

1

 An Agent Architecture that Unifies Rationality with Reactivity

Robert Kowalski and Fariba Sadri
Department of Computing, Imperial College
180 Queen's Gate, London SW7 2BZ, UK

{rak,fs}@doc.ic.ac.uk

Abstract

In this paper we analyse the similarities and differences between rational and reactive agent
architectures, and propose a unified architecture that aims to capture both as special cases. For
this purpose we employ a proof procedure as the thinking component of the agent. The proof
procedure combines definitions with integrity constraints. It uses definitions, in logic
programming manner, for "rational" reduction of goals to subgoals. It uses integrity
constraints for reactive, condition-action rule behaviour. We also employ a resource-bounded
formalisation of the proof procedure, so that the agent's thinking can be interrupted and
resumed to record and assimilate observations as input and to execute atomic actions as
output.

1 Introduction

The traditional notion of a rational agent in Artificial Intelligence focuses on the agent's reasoning
process and downplays its interaction with the environment. This notion has been challenged in
recent years by critics, such as Brooks [1991], who argue that, on the contrary, intelligence
resides in the ability of an agent to react appropriately to changes in its environment.

There have been many attempts, perhaps the most notable of which is that at DFKI [Fisher et
al., 1996], to combine rational and reactive capabilities within a single agent architecture. All of
these are hybrid architectures, which integrate the two capabilities without attempting to unify
them.

In this paper we propose a logic-based agent architecture that unifies rationality with reactivity.
Rationality is achieved by using definitions to reduce goals to subgoals. Reactivity is achieved
both by using integrity constraints to simulate condition-action rules and by formulating the proof
procedure in such a way that it can be interrupted to make observations and execute actions.

The rest of the paper is structured as follows. Sections 2 and 3 discuss the cycles of rational and
reactive agents, respectively. Section 4 outlines the proof procedure of the unified agent. Section
5 defines the unified cycle that uses the proof procedure as its thinking component. Section 6
argues that the unified cycle subsumes the other two. Section 7 shows how complex actions can
be defined in terms of lower-level actions. Section 8 concludes.

2 Rational Agents

A traditional database or knowledge base contains information in symbolic, often logical form.
Such a knowledge base can receive inputs, which are updates or queries. It may check whether
updates satisfy integrity constraints. However, the only output it can generate is in the form of
answers to queries. The amount of resources it might need to deduce such answers is unbounded.

The traditional approach to robotics in Artificial Intelligence uses such a knowledge base to
represent an agent's beliefs. In addition to beliefs, the agent has goals, which it seeks to achieve by
constructing a plan, which in the simplest case consists of a sequence of atomic actions. Only after
generating one or more complete plans does the agent choose one and begin to execute it.

Thus planning is separated from plan execution. Because the world changes and because the
agent may have incomplete or incorrect knowledge of its environment, actions which are planned
may fail when the attempt is made to execute them. For this reason, the agent needs to update its
knowledge base after every action and replan if necessary.

We will argue later that updates, queries and other requests can all be treated uniformly as
observations that are input from the environment.

At the top-most level, the cycle of a rational agent can be expressed in the form:

To cycle at time T,

i) observe any input at time T,
ii) record any such input,
iii) check the inputs for satisfaction of integrity constraints by reasoning forwards from the

input,
iv) solve (or re-solve) goals by constructing a plan (or replanning), using for steps (iii) and

(iv) a total of R units of time,
v) select a plan from among the alternatives, and select from the plan an atomic action which

can be executed at time T+R+2,
vi) execute the selected action at time T+R+2 and record the result,
vii) cycle at time T+R+3.

For simplicity, both here and throughout the remainder of the paper, we assume that the total
amount of time involved in any steps numbered (i) and (ii) is one unit combined, and for any steps
numbered (v) and (vi) is one unit each. We assume also that the agent executes only one atomic
action at a time.

The amount of resources R such an agent might spend on thinking in steps (iii) and (iv), both
checking the integrity of inputs and solving goals, is unbounded.

