An argumentation-theoretic approach
to logic program transformation

Francesca Toni and Robert A. Kowalski

Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, UK
{ft,rak}@doc.ic.ac.uk

Abstract. We present a methodology for proving that any program
transformation which preserves the least Herbrand model semantics when
applied to sets of Horn clauses also preserves all semantics for normal
logic programming that can be formulated in argumentation-theoretic
terms [3, 4, 16]. These include stable model, partial stable model, pre-
ferred extension, stationary expansion, complete scenaria, stable theory,
acceptability and well-founded semantics. We apply our methodology to
prove that (some forms of) unfolding, folding and goal replacement pre-
serve all these semantics. We also show the relationship of our method-
ology to that of Aravindan and Dung [1].

1 Introduction

The standard semantics for definite logic programs (i.e. the least Herbrand model
semantics) is preserved by most of the program transformations studied in the lit-
erature, in particular by (some forms of) unfolding, folding and goal replacement
(see [13] for a summary of these results). This paper provides a methodology for
lifting these results from the definite logic program case to the normal logic pro-
gram case, with respect to stable model [9], partial stable model [15], preferred
extension [5], stationary expansion [14], complete scenaria [5], stable theory [10],
acceptability [11] and well-founded semantics [18]. Most of the concrete cases
obtained by applying our methodology ! have been already shown elsewhere in
the literature (see [1] for some of these results). Therefore, the main contribution
of this paper lies in the general technique rather than in the concrete results.
All the semantics to which our methodology applies can be formulated in
an argumentation framework [3, 4, 16], based upon a uniform notion of attack
between sets of negative literals regarded as assumptions. We show that, to prove
that any program transformation preserves all these semantics, it is sufficient to
prove that there is a one-to-one correspondence between attacks before and after
the transformation. This proof covers all of the semantics which can be defined
in argumentation-theoretic terms, because the different semantics differ only in
the way in which they build upon the same notion of attack. This technique,
for proving soundness and completeness of a transformation, has already been

! with the exception that unfolding and folding preserve the acceptability semantics
of [11]

used in [17] to show that abductive logic programs [16] can be transformed into
normal logic programs preserving all argumentation-theoretic semantics. This
general technique can be specialised to the case where the attacks before and
after the transformation are exactly the same. The methodology we propose
is a further specialisation of this technique, based upon the observation that
all attacks are preserved if a transformation preserves the least Herbrand model
semantics when it is applied to definite logic programs. The transformation must
be such that it is applicable in the definite logic program case. In particular,
unfolding inside negation is not allowed.

In [1], Aravindan and Dung show that (some forms of) folding and unfolding
preserve the stable model, partial stable model, preferred extension, stationary
expansion, complete scenaria, stable theory and well-founded semantics, due to
the fact that normal logic programs before and after the application of folding
and unfolding have the same semantic kernel [6] and that normal logic pro-
grams and their semantic kernels have the same semantics (for each of stable
model, partial stable model, preferred extension, stationary expansion, complete
scenaria, stable theory and well-founded semantics). We will show that this tech-
nique, of proving the correctness of a program transformation by proving that
it preserves the semantic kernel, is equivalent to the technique of proving the
correctness of a program transformation by proving that it preserves attacks.
Therefore, our methodology can also be seen as a specialisation of Aravindan
and Dung’s. However, our methodology also generalises that of Aravindan and
Dung in the sense that it applies directly to many program transformations.
Whereas Aravindan and Dung consider only forlding and unfolding, ours is a
general methodology for showing that, under certain conditions, any transfor-
mation that preserves the semantics of definite programs also preserves any
semantics of normal logic programs that can be defined in argumentation terms.

The paper is organised as follows. First we apply the methodology to prove
that the unfolding transformation, reviewed in section 2, preserves all seman-
tics for normal logic programming which can be formulated in argumentation-
theoretic terms of [3, 4, 16]. The unfolding transformation we consider is adapted
from [13]. Section 3 reviews the argumentation framework and the formulation
of various normal logic programming semantics in this framework. Section 4
proves that all semantics for normal logic programming formulated in the argu-
mentation framework are preserved by unfolding. Section 5 presents the general
methodology, by abstracting away from the proof in section 4. It also applies
the general methodology to other transformations. Section 6 shows the relation-
ships between our methodology and others, in particular the one in [1]. Finally,
section 7 presents conclusions and discusses directions for further research.

