
An argumentation-theoretic approachto logic program transformationFrancesca Toni and Robert A. KowalskiDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZ, UKfft,rakg@doc.ic.ac.ukAbstract. We present a methodology for proving that any programtransformation which preserves the least Herbrand model semantics whenapplied to sets of Horn clauses also preserves all semantics for normallogic programming that can be formulated in argumentation-theoreticterms [3, 4, 16]. These include stable model, partial stable model, pre-ferred extension, stationary expansion, complete scenaria, stable theory,acceptability and well-founded semantics. We apply our methodology toprove that (some forms of) unfolding, folding and goal replacement pre-serve all these semantics. We also show the relationship of our method-ology to that of Aravindan and Dung [1].1 IntroductionThe standard semantics for de�nite logic programs (i.e. the least Herbrand modelsemantics) is preserved by most of the program transformations studied in the lit-erature, in particular by (some forms of) unfolding, folding and goal replacement(see [13] for a summary of these results). This paper provides a methodology forlifting these results from the de�nite logic program case to the normal logic pro-gram case, with respect to stable model [9], partial stable model [15], preferredextension [5], stationary expansion [14], complete scenaria [5], stable theory [10],acceptability [11] and well-founded semantics [18]. Most of the concrete casesobtained by applying our methodology 1 have been already shown elsewhere inthe literature (see [1] for some of these results). Therefore, the main contributionof this paper lies in the general technique rather than in the concrete results.All the semantics to which our methodology applies can be formulated inan argumentation framework [3, 4, 16], based upon a uniform notion of attackbetween sets of negative literals regarded as assumptions. We show that, to provethat any program transformation preserves all these semantics, it is su�cient toprove that there is a one-to-one correspondence between attacks before and afterthe transformation. This proof covers all of the semantics which can be de�nedin argumentation-theoretic terms, because the di�erent semantics di�er only inthe way in which they build upon the same notion of attack. This technique,for proving soundness and completeness of a transformation, has already been1 with the exception that unfolding and folding preserve the acceptability semanticsof [11]

used in [17] to show that abductive logic programs [16] can be transformed intonormal logic programs preserving all argumentation-theoretic semantics. Thisgeneral technique can be specialised to the case where the attacks before andafter the transformation are exactly the same. The methodology we proposeis a further specialisation of this technique, based upon the observation thatall attacks are preserved if a transformation preserves the least Herbrand modelsemantics when it is applied to de�nite logic programs. The transformation mustbe such that it is applicable in the de�nite logic program case. In particular,unfolding inside negation is not allowed.In [1], Aravindan and Dung show that (some forms of) folding and unfoldingpreserve the stable model, partial stable model, preferred extension, stationaryexpansion, complete scenaria, stable theory and well-founded semantics, due tothe fact that normal logic programs before and after the application of foldingand unfolding have the same semantic kernel [6] and that normal logic pro-grams and their semantic kernels have the same semantics (for each of stablemodel, partial stable model, preferred extension, stationary expansion, completescenaria, stable theory and well-founded semantics). We will show that this tech-nique, of proving the correctness of a program transformation by proving thatit preserves the semantic kernel, is equivalent to the technique of proving thecorrectness of a program transformation by proving that it preserves attacks.Therefore, our methodology can also be seen as a specialisation of Aravindanand Dung's. However, our methodology also generalises that of Aravindan andDung in the sense that it applies directly to many program transformations.Whereas Aravindan and Dung consider only forlding and unfolding, ours is ageneral methodology for showing that, under certain conditions, any transfor-mation that preserves the semantics of de�nite programs also preserves anysemantics of normal logic programs that can be de�ned in argumentation terms.The paper is organised as follows. First we apply the methodology to provethat the unfolding transformation, reviewed in section 2, preserves all seman-tics for normal logic programming which can be formulated in argumentation-theoretic terms of [3, 4, 16]. The unfolding transformation we consider is adaptedfrom [13]. Section 3 reviews the argumentation framework and the formulationof various normal logic programming semantics in this framework. Section 4proves that all semantics for normal logic programming formulated in the argu-mentation framework are preserved by unfolding. Section 5 presents the generalmethodology, by abstracting away from the proof in section 4. It also appliesthe general methodology to other transformations. Section 6 shows the relation-ships between our methodology and others, in particular the one in [1]. Finally,section 7 presents conclusions and discusses directions for further research.2 Unfolding transformationNormal logic programs are sets of clauses. A clause C is a formula of the formH L1; : : : ; Ln

