
A Proof Procedure Using Connection Graphs

ROBERT KOWALSKI

University of Edinburgh, Edinburgh, Scotland

ABSTRACT. Various deficiencies of resolution systems are investigated and a new theorem-proving
system designed to remedy those deficiencms is presented The system is notable for eliminating re-
dundancies present in SL-resolutlon, for incorporating preprocessing procedures, for liberahzing the
order in which subgoals can be activated, for incorporating multidirectmnal searches, and for giving
immediate access to pairs of clauses which resolve Examples of how the new system copes with the
defic2encies of other theorem-proving systems are chosen from the areas of predicate logic program-
ming and language parsing. The paper emphasizes the historical development of the new system,
beginning as a supplement to SL-resolution in the form of classificatmn trees and incorporating an
analogue of the Waltz algorithm for picture Interpretation The paper ends with a discussion of the
opportunities for using look-ahead to guide the search for proofs

KEY WORDS AND PHRASES: theorem-proving, logic, programaning, connection graph

CR CATEGORIES: 5 21

Introduction

Comparison of proof procedures is not an easy task. Mathematical analysis of efficiency
is rarely attempted and experimentation with actual programs is generally inconclusive,
when not misleading.

In [21] we presented arguments in support of SL-resolution. In this paper we introduce
a new proof procedure, and argue that it is superior to SL-resolution.

The paper begins with an informal definition of SL-resolution and with an analysis of
its deficiencms. The new proof procedure is introduced by describing its evolution from
the classification trees used in SL-resolution and from the filtering algorithm used in
Waltz's picture interpretation program. We argue that the new proof procedure using
connection graphs solves the problems associated with the deficiencms of SL-resolution.

In this paper we concentrate on those arguments for the connection graph proof pro-
cedure which are based on the comparison with SL-resolution Elsewhere [20] we advance
the arguments based on the comparison with Bledsoe's theorem-provers [2-4] and with
interpreters for high level programming languages like PLANNER [13].

We have not concerned ourselves in this paper with investigations of the completeness
of the new proof procedure. Such investigations have been pursued by Frank Brown.

This paper is a slightly revised version of an earlier memorandum [18]. In the previous
version, connection graphs were called classification graphs because of their evolution
from the classification trees used in SL-resolution.

Based on the earlier memorandum, the connection graph proof procedure has been
implemented by several researchers. Particularly noteworthy are the implementations of

Copyright (~) 1975, Association for Computing Machinery, Inc. General permission to republish, but
not for profit, all or part of this material is granted provided that ACM's copyright notice IS given
and that reference IS made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
This research was supported by a Science Research Council grant to Bernard Meltzer.
Author's present address' Department of Computing and Control, Imperial College of Science and
Technology, 48 Prince's Gardens, London SW7 1LU, England.

Journal of the Association for Computing Machinery, Vol. 22, No. 4, October 1975, pp. 572-595.

A Proof Procedure Using Connection Graphs 573

Tor Amble, University of Trondheim, Norway, applying the structure sharing techniques
of Boyer and Moore [5] and of Gianesini, University of Aix-Marseille, France, written in
predicate logic and interpreted by PRObOG [8], a theorem-prover related to SL-resolu-
tion.

More recently David Warren has convinced us that the connection graph proof pro-
cedure can usefully be regarded as an elaboration of the cancellation system developed
by Colmerauer [7] and described in this paper.

S L- Resolution

This section gives an informal description of SL-resolution. The description is incomplete
and also imprecise in certain respects. Our objective is to describe SL-resolution in suffi-
cient detail for the later investigations of its deficiencies. The example which follows the
description should help to clarify the meaning of such notions as most recent, selected,
active, and passwe, which are mentioned, but not defined, below. A precise definition of
SL-resolution, if necessary, can be found in [21]. We assume that the reader is familiar
with the notions of resolution and factoring. Nllsson's book [27] and Robinson's review
paper [32] provide adequate explanations of these concepts. The following description is
less accurate for the general case than it is for the ground case where clauses contain no
variables. This is sufficient for our purposes since all of the deficiencies of SL-resolution
which we shall investigate apply to the ground case.

For a sequence C~, . • • , C~ of clauses to be an SL-derwation from a set of clauses S, it
is necessary that

1. C1 6 S (called the top clause of the derivation),
2. C~+~ is obtained from C, by resolving on a selected, most recent literal in C, with a

clause B, where (a) B C S or (b) B is an ancestor C~ (3 < z) of C,.
Each clause in an SL-derivation can be regarded as a set of goals: one goal, for each

literal, of refuting the literal by establishing its negation. The hterals in each clause are
arranged in a stack and the achievement of the individual goals located in the stack is
at tempted on a last-in-first-out basis. Associated with every input clause B in S and with
every literal L in B is an operator (or rule of inference) which, applied to the goal of
refuting L, replaces that goal by the subgoals B -- {L}. Application of such an operator
is an instance of case 2(a) in the description of SL-derivatlon.

There is a simple notational device for encoding into each clause information about
which of its subgoals are currently active, which subgoals are passively awaiting later
activation, and what are the hierarchical relationships between various goals and sub-
goals. The same notation makes it easy to recognize and to reject clauses which contain
contradictory subgoals, to suppress loops caused by activating a goal as a subgoal of
itself, to merge distinct passive occurrences of a single subgoal, and to use proof by con-
tradiction for the achievement of subgoals which are contradicted by higher level goals.
Case 2(b) in the description of SL-derivation deals with the achievement of subgoals by
contradiction and is called ancestor resolution. The notation which facilitates these opera-
tions is illustrated and described in Figure 1.

Example. In Figure 1 the initial set of goals C~ is to refute both L and K. Both goals
have equal priority. We select one, K, to solve before the other. But B~ can be read as
saying that K is solved if M is. Regarding B1 as an operator and applying it to the stack
of subgoals C~, we obtain (by case 2(a)) the resolvent of B~ and C1 which is a new stack
of subgoals C2. The subgoal K changes status from passive to active and the new subgoal
M is added to the top of the stack. Of the two subgoals L and M in C2, only M is most
recent and candidate for selection Ca is obtained by applying to C2 the operator ML,
which replaces the subgoal M by L. Now both K and M are active, with M as a subgoal
of K. There are two passive occurrences of L. These occurrences are merged together. The
earlier occurrence of the subgoal dominates and the most recent occurrence of L is re-

574 ROBERT KOWAILSKI

B, =KM

B.. ~ ,~/L

merging
and

truncation

C~ = LK

C2 = L ~ M

C~ = L ~ T ~ L

S = {LK, KM, ~tL, LK, KL}

C ~ ' ~ Z

Fro. 1. Notational conventions

B3 = L K

B . = RL

ancestor resolution
and truncatmn

C~' = L

C ~ =[~] K

C5 = [~] L

Fro. 2 Continuation of Figure 1
In our notation, the commas and curly brackets associated with the set notation for clauses are
omitted. Thus LKstands for {L, K}. Stacks of hterals are written with more recent literals following,
i.e. to the rxght of, less recent literals. The selected literal resolved upon in a clause C, is retained in
the resolvent C,+1, but is enclosed in a box to indicate that it has been resolved upon Such sequences
of hterals are called chains in [21]. The boxed literals in a chain stand for subgoals actively pursued
in the chain. One active subgoal m a subgoal of another active subgoal m a chain if the first occurs
after, i e. to the right of, the second As a termznologzcal conventwn, we give the name L to the subgoal
of refuting L Thus we say that the clause L K contains two subgoals L and K, which consist of re-
futing L and K, respectively

garded as achieved, conditionally, upon the later achievement of L. Both subgoals K and
M are now conditionally achieved subject to the later achievement of the first occurrence
of subgoal L. C3' is obtained from C3 by merging the two occurrences of L and by trunca-
twn, a bookkeeping operation which recognizes and removes accomplished subgoals from
the top of the stack.

In Figure 2, C4 is obtained by replacing the goal L by the subgoal K. Ca is obtained
by replacing goal K by subgoal L. But now L is a subgoal of L. Proof by contradmtion
allows us to assume that L is true during the course of trying to refute L. But then, by
assuming L, we acbaeve the subgoal L of refuting L.

The definition of SL-derivation determines, for a given set of input clauses, for a given
top clause, and for a given criterion for selecting most recent subgoals, a search space of
all possible SL-derivations. Figure 3 illustrates the entire search space of all SL-deriva-
tions determined by the choice of S and C1 in the preceding example. The space is ar-
ranged in the form of a tree whose derivations share common initial subderivations. In
this example, terminal nodes not labeled by the mark of success, O, violate the admzssi-
bzlity restriction, which rejects a chain whenever it contains distinct occurrences of the
same atomic formula, unless merging or ancestor resolution can be performed and the
literal removed by the operation has just been entered at the top of the stack.