2 Unfolding transformation

Normal logic programs are sets of clauses. A clause C is a formula of the form

where H is an atom, L; is a literal, i.e. either an atom or the negation of an
atom, fori = 1,...,n, and all variablesin H, Ly, ..., L, are implicitly universally
quantified. H is the head and L4, ..., L, the body of the clause C, referred to
as head(C) and body(C) respectively. Definite logic programs are normal logic
programs with no negative literals.

Definition 1. Let P be a normal logic program and let C' € P be a clause
H < By,A, By where A is an atom and Bj, By are (possibly empty) sets of
literals. Suppose that

— {D,..., Dy}, withm > 0, is the set of all clauses ? in P such that A is unifi-
able with head(D,), ..., head(D,,) with most general unifiers 1, ..., 60,,, re-
spectively, and

— Uj is the clause [H < Bi,body(D;), Bs]0; for j =1,...m.

Then, the result of unfolding C in P with respect to A is the program (P—{C}) U
{U1,...,Un}

The single unfolding step defined above can be repeated. A sequence of programs
Pi,..., Py is an unfolding sequence if any program Pryi, with 1 < k < n, is
obtained from Py by applying an unfolding step.

Proving the correctness of the unfolding transformation (i.e. its soundness
and completeness) with respect to a given normal logic programming semantics
Sem amounts to proving that, for any unfolding sequence Py, ..., P, and for

any query ° @ in the vocabulary of the original program P;:

P1 Esem Q if and only if P, Fsem Q.

By induction, it suffices to show that, for any program P and for any program
P’ obtained by unfolding some clause in P,

P =sem Q if and only if P’ Egem Q.

More generally, to prove the correctness of a sequence of transformation steps,
not necessarily unfolding steps, with respect to a semantics Sem it suffices to
prove that any such step is correct with respect to Sem.

In section 4, we will show correctness of the unfolding transformation with
respect to all semantics Sem that can be formulated in the argumentation frame-
work in terms of a single notion of attack.

2 All variables in each of C, Dy, ..., D, are assumed to be standardised apart.

% In general, the correctness of unfolding as well as other program transformations is
studied with respect to a given subset of all possible queries in the vocabulary of the
original program. In this paper, for simplicity we will assume that the given subset
of queries coincides with the set of all possible queries.

4 Here and in the rest of the paper, for any program Prog, Prog Esem Q stands for
“Q holds in Prog with respect to the semantics Sem”.

3 An argumentation framework

The abstract argumentation framework proposed in [3, 4, 16] can be used to
define many exisiting semantics for non-monotonic reasoning in general and for
normal logic programming in particular.

Definition 2. An argumentation framework is a tuple (7 ,+, AB,ZC) where

— T is a theory in some formal language,

— F is a notion of monotonic derivability for the given language,

— AB is a set of assumptions, which are sentences of the language, and
— IC is a set of denial integrity constraints with retractibles.

Normal logic programming can be formulated as an instance of such a framework.
Given a normal logic program P, the corresponding argumentation framework
is (T,F, AB,ZC) where

— T is the set of all variable-free instances of clauses in P;

— I is modus ponens for the clause implication symbol «;

— AB is the set of all variable-free negative literals;

— ZC is the set consisting of all denials of the form —[A A not A], where A is a
variable-free atom and not A is retractible.

Other non-monotonic logics, including default logic, autoepistemic logic, non-
monotonic modal logic can also be understood as special cases of such a frame-
work [3, 4, 16].

In any argumentation framework, a sentence is a non-monotonic consequence
if it follows monotonically from 7 extended by means of an “acceptable” set of
assumptions A C AB. Various notions of “acceptability” can be defined, based
upon a single notion of “attack” between sets of assumptions.

Intuitively, one set of assumptions “attacks” another if the two sets together
with the theory violate an integrity constraint (i.e. the two sets together with the
theory derive, via I, the sentence which is denied by the integrity constraint), and
the set which is attacked is deemed responsible for the violation. Responsibility
for violation of integrity can be assigned by explicitly indicating part of the
integrity constraint as retractible (see [12]). A set of assumptions which leads to
the derivation of a retractible is deemed responsible for the violation of integrity.
Thus integrity can be restored by “retracting” such an assumption. Formally:

Definition 3. Given an argumentation framework (7 ,+, AB,ZC):
a set of assumptions A’ C AB attacks another set A C AB if and only if for
some integrity constraint —=[L; A ... AL; A... A L,] € ZC with L; retractible,
(1) TUA" - Ly,...,Li1,Lis1,. .., Ly, and
(2) TUAF L,

In the simple and frequently occurring case where all retractibles in integrity
constraints are assumptions and any assumption a can be derived from 7 U A

only if @ € A, for any A C AB, then condition (2) in the definition above be-
comes
(2') L; € A.