where H is an atom, Li is a literal, i.e. either an atom or the negation of anatom, for i = 1; : : : ; n, and all variables inH;L1; : : : ; Ln are implicitly universallyquanti�ed. H is the head and L1; : : : ; Ln the body of the clause C, referred toas head(C) and body(C) respectively. De�nite logic programs are normal logicprograms with no negative literals.De�nition 1. Let P be a normal logic program and let C 2 P be a clauseH B1; A;B2 where A is an atom and B1; B2 are (possibly empty) sets ofliterals. Suppose that{ fD1; : : : ; Dmg, with m > 0, is the set of all clauses 2 in P such that A is uni�-able with head(D1); : : : ; head(Dm) with most general uni�ers �1; : : : ; �m, re-spectively, and{ Uj is the clause [H B1; body(Dj); B2]�j for j = 1; : : :m.Then, the result of unfolding C in P with respect to A is the program (P�fCg) [fU1; : : : ; Umg.The single unfolding step de�ned above can be repeated. A sequence of programsP1; : : : ;Pn is an unfolding sequence if any program Pk+1, with 1 � k < n, isobtained from Pk by applying an unfolding step.Proving the correctness of the unfolding transformation (i.e. its soundnessand completeness) with respect to a given normal logic programming semanticsSem amounts to proving that, for any unfolding sequence P1; : : : ;Pn and forany query 3 Q in the vocabulary of the original program P1: 4P1 j=Sem Q if and only if Pn j=Sem Q:By induction, it su�ces to show that, for any program P and for any programP 0 obtained by unfolding some clause in P ,P j=Sem Q if and only if P 0 j=Sem Q:More generally, to prove the correctness of a sequence of transformation steps,not necessarily unfolding steps, with respect to a semantics Sem it su�ces toprove that any such step is correct with respect to Sem.In section 4, we will show correctness of the unfolding transformation withrespect to all semantics Sem that can be formulated in the argumentation frame-work in terms of a single notion of attack.2 All variables in each of C, D1; : : : ; Dm are assumed to be standardised apart.3 In general, the correctness of unfolding as well as other program transformations isstudied with respect to a given subset of all possible queries in the vocabulary of theoriginal program. In this paper, for simplicity we will assume that the given subsetof queries coincides with the set of all possible queries.4 Here and in the rest of the paper, for any program Prog, Prog j=Sem Q stands for\Q holds in Prog with respect to the semantics Sem".

3 An argumentation frameworkThe abstract argumentation framework proposed in [3, 4, 16] can be used tode�ne many exisiting semantics for non-monotonic reasoning in general and fornormal logic programming in particular.De�nition 2. An argumentation framework is a tuple hT ;`;AB; ICi where{ T is a theory in some formal language,{ ` is a notion of monotonic derivability for the given language,{ AB is a set of assumptions, which are sentences of the language, and{ IC is a set of denial integrity constraints with retractibles.Normal logic programming can be formulated as an instance of such a framework.Given a normal logic program P , the corresponding argumentation frameworkis hT ;`;AB; ICi where{ T is the set of all variable-free instances of clauses in P ;{ ` is modus ponens for the clause implication symbol ;{ AB is the set of all variable-free negative literals;{ IC is the set consisting of all denials of the form :[A ^ not A], where A is avariable-free atom and not A is retractible.Other non-monotonic logics, including default logic, autoepistemic logic, non-monotonic modal logic can also be understood as special cases of such a frame-work [3, 4, 16].In any argumentation framework, a sentence is a non-monotonic consequenceif it follows monotonically from T extended by means of an \acceptable" set ofassumptions � � AB. Various notions of \acceptability" can be de�ned, basedupon a single notion of \attack" between sets of assumptions.Intuitively, one set of assumptions \attacks" another if the two sets togetherwith the theory violate an integrity constraint (i.e. the two sets together with thetheory derive, via `, the sentence which is denied by the integrity constraint), andthe set which is attacked is deemed responsible for the violation. Responsibilityfor violation of integrity can be assigned by explicitly indicating part of theintegrity constraint as retractible (see [12]). A set of assumptions which leads tothe derivation of a retractible is deemed responsible for the violation of integrity.Thus integrity can be restored by \retracting" such an assumption. Formally:De�nition 3. Given an argumentation framework hT ;`;AB; ICi:a set of assumptions �0 � AB attacks another set � � AB if and only if forsome integrity constraint :[L1 ^ : : : ^ Li ^ : : : ^ Ln] 2 IC with Li retractible,(1) T [�0 ` L1; : : : ; Li�1; Li+1; : : : ; Ln, and(2) T [� ` Li.In the simple and frequently occurring case where all retractibles in integrityconstraints are assumptions and any assumption � can be derived from T [�

only if � 2 �, for any � � AB, then condition (2) in the de�nition above be-comes(20) Li 2 �.This simpli�cation applies to the case of the argumentation framework corre-sponding to normal logic programming, where not A is retractible for everyintegrity constraint :[A^not A] in IC. Therefore, the notion of attack in the ar-gumentation framework hT ;`;AB; ICi corresponding to a normal logic programP reduces to the following:{ a set of variable-free negative literals �0 attacks another set � if and only ifT [�0 ` A, for some literal not A 2 �.Various notions of \acceptability" can be de�ned in terms of the same, uni-form notion of attack and can be applied to any non-monotonic logic de�ned inargumentation-theoretic terms. Here we mention some of the notions presentedin [3, 4, 16]: A set of assumptions which does not attack itself is called{ stable, if and only if it attacks all assumptions it does not contain, where �attacks � if and only if � attacks f�g;{ admissible, if and only if it attacks all sets of assumptions that attack it, i.e.it defends itself against all attacks;{ preferred, if and only if it is maximally admissible (with respect to set inclu-sion);{ weakly stable, if and only if for each set of assumptions that attacks it, theset together with the attacking set attacks some assumption in the attackingset which does not occur in the given set;{ stable theory, if and only if it is maximally weakly stable (with respect toset inclusion);{ acceptable 5, if and only if it is acceptable to the empty set of assumptions,where a set of assumptions � is acceptable to another set �0 if and only if� � � �0, or� for each set of assumptions �0 that attacks � - �0, there exists a set ofassumptions�00 such that �00 attacks �0 - (� [�0) and �00 is acceptableto � [�0 [�0;{ complete, if and only if it is admissible and it contains all assumptions itdefends, where � defends an assumption � if and only if, for all sets ofassumptions �0, if �0 attacks � then � attacks �0;{ well-founded, if and only if it is minimally complete (with respect to setinclusion).Note that for all of these semantics, an \acceptable" set of assumptions satis�esall the denial integrity constraints, since any such set does not attack itself.Note, moreover, that the notion of integrity satisfaction is compatible with three-valued semantics for normal logic programming, since satisfaction of the integrityconstraint :[A ^ not A] does not imply that either A or not A must be derived.5 This notion should not be confused with the informal notion of \acceptable" set ofassumptions used elsewhere in this paper.

Almost all existing semantics for normal logic programming can be expressedin argumentation-theoretic terms, as proved in [3, 4, 16]. In particular, stablemodels [9] correspond to stable sets of assumptions, partial stable models [15]and preferred extensions [5] correspond to preferred sets of assumptions, sta-ble theories [10] correspond to stable theory sets of assumptions, acceptability[11] corresponds to acceptable sets of assumptions, stationary expansions [14]and complete scenaria [5] correspond to complete sets of assumptions and well-founded semantics [18] corresponds to the well-founded set of assumptions. Asfar as we know, these include all existing semantics except the (various versions ofthe) completion semantics. Moreover, the same notions of \acceptability" applyalso to any other non-monotonic logic that can be de�ned in argumentation-theoretic terms.In the remainder of this paper we will refer to any semantics for normallogic programming which can be expressed in argumentation-theoretic terms(see above) as \argumentation semantics".4 Correctness of the unfolding transformationGiven a normal logic program P and the program P 0 obtained by unfolding someclause in P , let FP and FP0 be the argumentation frameworks corresponding toP and P 0, respectively.In general, the Herbrand base of P may be larger than the Herbrand base ofP 0, since the Herbrand universe of P may be larger than the Herbrand universeof P 0, as illustrated by the following example.Example 1. Consider the program Pp(X) q(a)q(X) r(b)and the program P 0 obtained by unfolding the �rst clause in P :p(X) r(b)q(X) r(b)The constant a belongs to the Herbrand universe of P but not to that of P 0.As a consequence, the set of assumptions in FP may be larger than the set ofassumptions in FP0 .For simplicity, it is convenient to assume that, except for P and P 0, FPand FP0 coincide, i.e. the two framework have the same monotonic derivabilitynotion, `, and the same sets of assumptions and integrity constraints. This as-sumption can be made, without loss of generality, by assuming that P and P 0 areformulated in the same vocabulary (Herbrand universe), which may, however,be larger than the vocabulary actually occurring in P and P 0 (this assumptionis also adopted elsewhere, e.g. in [13]).