Critics of the traditional knowledge based approach argue that the lack of a bound on the
resources R renders the traditional, rational agent architecture unfeasible. They argue, moreover,
that generating complete plans before beginning to execute them is generally futile, because of the
unpredictability of the environment.

Some rational agent architectures, such as the "practical" realisation of the BDI architecture of
Rao and Georgeff [1992], mitigate the shortcomings of the rational agent cycle by restricting the
amount of reasoning that is performed in one agent cycle. We employ a similar, but somewhat
more general approach in our own unified agent cycle.

3

3 (Generalised) Reactive Agents

Perhaps the simplest way to achieve reactivity is to regulate the behaviour of an agent by
condition-action rules. At any given time, the agent simply matches the conditions of its rules
against observations input from the environment and immediately attempts to execute an action in
the conclusions of the rules. If several rules have their conditions satisfied, then a choice has to be
made from among the resulting actions.

Typically, such a purely reactive agent has no explicit goals. Whatever goals it achieves are
implicit in the emergent behaviour of the agent. The agent might have no knowledge base in which
to record its observations. The environment in which the agent is situated might serve, in effect, as
its own world model. In an extreme case, the agent might not even change its internal state from
one cycle to the next.

Example 3.1

The behaviour of a reactive agent could be governed by the following single rule, without the
agent having any explicit goals, beliefs or internal state:

if there is an intruder then raise an alarm.

The rule is triggered by an input observation of an intruder and generates an action of raising an
alarm as output to the environment. The use of the rule achieves a goal, i.e. maintaining security,
which is implicit rather than explicit.

We shall argue later that condition-action rules can be viewed as integrity constraints, and that
integrity constraints are goals. Thus in this example, the rule of raising an alarm whenever there is
an intruder can be regarded as an explicit goal, which is a subgoal of the implicit goal of
maintaining security.

Example 3.2

The two rules

if clear ahead then move forward
if obstacle ahead then turn right

implicitly achieve the goal of moving while avoiding obstacles, without the agent having any
explicit representation of the goal. Such rules, possibly augmented with an updatable local state,
are typical of the stimulus-response rules of Brooks' [1991] subsumption architecture.

Example 3.3

The generalised condition-action rule

if Agent requests do(self, Act, T2) at time T1
and Agent is friendly
and can do(self, Act, T2)
and T1<T2
then do(self, Act, T2)

requires more powerful reasoning mechanisms and gives rise to more powerful capabilities than
the simpler rules of examples 3.1 and 3.2. The rule is triggered by an input request occurring at
(transaction) time T1, but its remaining conditions are verified by consulting a knowledge base or
by matching later inputs observed before time T2 . The action itself is a commitment, which is
executed when the transaction time becomes equal to the domain time T2 of the action which is
requested.

Notice that the request, which could be a simple query, is treated like any other input. It is for
this reason that we do not distinguish between inputs which are updates and inputs which are
queries or other requests.

The rule in this example is typical of those which govern the behaviour of agents in Shoham's
[1993] AgentO. Such agents possess beliefs, to verify conditions of rules, but no explicit goals,
other than the goals associated with ensuring that the rules are obeyed.

In our attempt to unify rationality with reactivity, we formulate the two cycles in a way which
emphasises their similarities. For this purpose, we formulate a cycle for the generalised reactive
case, which accommodates all of the three examples above within a single generalised condition-
action rule interpreter:

To cycle at time T,

i) observe any input at time T,
ii) (optionally) record any such input,
iii) match conditions of condition-action rules with the inputs,
iv) (optionally) verify any remaining conditions of the rules using information in the

knowledge base, using for steps (iii) and (iv) a total of R units of time,
v) select an atomic action which can be executed at time T+R+2 from the conclusions of

rules all of whose conditions are satisfied,
vi) execute the selected action at time T+R+2, and (optionally) record the result,
vii) cycle at time T+R+3.

Assuming that optional steps are made mandatory, the two cycles share the same outer shell, steps
(i), (ii), (vi) and (vii). Otherwise, they differ in three respects.

First, they differ in the amount of resources R they use in steps (iii) and (iv). These resources
are unbounded for the rational agent, but limited to a small amount for the reactive agent.