This simplification applies to the case of the argumentation framework corre-
sponding to normal logic programming, where not A is retractible for every
integrity constraint —[AAnot A] in ZC. Therefore, the notion of attack in the ar-
gumentation framework (7 ,+, AB,ZC) corresponding to a normal logic program
‘P reduces to the following:

— a set of variable-free negative literals A’ attacks another set A if and only if
T U A" A, for some literal not A € A.

Various notions of “acceptability” can be defined in terms of the same, uni-
form notion of attack and can be applied to any non-monotonic logic defined in
argumentation-theoretic terms. Here we mention some of the notions presented
in [3, 4, 16]: A set of assumptions which does not attack itself is called

— stable, if and only if it attacks all assumptions it does not contain, where A
attacks 0 if and only if A attacks {0};

— admissible, if and only if it attacks all sets of assumptions that attack it, i.e.
it defends itself against all attacks;

— preferred, if and only if it is maximally admissible (with respect to set inclu-
sion);

— weakly stable, if and only if for each set of assumptions that attacks it, the
set together with the attacking set attacks some assumption in the attacking
set which does not occur in the given set;

— stable theory, if and only if it is maximally weakly stable (with respect to
set inclusion);

— acceptable ®, if and only if it is acceptable to the empty set of assumptions,
where a set of assumptions A is acceptable to another set Ag if and only if

e AC Agp,or

e for each set of assumptions A’ that attacks A - Ag, there exists a set of
assumptions A" such that A" attacks A' - (AU Ag) and A" is acceptable
to AU Ay U A

— complete, if and only if it is admissible and it contains all assumptions it
defends, where A defends an assumption § if and only if, for all sets of
assumptions A’ if A" attacks 6 then A attacks A';

— well-founded, if and only if it is minimally complete (with respect to set
inclusion).

Note that for all of these semantics, an “acceptable” set of assumptions satisfies
all the denial integrity constraints, since any such set does not attack itself.
Note, moreover, that the notion of integrity satisfaction is compatible with three-
valued semantics for normal logic programming, since satisfaction of the integrity
constraint =[A A not A] does not imply that either A or not A must be derived.

5 This notion should not be confused with the informal notion of “acceptable” set of
assumptions used elsewhere in this paper.

Almost all existing semantics for normal logic programming can be expressed
in argumentation-theoretic terms, as proved in [3, 4, 16]. In particular, stable
models [9] correspond to stable sets of assumptions, partial stable models [15]
and preferred extensions [5] correspond to preferred sets of assumptions, sta-
ble theories [10] correspond to stable theory sets of assumptions, acceptability
[11] corresponds to acceptable sets of assumptions, stationary expansions [14]
and complete scenaria [5] correspond to complete sets of assumptions and well-
founded semantics [18] corresponds to the well-founded set of assumptions. As
far as we know, these include all existing semantics except the (various versions of
the) completion semantics. Moreover, the same notions of “acceptability” apply
also to any other non-monotonic logic that can be defined in argumentation-
theoretic terms.

In the remainder of this paper we will refer to any semantics for normal
logic programming which can be expressed in argumentation-theoretic terms
(see above) as “argumentation semantics”.

4 Correctness of the unfolding transformation

Given a normal logic program P and the program P’ obtained by unfolding some
clause in P, let Fp and Fp: be the argumentation frameworks corresponding to
P and P’, respectively.

In general, the Herbrand base of P may be larger than the Herbrand base of
P’, since the Herbrand universe of P may be larger than the Herbrand universe
of P!, as illustrated by the following example.

Ezxample 1. Consider the program P

p(X) < q(a)
q(X) < r(b)

and the program P’ obtained by unfolding the first clause in P:

p(X) < r(b)
q(X) « r(b)

The constant a belongs to the Herbrand universe of P but not to that of P’.