Theorem4. Given any two sets of assumptions �0 and � in FP (and thereforein FP0),�0 attacks � in FP if and only if �0 attacks � in FP0 .Before proving this theorem, let us explore its consequences. Since the di�erentargumentation semantics can all be formulated in terms of the same notion ofattack and di�er only in the way they use this notion (see the end of section 3),thenTheorem5. For any programs Prog and Prog0, let FProg and FProg0 be thecorresponding argumentation frameworks. If(i) there is a one-to-one onto (bijective) mapping, m, from sentences in thevocabulary of Prog onto sentences in the vocabulary of Prog0, and(ii) there is a one-to-one correspondence via m between attacks in FProg andattacks in FProg0 , i.e. for every sets of assumptions �0, � in FProg, �0attacks � in FProg if and only if m(�0) attacks m(�)in FProg0 , 6then, for every argumentation semantics Sem, there is a one-to-one correspon-dence via m between Sem for Prog and Sem for Prog0, i.e. for all queries Q inthe vocabulary of Prog,Prog j=Sem Q if and only if Prog0 j=Sem m(Q):If Prog0 is obtained by applying a transformation to Prog, then this theoremexpresses a very general technique to prove correctness of the transformation.Such a general technique is needed when the given transformation changes thevocabulary of the original program, so that to establish the correspondence be-tween attacks, it is necessary to establish �rst a mapping between the vocabularyof the original program Prog and that of the transformed program Prog0. Thistechnique has been used in [17] to show that abductive logic programs [16] can betransformed correctly into normal logic programs, by mapping abducible atomsonto negative literals.When the transformation does not change the vocabulary of the originalprogram, as in the case of unfolding, then the mapping m can be taken to bethe identity function and condition (ii) reduces to the condition that the attacksin FProg and FProg0 are exactly the same. Therefore, theorems 4 and 5 directlyimplyCorollary 6. Let P be a normal logic program and P 0 be obtained by unfoldingsome clause in P. Then, for every argumentation semantics Sem for normallogic programming, Sem for P coincides with Sem for P 0, i.e. for all queries Qin the vocabulary of P,P j=Sem Q if and only if P 0 j=Sem Q:6 For every set of sentences S, m(S) = fm(�)j� 2 Sg.

Proof of theorem 4First note that we can assume that P and P 0 are variable-free. If they arenot, they can be replaced by all their variable-free instances over their commonHerbrand universe. Then, directly from the de�nition of attack, theorem 4 is animmediate consequence of the following lemma.Lemma7. For each atom A in the common Herbrand base of P and P 0 and foreach set of assumptions � in FP (and therefore in FP0),P [� ` A if and only if P 0 [� ` A.Lemma 7 follows from lemma 8. Here and in the rest of the paper, for any normallogic program Prog, Prog� stands for the de�nite logic program obtained byinterpreting every negative literal, not p, in Prog syntactically as a new positiveatom, p� (see [8]). Similarly, for any set of assumptions �, �� stands for thede�nite logic program obtained by interpreting every negative literal in � as anew positive atom.Lemma8. For any normal logic program framework hProg;`;AB; ICi, for anyset of assumptions � � AB and for any atom A in the Herbrand base of Prog,Prog [� ` A if and only ifProg� [�� ` A if and only ifA belongs to the least Herbrand model of Prog� [��.This lemma follows directly from the fact that a ground atom A belongs to theleast Herbrand model of a de�nite program (e.g. Prog� [��) if and only if it isderivable from the program, as proved in [7].Proof of lemma 7P [� ` Aif and only if (by lemma 8)A belongs to the least Herbrand model of P� [��if and only if (by the result that the unfolding transformation for de�nitelogic programs is correct with respect to the least Herbrand model seman-tics [13])A belongs to the least Herbrand model of (P 0)� [��if and only if (by lemma 8)P 0 [� ` A.This concludes the proof of theorem 4. Note that the proof of lemma 7 makesuse of the property that (P 0)� can also be obtained by applying unfolding to P�(by applying the same unfolding step used to obtain P 0 from P). In other words,the two operations 0 and � commute: (P 0)�=(P�)0.5 General methodologyIn proving the correctness of unfolding, we have used a technique which can beused more generally to prove that any transformation which preserves all attacks