The definition of SL-resolution in no way prejudices the order in which derivations can
be generated by a search strategy. Breadth-first, depth-first, and various ordering strate-
gies guided by merit orderings or by evaluation functions can be used to sequence the
generation of derivations in the search space. The search strategy can reach its decisions
autonomously as a result of its own deliberations or it can execute search strategic advice
formulated by a user in a language especially provided for that purpose. This paper is
concerned primarily with search spaces, although aspects of search strategy are dealt
with m the last section.

Deficiencies of SL-Reso lu twn

PROBLEM 1. CONTRADICTORY UNITS. Figure 3 illustrates what is possibly the most
obvious defect of SL-resolution. that contradictory uni t clauses, K and h:, can appear on
different branches of the search space, while the generation of an explicit contradiction is
prohibited by the restriction that clauses resolve only with axioms or ancestors.

This problem has an obvious and easy solution: Supplement SL-resolution with a
procedure which checks, whenever a unit clause is generated, whether it contradicts some

A Proof Procedure Using Cqnnection Graphs 575

LEEM L EL

I?L°°L I? L
© [] [] L

FIG 3. The search space for the example of Figures 1 and 2. The selection function activates in
the top clause LK, the subgoal K before L. Nodes denoted by an asterisk violate the admissibility
restriction, because their labeling chains contain distract occurrences of the same atomic formula L
and neither merging nor ancestor resolution is possible.

previously generated unit. This solution has the advantage of solving the problem in the
least demanding manner, bringing immediate short- term benefits. However it is an ad
hoc solution which resolves none of the many other related problems. I t shares with other
ad hoc solutions the danger of camouflaging the original problem and of inhibiting its
satisfactory solution.

PROBLEM 2. REDUNDANCY. More worrisome and less obvious than the problem of
contradictory units is the more general problem of redundancy in SL-search spaces.
SL-resolutlon eliminates the n! redundancy present in systems like set-of-support and
linear resolution which, without a selection restriction, consider all the n ! ways of sequenc-
ing for solution the n subgoals associated with n literals in a clause. However, other re-
dundancies can be generated by SL-resolution when more than one operator applies to
a subgoal and when more than one is necessary for its solution. The occurrence of con-
t radictory units in Figure 3 is a consequence of this redundancy. Figure 4 i l lustrates the
same redundancy in a simplified example.

Considered in isolation from the many other problems of SL-rcsolution, redundancy is
an easy problem admit t ing a var ie ty of solutions. One, possibly the most straightforward,
solution involves ordering operators when more than one applies to the same subgoal.
In Figure 4, for example, order B1 before B~ when both are used as operators which apply
to subgoals of the form L. Between the activation and eventual achievement of a subgoal,
operators may occur only in increasing order. Thus the second branch in Figure 4, la-
beled by operator B2 followed by B1, violates this restriction. Unfortunately, in this
example, the solution to problem 2 does not solve the associated problem 1.

A second solution a t t r ibutes the problem to the loss of information which occurs when
sentences are converted into clausal form. The operators LK and LK share the l i teral L.
The two operators might usefully be replaced by the single sentence L(K & I~) and resolu-
tion of clauses might usefully be extended to resolution of such sentences. This approach
merits serious consideration if only because it is a popular objection against clausal form
tha t i t destroys useful information implicit in nonclausal formulations of problems. The
subject of clausal form, like tha t of the unnaturalness of resolution, is a controversial
one. Here we note only tha t our solution to the problem of redundancy in SL-resolution
retains the use of clausal form. A well-reasoned argument for liberalizing clausal form and

576

c©K

cE1®L
ancestor resoluUon
and truncation

C

ROBERT KOWALSKI

CL

B z = L K

cog

c©NL
ancestor resolution
nd truncatmn

FiG 4. Redundancy in SL-resolution

an extension of SL-resolution to nonclausal sentences has been made by Wilkins [34].
In [20] we dealt in detail with the arguments for and against the naturalness of both
clausal form and resolution

PROBLEM 3. MORE FLEXIBLE ACTIVATION OF SUBGOALS The first two problems
concern the most obvious faults of SL-resolution. Although one can argue about the
respective merits of alternative solutions, it is more difficult to argue tha t these problems
are not worth serious consideration The situation is different for the remaining problems
which we wish to consider. These problems concern not so much identifiable inefficiencies
as much as they concern limitations which restrict problem-solving capabilities. The
restriction, in SL-resolution, to the activation and achievement of subgoals in a last-in-
first-out manner is such a problem.

In the propositional case, without ancestor resolution, SL-resolution search spaces
can be regarded as search trees obtained from and-or trees by imposing a depth-first
search on and-branches. Although in many cases such a strategy is desirable, in other
cases a more flexible rule is useful. The ability to a t tempt the achievement of several
subgoals simultaneously is especially important in the general case when subgoals are
not independent. The reduction of problems to dependent subproblems and the simul-
taneous consideration of several subproblems are topics dealt with elsewhere [20].

Example. Clauses (1)-(11) define a nondeterministic predicate logic program for
sorting lists whose elements are among the numbers 1, 2, 3. Clause (1) asserts that y is a
sorted version of x if y is a permutation of x and y is ordered. Clauses (2) and (3) recur-
sively define permutation in terms of deletion Del(x, y, z) states tha t z is obtained by
deleting x from y and is defined by (4) and (5). Clauses (6), (7), and (8) define ordered-
ness. Clauses (9), (10), and (11) list parts of the "less than" relation necessary for sorting
lists whose elements contain just the numbers 1, 2, or 3.
(1) S(x, y) P(x, y) O(y),
(2) P(nil, nil),
(3) P(z, cons(x, y)) ~](x, z, z') P(z', y),
(4) Del(x, cons(x, y), y),
(5) Del(x, cons(y, z), cons(y, z')) D~(x, z, z'),
(6) O(nil),
(7) 0(cons(x, nil)),
(8) O(cons(x, cons(y, z))) L"T(x, y) O(cons(y, z)),
(9) LE(1, 2),
(10) LE(1, 3),
(11) LE(2, 3).

We choose this example not because it is an especially good example of programming an
predicate logic, but because it provides an illustration of the utility of more flexibly
activating subgoals than is allowed by SL-resolution. Figure 5 illustrates part of the SL-
search space determined by the problem of sorting the hst cons(2, cons(l, cons(3, nil))).
Execution of the program (1)-(11) is initiated by the addition of the top clause S(cons(2,

A Proof Procedure Using Connection Graphs

C1 = S(cons(2, cons(l, cons(3, nil))) ~)

(1)

(3)

(3)

~ / ~ (3)

~ (2)

(8)

C2 = P(cons(2~ cons(l, cons(3, ml))), y)O(y)

577

C3 = O(cons(x, y')) D~e(x, cons(2, cons(l, cons(3~ ml))) 1 z')P(z', y')

C4 = O(cons(2, y')) P(cons(1, cons(3, ml)), y')

C5 = 0(cons(2, cons(x', y"))) De--'7(x'~ cons(l~ cons(3~ nil))t z:.')P(z', y")

C6 = 0(cons(2, cons(l, y"))) P(cons(3, ml), y")

C7 = O0(cons(2, cons(l, cons(x", y'"))))De-"l(x", cons(3, nil), z'")P(z'", y'")

Cs = O(cons(2, cons(l, cons(3, y'"))))P(ml, y ' ")

C9 = O(cons(2, cons(l, cons(3, ml))))

C~0 = LE(2~l)6(cons(1, cons(3, ml)))

FIG. 5. Part of the search space for the sorting problem. Selected hterals are underlined. Active
subgoals are not illustrated for lack of space.

cons(l, cons(3, nil))), y), which denies that the list can be sorted. This contradicts what
is implicit m (1)-(11) and provokes the theorem-prover into deriving a contradmtion
which is explicit. This example is also considered m [19]. Van Emden [9] compares this
representation of the sorting problem with another representation corresponding to the
Quicksort algorithm.

For this set of clauses, and for an appropriate selection function, SL-resolution exe-
cutes the following algorithm for sorting lists: Generate permutations of the original list
and test each permutation for orderedness. A permutation which survives the test is a
solution. Since we are not concerned here with search strategy, the algorithm is non-
deterministic in the sense that it does not specify whether permutations should be gen-
erated in parallel, by backtracking or by some other sequencing strategy.

For the same set of clauses, more flexible selection of subgoals results in the following
more efficient, nondetermmistic algorithm: Generate sublists cons(x, y) of the original
list and test each such sublist for orderedness, assuming that the tail, y, is ordered and
checking only that the head, x, is less than the first element in y. If the sublist is ordered,
then add a new element to the front of the list and test that orderedness is preserved;
otherwise reject the sublist and consider no extensions of it.