As a consequence, the set of assumptions in Fp may be larger than the set of
assumptions in Fpr.

For simplicity, it is convenient to assume that, except for P and P’, Fp
and Fp: coincide, i.e. the two framework have the same monotonic derivability
notion, F, and the same sets of assumptions and integrity constraints. This as-
sumption can be made, without loss of generality, by assuming that P and P’ are
formulated in the same vocabulary (Herbrand universe), which may, however,
be larger than the vocabulary actually occurring in P and P’ (this assumption
is also adopted elsewhere, e.g. in [13]).

Theorem 4. Given any two sets of assumptions A" and A in Fp (and therefore
in -7:73’)7
A" attacks A in Fp if and only if A" attacks A in Fp:.

Before proving this theorem, let us explore its consequences. Since the different
argumentation semantics can all be formulated in terms of the same notion of
attack and differ only in the way they use this notion (see the end of section 3)
then

3

Theorem 5. For any programs Prog and Prog’, let Fproq and Fproy be the
corresponding argumentation frameworks. If

(i) there is a one-to-one onto (bijective) mapping, m, from sentences in the
vocabulary of Prog onto sentences in the vocabulary of Prog’, and

(ii) there is a one-to-one correspondence via m between attacks in Fproq and
attacks in Fpyrog, i.e. for every sets of assumptions A', A in Fprog, A
attacks A in Fprog if and only if m(A') attacks m(A)in Fpoq, 8

then, for every argumentation semantics Sem, there is a one-to-one correspon-
dence via m between Sem for Prog and Sem for Prog’, i.e. for all queries Q in
the vocabulary of Prog,

PTOQ ‘:Sem Q Zf and Only Zf PTOg’ ‘:Sem m(Q)

If Prog’ is obtained by applying a transformation to Prog, then this theorem
expresses a very general technique to prove correctness of the transformation.
Such a general technique is needed when the given transformation changes the
vocabulary of the original program, so that to establish the correspondence be-
tween attacks, it is necessary to establish first a mapping between the vocabulary
of the original program Prog and that of the transformed program Prog’. This
technique has been used in [17] to show that abductive logic programs [16] can be
transformed correctly into normal logic programs, by mapping abducible atoms
onto negative literals.

When the transformation does not change the vocabulary of the original
program, as in the case of unfolding, then the mapping m can be taken to be
the identity function and condition (ii) reduces to the condition that the attacks
in Fprog and Fp,oq are exactly the same. Therefore, theorems 4 and 5 directly
imply

Corollary 6. Let P be a normal logic program and P’ be obtained by unfolding
some clause in P. Then, for every argumentation semantics Sem for normal
logic programming, Sem for P coincides with Sem for P’ i.e. for all queries Q
in the vocabulary of P,

P l=sem Q if and only if P’ Esem Q.

6 For every set of sentences S, m(S) = {m(a)|a € S}.

Proof of theorem 4

First note that we can assume that P and P’ are variable-free. If they are
not, they can be replaced by all their variable-free instances over their common
Herbrand universe. Then, directly from the definition of attack, theorem 4 is an
immediate consequence of the following lemma.

Lemma7. For each atom A in the common Herbrand base of P and P’ and for
each set of assumptions A in Fp (and therefore in Fp:),
PUAF Aifand only if PP UAF A.

Lemma 7 follows from lemma 8. Here and in the rest of the paper, for any normal
logic program Prog, Prog, stands for the definite logic program obtained by
interpreting every negative literal, not p, in Prog syntactically as a new positive
atom, p* (see [8]). Similarly, for any set of assumptions A, A, stands for the
definite logic program obtained by interpreting every negative literal in A as a
new positive atom.

Lemma 8. For any normal logic program framework (Prog,t, AB,ZC), for any
set of assumptions A C AB and for any atom A in the Herbrand base of Prog,
Prog UA F A if and only if
Prog. UA, F A if and only if
A belongs to the least Herbrand model of Prog. U A,.

This lemma follows directly from the fact that a ground atom A belongs to the
least Herbrand model of a definite program (e.g. Prog. U A,) if and only if it is
derivable from the program, as proved in [7].

