’s desires. The logic program L includes a deductive database that represents

the agent’s view of its environment. The database is updated by means of an event

theory, which uses frame axioms. The ALP agent approach was developed further

in the KGP agent model [Kakas et al. 2004; Mancarella et al. 2009]. In contrast,

LPS and most practical agent systems employ a destructively updated database

that represents the current state.

 A number of other authors have also developed agent languages and systems

within a logic programming context. For example in both DALI [Costantini and

Tocchino 2004; Costantini and Tocchino 2006] and EVOLP [Brogi et al. 2002],

events transform an initial agent logic program into a sequence of logic programs.

The semantics of this evolutionary sequence is given by the associated sequence of

models of the sequence of programs. In LPS, this sequence is represented by a

single model by using time stamps.

 In EVOLP, the sequence of logic programs is non-deterministic and allows for a

directed graph of possible state evolutions, because stratification is not imposed. In

LPS, non-determinism arises from the possibility of choosing different actions to

generate state transitions, while still imposing stratification. Moreover, EVOLP

allows rules to be updated, and not only fluents as in LPS.

 FLUX [Thielscher 2005] is an agent language with several features similar to

LPS, including the use of destructive assignment to update states. In FLUX, these

states are not represented by atomic sentences as in LPS, but are reified as terms

in a list-like structure.

 [Thielscher 2010] provides a declarative semantics for AgentSpeak by defining

its cycle and procedures by means of a meta-interpreter represented as a logic

program. Like LPS, the resulting agent language incorporates a formal transition

theory. However, unlike LPS, the language does not distinguish between different

kinds of AgentSpeak procedures, according to their different functionalities. LPS, in

contrast, distinguishes between reactive rules, and logic programs, representing

different kinds of procedures in different ways. Somewhat closer to LPS is the

agent architecture of [Hayashi et al. 2005; Hayashi et al 2009], which separates the

representation of reactive rules and planning clauses. Planning is done by means of

Hierarchical Task Networks, which are like logic programs that reduce composite

events to simpler events in LPS.

38

 [Eiter et al. 1999]] define an extension of logic programming in which the

clauses represent the conditions under which actions are permitted, forbidden,

obliged or waived. All reasoning takes place and is completed within a single

iteration of the agent cycle. In the LPS cycle, reasoning can be interrupted both to

assimilate events and to generate actions.

 In contrast with approaches that map agent programs into logic programs,

MetaTEM [Fischer 1994] maps agent programs into temporal modal logic sentences

of the form “past or present conditions imply present or future conclusions”. As in

LPS, computation attempts to generate a model in which such agent programs are

true. In contrast with MetaTEM, which employs a possible world semantics and

frame axioms for updating states, LPS uses a language with an explicit

representation of time, an extension of the perfect model semantics, and an

operational semantics with destructive updates.

9.4 Active databases

As pointed out by [Bailey et al. 1995], although they differ in their intended

applications and research communities, agent systems and active databases employ

similar approaches to programming reactive systems. For example, AgentSpeak

[Rao 1996] employs agent programs that are plans consisting of a triggering event,

a context, which specifies the conditions that should hold when the plan is

triggered, and a body, which specifies the goals the agent should achieve or test,

and the actions the agent should execute. Active databases employ similar event-

condition-action (ECA) rules to react to events, test conditions and perform actions.

Both agent system plans and ECA rules maintain a destructively updated database

state, but lack a declarative semantics.

 A number of researchers, working mainly in the deductive database area, have

addressed the problem of developing a declarative, logic-based semantics for active

databases. In the majority of these approaches ECA rules are mapped into logic

programs to provide them with a logic programming semantics.

[Zaniolo 1993], for example, uses a situation calculus-like representation with

frame axioms, and reduces ECA rules to logic programs. Statelog [Lausen et al.

1998] also uses a situation-calculus-like representation for the succession of

database states. Like Zaniolo, Statelog represents ECA rules as logic programs, and

gives them a semantics based on logic programming.

[Fernandes 1997] also views ECA rules in terms of change of state, but use the

event calculus as the basis for an ECA language coupled with a deductive database.