The second algorithm is obtained from the first by activating subgoals of the form
0(cons(x, cons(y, z))) as soon as it can be tested whether ~ (x , y). Thus the unsuccessful
derivation illustrated in Figure 5 could be terminated earlier by activating and recogniz-
ing the unsolvability of the passive subgoal 0(cons(2, cons(l, y,/))). For SL-resolution,
activation of this subgoM is impossible because it is not most recent.

Considered in isolation from the other problems of SL-resolution, it is not difficult to
find systems which liberalize the order in which subgoals can be activated and achieved.

5~8 ROBERT KOWALSKI

What is more difficult is to refrain from constructing locally optimal solutions to individ-
ual subproblems and to work instead toward the construction of globally optimal solu-
tions ~o the many problems which need eventually to be solved.

PROBLEM 4. SUPPORT SETS AND MULTIDIRECTIONAL SEARCH. Suppose that a set of
clauses S can be partitioned into two sets, one containing the axioms and the hypotheses
of the theorem to be proved and the other containing a single clause which is the negation
of the conclusion of the theorem. If the axioms and hypotheses are consistent and if the
conclusion of the theorem is a logical consequence of the axioms and hypotheses, then
there exists an SL-refutation of S with a top clause which is the negation of the conclu-
sion of the theorem. Similarly, if the axioms of S are consistent and if all of the hypothe-
ses of the theorem are necessary to establish the conclusion, then if S is unsatisfiable,
for every clause which is a hypothesis of the theorem there exists an SL-refutation of S
having that hypothesis as top clause. More generally, it suffices for completeness to
generate only SL-derivations whose top clause belongs to some subset S' of the input set
of clauses. What is required is that the subset, called set-of-support, contains at least one
clause necessary for a refutation, i e. that S - S' be satisfiable [37].

In general there exist several alternative support sets for a given set of input clauses.
In SL-resolution it is possible to choose and employ just a single set-of-support. We need
a proof procedure which, hke those employed by Bledsoe and his colleagues [2-4], allows
us to tackle a problem simultaneously from several pomts of view: chaining backward
from the conclusion of the theorem and forward from the hypotheses.

Example. S = {P(0), P(x)P(s(x)), P(s(s(s(O))))}. I t is easy to show that, on purely
syntactic grounds, both P(0) and P(8(s(s(0)))) must occur in any refutation of S (because
every unsatisfiable set of clauses must contain at least one positive clause, containing no
negative literals, as well as at least one negative clause, contaimng no positive literals).
Alternatively on "semantic" grounds it can be argued that the negative clause corre-
sponds to the conclusion of the theorem and the positive clause to its hypothesis. There-
fore attention can be bruited either to SL-derivations with top clause P(0) or to those
with top clause P(s(s(s(O)))). Either choice gives us effectively a unidirectional search,
either "forward" from P(0) or "backward" from P(s(s(s(0)))). SL-resolution provides
no facilities for bidirectional search.

Example. Sentences (and other strings of objects) can be represented by directed
graphs whose edges are labeled by words, e.g. "(1) The (2) girl (3) guides (4) fish (5)."
Axioms (1)-(4) below assert that "the girl guides fish" is a string of four words. Axioms
(5)-(11) define the grammatical categories of the words in the string. A grammar ade-
quate to determine the two ambiguous parses of the string as a sentence ls given by
axic)ms (12)-(17). Clause (18) is the negation of the theorem: that the string between
points 1 and 5 is a sentence. This axlomatization of the parsing problem was devel-
oped by Colmerauer and the author. It is based upon Colmerauer's Q-systems [6] for
writing and parsing grammars. Minker and Van der Brug [26] have independently investi-
gated the application of theorem-provers to the parsing problem. Van Emden [9] com-
pares the theorem-proving approach with more conventional methods. In [8] Colmerauer
and his colleagues describe their use of predicate logic as a programming language for
writing a natural language question-answering syste._.m.

(1) The(l, 2) (10) fish(x, y) vb(x, y)
(2) girl(2, 3) (11) ~ (x , y) noun(x, y)
(3) guides(3, 4) (12) ~ (x , y) n ~ (y , z) np(x, z)
(4) fish(4, 5) (13) ~ (x , y) ~ (y , z) n ~ (z , v) np(z, v)
(5) ~ e (x , y) det(x, y) (14) n ~ (x , y) np(x, y)
(6) gir--'l(x, y) adj(x, y) (15) ~ (x , y) vp(x, y)
(7) gir"--l(x, y) noun(x, y) (16) ~ (x , y) ~ (y , z) vp(x, z)
(8) ~ (x , y) vb(x, y) (17) ~ (x , y) ~ (y, z) S(x, z)
(9) ~ (x , y) noun(x, y) (18) ~(1, 5)

A Proof Procedure Using Connection Graphs 579

Corresponding to every refutation of (1)-(18) is a parse of the sentence. I t is obvious,
therefore, that every refutation must contain all five of the clauses (1)-(4), (18). To each
such clause there corresponds an SL-refutation having that clause as top clause. Using
the first clause (1), the search space corresponds to a bottom-up, left-to-right analysis of
the sentence. Using the fourth clause (4), we obtain a bottom-up, right-to-left analysis.
Using the negation of the theorem (18) results in a top-down parse. (In fact, the criterion
for selecting literals determines, in all of these cases, whether the choice is uniformly one
direction or another.) Although SL-resolution allows a certain degree of flexibility in that
it permits an initial choice of different top clauses, it does not provide for the simultane-
ous exploitation of the different possibihties. We will see later that the new proof pro-
cedure provides us with the ability to execute a multidirectional search, with the search
strategy determining which initial focus of attention to search from and when to switch
from one focus to another. We will see how the problem of intersecting different &rec-
tions of search, discussed by Pohl [28], is solved without introducing any mechanisms
not already required for implementing the solution of the other problems we consider.

PROBLEM 5. OTHER RESOLUTION SYSTEMS. I t is tempting to argue that SL-resolu-
tion is more efficient than all other resolution systems. Indeed, in the cases of set-of-
support [37], A-ordering [14], resolution with merging [1], and general linear resolution
[22, 24, 38], such arguments can be pursued a long way. But at least two other resolution
systems need to be treated more seriously.

Hyperresolution [31] and its implementation by means of selective Pl-deduction [14]
sometimes behaves more efficiently than SL-resolution. In the parsing problem, for
example, selective Pl-deduction generates a bottom-up analysis which is completely
flexible as to direction. The choice of left-to-right, right-to-left, or parallel bottom-up
is left entirely to the discretion of the search strategy. Other examples can be cited where
this kind of Pl-deduction admits no obvious redundancies and determines, in other re-
spects, a satisfactory search space.

A second alternative to SL-resolution is Colmerauer's cancellation system [7]. I t bears
a greater resemblance to the new resolution system than does either SL-resolution or
hyperresolution. I t has the advantage of solving the first two problems of SL-resolution
as well as of incorporating the two preprocessing procedures discussed below in connection
with problem 6. Cancellation can be regarded as a variation of SL-resolution in which
ancestor resolution is replaced by a restrmted resolution of clauses occurring on different
branches of an SL-search space. Without going into details, the system is easy to describe:
Let S be the input set of clauses and let S' be an initial set-of-support. Let all literals in
input clauses be equally most recent. Repeat the following procedure until [] E S ' : Pick
a clause C E S'. Pick a most recent literal L E C. Add to both S and S' all resolvents D
obtained by resolving on L in C with some clause B E S. All literals in D descending
from B are more recent than literals descending from C Delete C from S and S'.

I t might be argued that SL-resolution, selective Prdeduction, and cancellation ought
to be regarded as .alternatives, each of which is a useful member of a larger repertoire of
solution methods Special problems require special methods. For one problem, one method
might be useful, whereas for another problem a different method might be more useful.
Our approach to the problem of reconciling competing resolution systems is less tolerant
of differences.

Our goal is to design a single system which incorporates the best features of other sys-
tems but avoids the worst of their faults. The new theorem-proving system allows us to
simulate SL-resolution, Prdeduetion, and cancellation. I t Mlows us, moreover, to com-
bine the different systems during the course of searching for a proof. In the course of
simulating SL-resolution we avoid the inefficiencies and redundancies discussed in con-
nection with problems 1 and 2.

PROBLEM 6. PREPROCESSING PROCEDURES. Preprocessing procedures transform one
set of clauses into another set more highly instantiated, containing fewer clauses, or in

580 ROBERT KOWALSKI

some other way better suited for input to a theorem-prover. On the other hand, various
preprocessing procedures themselves resemble certain proof procedures. Colmerauer's
cancellation is such a proof procedure. I t can be used to good effect as a preprocessing
procedure to delete clauses C which resolve with a small number of other clauses in the
input set. I t seems to us a deficiency of SL-resolution that various preprocessmg pro-
cedures need to supplement the basic proof procedure. The theorem-proving system
described later in this paper satisfactorily integrates preprocessing and proof procedure.
In particular, preprocessing is not limited to an initial operation performed only on the
set of input clauses, but is applicable at all stages in the course of searching for a proof.