Proof of lemma 7
PUAF A
if and only if (by lemma 8)
A belongs to the least Herbrand model of P, U A,
if and only if (by the result that the unfolding transformation for definite
logic programs is correct with respect to the least Herbrand model seman-
tics [13])
A belongs to the least Herbrand model of (P'), U A,
if and only if (by lemma 8)
P UAF A

This concludes the proof of theorem 4. Note that the proof of lemma 7 makes
use of the property that (P'), can also be obtained by applying unfolding to P,
(by applying the same unfolding step used to obtain P’ from P). In other words,
the two operations ' and * commute: (P').=(P.)".

5 General methodology

In proving the correctness of unfolding, we have used a technique which can be
used more generally to prove that any transformation which preserves all attacks

also preserves all argumentation semantics. Note, however, that a precondition
of this technique, which holds for the unfolding transformation, is that the ar-
gumentation frameworks corresponding to the programs before and after the
transformation should have the same set of assumptions, or, equivalently, that
the Herbrand bases before and after the transformation coincide. We will refer
to this precondition as Property 1.

In this section we will generalise the proof of theorem 4, to obtain a more
general methodology for proving the correctness of other program transforma-
tions satisfying Property 1 as well as other properties we will discuss next. This
methodology is less powerful than the technique expressed by theorem 5 but its
preconditions are easier to check. For this purpose, let us analyse the proof of
theorem 4.

Theorem 4 is an immediate consequence of lemma 7, which, in turn, follows
directly from two properties. The first, expressed by lemma 8, is a general prop-
erty, which holds for any normal logic program in general and for the programs P
and P’ before and after the unfolding transformation in particular. However, the
second property, that unfolding preserves the least Herbrand model semantics of
definite programs, is specific (in the sense that it is not true for every transfor-
mation). We will refer to this property as Property 2. Its applicability depends,
in turn, upon the fact that unfolding a definite program produces a definite pro-
gram (Property 3) and the fact that unfolding commutes with the operation x
of interpreting negative literals as positive atoms (Property 4). The unfolding
transformation we have considered satisfies Property 4 because it affects only
atoms (we do not allow unfolding inside negation).

No other properties, besides Properties 1, 2, 3 and 4, are required in the
proof of the correctness of unfolding. Therefore, the same proof demonstrates the
correctness, with respect to all argumentation semantics, of any transformation
which satisfies Properties 1, 2, 8 and 4. This is the basis of our methodology,
which is expressed by the following theorem.

Theorem 9. Given any transformation Transf from normal logic programs to
normal logic programs, let ' be any specific application of this transformation
producing a deterministic result. Then, if for all normal logic programs P:

Property 1: P' and P have the same Herbrand base;
Properties 2 and 3: if P is a definite program then

— P’ is a definite program (3),

— P’ and P have the same least Herbrand model (2);
Property 4: (P').=(Ps)’;

then Transf is correct with respect to all argumentation semantics, Sem, i.e. for
all queries Q,

P lEsem Q if and only if P' Esem Q.

Proof: The conclusion of the theorem holds for P and P’ if theorem 4 holds for
P and P'. Theorem 4 makes sense because Transf satisfies Property 1. Theorem 4

holds for P and P’ if lemma 7 holds for P and P’. But:
PUAKFA
if and only if (by lemma 8)
A belongs to the least Herbrand model of P, U A,
if and only if (by Properties 2, 8 and 4)
A belongs to the least Herbrand model of (P'), U A,
if and only if (by lemma 8)
P UAF A
This concludes the proof of theorem 9.

This theorem can be used to establish the correctness of all versions of the
folding transformation which satisfy Property 2 (see [13]), since every version of
folding satisfies the other properties. Moreover, it can be used to establish cor-
rectness of any other transformation which satisfies all four properties. Consider,
for example, the following version of goal replacement, adapted from [13].

Definition 10. Given

— a normal logic program P,

— sets of atoms G, G4, possibly empty, in the vocabulary of P,

— C € P, aclause H «+ B;,G4, By, where By, By are (possibly empty) sets of
literals,

let {X1,..., X, } =vars(G1) Nwvars(Gz). ” Suppose that
— G1 = Gy is an H-valid replacement rule with respect to P, i.e., for all
ai,...,a, in the Herbrand universe of P,

e Py =rum 3G1[X1 /a1, ..., Xn/ay] if and only if

3

PH |:LHM EGQ[Xl/al, . ,Xn/an] 8 and
e for all argumentation semantics Sem, for 1 = 1,2,
P Esem 3Gi| X1 /a1, ..., Xn/ay] if and only if
PH |:LHM El[Gin/(ll, ey Xn/an],
where Py is the subset of P consisting of all and only Horn clauses,
— wars(H, By, Bz) Nvars(Gs) = vars(H, By, By) Nwvars(Gy) = {X1,..., X,}
— (" is the clause H < By,Gs, Bs.