The event calculus is used to evaluate the condition part of the ECA rules and to

provide a specification for the effects of executing the action part. The ECA language

also allows the recognition of complex events from an event history.

ERA (Evolving Reactive Algebraic Programs) [Alferes et al. 2006] extends the

dynamic logic programming system EVOLP [Brogi et al. 2002] by adding complex

events and actions as well as external actions. ERA combines ECA and logic

programming rules, and the firing of the ECA rules can generate actions that add or

delete ECA or logic programming rules, as well as external actions. In the

operational semantics the ECA and logic programming rules maintain their distinct

characteristics, but in the declarative semantics the ECA rules are translated into

logic programs. The declarative semantics is based on a variant of stable models

developed for EVOLP.

[Caroprese et al.2006] also transform active integrity constraints into logic

programs. They characterise the set of “founded” repairs for the database as the

39

stable model of the database augmented by the logic programming representation of

the active integrity constraints. [Fraternali and Tanca 1995] also consider active

databases but provide a logic-based core syntax for representing low-level,

procedural features of active database rules. They provide procedural semantics for

core rules and show how this can capture the procedural semantics of known active

database systems.

9.5 Production systems

Arguably, production systems [Newell 1973], in which programs are expressed as

condition-action rules, are the simplest example of a reactive system, and the

earliest ancestor both of agent systems and active databases. It was the attempt to

understand the difference and relationship between production rules and logic

programming rules that eventually led to our development of LPS. Several other

authors have made related attempts, with the aim of providing production rules

with a declarative semantics. In the majority of these approaches production rules

are mapped into logic programs.

[Raschid 1994] focuses on the use of production rules as reactive rules and as

forward-reasoning logic rules. She first maps rules that add facts into logic

programs, and rules that delete facts into integrity constraints. She then transforms

the resulting combination of logic programs and integrity constraints into normal

logic programs, and uses the fixed point semantics of logic programming to chain

forward and simulate the production system cycle. [Baral and Lobo 1995] translate

production rules into the situation calculus represented as a logic program with the

stable model semantics. Their use of the situation calculus is similar to our

characterization of the computational task using the event theory ET, and thus uses

a frame axiom. [Dung and Mancarella 2002], on the other hand, use an

argumentation theoretic framework to provide semantics for production rules

extended with negation as failure.

Recently, there has been a revival of work on implementing production systems

in logic programming terms. For example, [Damasio et al. 2010] use incremental

Answer Set Programming (ASP) to realize different conflict resolution strategies for

the RIF-PRD production system dialect. [Eiter et al 2012] simulate production

systems in ACTHEX, an ASP framework with an interface to an external

environment. The simulation does not use an explicit representation of state, but

achieves state changes by updating and accessing the environment via action atoms

and external atoms. [Rezk and Kifer 2012] combine production rules and ontologies,

using transaction logic.

In comparison with other approaches that map reactive rules into logic programs,

our approach has been to develop a semantics that respects the distinct natures of

logic programs and reactive rules. In LPS, reactive rules and logic programs are

both expressed in logical form, but logic programs represent beliefs that determine

model theoretic structures, and reactive rules represent goals that are meant to be

true in those models.

9.6 Causal theories in AI

ALP agents [Kowalski and Sadri 1999; Kowalski 2011] and the KGP agent model

[Kakas et al. 2004] employ the event calculus to represent and reason about the

relationship between fluents, actions and other events. Unlike the situation

calculus, which reifies global states or situations, the event calculus reifies time

40

points and events. However, in both the situation calculus and event calculus,

axioms are used to derive atomic sentences representing states of the world.

Destructive updates are not possible, because it is not possible to change the axioms

in the middle of a proof.

However, because ALP agents are embedded in an agent cycle, they can also

directly observe the current state of the world, and thereby avoid the need to reason

about it. In other words, the world can serve as its own representation, as advocated

by [Brooks 1991]. This ability of an agent to observe the world instead of reasoning

about its representation highlights the fact that the world is a semantic structure

that gives meaning to an agent’s thoughts. Because the world is a semantic

structure, it is not constrained by the restrictions of axioms that are not allowed to

change during the course of a proof.