Limiting the resources R used by the reactive agent is easy in cases, like examples 3.1 and 3.2,
where there is no knowledge base and where conditions are verified simply by matching them with
the input. It is more difficult in cases, like example 3.3, where reasoning is needed to verify some
of the conditions. One practical solution, employed in AgentO, is to restrict the form of the
knowledge base, so that conditions can be verified efficiently, within some predefined small
amount of time n.

Second, in step (v), the two cycles differ in the way they choose atomic actions to execute. The
rational agent first selects a complete plan of atomic actions from among the alternatives and then
attempts to execute a selected atomic action from the beginning of the plan. The reactive agent
selects an atomic action from among the conclusions of the rules all of whose conditions are
satisfied. However, both agents perform a form of conflict resolution among alternatives before
making a commited choice.

5

Simple reactive agents, of the kind illustrated in examples 3.1 and 3.2, always select an action in
step (v) and attempt to execute it in step (vi), if there is a rule all of whose conditions are satisfied.
But more general reactive agents, with condition-action rules of the kind illustrated in example
3.3, might have domain times associated with their actions. In such a case, no action might be
selected for execution, even when there is a rule whose conditions are fully satisfied, because the
domain time of the action might be later than the transaction time.

The first and second differences between the two cycles are both due to the difference between
the unlimited resources required by the rational agent compared with the limited resources
employed by the reactive agent.

In our attempt to unify rationality with reactivity, we will define a unified cycle which eliminates
the differences due to resource limitations. For this purpose, we employ a resource-bounded,
interruptable and resumable formalisation of the proof procedure of the rational agent, outlined in
[Kowalski, 1995] and developed by [Davila, 1996].

The third difference between the two cycles is their "knowledge representations". This is the
difference we will focus on in this paper. The reactive agent employs condition-action rules,
optionally augmented with a knowledge base for verifying conditions of rules. The rational agent,
on the other hand, employs a knowledge base of beliefs together with goals, which include
integrity constraints.

To eliminate the differences due to knowledge representation, we will employ in the unified
cycle a proof procedure which combines definitions, for goal reduction, with integrity constraints,
for condition-action rule behaviour.

4 The Proof Procedure

Before defining the unified agent cycle, we outline the proof procedure for the propositional case.
The proof procedure is based on that of [Fung, 1994; Kowalski and Fung, 1997; Wetzel et al.,
1995], and can be viewed as a hybrid of the proof procedures of Console et al. [1991] and
Denecker and De Schreye [1992]. It was originally developed with the goal of unifying abductive
logic programming, constraint logic programming and semantic query optimisation. A similar
proof procedure has been used for abductive planning in the event calculus [Kowalski and Sergot,
1986] by Denecker and De Schreye [1993] and Jung et al. [1996].

Definitions are used to represent the completely defined predicates of an agent's beliefs. They
have the form of generalised logic programs in if-and-only-if form:

(i) G ↔ D1∨ ...∨ Dn n ≥ 0.

If n=0 the disjunction, called the body of the definition, is equivalent to false. The disjuncts Di
are conjunctions

(ii) C1∧ ...∧ Cm m ≥ 1

where each conjunct Ci is either an atom (possibly true) or an implication of the form

(iii) B1∧ ...∧ Bp → E1∨ ...∨ Eq p,q ≥ 0.

where the conditions Bi are atomic formulae and the conclusion has the same form as the body of
a definition, i.e. the disjuncts Ei are conjunctions of the form (ii). If p=0 the conditions are
equivalent to true. If q=0 the conclusion is equivalent to false. A denial ¬B is represented as an
implication of the form B→false.

Goals statements are used to represent the goals of an agent. They have the same form

D1∨ ...∨ Dn

as the body of a definition.
Integrity constraints are implications of the form (iii). Every integrity constraint is a conjunct of

every disjunct of every goal statement. Thus, integrity constraints are effectively global goals,
which must always be satisfied.