The purity principle [30] asserts that a clause C may be deleted from an unsatisfiable
set of clauses S if it contains some literal L such that no clause in S resolves with C on
the literal L. The purity principle is one of the more useful preprocessing tools incor-
porated in the new theorem-proving system.

The purity principle is also incorporated in Colmerauer's cancellation" If L is pure in
C, then pick C, pick L E C. The set of resolvents obtained by resolving on L m C is
empty. Adding the empty set of resolvents to the current unsatisfiable set of clauses S
and deleting the parent clause C result overall in the deletion from S of the clause C con-
taining the pure literal L.

More generally, cancellation incorporates a second preprocessing procedure which
allows, under certain circumstances, one or both parents of a resolvent to be deleted
when the resolvent is created. The second preprocessing procedure is just the operation
whmh is the basis of the cancellation system: Select a clause C in S. Select a literal L in
C. Generate and add to S all clauses which result from resolving on L in C with a clause
B ~i S. Delete C from S.

A similar deletion procedure has been investigated by Gelperin [10]. Related deletion
procedures, reported by other authors [15, 25, 29], are also incorporated in the connection
graph proof procedure.

Example. In the parsing problem, select for cancellation the single literals in the unit
clauses (1)-(4), which specify the words occurring in the input string. These literals
resolve only with clauses (5)-(11), which define the grammatical categories of the words
in the input string. The resolvents obtained are the following clauses.

det(1, 2), adj(2, 3), noun(2, 3), vb(3, 4), noun(3, 4), vb(4, 5), noun(4, 5).

Clauses (1)-(4) are now deleted. If in clauses (5)-(11) we now select the first literals for
cancellation, we notice that these literals have become pure and that therefore clauses
(5)-(11) can also be deleted. Thus, in this example, the rcsolvents have replaced both of
their parents in the input set of clauses. As m cancellation we aim for a proof procedure
in which such a deletion procedure is an integral part.

PROBLEM 7. ACCESSING RELEVANT OPERATORS. A distressing characteristic of
resolution proof procedures is the excessive amount of search which can be involved in
accessing clauses which resolve with a selected literal. In the worst case, in nonlinear
systems without some scheme for classifying clauses, it is necessary to search through the
entire set of clauses before finding the subset of all clauses which resolve with the given
literal. At any given time, a discriminating search strategy might examine only a small
subset of the whole. But eventually it too examines the entire set of clauses. I t is typical
of resolution proof procedures that they occupy most of their time testing for resolvability
of clauses which do not resolve. A recent paper concerned with this problem is devoted
almost entirely to the task of speeding up the recognition that a pair of clauses fails to
resolve [33].

With SL-resolution and with linear resolution systems generally, the situation improves
significantly. For a given selected literal, it is necessary to search only through the set
of input clauses for operators which resolve with the given literal. This set is fixed in size
and does not grow during the course of searching for a proof. The situation can be further

A Proof Procedure Using Connection Graphs 581

improved by storing input operators according to the predicate letters they contain. In
order to access operators it is necessary then to search only among those input clauses
which contain the same predicate symbol as the selected literal but opposite in sign. I t
was the elaboration of this idea, m order to take into account the syntactic structure of
the terms in literals, which resulted m the notion of classification tree Classification trees
eventually evolved into matrices and finally into connection graphs. These structures
were found useful not only for accessing operators but also for facihtating look-ahead.
Although they were originally intended to supplement SL-resolution, they eventually
assumed all the functions of a complete proof procedure. Thus it was the solution of the
last of our seven problems which resulted in the solution of the other six.

Classification Trees

Classification trees [21] store input operators according to the syntactic structure of the
literals with which they resolve. To any given selected literal there corresponds a unique
branch of the tree. At the tip of the branch are located pointers to all the input operators
which resolve with the hteral scheme associated with the branch. The selected hteral is
an instance of this scheme and resolves only with input operators pointed to at the tip of
the branch.

Example. The set of clauses classified by the tree in Figure 6 consists of five clauses,
each containing two literals. Each input clause, therefore, has two associated operators.
We employ the convention that an operator, written PQ, is resolved only upon its first
literal P.

The leftmost branch in the figure has the associated literal scheme L(v), where v is any
variable. The nghtmost branch is associated with literals of the form M(f(t)), where t
is any term. Such literals resolve only with the single operator 2' listed at the tip of the
branch.

Connection Graphs

The idea that matrices or graphs might provide a useful alternative to classification trees
was suggested by Boyer. Figure 7 illustrates the connection graph for the example of
Figure 6.

To every occurrence of a literal in an input clause there corresponds a node in the
graph, labeled by the literal. Two nodes are connected by an undirected arc (called a
link) if their literals are potentially complementary (Le. if their literals can be made

(1) L(x)K(x) (1') K(x)L(x)
(2) K_(f(y))M(y) (2') M(y)K~(y))
(3) ¥(u)L(f(a)) (3') L(f(a))M(u)
(4) L(x)K(x) (4') K(x)L(x)
(5) K(f(x))L{f(x)) (5') L(f(x))K(f(x))

L

4 4 1 1 2 2 1' 1' 3 3 2' 2'
5' 5' 3' 3' 5 5 4' 4 '

Fro. 6 A classification tree for operators (1)-(5) and (lr)-(5 ')

582 ROBERT KOWALSKI

complementary by applying some substitution, after renaming variables so that different
clauses contain different variables). Nodes corresponding to literals which belong to the
same clause are "grouped together" in the graph Since, in order to construct the graph,
it is necessary to test pairs of literals to determine whether they are potential comple-
ments, it involves little additional computational effort to label each link with its asso-
ciated most general unifying substitution.

Connection graphs can be used to store the entire set of clauses as it is generated. With
each link in the graph is associated the single resolvent obtained by resolving away the
two literals at the opposite ends of the link. When the resolvent is generated, it is a
simple matter to add it and its associated links to the graph. The new links connected
to literals L' in the resolvent are constructed without searching by examining the old
links connected to the literals L from which L' descends: A new link connects L' to K
if (1) an old link connects L to K, and (2) the substitution associated with the old link
is compatible with the substitution associated with the link whose activation generated
the resolvent. The substitution associated with the new link can be computed directly
from the two compatible substitutions. An algorithm for computing these substitutions
has been developed by Jophien van Vaalen at the Mathematical Centre in Amsterdam.
Figure 8 illustrates the operations involved in adding a resolvent to a connection graph.

Given a selected link in a connection graph, a new connection graph is obtained by
adding the associated resolvent to the graph, adding the new hnks connected to its
literals, and deleting certain links and clauses from the old connection graph:

1. When a resolvent is generated and added to a graph, the link whch generated the
resolvent is deleted from the graph.

L (x)K (x)

K(f(y))M(y)

\

Kff(x))L~f(x}) ~

~(u)L(f(a)}

FiG. 7. The connection graph for the example of Figure 6

~ y .= b x = c --
L(c) /

x = f~y) g(x)L(x) ~ \

Y M(y)L(f(y))
Fro. 8 The addition of a resolvent to a connection graph. The arrow points from the link which

generates the resolvent to the resolvent itself. The links connected to the literals M(y) and L(f(y))
m the resolvent descend from the links connected to the literals M (y) and L (x) from which they de-
scend in the parent clauses.

A Proof Procedure Using Connection Graphs 583

2. If a node has no links (i.e if its labeling literal is pure), then the clause in which the
node occurs and all links attached to nodes in the clause are deleted from the graph.

3. If a clause is a tautology, then it is deleted together with all its nodes and their
links.

The new proof procedure consists of the application of the following nondeterministic
procedure to the initial connection graph for the input set of clauses:

1. Terminate successfully if the graph contains the empty clause.
2. Otherwise, select a link in the graph, generate the associated resolvent, and construct

the connection graph for the new set of clauses. Apply the procedure recursively to the
new connection graph.

Much of the flexibility and power of the proof procedure owes to its nondeterminism:
the fact that any link can be selected to generate the new connection graph from the
old one.

In order to make the definition precise it is necessary to pay attention to details, taking
special care with operations for self-resolving clauses (i.e. clauses which resolve with a
copy of themselves) and with the merging and factoring operations. Ignonng these details
for the moment, Figure 9 illustrates a sequence of transformations of a connection graph
which detects the unsatisfiability of the set of clauses in Figures 1-3.

Historically, the step from connection graphs to the connection graph proof procedure
was suggested by Winston's description [35], in 1972, of Waltz's picture interpretation
algorithm.