Adopting this view of the world as a semantic structure is compatible with a

model-theoretic semantics of ALP, in which the logic program L and set of

assumptions  determines a model of L   that makes the goal and integrity

constraints G  IC all true. Moreover, it justifies the destructive updates and model-

theoretic semantics of LPS. To the best of our knowledge, LPS is the only framework

employing a causal theory that combines destructive updates with a logic-based

semantics.

We do not claim that the use of destructive updates eliminates all need to reason

with frame axioms. On the contrary, frame axioms are needed to prove certain

properties of LPS programs. This is an area of work that we are currently

investigating.

9.7 Parallelism and concurrency

LPS combines an AI approach to the representation of concurrent actions with a

Linda-like use of a shared state as a coordination medium. The AI component comes

from the use of the domain theory D, to reason about the combined effects of

concurrent actions, in the spirit of [Reiter 1996]’s treatment of concurrent actions in

the situation calculus and [Miller and Shanahan 2002]’s treatment in the event

calculus.

 Recently, [Khandelwal and Fox 2012] have extended Miller and Shanahan’s

approach, to define the effects of multiple actions by using aggregate formulas in

first-order logic. Our approach can be regarded as an approximation to theirs, and

would benefit from a similar extension using aggregate formulas.

 Unlike some other approaches that use message passing to handle concurrency,

LPS uses a Linda-like shared state, which is similar also to the blackboard

architecture used in AI. Our assumption that the environment non-deterministically

decides which sets of possible concurrent events actually occur is similar to the use

of a “supervisor” in [Dovier et al. 2012], to arbitrate between the conflicting actions

of different agents in the pursuit of different goals. In addition, [Dovier et al. 2012]

also provides communication primitives, to allow agents to resolve conflicts through

negotiation. The semantics is defined in terms of state transitions, but does not

provide an explicit treatment of reactivity.

Although the approach to concurrency behaves naturally with such challenging

problems in concurrent programming as the dining philosophers’ problem, we need

to investigate more deeply the relationship with the treatment of parallelism and

concurrency in databases management systems and conventional programming

languages more generally. In this respect, it is encouraging to note the recent

developments [Hellerstein 2010] in the use of Datalog and the explicit

41

representation of time for programming distributed and parallel systems. Although

frame axioms are represented explicitly in [Hellerstein 2010], they are not used in

the implementation, using instead “traditional storage technology rather than re-

deriving tuples each timestep”. Our frame theorem can be regarded as a justification

for the use of such technology.

9.8 Reactive systems

An LPS framework <R, L, D> is essentially a reactive system in which logic

programs L and causal theories D play a supporting role to reactive rules R. [Harel

1986] contrasts reactive systems with “transformational systems”, which transform

inputs into outputs in a mathematically well-behaved manner. In contrast with

transformational systems, reactive systems are “event-driven, continuously having

to react to external and internal stimuli”. He further characterises them as being an

extension of state transition systems, having the general form “when event  occurs

in state A, if condition C is true at the time, the system transfers to state B”. [Harel

2009] notes that StateCharts, a graphical language for reactive systems, is “the

heart of the UML - what many people refer to as its driving behavioral kernel”.

As [Reisig 2012] puts it, an initialized, deterministic transition system is “a triple

C = (Q, I, F) where Q is a set (its elements are denoted as states), I ⊆ Q (the initial

states), and F : Q → Q (the next-state function)”. Transition systems can be

extended to reactive systems in which the transition from one state to the next is

“not conducted by the program, but by the outside world”.

But even in their simpler “initialized, deterministic” form, transition systems

have been proposed as a general model of Computing. Reisig points out that in

[Knuth 1973], the first volume of The Art of Computer Programming, Donald Knuth

suggests their use as a general semantics for algorithms.

LPS can be viewed as an attempt to reconcile Harel’s two kinds of computational

formalism, with reactive rules providing the main reactive component of the system,

and logic programs providing structure for the “transformational part”. In addition,

LPS also attempts to incorporate deductive database functionality and features of

causal theories in AI.