also preserves all argumentation semantics. Note, however, that a preconditionof this technique, which holds for the unfolding transformation, is that the ar-gumentation frameworks corresponding to the programs before and after thetransformation should have the same set of assumptions, or, equivalently, thatthe Herbrand bases before and after the transformation coincide. We will referto this precondition as Property 1.In this section we will generalise the proof of theorem 4, to obtain a moregeneral methodology for proving the correctness of other program transforma-tions satisfying Property 1 as well as other properties we will discuss next. Thismethodology is less powerful than the technique expressed by theorem 5 but itspreconditions are easier to check. For this purpose, let us analyse the proof oftheorem 4.Theorem 4 is an immediate consequence of lemma 7, which, in turn, followsdirectly from two properties. The �rst, expressed by lemma 8, is a general prop-erty, which holds for any normal logic program in general and for the programs Pand P 0 before and after the unfolding transformation in particular. However, thesecond property, that unfolding preserves the least Herbrand model semantics ofde�nite programs, is speci�c (in the sense that it is not true for every transfor-mation). We will refer to this property as Property 2. Its applicability depends,in turn, upon the fact that unfolding a de�nite program produces a de�nite pro-gram (Property 3) and the fact that unfolding commutes with the operation �of interpreting negative literals as positive atoms (Property 4). The unfoldingtransformation we have considered satis�es Property 4 because it a�ects onlyatoms (we do not allow unfolding inside negation).No other properties, besides Properties 1, 2, 3 and 4, are required in theproof of the correctness of unfolding. Therefore, the same proof demonstrates thecorrectness, with respect to all argumentation semantics, of any transformationwhich satis�es Properties 1, 2, 3 and 4. This is the basis of our methodology,which is expressed by the following theorem.Theorem9. Given any transformation Transf from normal logic programs tonormal logic programs, let 0 be any speci�c application of this transformationproducing a deterministic result. Then, if for all normal logic programs P:Property 1: P 0 and P have the same Herbrand base;Properties 2 and 3: if P is a de�nite program then{ P 0 is a de�nite program (3),{ P 0 and P have the same least Herbrand model (2);Property 4: (P 0)�=(P�)0;then Transf is correct with respect to all argumentation semantics, Sem, i.e. forall queries Q, P j=Sem Q if and only if P 0 j=Sem Q:Proof: The conclusion of the theorem holds for P and P 0 if theorem 4 holds forP and P 0. Theorem 4 makes sense because Transf satis�es Property 1. Theorem 4

holds for P and P 0 if lemma 7 holds for P and P 0. But:P [� ` Aif and only if (by lemma 8)A belongs to the least Herbrand model of P� [��if and only if (by Properties 2, 3 and 4)A belongs to the least Herbrand model of (P 0)� [��if and only if (by lemma 8)P 0 [� ` A.This concludes the proof of theorem 9.This theorem can be used to establish the correctness of all versions of thefolding transformation which satisfy Property 2 (see [13]), since every version offolding satis�es the other properties. Moreover, it can be used to establish cor-rectness of any other transformation which satis�es all four properties. Consider,for example, the following version of goal replacement, adapted from [13].De�nition 10. Given{ a normal logic program P ,{ sets of atoms G1; G2, possibly empty, in the vocabulary of P ,{ C 2 P , a clause H B1; G1; B2, where B1; B2 are (possibly empty) sets ofliterals,let fX1; : : : ; Xng = vars(G1) \ vars(G2). 7 Suppose that{ G1 � G2 is an H-valid replacement rule with respect to P , i.e., for alla1; : : : ; an in the Herbrand universe of P ,� PH j=LHM 9G1[X1=a1; : : : ; Xn=an] if and only ifPH j=LHM 9G2[X1=a1; : : : ; Xn=an] 8 and� for all argumentation semantics Sem, for i = 1; 2,P j=Sem 9Gi[X1=a1; : : : ; Xn=an] if and only ifPH j=LHM 9[GiX1=a1; : : : ; Xn=an],where PH is the subset of P consisting of all and only Horn clauses,{ vars(H;B1; B2) \ vars(G2) = vars(H;B1; B2) \ vars(G1) = fX1; : : : ; Xng{ C 0 is the clause H B1; G2; B2.Then, the result of H-valid replacing the goal G1 in C 2 P by the goal G2 is(P�fCg) [fC 0g.This de�nition of H-valid goal replacement is equivalent to the de�nition of goalreplacement in [13] except for the notion of H-valid replacement rule, which is avariation of the notion of valid replacement rule in [13].7 For any set of expressions E1; : : : ; Em, vars(E1; : : : ; Em) stands for the set of all freevariables in E1; : : : ; Em.8 LHM stands for least Herbrand model semantics, and, for any sentence G, 9G standsfor the existential closure of G with respect to all variables occurring in G.