In our unified agent cycle, generalised condition-action rules of the form

if B1and ... and Bp then
[do(self, Act11, T11) and ... and do(self, Act1n1, T1n1)]

or ... or
[do(self, Actm1, Tm1) and...and do(self, Actmnm,,Tmnm)]

are represented by integrity constraints of the form

B1∧ ...∧ Bp →
[do(self, Act11, T11) ∧ ... ∧ do(self, Act1n1, T1n1)]

∨ ... ∨
 [do(self, Actm1, Tm1) ∧ ... ∧ do(self, Actmnm ,Tmnm)]

where all variables are implicitly universally quantified, with scope the implication in which they
occur.

The actions in the conclusion of integrity constraints need not be atomic, as in the constraint

at(Agent, A, T) ∧ intruder(Agent) ∧ at(self, B, T) → do(self, move(B,A), [T, T+10])

where move is the complex action defined in section 7. Such a constraint cannot be replaced by
one involving atomic actions only, because move is recursive.

Integrity constraints can also express prohibitions, such as no agent can do two things at the
same time:

do(Agent, Act1, T) ∧ do(Agent, Act2,T) ∧ Act1 ≠ Act2 → false .

In the propositional case, the proof procedure has four inference rules, each of which
transforms a goal statement into an equivalent one. The proof procedure terminates when no
further inference rules can be applied. The resulting goal statement is equivalent to the initial goal
statement.

When the proof procedure is used for planning, when it terminates, each disjunct of the final
goal statement contains an alternative plan, which solves the top-level goal.

7

The inference rules are:

i) Goal reduction uses a definition

G ↔ D1∨ ...∨ Dn

(case 1) to replace a goal statement of the form1

(G ∧ G') ∨ D by ((D1∨ ...∨ Dn) ∧ G') ∨ D.

(case 2) to replace a goal statement of the form

((G ∧ G'→D') ∧ G") ∨ D
by ((D1 ∧ G'→D') ∧...∧ (Dn ∧ G'→D') ∧ G") ∨ D.

In case 1, goal reduction needs to be followed by the splitting rule, described below, to put the
resulting formula in goal statement form:

(D1 ∧ G') ∨ ... ∨ (Dn ∧ G') ∨ D.

Case 2 implicitly uses the equivalence

((B∨C) → Α) ↔ (B→ Α) ∧ (C→ Α).

ii) Splitting uses distributivity to replace a formula of the form

(D ∨ D')∧ G by (D ∧ G) ∨ (D'∧ G).

iii) Propagation replaces a goal statement of the form

(G ∧ (G ∧ G'→ D') ∧ G") ∨ D
by (G ∧ (G ∧ G'→ D') ∧ (G'→ D') ∧ G") ∨ D.

Logically, when the implication (G∧ G'→ D') is an integrity constraint or an implication derived
from an integrity constraint and G is the record of an input, propagation contributes to integrity
verification.

iv) Logical equivalences replace a subformula by another formula which is both logically
equivalent and simpler. These include the following equivalences used as rewrite rules:

G ∧ true ↔ G G ∧ false ↔ false
D ∨ true ↔ true D ∨ false ↔ D.
(true→ D) ↔ D (false→ D) ↔ true

1 Here and elsewhere, we assume the commutativity and associativity of conjunction and disjunction. In particular, when we
write a goal statement in the form (G ∧ G') ∨ D, we intend that G ∧ G' may be any disjunct in the goal statement and that G
may be any conjunct in the disjunct.

Definitions are used only for completely defined predicates. Incompletely defined predicates, such
as abducibles, constraints and inaccessible, externally defined data, have to be treated differently.
Following Denecker and De Schreye [1993], the simplest way to deal with them is to approximate
their definitions by means of integrity constraints, which are included, therefore, as conjuncts in
every disjunct of every goal statement.

Incompletely defined predicates include input predicates, which describe observations, and
output predicates which record the result of actions attempted by the agent. By recording
observations as integrity constraints in goal statements, the propagation inference rule implements
the triggering of condition-action rules by the input as a special case. The verification of the
remaining conditions of condition-action rules is performed by other propagation steps or by case
2 of goal-reduction.