10 Future work

LPS has its origins in AI knowledge representation and reasoning languages, but for

the sake of efficiency and to focus on the features required for database and

programming applications, the AI features have been deliberately restricted and

simplified. For example, the abductive explanation of observations, which was one of

the main motivations of ALP, has been deliberately left out. Similarly, the ability to

perform preventative maintenance, which is a feature of the IFF proof procedure for

ALP, has also been left out.

There are two complementary, directions for future work. One direction is to

reintroduce into LPS some of the more powerful, but also more expensive features of

ALP agents – for example the planning clauses in some of the earlier versions of

LPS. Such features might also include more expressive integrity constraints,

bearing in mind that reactive rules are just a species of integrity constraint in ALP.

The other direction is to further restrict the framework to make it more efficient

or to specialize it for particular application domains – for example, by restricting the

use of function symbols, as in Datalog. This direction also includes further

42

development of the operational semantics – for example to specify efficient

strategies for executing composite events in the antecedents and consequents of

rules.

There is also a third direction, which combines the other two, by adding more

powerful features for particular classes of applications. This includes extending the

syntax of FOL conditions to include the use of aggregation operators and more

complex kinds of composite events.

The extension to include aggregation operators should not be too difficult, because

it requires only extending the definition of the truth of a sentence in a Herbrand

interpretation. Moreover, it can be implemented in a similar manner to the

implementation of aggregate operators in relational database systems, Prolog and

ASP.

The extension to include more complex composite events does not require any

extension of the semantics, but requires only extending the current state to include

a window of previous events. This window can then be queried along with other

facts in the current state using arbitrary FOL conditions, augmented perhaps with

aggregation operators.

We have implemented a prototype of LPS in LPA Prolog, which includes some of

the details necessary for a more complete language. For example, the

implementation uses a Prolog-like depth-first search to choose goal clauses for goal

reduction. Some obvious additional improvements include the use of a constraint

solver for handling temporal constraints and the use of a UML-like graphical

external syntax.

ACKNOWLEDGEMENTS

We are grateful to Imperial College for EPSRC Pathways to Impact funding, which

has supported the implementation of LPS. Many thanks also to David Kinny and

Ken Satoh for helpful discussions, and to Ken Satoh and Luis Pereira for their

comments on an earlier draft of this paper.

REFERENCES

Alferes, J.J., Banti, F., Brogi A. 2006. An Event-Condition-Action Logic Programming

Language. In: 10th European Conference on Logics in Artificial Intelligence, M. Fisher, W.

van der Hoek, B. Konev and A. Lisitsa (eds.), JELIA06: Lecture Notes in Artificial

Intelligence 4160, Springer-Verlag. 29- 42.

Apt, K. R., & Bol, R. N. (1994). Logic programming and negation: A survey. The Journal of

Logic Programming, 19, 9-71.

Bailey, J., Georgeff, M., Kemp, D., Kinny, D., & Ramamohanarao, K. 1995. Active databases

and agent systems—A comparison. Rules in Database Systems, 342-356.

Baral, C., Lobo, J. 1995. Characterizing production systems using logic programming and

situation calculus http://www.cs.utep.edu/baral/papers/char-prod-systems.ps

Bonner, A., Kifer, M. 1993. Transaction logic programming. In Warren D. S., (ed.), Logic

Programming: Proc. of the 10th International Conf., 257-279.

Brogi, A., Leite, J. A., Pereira, L. M. 2002. Evolving Logic Programs. In: 8th European

Conference on Logics in Artificial Intelligence (JELIA'02), S. Flesca, S. Greco, N. Leone, G.

Ianni (eds.), Spriger-Verlag, LNCS 2424, Springer-Verlag, 50-61.

Brooks, R.A. 1991. Intelligence Without Representation, Artificial Intelligence 47, 139-159.

http://www.di.unipi.it/~brogi/papers/JELIA06.pdf
http://www.di.unipi.it/~brogi/papers/JELIA06.pdf
http://centria.fct.unl.pt/~jja/page3/assets/jelia02.pdf

43

Caroprese, L. Greco, S., Sirangelo, C., Zumpano, E. 2006. Declarative Semantics of Production

Rules for Integrity Maintenance. In: 22nd International Conference on Logic Programming,

Etalle, S., Truszczynski, M. (eds.), LNCS 4079, 26—40.