Let P 0 be the result of H-valid replacing the goal G1 in C 2 P by thegoal G2. If G2 � G1 is a H-valid replacement rule with respect to P 0, thende�nition 10 de�nes a version of reversible goal replacement, which preserves theleast Herbrand model semantics when applied to de�nite programs (see [13]).Moreover, it satis�es Property 3 and it does not modify the set of predicates,by de�nition, i.e. it satis�es Property 1. Finally, since it only a�ects atoms inclauses, it satis�es Property 4. As a consequence, by theorem 9, this form ofreversible goal replacement preserves all argumentation semantics.6 ComparisonsThe general methodology (theorem 9) is a special case of the general technique ofproving the correctness of a transformation by proving that attacks are preservedby the transformation. This general technique, in turn, is a special case of theeven more general technique (theorem 5) for proving correctness of a programtransformation by proving that there is a one-to-one correspondence betweenattacks before and after the transformations. Theorem 5 generalises the methodused in [17] to show that abductive logic programs [16] can be transformedcorrectly into normal logic programs.In the remainder of this section we compare our methodology with the tech-nique used by Aravindan and Dung in [1] to prove that (some forms of) unfoldingand folding are correct with respect to a number of semantics for normal logicprogramming. We will see that their technique is equivalent to the method, usedin section 4 (for unfolding), of proving that the attack relations before and afterthe transformation are identical.The method in [1] uses the notion of semantic kernel, given by the followingde�nition which is adapted from [6].De�nition 11. Given a normal logic program Prog, let SProg be the operatoron sets of variable-free clauses of the formH � with� a (possibly empty) set of negative literalsde�ned as follows:SProg(I)= fH �0; B1; : : : ; Bm j�0 is possibly empty, m � 0,H �0; H1; : : : ; Hm is a variable-free instance of a clause in Prog,Hi Bi 2 I , for i = 1; : : : ;m g.Then, the semantic kernel of Prog, SK(Prog) in short, is the least �x point ofSProg, i.e. (since SProg is continuous) SK(Prog)=Si�1 SiProg(;).Note that, in the construction of SK(Prog), one application of the operatorSProg amounts to performing a step of monotonic reasoning, leaving the non-monotonic part (the negative literals) untouched.In [1], it is proved that unfolding and folding preserve the semantic kernel ofprograms, i.e. for any logic program P and for any logic program P 0 obtainedby applying folding or unfolding to P , SK(P)=SK(P 0). As a consequence, un-folding and folding preserve all semantics Sem for normal logic programmingfor which it can be shown that, for any logic program Prog and query Q, Prog

j=Sem Q if and only if SK(Prog) j=Sem Q. These semantics include all the ar-gumentation semantics for normal logic programming we have considered in thispaper.Theorems 13 and 14 below imply that, for the purpose of proving the cor-rectness of a transformation with respect to any argumentation semantics fornormal logic programming, the two techniques of showing that the transforma-tion preserves the semantic kernel and of showing that it preserves all attacksare equivalent. These theorems are stated in terms of the following de�nitionwhich is adapted from [2]:De�nition 12. For any normal program Prog and sets of assumptions �0, �in the argumentation framework corresponding to Prog�0 is a locally minimal attack against � if and only ifthere exists a subset Prog0 of the set of all variable-free instances of clauses inProg such that{ Prog0 [�0 ` A for some notA 2 �, and{ there exists no �00 � �0 such that Prog0 [�00 ` A.Intuitively, a locally minimal