In the general case, the proof procedure can reason with definitions containing certain patterns
of universal and existential quantifiers, as illustrated by the following

Example 4.1

Given the definition

maintain-security ↔
∀T[intruder at time T → ∃T'[do(self, raise-alarm, T') ∧ T < T' < T+10]].

and the goal statement

maintain-security ∧ intruder at time 1

goal reduction replaces the goal statement by the new goal statement

∀T [intruder at time T →
∃T'[do(self, raise-alarm, T') ∧ T < T' < T+10]]∧ intruder at time 1

Propagation, instantiating T to 1, adds the new subgoal

∃T'[do(self, raise-alarm, T') ∧ 1< T' < 1+10]

to the goal statement.
Notice that the implication obtained as the result of goal reduction has the form of an integrity

constraint which represents the condition-action rule of example 3.2.

This example illustrates a general phenomenon: Given a goal statement G and goal-reduction
rules KB we can, in many cases, replace both by an equivalent conjunction of integrity constraints
IC. In many cases these integrity constraints represent generalised condition-action rules. The
integrity constraints are equivalent to KB and G, in the sense that the proof procedure using IC
terminates with the same goal statements as the proof procedure using KB and G.

In effect, the integrity constraints IC are obtained from G and KB by performing at "compile
time" inferences that would otherwise need to be performed at "run time". For this reason, the run
time execution of IC is more efficient than that of G and KB . The process of transforming G and
KB into IC, called partial evaluation [Lloyd and Shepherdson, 1991], is a powerful, but standard
logic programming technique.

9

5 A Unified Agent Cycle

The proof procedure described in the previous section is the thinking component of our unified
agent cycle. The top-most level of the cycle has the form:

To cycle at time T,

i) observe any input at time T,
ii) record any such input,
iii) resume the proof procedure by propagating the inputs,
iv) continue applying the proof procedure, using for steps (iii) and (iv) a total of R units of

time,
v) select an atomic action which can be executed at time T+R+2 from among the alternatives,
vi) execute the selected action at time T+R+2 and record the result,
vii) cycle at time T+R+3.

Here, as in the reactive agent cycle, the amount of resources R available in steps (iii) and (iv) is
the smaller of some predefined amount n and the time taken to reach a state where no further
inference rules can be applied.

Example 5.1

Suppose we have the definition of example 4.1 and the cycle starts at time 1 with the initial goal

maintain-security .

Given an observation of an intruder at time 1, the recording of the observation will be completed
at time 2 in step (ii) by conjoining it to the goal. Provided the bound n on the resources R is
sufficiently large, goal reduction and propagation will be performed in step (iv), resulting in the
addition to the goal statement of the subgoal

∃T'[do(self, raise-alarm, T') ∧ 1< T' < 1+10] .

Provided 1+R+2, i.e. R+3, is not later than 11, the agent will attempt to raise an alarm at time
R+3. If the attempt is successful, the record

do(self, raise-alarm, R+3)

is conjoined to the goal. Otherwise, the record

do(self, raise-alarm, R+3)→ false

is conjoined instead.

The proof procedure has additional inference rules, such as factoring, to deal with variables and
quantifiers in the non-propositional case. In this example, in the case where the attempted action is
successful, the factoring rule will generate a disjunction corresponding to the two cases, T' = R+3
or T' ≠ R+3. The second case would be useful in a more complicated example where a successful
action may need to be retried later if other actions fail.

In the case where the attempted action fails, propagation with the implication which records the
action's failure will effectively add the "constraint" T' ≠ R+3 to the goal statement, which then
contains

∃T'[do(self, raise-alarm, T') ∧ 1<T'<1+10 ∧ T' ≠ R+3].

This allows the action to be retried in a future cycle, if time allows.
In more complicated examples where the goal statement is a disjunction and the selected atomic

action is one of several candidates for selection, the result of trying the selected action is, in effect,
broadcast to every disjunct. Whether the action succeeds or fails, the inference rules correctly
process the record on every disjunct. In particular, if any disjunct contains actions which are
inconsistent with the result of the action, then the proof procedure will add false to the disjunct.
The logical equivalences, in turn, will eliminate the disjunct from the goal statement completely.