Carriero, N. and Gelernter, D. 1989. Linda in Context. Communications of the ACM. Volume

32 Issue 4.

Clark, K. 1978. Negation as Failure. In: Readings in Nonmonotonic Reasoning, Morgan

Kaufmann, 311—325.

Costantini, S., Tocchio, A. 2004. The DALI Logic Programming Agent-Oriented Language. In:

Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, Springer, Heidelberg.

685–688.

Costantini, S. and Tocchio, A. 2006. About Declarative Semantics of Logic-Based Agent

Languages, Dalt 2005, LNAI 3904, Baldoni, M. et al (eds.), 106-123.

Damásio, C., Alferes, J., & Leite, J. 2010. Declarative semantics for the rule interchange

format production rule dialect. The Semantic Web–ISWC 2010, 798-813.

Denecker, M. AND Kakas, A. C. 2002. Abduction in logic programming. In Computational

Logic: Logic Programming and Beyond. Springer-Verlag, London, UK, 402–436.

Dovier, A., Formisano, A. and Pontelli, E. 2012. Autonomous agents coordination: Action

languages meet CLP() and Linda, Theory and Practice of Logic Programming.

Dung, P.M., Mancarella, P. 2002. Production Systems with Negation as Failure. IEEE

Transactions on Knowledge and Data Engineering, Volume 14 , Issue 2, 336—352.

Eiter, T., Subrahmanian, V.S. and G Pick, G. 1999. Heterogeneous active agents, I. AI

Journal, vol. 108, no. 1-2, 179-255.

Eiter, T., Feier, C., & Fink, M. 2012. Simulating production rules using ACTHEX. Correct

Reasoning, 211-228.

van Emden, M. and Kowalski, R. 1976. The Semantics of Predicate Logic as a Programming

Language, in JACM, Vol. 23, No. 4, 733-742.

Fernandes, A.A.A., Williams, M.H., Paton, N. 1997. A Logic-Based Integration of Active and

Deductive Databases. New Generation Computing, Volume 15, Number 2, 205—244.

Fisher, M. 1994. A Survey of Concurrent METATEM - The Language and its Applications.

Lecture notes in computer science, 827, Springer Verlag 480-505.

Fraternali P., Tanca L. 1995. A Structured Approach for the Definition of the Semantics of

Active Databases. ACM Transactions on Database Systems (TODS) Volume 20, Issue 4

 (December 1995), 414—471.

Fung, T.H. and Kowalski, R. 1997. The IFF Proof Procedure for Abductive Logic

Programming. J. of Logic Programming.

Gelfond, M., & Lifschitz, V. (1988, August). The stable model semantics for logic

programming. In Proceedings of the 5th International Conference on Logic programming

(Vol. 161).

Harel, D. 1987. Statecharts: A Visual Formalism for Complex Systems, Sci. Comput.

Programming 8 231-274.

Harel, D. (2009). Statecharts in the making: a personal account. Communications of the ACM,

52(3), 67-75.

Hayashi, H., Cho, K., & Ohsuga, A. 2005. A new HTN planning framework for agents in

dynamic environments. Computational Logic in Multi-Agent Systems, 55-56.

Hayashi, H., Tokura, S., Ozaki, F., Doi. M. 2009. Background Sensing Control for Planning

Agents Working in the Real World. International Journal of Intelligent Information and

Database Systems, Inderscience Publishers, 3(4): 483-501.

Hausmann, S., Scherr, M., Bry, F. 2012. Complex Actions for Event Processing, Research

Report, Institute for Informatics, University of Munich.

Hayes-Roth, B. 1985. A blackboard architecture for control, Artificial Intelligence, Volume 26,

Issue 3, 251-321.

Hellerstein, J.M. 2010. The Declarative Imperative: Experiences and Conjectures in

Distributed Logic, SIGMOD Record 39(1).