attack is a minimal attack with respect to somesubset of the program. A locally minimal attack can be thought of as the set ofnegative literals that occur in clauses directly involved in the derivation of thecomplement A of an assumption notA in the attacked set. Since programs canhave redundant clauses, including clauses which are subsumed by other clauses,the set of all negative literals in a derivation is not guaranteed to be minimal inan absolute sense.Locally minimal attacks are important because they subsume all other at-tacks, as expressed by the followingTheorem13. For any normal logic program Prog and sets of assumptions �0,� in the argumentation framework corresponding to Prog,�0 attacks � if and only ifthere exists �00 � �0 such that �00 is a locally minimal attack against �.This theorem follows directly from the monotonicity of `. (See [16] for the fullproof.) An important consequence of this theorem is that a transformation pre-serves all argumentation semantics if and only if it preserves all locally minimalattacks. In fact, via theorem 13, all notions of \acceptable" set of assumptionsin section 3 can be reformulated in terms of locally minimal attacks and �. Forexample, a set of assumptions � is stable if and only if none of its subsets isa locally minimal attack against � and some subset of � is a locally minimalattack against every assumption � does not contain.The following theorem establishes the equivalence between semantic kernelsand locally minimal attacks.Theorem14. Given a normal logic program Prog, let hProg;`;AB; ICi be thecorresponding argumentation framework. Then, for every set of assumptions �in hProg;`;AB; ICi and atom H in the vocabulary of Prog:

(H �) 2 SK(Prog) if and only if� is a locally minimal attack against fnotHg.The proof of this theorem can be found in the appendix.7 Conclusions and future workWe have presented a methodology for proving that some program transforma-tions, e.g. unfolding, folding and (a form of) goal replacement, preserve manysemantics for normal logic programming, namely all argumentation semanticsfor normal logic programming (these include all known semantics except thecompletion semantics). This methodology is a special case of the more generaltechnique, introduced in [17], of showing that there is a one-to-one correspon-dence between attacks before and after a transformation.We are investigating the application of the proposed methodology to showthe correctness of other program transformations. Clause elimination and in-troduction do not satisfy Property 1 of theorem 9. Therefore, the methodologycannot be applied to these transformations. Note, however, that these transfor-mations do not preserve all argumentation semantics. For example, given thenormal logic program P p not qthe program P 0 obtained by introducing the extra clauser not ris not equivalent to P under the stable model semantics. In fact, P has a singlestable model fpg while P 0 has no stable model. Whether some restricted forms ofclause elimination and introduction might preserve all argumentation semantics(including the stable model semantics), and whether our methodology can begeneralised to prove this are open issues that require further investigation.Finally, another interesting topic for future research is the generalisationof our methodology to prove the correctness of transformations for other non-monotonic logics including default, autoepistemic and non-monotonic modallogic, which can be formalised in the argumentation framework of section 3.AcknowledgementsThis research was supported by the Fujitsu Research Laboratories. The authorsare grateful to Alberto Pettorossi, Maurizio Proietti and each other for helpfuldiscussions, and to the anonymous referees for helpful suggestions.