Connection Graphs and the Waltz Algomthm

Waltz is concerned with the problem of constructing from local information a global
interpretation of a two-dimensional line drawing as a scene. In order to do so, he con-
structs a graph whose nodes represent vertices in the picture and whose edges represent
lines joining vertices. With each node in the graph is associated a large set of possible
local interpretations of the corresponding vertex A single global interpretation of the
entire drawing is obtained by selecting, for every node in the graph, a single interpretation
from among the complete set of possible interpretations associated with the node. Nodes
joined by an edge must be labeled by interpretations which satisfy certain compatibility
restrictions If all pairs of nodes joined by an edge are labeled by compatible pairs of
interpretations, then the labeling determines a single global interpretation of the draw-
ing.

The algorithm starts with each node in the graph labeled by the complete set of all its
possible interpretations. I t proceeds by consecutively examining pairs of nodes joined
by an edge, deleting an interpretation from the labeling of one of the nodes if it is in-
compatible with all interpretations in the labeling of the other node. Later certain inter-
pretations in the labeling of the second node may become deleted because of incompati-
bilities associated with other edges in the graph. At such a time it will be necessary to

L

L

FIG. 9 A sequence of transformations of the connection graph for the set of clauses in Figures
1-3. Links C), O, Q, and Q have resolvents which are tautologies These links may be deleted from
the graph as soon as they are generated, without waiting until the tautologies are added and deleted.
Links 0 and (~) have merge resolvents whmh revolve identifying hterals from different parents. The
resoJvents corresponding to O, (~), Q, and (~) replace both of their parents, because once the resolvents
are generated and the links deleted, both parent clauses contain unlinked literals.

584 ROBERT KOWALSKI

reconsider the original edge and to test whether any other interpretations associated
with the first node can be deleted because they have become incompatible with all in-
terpeetations in the diminished set associated with the second node. The deletion of in-
compatible interpretations continues until eventually no node has an associated interpre-
tation which is incompatible with all interpretations associated with some neighboring
node. Winston claimed that by this time there usually remained only a very small num-
ber of interpretations associated with every node.

I t was immediately clear that a procedure analogous to Waltz's could be applied to
dim]nish the number of links in a connection graph. Suppose that L and K are distinct
literals belonging to the same clause. A link connected to the literal L can be deleted
from the graph if its associated substitution is incompatible with all substitutions asso-
ciated with the links connected to K. The consequences of deleting a hnk propagate
throughout the connection graph in the same way that they do for deleting an interpre-
tation m Waltz's picture graph. Figure 10 illustrates the transformation of a connection
graph effected by deleting incompatible links.

That incompatibility deletion occupies the central role i~ Waltz's algorithm suggested
that the analogous operation might play an important role in a complete proof procedure
based on connection graphs. From this suggestion it was an easy step to the definition
of the operation which deletes a link and adds to the connection graph the associated
resolvent and the new links connected to its literals. I t is interesting to note that this op-
eration together with the operation of deleting clauses containing pure literals subsumes
the operation of deleting incompatible links: If a link connected to a literal L is incom-
patible with all links connected to a literal K in the same clause, then generate the re-
soh'ent corresponding to the incompatible link, delete the link, and add the resolvent to
the graph. But notice that the incompatibility of all links connected to K with the de-
leted link connected to L means that the descendant of the literal K in the resolvent is
now pure and therefore the entire resolvent may be deleted from the graph. The total

y = a ~ (a)

L(b, b) y = b L(b, y)M(y) J y = u, . M(u)K(a, u)

y = a
x = b

L(a, a) x = L(x, a)K(x, b) . K(e, b)
® ®

y = b y = u
L(b. b) L(b, y)M(y) . • M(u)K(a, u)

u = b / / / / ~ / ~
X = a

L~a, a) - x = a • Ltx, a)K(x, b) J

FIG 10. Deletion of incompatible hnks Link (~) is incompatible with both @ and @. Deletion
of i~ makes clause K(c, b) contain a pure hteral This clause may consequently be deleted from the
graph Link @ is incompatible with @. Deletion of @ makes ® incompatible with all hnks connected
to L(b, g). Deletion of (~) makes ll;~/(a) pure and consequently this clause is also deleted from the
graph,

A Proof Procedure Using Connection Graphs 585

effect of this sequence of operat ions is s imply to delete the original incompat ib le link
connected to the l i teral L f rom the connect ion graph

Not ice tha t Wal tz ' s incompat ib i l i ty deletion is used s imply as an init ial preprocessing
procedure. In connect ion graphs, incompat ib i l i ty delet ion is an integral par t of the proof
procedure and can be applied a t any t ime during the course of searching for a proof.

Connectzon Graphs and the New Proof Procedure

I t is necessary to supplement the resolut ion operat ion with a factoring opera t ion which
merges po ten t ia l ly ident ical l i terals in the same clause. An instance C0 of a clause C is a
factor of C if 0 is a most general unifier of some subset of l i terals in C Like the resolution
operat ion, the operat ion of genera t ing factors leads to excessive redundancy unless re-
s tr ict ions are placed on its use. Such restr ict ions have been imposed upon the factoring
opera t ion in SL-resolut ion and in o ther systems [16]. In order to simplify the definition
of the connect ion graph proof procedure, we shall ignore restr ict ions on the factor ing
rule. The m-fac tor ing me thod employed in SL-resolut lon and o ther forms of factor ing
employed in o ther proof procedures can easily be adapted to the new proof procedure
On the o ther hand, i t is l ikely tha t new factoring me thods which t ake account of the
special bookkeeping s t ructure of connect ion graphs will be more s tatable for the new
proof procedure.

The proof procedure is the fol lowing nondeterminisf ic program:

(1) In order to determine that a set S of clauses is unsatisfiable:
(a) Construct and
(b) Process the initial connection graph for S

(2) In order to construct the mitial connection graph for S
(a) Generate and include m the graph all factors of clauses in S.
(b) For every pair of potentially complimentary hterals in &stmct clauses in the graph, insert

a hnk connecting the hterals.
(c) Label each hnk by the most general unifying substitution which makes the literals comph-

mentary.
(3) In order to process a connection graph.

If the graph contams the empty clause,
Terminate successfully,
If the graph does not contain the empty clause:
(a) Select a link m the graph,

Generate the associated resolvent,
Add its factors to the graph, and
Delete the selected link

(b) Add links connecting literals in the newly generated factors to other literals in the graph.
(1) If L0 m a new clause descends from L in a parent clause,

If a link labeled by a connects L to K, and
If 0 and a are compatible, then
Add to the graph a link connecting LO and K labeled by the substitution 0 * a which is the
most general umfier of/.~ and K.

(ii) If L0 in a new clause is potentially complimentary to a literal occurrence K in another
factor of the resolvent or in a parent clause, then
Add a link connecting L0 and K, labeled by the most general unifier of L0 and K.

(c) Delete a clause and all links connected to its literals
(i) If the clause is a tautology, or

(il) If the clause contains a pure literal (one not connected by a link to any other literal in
the graph).

(d) Process the new connection graph

Figures 11-13 i l lustrate var ious detai ls of the algori thm.
The a lgor i thm as i t has jus t been defined is nondetcrminis t ic . For implementa t ion on a

determinis t ic machine it needs the specification of a search procedure which determines
the selection of links. There are two approaches to the specification of search procedures.
One approach, advoca ted by Hayes [12], is to devise a control language wi th facilities for
the axiom wri ter to specify the cri ter ia for the selection of links. The other, more conven-

586 ROBERT KOWALSKI

P(a) P(f(f(a))) PEa)) ~ .P(f(a))

P(x)P(f(x)) P(x)P(f(x))

Fxo. 11 Bidirectional search with a self-resolving clause A self-resolving clause, more precisely,
is one which resolves with a copy of ~tself The first transformation is obtained by selecting hnk (i).
The insolvent is its own only factor. Its parent P(a) is deleted because it contains a pure literal after
deletion of (X) The new link (~) is added by step (3-b-n). According to step (3-b-1) an attempt is made
to add link (~) Thin attempt fails The next hnk selected is (~) The parent P(f(.f(a))) of the new re-
solvent is deleted because it now contains a literal which is pure. New links (~) and 0 are added to
the graph. The null clause results from the selectmn of hnk ®.

P(c, b) P(a, b) P(a, c)

~ KP(y,b)P(a,x)fft

Fm 12. The addition of factors to a connection graph. Link (:) is selected The two factors of the
associated resolvent are added to the graph. Notice that selection of hnk O or link Q, instead of
link (9, would have resulted in the generatlon of a much mmpler graph. The graph in Figure 13 is ob-
tained by selecting link Q m the new graph

tional, approach is to devise an autonomous sequencing algorithm which decides for it-
self. We shall have more to say about search procedures in the final section of this paper.
But first we shall explain the criteria used for selecting links in the examples of the next
section. For purposes of simplicity we ignore the factoring operation altogether.