Kakas, A. C., Kowalski, R., Toni, F. 1998. The Role of Logic Programming in Abduction,

Handbook of Logic in Artificial Intelligence and Programming 5, Oxford University Press,

235-324.

http://www.pms.ifi.lmu.de/mitarbeiter/steffen-hausmann
http://www.pms.ifi.lmu.de/mitarbeiter/francois-bry
http://www.pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2012-6/PMS-FB-2012-6-paper.pdf

44

Kakas, A. C., Mancarella, P., Sadri, F.,Stathis, K, and Toni, F. 2004. The KGP model of

agency, In Proc. ECAI-2004.

Khandelwal, A., Fox, P. 2012. General Descriptions of Additive Effects via Aggregates in the

Circumscriptive Event Calculus.

Kowalski, R. 1979. Logic for Problem Solving, North Holland.

Kowalski, R. 2011. Computational Logic and Human Thinking: How to be Artificially

Intelligent, Cambridge University Press.

Kowalski, R. and Sadri, F. 1999. From Logic Programming Towards Multi-agent Systems,

Annals of Mathematics and Artificial Intelligence, Volume 25, 391-419.

Kowalski, R. and Sadri, F. 2009. Integrating Logic Programming and Production Systems in

Abductive Logic Programming Agents. In Proceedings of The Third International Conference

on Web Reasoning and Rule Systems, Chantilly, Virginia, USA.

Kowalski, R. and Sadri, F. 2010. An Agent Language with Destructive Assignment and Model-

Theoretic Semantics, In Dix J., Leite J., Governatori G., Jamroga W. (eds.), Proc. of the 11th

International Workshop on Computational Logic in Multi-Agent Systems (CLIMA), 200-218.

Kowalski, R. and Sadri, F. 2011. Abductive Logic Programming Agents with Destructive

Databases, Annals of Mathematics and Artificial Intelligence, Volume 62, Issue 1, 129-158.

Kowalski, R., & Sadri, F. (2012a). Teleo-Reactive abductive logic programs. Logic Programs,

Norms and Action, 12-32.

Kowalski, R. and Sadri, F. 2012b. RuleML 2012, A Logic-Based Framework for Reactive

Systems, Rules on the Web: Research and Applications, 2012 – Springer-Verlag. A. Bikakis

and A. Giurca (Eds.), LNCS 7438, pp. 1–15.

Kowalski, R., Sergot, M. 1986. A Logic-based Calculus of Events. In: New Generation

Computing, Vol. 4, No.1, 67—95.

Knuth, D. E. 1973, The Art of Computer Programming. Vol. 1: Fundamental Algorithms.

Addison-Wesley.

Kunen, K. 1987. Negation in Logic Programming. Journal of Logic Programming, 4:4 289—

308.

Lausen, G., Ludäscher, B., May, W. 1998. On Active Deductive Databases: The Statelog

Approach. In: Transactions and Change in Logic Databases, Decker, H., Freitag B., Kifer,

M., Voronkov, A. (eds.), LNCS 1472, Springer.

Lloyd, J.W., Topor, R.W. 1984. Making PROLOG More Expressive, Journal of Logic

Programming 1, 3 225-240.

Loo, B., Gill, H., Liu, C., Mao, Y., Marczak, W., Sherr, M., Wang, A., & Zhuo, W. 2012. Recent

Advances in Declarative Networking, Practical Aspects of Declarative Languages-14th

International Symposium, PADL 2012.

Loo, B. T., Condie, B. T., Garofalakis, M., Gay, D. E., Hellerstein, J. M., Maniatis, P.,

Ramakrishnan, R., Roscoe, T., and Stoica, I. 2009. Declarative Networking. In Commu-

nications of the ACM (CACM).

Mancarella, P., Terreni, G., Sadri, F., Toni, F., Endriss, U. 2009. The CIFF Proof Procedure for

Abductive Logic Programming with Constraints: Theory, Implementation and Experiments.

Theory and Practice of Logic Programming.

McCarthy, J. and Hayes, P. 1969. Some Philosophical Problems from the Standpoint of

Artificial Intelligence, Machine Intelligence 4, Edinburgh University Press. 463-502.

Miller R., Shanahan, M. 2002. Some Alternative Formulations of the Event Calculus.