References1. C. Aravindan, P.M. Dung, On the correctness of unfold/fold transformation ofnormal and extended logic programs. Journal of Logic Programming 24(3):201{217 (1995)2. C. Aravindan, P.M. Dung. Belief dynamics, abduction and databases. Proc. 4thEuropean Workshop on Logic in AI (1994)3. A. Bondarenko, F. Toni, R. A. Kowalski, An assumption-based framework fornon-monotonic reasoning. LPNMR'93 (A. Nerode and L. Pereira eds.) MIT Press,171{1894. A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An abstract, argumentation-theoretic framework for default reasoning. Technical Report (1995)5. P.M. Dung, Negation as hypothesis: an abductive foundation for logic program-ming. ICLP'91 (K. Furukawa ed.) MIT Press, 3{176. P.M. Dung, K. Kanchanasut, A �xpoint approach to declarative semantics of logicprograms. NACLP`89 1:604{6257. M.H. van Emden, R.A. Kowalski, The semantics of predicate logic as a program-ming language. ACM 23(4):733{742 (1976)8. K. Eshghi, R.A. Kowalski, Abduction compared with negation as failure. ICLP'89(G. Levi and M. Martelli eds.) MIT Press, 234{2559. M. Gelfond, V. Lifschitz, The stable model semantics for logic programs. ICLP'88(K. Bowen and R.A. Kowalski eds.) MIT Press, 1070{108010. A.C. Kakas, P. Mancarella, Stable theories for logic programs. ILPS'91(V. Saraswat and K. Ueda eds.) MIT Press, 85{10011. A.C. Kakas, P. Mancarella, P.M. Dung, The Acceptability Semantics for LogicPrograms. ICLP'94 (P. Van Hentenryck ed.) MIT Press, 504{51912. R.A. Kowalski, F. Sadri, Knowledge representation without integrity constraints.Imperial College Technical Report (1988)13. A. Pettorossi, M. Proietti, Transformation of logic programs. Journal of LogicProgramming 19/20:261{320 (1994)14. T.C. Przymusinski, Semantics of disjunctive logic programs and deductivedatabases. DOOD'91 (C. Delobel, M. Kifer, and Y. Masunaga eds.) 85{10715. D. Sacc�a, C. Zaniolo, Stable models and non determinism for logic programs withnegation. ACM Symposium on Principles of Database Systems, ACM Press, 205{217 (1990)16. F. Toni, Abductive logic programming, PhD Thesis, Imperial College (1995)17. F. Toni, R.A. Kowalski. Reduction of abductive logic programs to normal logicprograms. ICLP'95 (L. Sterling ed.) MIT Press, 367{38118. A. Van Gelder, K.A. Ross, J.S. Schlipf, The well-founded semantics for generallogic programs. Journal of the ACM, 38(3):620{650 (1991)AppendixProof of theorem 14. As in the proof of theorem 4, we will assume (withoutloss of generality) that Prog is variable-free.First, we de�ne the notion of minimal derivability. For any normal programProg, set of assumptions � in the argumentation framework corresponding toProg and atom A in the vocabulary of Prog,

Prog [� `min A (Prog [� minimally derives A)if and only if there exists Prog0 � Prog such thatProg0 [� ` A and there exists no �0 � � such that Prog0 [�0 ` A.By de�nition, � is a locally minimal attack (with respect to Prog) against �0if and only if Prog [� `min A for some notA 2 �0. Therefore, theorem 14directly follows from the following lemma:Lemma15. Given a normal logic program Prog,H � 2 SK(Prog) if and only if Prog [� `min H.In the proof of this lemma `i will indicate derivability by applying the modusponens inference rule i times and `imin will indicate `min as de�ned above butwith ` replaced for by `i.Proof of lemma 15H � 2 SK(Prog) if and only if H � 2 SjProg(;), for some j � 1. Byinduction on j, we prove that, for all j � 1,H � 2 SjProg(;) if and only if Prog [� `jmin H ,which directly proves the lemma.� If j = 1 then H � 2 SjProg(;) if and only if H � 2 Prog if andonly if fH �g [� `1 H if and only if Prog [� `1min H .� If j > 1 then let us assume the inductive hypothesis that, for each 1 � k < j,H 0 �0 2 SkProg(;) if and only if Prog [�0 `kmin H 0.Then, H � 2 SjProg(;)if and only if (by de�nition)H �0; H1; : : : ; Hm 2 Prog, with m � 0, and for all i = 1; : : : ;m thereexists some ki with 1 � ki � j � 1 such that Hi Bi 2 SkiProg(;), and � =�0 [B1 [: : : [Bmif and only if (by inductive hypothesis)H �0; H1; : : : ; Hm 2 Prog, with m � 0, and for all i = 1; : : : ;m there existssome ki with 1 � ki � j�1 such that Prog [Bi `kimin Hi, i.e. there exists Progi� Prog such that Progi [Bi `ki Hi and Bi is minimal with respect to Progiif and only ifS1�i�m Progi [fH �0; H1; : : : ; Hmg [� `k+1 H , with k the maximum ofthe ki and Bi is minimal with respect to Progiif and only if (since at least one of the ki is necessarily j � 1),S1�i�m Progi [fH �0; H1; : : : ; Hmg [� `j H and Bi is minimal withrespect to Progiif and only if (due to the minimality of the Bi with respect to Progi)Prog [� `jmin H . This concludes the proof.This article was processed using the LATEX macro package with LLNCS style