In general it is desirable to select links whose activation simphfies the graph by reducing
the total number of clauses, hteral occurrences, or links. The ideal si tuahon occurs when a
link connects a pair of literals and no other link is connected to either literal In such a case
the resolvent completely replaces its parents (because after deletion of the link, both
parents contain pure literals) The graph is further simplified when the resolvent merges
literals and links descending from different parents. The selection of links (~) and (~) in the
graph of Figure 9 illustrates such a situation. The next most desirable circumstance is the
one in which a literal occurrence in a clause is connected to just a single link. In this case
the one clause is replaced by its resolvent. In the special subcase where the other parent
is a uni t clause or where all literMs and connecting links descending from the undeleted
parent merge into those descending from the deleted parent, selection of the link simplifies
the graph by removing one literal occurrence and one link. In situations where the activa-
t ion of no link simplifies the graph, it is necessary to select a link whose activation least
complicates it. In such cases preference should be given to links whose resolvents contain
the fewest literals. Both the criterion of selecting links which least complicate the graph
and the criterion of generating clauses containing fewest literals can be improved by using
the look-ahead procedure described in the last section of this paper.

When it is necessary to complicate the graph, the selected link should belong to a set-of-
support, i.e. it should descend either from the negation of the conclusion of the theorem or
from one of its hypotheses. Such a goal-oriented selection of links simulates the forward-
and backward-chaining theorem-provers of Bledsoe and his colleagues [2-4].

A Proof Procedure Using Connection Graphs 587

FiG. 13 The addition of links to a connection graph. The clause KL results from the selection of
link @ in the graph of Figure 12. Notice that no hnk is added connecting the occurrence of L in KL
to the occurrence of L in L P(a, x) ~1, even though these two hterals are complementary. This is be-
cause the graph contains no hnk connecting L in the parent of the resolvent to L in L P(a, x) .~.
That link has Mready been activated and deleted.

The New Proof Procedure and the Deficiencies of SL-Resolution

We shall investigate how the new proof procedure copes with the deficiencies of SL-
resolut:on.

Recall tha t problem 7, the problem of accessing relevant operators, has been solved b y
using connection graphs to store clauses. Indeed, immediately after a clause is generated,
all resolvents which can be obtained from the clause are implicitly represented by the
neMy added links which connect literals in the new clause to other literals in the graph.
The new links are generated by copying them from the old links connected to literals in
the parent clauses. Moreover, the substitutmns associated with the new links can be com-
puted directly from the substitutions associated with the parent links together with the
substi tution associated with the link whose activation generated the resolvent

Operations on connection graphs solve problem 6, the problem of incorporating pre-
processing procedures into the proof procedure itself. This is obvious for the pur i ty princi-
ple which plays a central role in the new theorem-proving system. The new system also
incorporates the preprocessing procedure of Colmerauer 's cancellation system In connec-
tion graphs cancellatmn is accomplished by simultaneously selecting at every stage all
the links connected to some selected literal occurrence in a given clause. When the corre-
sponding resolvents are generated the selected literal occurrence becomes pure and the
clause in which it occurs is deleted from the graph.

The new theorem-proving system reconciles problem 5, the problem of competing resol-
ution systems by incorporating them (or rather improved varmtions of them) as special
ways of determining the selection of links. We have just remarked how links can be
selected in order to simulate Colmerauer 's cancellation. To simulate selective Pl-deduc-
tion it suffices always to select a link connected to a literal in a positive clause. Such a
clause always exists in any unsatisfiable set of clauses. To simulate SL-resolution with a
given set of top clauses, it suffices always to select a link connected to a most recent hteral
in some clause descending from a top clause. In the first example at the end of this section,
we see how the new system solves problems 1 and 2, the problem of dealing with contra-

588 ROBERT KOWALSKI

dictory units and the problem of avoiding redundancy when the selection of links is used
to simulate SL-resolution.

The solution of problem 4, the problem of support sets and multidirectional search,
has already been illustrated in the example of Figure 11. Notice in that example how the
test for intersection of the bidirectional searches is accomplished automatically by the
at tempt to add new links to the graph whenever a new clause is generated. Pohl recom-
mends a scheme of hash coding to alleviate the computational difficulties of intersecting
bidirectional searches [28]. I t is significant that the use of connection graphs to solve the
problem of accessing operators also solves the problem of intersecting multidirectional
searches. Multidirectional search for the parsing problem is illustrated in the second of the
three examples which follow.

Problem 3, the problem of more flexible activation of subgoals, is solved by the absence
of restrictions on the selection of links in the connection graph proof procedure. Not only
can the selection of links be constrained so as to simulate SL-resohition, but selection can
be liberalized so as to perform a generalization of SL-resohition which allows the simul-
taneous consideration of several subgoals. The third example below illustrates such a
selection of links for the sorting example considered earlier.

Example. This example deals with the solution of problem 1, the problem of contra-
dictory units, and of problem 2, the problem of redundant derivations. Figure 14 illus-
trates a redundant SL-resolution search space and Figure 15 illustrates a connection graph
simulation of SL-resohition with a breadth-first search strategy for the same set of input
clauses. The connection graph simulation generates the upper half of the SL-search space.
But then it finds (in link O) the contradictory pair of units S and S. After the contradic-
tion has been generated, nothing remains in the connection graph, corresponding to the
lower half of the SL-search space. The connection graph simulation avoids both problems
1 and 2 of SL-resohition.

I t is interesting to perform, for this set of clauses, a connection graph simulation of
SL-resolution with other search strategies. SL-resolution with backtracking (depth-first
search) directly generates one of the two redundant refutations m the SL-search space.
After the first refutation has been generated, the second refutation remains a candidate
for generation in the SL-search space. The connection graph simulation of SL-resolution

[~~Q R

f l Q
 "lu

llll lQIuI
[]

~]S Q

®s

~ Q R

[R[SlQIUI

[]

Input se t of c lauses =

{R, RSQ, RSQ, QU, U}

FIG. 14. A redundant SL-search space, with unrecogmzed contradictory units ,.~ and S.

A Proof Procedure Using Connection Graphs 589

with backtracking generates the same first refutation but, having done so, leaves no other
candidate resolution in the search space.

The new theorem-proving system is interesting for the maximal confusion it makes
between search space and search strategy. I t is especially interesting how an unnecessary
search in an irrelevant part of a connection graph alters the search space in general. In
particular, an unnecessary search often simplifies the graph and makes it easier to find
the necessary parts of the search space.

Example. The graph in Figure 16 is obtained from the initial connection graph for the

Q
~ v

RS

Q~~ u
SQ

gu @ 0

@_ G ' []
SU U S

FiG. 15 A connection graph simulation of SL-resolutlon with breadth-first search, for the set
of clauses and selectmn function of FFlgure 14 The numbering of hnks indicates the order m which

they are selected for deletion.

vb(3, 4) vb(4, 5)

~(x, y)~p(y, z)vp(x, z) v-b(x, y)vp(x, y)

adj(2, z)h~bfffi-n(z, w)np(1, w) n~n(x, y)np(x, y) fioun(2, z)np(1, z)

adj(2, 3) noun(2, 3) noun(3, 4) noun(4, 5)

Fro. 16. The connection graph for the parsing problem, after initial preproeessing. The next
transformatmn of the graph is obtained by first deleting the incompatible links @-@, and then seleet-
ing for aetivation hnks 0 -@ The resolvent assoemted with hnk @ replaces both its parents The re-
solvents ~soe~ated with @, @, and @ replaee and are simpler than their nonunit parents. Thus ac-
tivatmn of each of links ~ simplifies the graph.

590 ROBERT KOWALSKI

parsing problem by generating most of the resolvents which replace both their parents
because the associated link is the only link connected to the literals resolved upon m the
parents. Notice that this initial "preprocessing" of the graph is an integral part of the
proof procedure Notice too that during preprocessing the connection graph operations
simulate both SL-resolution and hyperresolution. The parsing method pursued so far has
been a multidirectional bottom-up and top-down analysis. Figures 17-19 illustrate suc-

vb(3, 4) vb(4, 5)

vb(x, y)~p(y, z)vp(x, z)

np(1, 4)

vp(4, 5)

noun(x, y)np(x, y) np(1, 3)

noun(2, 3) noun(3, 4) noun(4, 5)

F m 17. The connection graph which results from deleting links (~)--@ in Figure 16. The next
transformation of the graph results from the activation of links (~-(~) The associated resolvents all
replace their parents. Notice tha t deletion of Q - Q simulates Colmerauer's cancellation.