6 The unified cycle subsumes the other cycles

In order to compare the rational and unified cycles we assume that both cycles use the same proof
procedure, outlined in section 4. It is then trivial to see that for any initial goal statement,
knowledge base and input, if one iteration of the rational cycle terminates after r units of time,
then there is a bound n, n=r, under which the unified cycle also terminates with the same
resulting goal statement.

More interestingly, still assuming that the two cycles use the same proof procedure, but
assuming that each iteration of the unified cycle is bounded by a small amount of time n, we can
show that for any initial goal statement, knowledge base and appropriate inputs, if one iteration of
the rational cycle terminates after r units of time with a plan all of whose actions eventually
succeed, then the unified cycle also terminates after r/(n+3) iterations with a goal statement which
contains a corresponding plan among the conjunctions of one of its disjuncts. For this purpose we
also need to assume that the rational cycle has available among its inputs accurate predictions of
the future corresponding to the incrementally obtained inputs of the unified cycle.

It is also possible to show that the unified agent cycle subsumes the reactive agent cycle.
Because the two cycles employ the same restricted resources R in steps (iii) and (iv), they differ
only with respect to their knowledge representations. It is easy to see that in the special case
where there are no definitions and, therefore, all integrity constraints, observations and other facts
are contained as conjuncts of every disjunct of every goal statement, propagation in steps (iii) and
(iv) of the unified cycle simulates steps (iii) and (iv) of the generalised reactive agent cycle. It
follows that, provided the actions in the condition-action rules are additive, in the sense that they
do not delete any definitions, observations or other facts, the unified cycle subsumes the
generalised reactive cycle.

 The unified cycle can also simulate cases where the condition-action rules are not additive by
employing a declarative representation of actions and their effects, as in the situation calculus or
event calculus. In such calculi, the deletion of a fact is represented as the termination of the
persistence of that fact as the result of recording a terminating action.

7 Complex Actions

The feasibility of our proposed unified agent architecture depends in large measure on the form of
the agent's goal-reduction rules and integrity constraints. The goal-reduction rules, in particular,
need to construct partial plans incrementally, so that execution can begin before all the atomic
actions in a plan have been generated.

11

For this purpose, the goal-reduction rules have to provide greater detail about the beginning of
a plan than they do about its end. This is illustrated by the following example.

Example 7.1

The following definition reduces the goal of moving from one place, A, to another place, B, to the
subgoals of first taking a single step to a next location, C, and then moving from C to B:

do(Agent, move(A,B), [T1,T2]) ↔ [Α=Β ∧ T1=T2]
∨ [next(A,C) ∧ clear(C, T) ∧ T1≤T≤T2 ∧
do(Agent, step(A,C), T) ∧ do(Agent, move(C,B), [T,T2])]

Here T1 and T2 are the earliest start time and the latest finish time, respectively, for the action
move(A,B).

Execution of actions generated by the definition can start after the first three conditions of the
second disjunct have been eliminated by goal reduction. The time T for the execution of step(A,C)
must be early enough for the remainder of the partial plan, move(C,B), to be completed before
time T2.

We assume that such scheduling of actions is performed by a separate control layer which
decides how to implement both the non-determinism of the proof procedure and of the selection
step (v) of the agent cycle. The control layer needs to decide, therefore, not only when to attempt
the atomic action step(A,C), but also which location, C, from among the alternative next locations,
to select. The control layer can use the same evaluation function both to guide the search strategy
of the proof procedure and to select among alternative disjuncts of the current goal statement
when commitments to actions need to be made.

The definition of complex actions in terms of other actions, illustrated in this example, is similar
to the definition of complex actions in Golog [Levesque et al., 1997]. Davila [1996] also uses
similar definitions as the target language into which he compiles programs written in a procedural
language. The procedural language allows complex actions to be defined using such operations as
sequential and parallel composition, conditionals and iteration.

8 Conclusions

In this paper we have outlined an attempt to reconcile the traditional notion of an intelligent agent
as one which plans its actions rationally in advance with the contrary notion of an intelligent agent
as one which reacts to changes in its environment.