Then, the result of H-valid replacing the goal G1 in C € P by the goal G5 is
(P—{C}) u{C"}.

This definition of H-valid goal replacement is equivalent to the definition of goal
replacement in [13] except for the notion of H-valid replacement rule, which is a
variation of the notion of valid replacement rule in [13].

" For any set of expressions i, ..., By, vars(E1, ..., Ey,) stands for the set of all free
variables in Ey, ..., E,p,.

8 LHM stands for least Herbrand model semantics, and, for any sentence G, 3G stands
for the existential closure of G with respect to all variables occurring in G.

Let P’ be the result of H-valid replacing the goal G; in C € P by the
goal Gy. If Gy = G is a H-valid replacement rule with respect to P’, then
definition 10 defines a version of reversible goal replacement, which preserves the
least Herbrand model semantics when applied to definite programs (see [13]).
Moreover, it satisfies Property 8 and it does not modify the set of predicates,
by definition, i.e. it satisfies Property 1. Finally, since it only affects atoms in
clauses, it satisfies Property 4. As a consequence, by theorem 9, this form of
reversible goal replacement preserves all argumentation semantics.

6 Comparisons

The general methodology (theorem 9) is a special case of the general technique of
proving the correctness of a transformation by proving that attacks are preserved
by the transformation. This general technique, in turn, is a special case of the
even more general technique (theorem 5) for proving correctness of a program
transformation by proving that there is a one-to-one correspondence between
attacks before and after the transformations. Theorem 5 generalises the method
used in [17] to show that abductive logic programs [16] can be transformed
correctly into normal logic programs.

In the remainder of this section we compare our methodology with the tech-
nique used by Aravindan and Dung in [1] to prove that (some forms of) unfolding
and folding are correct with respect to a number of semantics for normal logic
programming. We will see that their technique is equivalent to the method, used
in section 4 (for unfolding), of proving that the attack relations before and after
the transformation are identical.

The method in [1] uses the notion of semantic kernel, given by the following
definition which is adapted from [6].

Definition 11. Given a normal logic program Prog, let Sp,,4 be the operator
on sets of variable-free clauses of the form

H«+ A withA a (possibly empty) set of negative literals
defined as follows:

Sprog(I)={H < A", By,...,By | A’ is possibly empty, m > 0,
H <+ A' Hy,...,H,, is a variable-free instance of a clause in Prog,
H;+ B;jel fori=1,...,m}.
Then, the semantic kernel of Prog, SK(Prog) in short, is the least fix point of
SProg, i-€. (since Sproy is continuous) SK(Prog)=U;s1 Spo,(0).
Note that, in the construction of SK(Prog), one application of the operator
Sprog amounts to performing a step of monotonic reasoning, leaving the non-
monotonic part (the negative literals) untouched.

In [1], it is proved that unfolding and folding preserve the semantic kernel of
programs, i.e. for any logic program P and for any logic program P’ obtained
by applying folding or unfolding to P, SK(P)=SK(P'). As a consequence, un-
folding and folding preserve all semantics Sem for normal logic programming
for which it can be shown that, for any logic program Prog and query Q, Prog

FEsem Q if and only if SK(Prog) =sem Q. These semantics include all the ar-
gumentation semantics for normal logic programming we have considered in this
paper.

Theorems 13 and 14 below imply that, for the purpose of proving the cor-
rectness of a transformation with respect to any argumentation semantics for
normal logic programming, the two techniques of showing that the transforma-
tion preserves the semantic kernel and of showing that it preserves all attacks
are equivalent. These theorems are stated in terms of the following definition
which is adapted from [2]:

Definition 12. For any normal program Prog and sets of assumptions A’ A
in the argumentation framework corresponding to Prog

A" is a locally minimal attack against A if and only if
there exists a subset Prog’ of the set of all variable-free instances of clauses in
Prog such that

— Prog’ U A" + A for some not A € A, and
— there exists no A" C A’ such that Prog’ U A" I A.