Computational logic: logic programming and beyond. Springer-Verlag, 452-490.

Newell, A. 1973. Production Systems: Models of Control Structure. In: Chase W. (ed.), Visual

Information Processing, 463-526 New York, Academic Press, pp. 463—526.

Nicolas, J.M., Gallaire, H. 1978. Database: Theory vs. Interpretation. In: Gallaire, H., Minker,

J. (eds.), Logic and Databases, Plenum, New York.

Nilsson, N.J. 2001. Teleo-reactive Programs and the Triple-tower Architecture, Electronic

Transactions on Artificial Intelligence, Vol. 5, Section B, 99-110.

Pereira, F. C.N., Warren, D. H.D. 1980. Definite clause grammars for language analysis—A

survey of the formalism and a comparison with augmented transition networks, Artificial

Intelligence, Volume 13, Issue 3, 231–278.

http://www.springerlink.com/index/611611L136R3714R.pdf
http://www.springerlink.com/index/611611L136R3714R.pdf
http://users.sdsc.edu/~ludaesch/Paper/moc98.html
http://users.sdsc.edu/~ludaesch/Paper/moc98.html
http://www.fmi.uni-passau.de/~freitag/dynamics/lncs-book/index.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Terreni:Giacomo.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sadri:Fariba.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Toni:Francesca.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/e/Endriss:Ulrich.html
http://www.informatik.uni-trier.de/~ley/db/journals/corr/corr0906.html#abs-0906-1182

45

Przymusinski, T. 1987. On the declarative semantics of stratified deductive databases and

logic programs. Foundations of Deductive Databases and Logic Programming, Morgan

Kaufmann, J. Minker (Ed.) 193 – 216.

Przymusinska, H., Przymusinski, T. 1988. Weakly perfect model semantics for logic programs,

Fifth Int'l Conf. Symp. on Logic Programming.

Raschid, L. 1994. A Semantics for a Class of Stratified Production System Programs. J. Log.

Program. 21(1): 31—57.

Rao, A. (1996). AgentSpeak (L): BDI agents speak out in a logical computable language.

Agents Breaking Away, 42-55.

Rao, A. S., Georgeff, M. P. 1995. BDI Agents: From Theory to Practice, International

Conference on Multiagent Systems - ICMAS , 312-319.

Reiter, R. 1988. On Integrity Constraints. In: 2nd Conference on Theoretical Aspects of

Reasoning about Knowledge, pp. 97—111.

Reiter, R. 1996. Natural actions, concurrency and continuous time in the situation calculus, In

Proceedings of Principles of Knowledge Representation.

Reisig, W. (2012). The expressive power of abstract-state machines. Computing and

Informatics, 22(3-4), 209-219.

Rezk, M., & Kifer, M. (2012). Formalizing production systems with rule-based ontologies.

Foundations of Information and Knowledge Systems, 332-351.

Shanahan, M. (1997). Solving the frame problem: a mathematical investigation of the common

sense law of inertia. MIT press.

Thielscher, M. (2005). FLUX: A logic programming method for reasoning agents. Theory and

Practice of Logic Programming, 5(4-5), 533-565.

Thielscher, M. 2010. Integrating Action Calculi and AgentSpeak. In Proceedings of the

International Conference on Principles of Knowledge Representation and Reasoning (KR),

Lin, F and Sattler, U. (eds.), Toronto.

Van Gelder, A., Ross, K. A., & Schlipf, J. S. (1991). The well-founded semantics for general

logic programs. Journal of the ACM (JACM), 38(3), 619-649.

Zaniolo, C. 1993. On the Unification of Active Databases and Deductive databases. In: 11th

British National Conference on Databases, 23-39.

http://www.sigmod.org/dblp/db/journals/jlp/jlp21.html#Rschid94
http://www.sigmod.org/dblp/db/journals/jlp/jlp21.html#Rschid94
http://www.cs.utoronto.ca/kr/papers/natural.pdf
http://www.informatik.uni-trier.de/~ley/db/conf/bncod/bncod93.html#Zaniolo93
http://www.informatik.uni-trier.de/~ley/db/conf/bncod/bncod93.html#Zaniolo93