This work extends earlier work [Kowalski, 1995; Kowalski and Sadri, 1996] with the same
objective. In this paper, in section 6, we have argued that the unified agent cycle subsumes the
rational and the reactive cycles. However, we have not explored the extent to which the unified
cycle improves the other cycles. This, together with the development of applications to multi-
agent systems, remains for future work.

References

[Brooks, 1991] Rodney Brooks. Intelligence without reason. In Proceedings of IJCAI 91,
Australia, Morgan Kaufmann, 1991, pp. 569-595.

[Console, et al., 1991] Luca Console, D. Theseider Dupre, Pietro Torasso. On the relationship
between abduction and deduction. Journal of Logic and Computation 2(5), 1991, pp 661-690.

[Davila, 1996] Jacinto Davila. REACTIVE PASCAL and the event calculus: a platform to
program reactive, rational agents. In Proc. Workshop on Reasoning about Actions and Planning
in Complex Environments, Bonn, 1996.

[Denecker and De Schreye, 1992] Marc Denecker and Danny De Schreye. SLDNFA: an
Abductive Proof Procedure for Normal Abductive Programs. In Proc. International Joint
Conference and Symposium on Logic Programming, 1992, pp 686-700.

[Denecker and De Schreye, 1993] Marc Denecker and Danny De Schreye. Representing
Incomplete Knowledge in Abductive Logic Programming. In Proc. International Symposium on
Logic Programming, 1993, pp 147-163.

[Fisher et al., 1996] Fischer, K., Mueller, J.P. and Pische, M. AGenDA: A General Testbed for
DAI Applications. Foundations of DAI, Jennnings, N. and O'Hare G.M.P. (eds.) John Wiley &
Sons, Inc. 1996.

[Fung, 1994] Tse Ho Fung. A modified abductive framework. In Proceedings of Logic
Programming Workshop, WLP'94, N. Fuchs and G. Gottlob (eds.), 1994.

[Fung and Kowalski, 1996] Tse Ho Fung and Robert Kowalski. The IFF Proof Procedure for
Abductive Logic Programming. Department of Computing, Imperial College, 1996.

[Jung et al., 1996] Jung, C., Fischer, K. and Alister Burt. Nonlinear Planning Using an Abductive
Event Calculus. DFK Report, 1996.

[Kowalski, 1995] Robert Kowalski. Using meta-logic to reconcile reactive with rational agents.
In Meta-Logic and Logic Programming. K. Apt and F. Turini (eds.), MIT Press, 1995, pp. 227-
242

[Kowalski and Sadri, 1996] Robert Kowalski and Fariba Sadri. Towards a Unified Agent
Architecture that Combines Rationality with Reactivity. Proceedings of International Workshop
on Logic in Databases, San Miniato, Italy, Springer-Verlag, 1996.

[Kowalski and Sergot, 1986] Robert Kowalski and Marek Sergot. A Logic-based Calculus of
Events. In New Generation Computing, Vol. 4, No.1, February 1986, pp. 67-95.

[Levesque et al., 1997] Hector J. Levesque, Raymond Reiter, Yves Lesperance, Fangzhen Lin,
and Richard B. Scherl. GOLOG: A Logic Programming Language for Dynamic Domains. To
appear in the Journal of Logic Programming, 1997.

[Lloyd and Shepherdson, 1991] John W. Lloyd and John C. Shepherdson. Partial evaluation in
logic programming. Journal of Logic Programming, vol. 11, 1991, pp. 217-242.

[Rao and Georgeff, 1992] Anand S. Rao and Michael P. Georgeff. An abstract architecture for
rational agents. Proceedings of the Third International Conference on Principles of Knowledge
Representation and Reasoning, KRR92, Boston, 1992.

[Shoham, 1993] Yoav Shoham. Agent-oriented programming. AI Journal, vol. 60, no. 1, March
1993, pp. 51-92.

[Wetzel et al., 1995] Gerhard Wetzel , Robert A. Kowalski and Francesca Toni. A Theorem-
Proving Approach to CLP. In Workshop Logische Programmierung, Krall A., Geske U. (eds.),
vol. 270 of GMD-Studien, September 1995, pp. 63-72.