Intuitively, a locally minimal attack is a minimal attack with respect to some
subset of the program. A locally minimal attack can be thought of as the set of
negative literals that occur in clauses directly involved in the derivation of the
complement A of an assumption not A in the attacked set. Since programs can
have redundant clauses, including clauses which are subsumed by other clauses,
the set of all negative literals in a derivation is not guaranteed to be minimal in
an absolute sense.

Locally minimal attacks are important because they subsume all other at-
tacks, as expressed by the following

Theorem 13. For any normal logic program Prog and sets of assumptions A',
A in the argumentation framework corresponding to Prog,

A" attacks A if and only if

there exists A" C A’ such that A" is a locally minimal attack against A.

This theorem follows directly from the monotonicity of . (See [16] for the full
proof.) An important consequence of this theorem is that a transformation pre-
serves all argumentation semantics if and only if it preserves all locally minimal
attacks. In fact, via theorem 13, all notions of “acceptable” set of assumptions
in section 3 can be reformulated in terms of locally minimal attacks and C. For
example, a set of assumptions A is stable if and only if none of its subsets is
a locally minimal attack against A and some subset of A is a locally minimal
attack against every assumption A does not contain.

The following theorem establishes the equivalence between semantic kernels
and locally minimal attacks.

Theorem 14. Given a normal logic program Prog, let (Prog,t, AB,ZC) be the
corresponding argumentation framework. Then, for every set of assumptions A
in (Prog,t, AB,ZC) and atom H in the vocabulary of Prog:

(H + A) € SK(Prog) if and only if
A is a locally minimal attack against {not H}.

The proof of this theorem can be found in the appendix.

7 Conclusions and future work

We have presented a methodology for proving that some program transforma-
tions, e.g. unfolding, folding and (a form of) goal replacement, preserve many
semantics for normal logic programming, namely all argumentation semantics
for normal logic programming (these include all known semantics except the
completion semantics). This methodology is a special case of the more general
technique, introduced in [17], of showing that there is a one-to-one correspon-
dence between attacks before and after a transformation.

We are investigating the application of the proposed methodology to show
the correctness of other program transformations. Clause elimination and in-
troduction do not satisfy Property 1 of theorem 9. Therefore, the methodology
cannot be applied to these transformations. Note, however, that these transfor-
mations do not preserve all argumentation semantics. For example, given the
normal logic program P

p < notq

the program P’ obtained by introducing the extra clause
r < notr

is not equivalent to P under the stable model semantics. In fact, P has a single
stable model {p} while P’ has no stable model. Whether some restricted forms of
clause elimination and introduction might preserve all argumentation semantics
(including the stable model semantics), and whether our methodology can be
generalised to prove this are open issues that require further investigation.
Finally, another interesting topic for future research is the generalisation
of our methodology to prove the correctness of transformations for other non-
monotonic logics including default, autoepistemic and non-monotonic modal
logic, which can be formalised in the argumentation framework of section 3.

Acknowledgements

This research was supported by the Fujitsu Research Laboratories. The authors
are grateful to Alberto Pettorossi, Maurizio Proietti and each other for helpful
discussions, and to the anonymous referees for helpful suggestions.

References

1. C. Aravindan, P.M. Dung, On the correctness of unfold/fold transformation of
normal and extended logic programs. Journal of Logic Programming 24(3):201
217 (1995)

2. C. Aravindan, P.M. Dung. Belief dynamics, abduction and databases. Proc. 4th
European Workshop on Logic in AI (1994)

3. A. Bondarenko, F. Toni, R. A. Kowalski, An assumption-based framework for
non-monotonic reasoning. LPNMR’93 (A. Nerode and L. Pereira eds.) MIT Press,
171 189

4. A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An abstract, argumentation-
theoretic framework for default reasoning. Technical Report (1995)

5. P.M. Dung, Negation as hypothesis: an abductive foundation for logic program-
ming. ICLP’91 (K. Furukawa ed.) MIT Press, 3 17

6. P.M. Dung, K. Kanchanasut, A fixpoint approach to declarative semantics of logic
programs. NACLP‘89 1:604-625

7. M.H. van Emden, R.A. Kowalski, The semantics of predicate logic as a program-
ming language. ACM 23(4):733-742 (1976)

8. K. Eshghi, R.A. Kowalski, Abduction compared with negation as failure. ICLP’89
(G. Levi and M. Martelli eds.) MIT Press, 234-255