Fm 18

vb(3, 4) vb(4, 5)

vb(x, y) ~p(y, z) vp(x, z) vp(4, 5)

np(2, 3) np(3, 4) np(4, 5)

The connection graph resulting from the deletion of links (~) i n Figure 17. Links
(~-~)are now incompatible and can be deleted

A Proof Procedure Using Connection Graphs 591

cessive t ransformat ions of the original graph. In this example, the remainder of the
pars ing is done pr imar i ly in a bo t tom-up manner . B u t notice t h a t delet ion of links @
and (~ can be in te rp re ted as e i ther bo t tom-up or top-down In fact, delet ion of these links
effects the in tersect ion of the bo t tom-up and top-down analyses.

Example. Figures 20-22 i l lustrate the connect ion graph s imulat ion of the SL-der iva-
t ion of Figure 5 for the sort ing problem. The connect ion graph in Figure 22, however ,
p rowdes the oppor tun i ty to ac t iva te the new instance ()(cons(2, cons(l , y))) of an old
subgoal. The new instance is easily recognized as unsolvable. This example i l lustrates the
abi l i ty to consider subgoals in a more flexible sequence than is al lowed by SL-resolution.
In the p rogramming interpreta t ion, the example i l lustrates the impor t an t abi l i ty of con-
nec t ion graphs to imp lemen t coroutines.

vb(3, 4)

@

v-b(x, y)fi~(y, z)vp(x, z)

np(4, 5) V-p(3, 5)

vp(4, 5)

Wp(4, 5)
FIG 19 The connection graph which results flora deleting the incompatible l i n k s (X) . In this

graph, deletion of hnk~(~-4~ results in a refutation corresponding to one parse of the ambiguous
sentence, and deletion of link Oresul t s in a different refutation corresponding to the other parse

S([2, 1, 3], u)

S(x, y)P(x, y)O(y)

P(ml, nil) P~, cons(x, y))De'--l(x, z, z')fi(z', y)

Del(x, cons(x, y), yJ Del(x, consb,, z), consb,, z'))Del(x, z, z')

Fm 20 The eonnection graph for the sorting problem Here [2, 1, 3] is an abbreviation for the
longer cons(2, cons(I, eons(3, ml))) Notice that three of the clauses in this graph are self-resolving.
Thus, although some of their hterals appear to have lust single links connecting them to other literals
in the graph, these clauses cannot be deleted when the links are deleted, beeause the literals do not
become pure but rather become hnked to other literals In the resolvent. Keeping this in mind, it is
clear that initially only deletion of link @ results in simphficatmn of the graph But then the descend-
ant of hnk 0 can be deleted because it is incompatible. The descendant of link (~) is then the only
link whose deletion results In a hteral becoming pure with the consequent deletion of a parent clause
from the graph.

O(nil) O(cons(x, ml))

O(cons(x, consb,, z))) ~(x , y)0(eonsb,, z))

LE(1, 2) LE(2, 3) LE(1, 3)

592 ROBERT KOWALSKI

I t is worth remarking that, although the sequence of transformations in Figures 20-22
has been chosen in order to simulate SL-resolution, the same sequence of transformations
is determined by the autonomous selection procedure outlined in the preceding section.
At every stage the selected link is one connected to a clause descending from the negation
S([2, 1, 3], u) of the conclusion of the theorem, whose activation least complicates the
graph and whose resolvent contains fewest literals.

Connection Graphs and Search Strategy

In connection graphs, the problem of search strategy is the problem of deciding at every
stage which hnk should be selected. This problem is the same as the problem of sequencing
the generation of resolvents in more conventional resolution systems. In particular, the
usual search strategies for resolution systems, such as unit preference [36] or diagonal
search [17], apply without complication to the new theorem-proving system. Moreover,
search strategic advice of the kind employed m programming languages such as PLANNER
[13] and supplied, for example, in the form of recommendation lists and filters (for se-
quencing the application of operators to subgoals) can also be employed to guide the
search in connection graphs. What distinguishes connection graphs is that they facihtate
the implementation of methods for obtaining useful information about ungenerated parts
of the search space. This information can be used in a variety of ways, one of the most
interesting of which is for the calculation of lower bounds on the complexity of a simplest
refutation containing a given resolvent. Present diagonal search strategies use a very
crude and approximate lower bound which is just the number of literals in the resolvent.
A well-known property of search strategies which are guided by lower bounds is that their
efficiency improves significantly with a significant improvement in the accuracy of the
lower bound. The number of literals in a clause is equivalent to the lower bound obtained
by just a one-level look-ahead in the connection graph. One-level look-ahead assumes that
all literals in a clause might be linked to unit clauses. The lower bound can be improved
significantly by n-level look-ahead.

O(nil) O(cons(x, nil))

Z ~ ~el(x, [2, 1, 3], z')P(z', y)O(eons~, y)) "O(cons(x, cons(y, z)))~(x, y)0(cons(y, z))

Del(x, cons(x, y), y) Del(x, cons(y, z),eons(y, z')) Del(x, z, z')

FIG. 21. The connection graph which results from deleting (~)--@ in Figure 20. Link @ can be
deleted because it is incompatible Link @ is deleted, simulating the SL-derivation of Figure 5. But
then the descendant of link @ in the resolvent is ineompatible and the descendant of hnk @ean
be activated with the associated resolvent replacing one of its parents In the new resolvent, the
descendant of link (~) m not present because links Q and (~) are incompatible.

A P r o o f P r o c e d u r e U s i n g C o n n e c t i o n G r a p h s 593

O(cons(x, ml))

)Otcons(x)) /~ '~- s(x c n" z ~ x 0 c De--"l(x, [2, 1, 3], z')P(z' , y , Y ~ v~cun ~ , o sty,))) (, y) (ons(y, z))

~ ' - ' - LE(1, 2) LE(2, 3) LE(1, 3)

Del(x, cons(x, y), y) Del(x, eonsb,, z), tense,, z')lDel(x, z, z ')

FiG 22. The connection graph which results from deleting @-@ in Figure 21 Continuing the
simulation of the SL-derivation in Figure 5, we delete link @ But now the descendant of link @ in
the resolvent is incompatible with links @, @, and @ The descendant of link @ can therefore be
deleted But then the resotvent contains a pure literal and the entire resolvent together with all its
links can be deleted from the graph The total effect of thin sequence of operations is simply to delete
link @ from the graph Ordinary SL-resolutlon, with its rigid last-in-first-out activation of subgoals,
would generate the resolvent associated with link ® and then generate the resolvent associated with
the descendant of link @.

In the example below, we show how to compute the quantities which estimate, by
looking ahead n-levels in the connection graph, the minimum number of links which need
to be activated in order to achieve the goal L. Notice below that the computational effort
needed to compute these estimates is just a linear function of n, even though the size of
the search space n-levels deep is generally an exponential function of n. Notice too that
the look-ahead ignores the possibility of merging, factoring, and deleting tautologies.
Moreover, it assumes that all substitutions are, and will be, compatible. For these reasons
our look-ahead method resembles the relaxation method for fathoming subgoals and for
computing lower bounds. A useful discussion of such applications of relaxation can be
found in G eoffrion and Marsten 's survey of integer programming [11].

Figure 23 illustrates the calculation of the quantities h~ for each literal occurrence in
the connection graph of Figure 24. h a (L) estimates the minimum number of links which
need to be activated in order to achieve the subgoal L . h i (L) is calculated by assuming
that each literal in every clause directly connected by a link to L can be achieved in a
single step by activating a single link. Thus h a (L) is the minimum, over all clauses
connected by a link to L, of the number of literals in such clauses. More generally, hn(L)
is one plus the minimum, over all clauses L K 1 . . . K m connected by a link to L, of the
sums ~,=1,,~ ~_i (K,) . Notice that, ignoring situations which involve merging, h ~ (L) is
a lower bound on the number of resolvents which need to be generated in order to achieve
the goal of refuting L.

Look-ahead can be usefully employed to compute quantities other than h,. In particu-
lar, it can be used to estimate the size of the entire search space n-levels deep which is
generated by attempting to achmve in n steps a subgoal in all possible ways. We have
already observed the utility of employing the one-level look-ahead estimate of this quan-

594 ROBERT KOWALSKI

h~ h2 ha h4 h5

A 3 6 7 7 7
B 1 1 1 1 1

D 2 2 2 2 2
E I I 1 1 1
F 3 4 4 4 4

~ V G 2 2 2 2 2
t l 3 5 6 6 6
1 1 1 1 1 1
J 2 4 6 7 7 Q

BCD.

A I l l

E

FIG 23 The matrix of the
values h~ for the literal oc-
currences in the graph of Fig-
ure 24. h~(L) = hs(L) = h~(L)

for all n _~ 5 and for allL =
A, B, - . . , J .