9. M. Gelfond, V. Lifschitz, The stable model semantics for logic programs. ICLP’88
(K. Bowen and R.A. Kowalski eds.) MIT Press, 1070-1080

10. A.C. Kakas, P. Mancarella, Stable theories for logic programs. ILPS’91
(V. Saraswat and K. Ueda eds.) MIT Press, 85-100

11. A.C. Kakas, P. Mancarella, P.M. Dung, The Acceptability Semantics for Logic
Programs. ICLP’9/ (P. Van Hentenryck ed.) MIT Press, 504-519

12. R.A. Kowalski, F. Sadri, Knowledge representation without integrity constraints.
Imperial College Technical Report (1988)

13. A. Pettorossi, M. Proietti, Transformation of logic programs. Journal of Logic
Programming 19/20:261 320 (1994)

14. T.C. Przymusinski, Semantics of disjunctive logic programs and deductive
databases. DOOD’91 (C. Delobel, M. Kifer, and Y. Masunaga eds.) 85 107

15. D. Sacca, C. Zaniolo, Stable models and non determinism for logic programs with
negation. ACM Symposium on Principles of Database Systems, ACM Press, 205
217 (1990)

16. F. Toni, Abductive logic programming, PhD Thesis, Imperial College (1995)

17. F. Toni, R.A. Kowalski. Reduction of abductive logic programs to normal logic
programs. ICLP’95 (L. Sterling ed.) MIT Press, 367 381

18. A. Van Gelder, K.A. Ross, J.S. Schlipf, The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620 650 (1991)

Appendix

Proof of theorem 14. As in the proof of theorem 4, we will assume (without
loss of generality) that Prog is variable-free.

First, we define the notion of minimal derivability. For any normal program

Prog, set of assumptions A in the argumentation framework corresponding to
Prog and atom A in the vocabulary of Prog,

Prog UA Fin A (Prog UA minimally derives A)

if and only if there exists Prog’ C Prog such that

Prog’ UA F A and there exists no A" C A such that Prog' UA’' F A.
By definition, A is a locally minimal attack (with respect to Prog) against A’
if and only if Prog UA ki A for some not A € A'. Therefore, theorem 14
directly follows from the following lemma:

Lemma 15. Given a normal logic program Prog,

H + A€ SK(Prog) if and only if Prog UA i H.

In the proof of this lemma F will indicate derivability by applying the modus
ponens inference rule i times and k! . will indicate b, as defined above but
with F replaced for by K.

Proof of lemma 15 '
H + A e SK(Prog) if and only if H «+ A € S},
induction on j, we prove that, for all j > 1, '

H <+ A€ Sp,,,(0) if and only if Prog UAH] . H,
which directly proves the lemma.

(@), for some j > 1. By

rog

e If j = 1then H < A € Sgymg(@) if and only if H < A € Prog if and

only if {H + A}UAF! H if and only if ProgUA L. H.

e If j > 1 then let us assume the inductive hypothesis that, for each 1 < k < 7,
H' + A € 8,,,(0) if and only if Prog UA' +F, H'.
Then, H « A € S},,,(0)
if and only if (by definition)
H + A' H,,...,H,, € Prog, with m > 0, and for all 4 = 1,...,m there
exists some k; with 1 < k; < j — 1 such that H; + B; € 87]“;'7,09(@), and A =
A'UByU...UBpn,
if and only if (by inductive hypothesis)
H«+ A" Hy,...,H,, € Prog, with m > 0, and for all i = 1,...,m there exists
some k; with 1 < k; < j —1 such that Prog U B; I—ﬁlm H;, i.e. there exists Prog;
C Prog such that Prog; U B; F* H; and B; is minimal with respect to Prog;
if and only if
Ui<ic, Progi U{H « A" Hy,...,Hy,} U AR H with k the maximum of
the k; and B; is minimal with respect to Prog;
if and only if (since at least one of the k; is necessarily j — 1),
Ui<icsn Progi U{H + A" Hy,...,H,} UA F H and B; is minimal with
respect to Prog;
if and only if (due to the minimality of the B; with respect to Prog;)
Prog UA ! . H. This concludes the proof.

This article was processed using the INTEX macro package with LLNCS style