FiG 24 The assignment of unique names to distinct occur-
rences of hterals m a connection graph. For example, the occur-
rence of R in R S Q is called B, whereas the occurrence of R in
R S Q is called E Thin assignment is used in Figure 23 for com-
puting the function h~

t i ty, name ly the to ta l number of l inks connected to a l i teral Good use can be made of
mo{e accurate n-level look-ahead es t imates We shall no t pursue fur ther in this paper the
detai ls of these computat ions , nor thei r e m p l o y m e n t for the guidance of the search
s t ra tegy.

M o r e e laborate look-ahead computa t ion can be performed in order to es t imate the
symbol complexi ty [17] of a s implest re fu ta t ion conta in ing a given clause, r a ther t han to
es t imate its size (number of clauses). We have argued m this section tha t connect ion
graphs provide new opportuni t ies for improv ing search s t rategies by exploi t ing efficient
me thods for looking ahead in the ungenera ted par t of the search space. We do no t c la im
to have solved the general p roblem of des~guing intel l igent search strategies. We believe,
however , t ha t the emp loymen t of connect ion graphs and look-ahead will con t r ibu te to
its even tua l solution.

ACKNOWLEDGMENTS. Thanks are due to Jophien v a n Vaalen and Alain Colmerauer for
useful in terac t ion dur ing the ear ly par t of this work. We have benef i ted also f rom the
in teres t and encouragement of Aaron Sloman.

REFERENCES

(Note Reference [23] is not cited in the text.)

1 ANDREWS, P B. Resolution with merging. J A C M 15, 3 (July 1968), 367-381.
2. BLEDSOE, W. W. Sphtting and reduction heuristics in automatic theorem-proving A r l l f .

I n t e l 2 (1971), 55-77
3. BLEDSOE, W W., BOYER, R. S , AND HENNEMAN, W H Computer proofs of limit theorems.

Ar t l f . In le l 3 (1972), 27-60
4. BLEDSOE, W W., AND BRUELL, P. A man-machine theorem-proving system. Third Interna-

tional Joint Conf on Artificial Intelligence, 1973, pp. 36-65.
5 BOYER, R. S., AND MOORE, J S. The sharing of structure in theorem-proving programs. In

Ma ch i n e Intel l igence 7, B. Meltzer and D Mmhie, Eds., Edinburgh U. Press, Edinburgh, Scot-
land, 1972, pp. 101-116

6 COLMERAUER, A. Lessystemes-Q ou un formahsme pour analyser et synthetiser des phrases sur
ordinateur Pub. interne No 43, Dep d'Informatique, Universit6 de Montrdal, Montr6al,
Canada, 1970.

7 COLMERAUER, A Cancellation systems Personal communication, 1972.
8. COLMERA.UER, A., I~ANOUI, H., PASERO, R , AND ROUSSEL, P. Un systeme de communication

homme-machine en Francais. Rapport prehminaire, Groupe de Researche en Intelligence Arti-
ficielle, Umvermt~ d'Alx Marseflle, Luminy, 1972.
EMDEN, M H van. First-order predicate logic as a high-level program language. Memo No.
MIP-R-106, U. of Edinburgh, Edinburgh, Scotland, 1974.
GELPERIN, D Deletion-directed search in resolution-based proof procedures Advance Papers
of the Third International Joint Conf on Artificial Intelligence, Stanford U., Stanford, Calif.,
1973, pp 47-50.
GEOFFRION, A M., AND MARSTEN, R. E Integer programming algorithms' A framework and
state-of-the-art survey. M a n a g . Sci . 18 (1972), 465-491.
HAYES, P. J Computation and deduction. Proc. 2ad MFCS Symposium, Czechoslovak Acad-
emy of Sciences, 1973, pp. 105..-118.

9

10.

11.

12

A Proof Procedure Using Connection Graphs 595

13 HEWlTT, C. PLANNER' A language for proving theorems in robots. Proc of the International
Joint Conf. on Artificial Intelligence, Washington D. C , 1969, pp 295--301.

14. KOWALSKI, R , AND HAYES, P . J . Semantic trees in automatic theorem-proving. In Machine
Intelhgence 4, B. Meltzer and D. Michm, E d s , Edinburgh U. Press, Edinburgh, Scotland, 1968,
pp. 87-101.

15. KOWALSKI, R. The case for using equality axioms in automatic demonstration. Proc. IRIA
Symposium on Automatic Demonstration (Lecture Notes in Mathematics, No. 125), Sprmger-
¥erlag, Berlin, Heidelberg, New York, 1968, pp. 112-127.

16. KOWALSKI, R. Studies in the completeness and efficiency of theorem-proving by resolution.
Ph.D Th., U. of Edinburgh, Edinburgh, Scotland, 1970.

17. KOWALSKI, R. And-or graphs, theorem-proving graphs and bi-dlrectional search In Machine
Intell, gence 7, B Meltzer and D Michie, Eds., Edinburgh U Press, Edinburgh, Scotland, 1972,
pp 167-194.

18. iKOWALSKI, R An improved theorem-proving system for first-order logic D C.L. Memo No.
65, U of Edinburgh, Edinburgh, Scotland, 1973.

19. ~KOWALSKI, R Predicate logic as programming language. Proc IFIP Cong. 1974, Stockholm,
North-Holland Pub. Co, Amsterdam, pp. 569-574.

20. KOWALSKX, R Logic for problem-solving D.C L. Memo No. 75, U. of Edinburgh, Edinburgh,
Scotland, 1974

21 KOWALSKi, R., AND KUEHNEB, D. Linear resolution with selection function. Art*f. lntel 2
(1971), 227-260.

22. LOVELAND, D. Allnear format for resolution Proc. IRIA Syrup on Automatic Demonstration,
Versailles, France, Springer-Verlag, Berlin, Heidelberg, New York, 1970, pp. 147-162.

23 LUCKHAM, D. Some tree-paring strategies for theorem-proving. In Machzne Intelligence 8,
D Mlchm, E d , Edinburgh U Press, Edinburgh, Scotland, 1968, pp. 95-112.

24 LUCKtiAM, D Refinement theorems in resolution theory. Proc. IRIA Symp on Automatic
Demonstration, Versailles, France, Springer-Verlag, Berlin, Heidelberg, New York, 1970, pp.
162-190

25. MELTZER, B. Some notes on resolution strategies. In Machzne lntellzgenee 8, D. Michie, E d ,
Edinburgh U. Press, Edinburgh, Scotland, 1968, pp 71-75

26 MINKER, J , AND VAN DER BRUG, G. J Representations of the language recognition problem
for a theorem-prover. Tech. Rep. TR-199, Computer Science Center, U of Maryland, College
Park, Md., 1972.

27. NILSSON, N . J . Problem solving methods in artificial intelligence. McGraw-Hill, New York,
1971

28 PORL, I. Bi-directional search. In Machine Intelligence 7, B. Meltzer and D. Michie, Eds.,
Edinburgh U. Press, Edinburgh, Scotland, 1972, pp 127-140.

29. REITER, R. The predicate elimination strategy in theorem-proving Proe. 2nd ACM Symp on
the Theory of Computing, Northampton, Mass , 1970, pp 180-183.

30. ROBINSON, J. A. A machine-oriented logic based on the resolution principle J. ACM 12, 1
(Jan 1965), 23-41

31 ROBINSON, J. A. Automatic deduction with hyper-resolution. Int. J. of Computer Math. 1
(1965), 227-234.

32 ROBINSON, J A A review of automatic theorem-proving Proc. of Symposia in Applied Mathe-
matics, Vol 19, Amer. Math. Soc , Prowdence, R. I., 1967, pp. 1-18

33. STILLMAN, R. B The concept of weak substitution in theorem-proving. J ACM 20, 4 (Oct.
1973), 648-667.

34. WILKINS, D E. QUEST. A non-clausal theorem-proving system. M.Se. T h , U of Essex, Col-
chester, Essex, England, 1973.

35 WINSTON, P. H The M I T Robot. In Machine Intelligence 7, B. Meltzer and D. Mlchie, Eds.,
Edinburgh U. Press, Edinburgh, Scotland, 1972, pp 431--463

36. WoN, L., CARSON, D. F , AND ROBINSON, G A The unit preference strategy in theorem-
proving Proc. AFIPS 1964 FJCC, Vol 26, Spartan Books, New York, pp 616-621.

37. WoN, L., ROBINSON, G A , AND CARSON, D. F Efficiency and completeness of the set of sup-
port strategy in theorem proving J ACM 12, 4 (Oct 1965), 536-541.

38. ZAMOV, N K , AND SHARONOV, V I. On a class of strategies which can be used to establish
decidability by the resolution principle (In Russian). Issled po konstruktivnoye matemat~kye i
matemat~chesko,e log*kye 111 16 (1969), 54-64 (National Lending Library, Russian Translating
Program 5857, Boston Spa, Yorkshire), England)

RECEIVED APRIL 1974; REVISED OCTOBER 1974

Journal of the Assoclatxon for Computing Machinery, Vol 22, No 4, October 1975

