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ABSTRACT. Various deficiencies of resolution systems are investigated and a new theorem-proving 
system designed to remedy those deficiencms is presented The system is notable for eliminating re- 
dundancies present in SL-resolutlon, for incorporating preprocessing procedures, for liberahzing the 
order in which subgoals can be activated, for incorporating multidirectmnal searches, and for giving 
immediate access to pairs of clauses which resolve Examples of how the new system copes with the 
defic2encies of other theorem-proving systems are chosen from the areas of predicate logic program- 
ming and language parsing. The paper emphasizes the historical development of the new system, 
beginning as a supplement to SL-resolution in the form of classificatmn trees and incorporating an 
analogue of the Waltz algorithm for picture Interpretation The paper ends with a discussion of the 
opportunities for using look-ahead to guide the search for proofs 
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Introduction 

Comparison of proof procedures is not an easy task. Mathematical analysis of efficiency 
is rarely attempted and experimentation with actual programs is generally inconclusive, 
when not misleading. 

In [21] we presented arguments in support of SL-resolution. In this paper we introduce 
a new proof procedure, and argue that  it is superior to SL-resolution. 

The paper begins with an informal definition of SL-resolution and with an analysis of 
its deficiencms. The new proof procedure is introduced by describing its evolution from 
the classification trees used in SL-resolution and from the filtering algorithm used in 
Waltz's picture interpretation program. We argue that the new proof procedure using 
connection graphs solves the problems associated with the deficiencms of SL-resolution. 

In this paper we concentrate on those arguments for the connection graph proof pro- 
cedure which are based on the comparison with SL-resolution Elsewhere [20] we advance 
the arguments based on the comparison with Bledsoe's theorem-provers [2-4] and with 
interpreters for high level programming languages like PLANNER [13]. 

We have not concerned ourselves in this paper with investigations of the completeness 
of the new proof procedure. Such investigations have been pursued by Frank Brown. 

This paper is a slightly revised version of an earlier memorandum [18]. In the previous 
version, connection graphs were called classification graphs because of their evolution 
from the classification trees used in SL-resolution. 

Based on the earlier memorandum, the connection graph proof procedure has been 
implemented by several researchers. Particularly noteworthy are the implementations of 
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Tor Amble, University of Trondheim, Norway, applying the structure sharing techniques 
of Boyer and Moore [5] and of Gianesini, University of Aix-Marseille, France, written in 
predicate logic and interpreted by PRObOG [8], a theorem-prover related to SL-resolu- 
tion. 

More recently David Warren has convinced us that  the connection graph proof pro- 
cedure can usefully be regarded as an elaboration of the cancellation system developed 
by Colmerauer [7] and described in this paper. 

S L- Resolution 

This section gives an informal description of SL-resolution. The description is incomplete 
and also imprecise in certain respects. Our objective is to describe SL-resolution in suffi- 
cient detail for the later investigations of its deficiencies. The example which follows the 
description should help to clarify the meaning of such notions as most recent, selected, 
active, and passwe, which are mentioned, but not defined, below. A precise definition of 
SL-resolution, if necessary, can be found in [21]. We assume that  the reader is familiar 
with the notions of resolution and factoring. Nllsson's book [27] and Robinson's review 
paper [32] provide adequate explanations of these concepts. The following description is 
less accurate for the general case than it is for the ground case where clauses contain no 
variables. This is sufficient for our purposes since all of the deficiencies of SL-resolution 
which we shall investigate apply to the ground case. 

For a sequence C~, . • • , C~ of clauses to be an SL-derwation from a set of clauses S, it 
is necessary that  

1. C1 6 S (called the top clause of the derivation), 
2. C~+~ is obtained from C, by resolving on a selected, most recent literal in C, with a 

clause B, where (a) B C S or (b) B is an ancestor C~ (3 < z) of C,. 
Each clause in an SL-derivation can be regarded as a set of goals: one goal, for each 

literal, of refuting the literal by establishing its negation. The hterals in each clause are 
arranged in a stack and the achievement of the individual goals located in the stack is 
at tempted on a last-in-first-out basis. Associated with every input clause B in S and with 
every literal L in B is an operator (or rule of inference) which, applied to the goal of 
refuting L, replaces that  goal by the subgoals B -- {L}. Application of such an operator 
is an instance of case 2(a) in the description of SL-derivatlon. 

There is a simple notational device for encoding into each clause information about 
which of its subgoals are currently active, which subgoals are passively awaiting later 
activation, and what are the hierarchical relationships between various goals and sub- 
goals. The same notation makes it easy to recognize and to reject clauses which contain 
contradictory subgoals, to suppress loops caused by activating a goal as a subgoal of 
itself, to merge distinct passive occurrences of a single subgoal, and to use proof by con- 
tradiction for the achievement of subgoals which are contradicted by higher level goals. 
Case 2(b) in the description of SL-derivation deals with the achievement of subgoals by  
contradiction and is called ancestor resolution. The notation which facilitates these opera- 
tions is illustrated and described in Figure 1. 

Example. In  Figure 1 the initial set of goals C~ is to refute both L and K. Both goals 
have equal priority. We select one, K, to solve before the other. But B~ can be read as 
saying that  K is solved if M is. Regarding B1 as an operator and applying it to the stack 
of subgoals C~, we obtain (by case 2(a)) the resolvent of B~ and C1 which is a new stack 
of subgoals C2. The subgoal K changes status from passive to active and the new subgoal 
M is added to the top of the stack. Of the two subgoals L and M in C2, only M is most 
recent and candidate for selection Ca is obtained by applying to C2 the operator ML, 
which replaces the subgoal M by L. Now both K and M are active, with M as a subgoal 
of K. There are two passive occurrences of L. These occurrences are merged together. The 
earlier occurrence of the subgoal dominates and the most recent occurrence of L is re- 
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B, =KM 

B.. ~ ,~/L 

merging 
and 

truncation 

C~ = LK 

C2 = L ~ M  

C~ = L ~ T ~ L  

S = {LK, KM, ~tL, LK, KL} 

C ~ ' ~ Z  

Fro. 1. Notational conventions 

B3 = L K  

B .  = RL 

ancestor resolution 
and truncatmn 

C~' = L 

C ~ =[~] K 

C5 = [ ~ ]  L 

Fro. 2 Continuation of Figure 1 
In our notation, the commas and curly brackets associated with the set notation for clauses are 
omitted. Thus LKstands for {L, K}. Stacks of hterals are written with more recent literals following, 
i.e. to the rxght of, less recent literals. The selected literal resolved upon in a clause C, is retained in 
the resolvent C,+1, but is enclosed in a box to indicate that it has been resolved upon Such sequences 
of hterals are called chains in [21]. The boxed literals in a chain stand for subgoals actively pursued 
in the chain. One active subgoal m a subgoal of another active subgoal m a chain if the first occurs 
after, i e. to the right of, the second As a termznologzcal conventwn, we give the name L to the subgoal 
of refuting L Thus we say that the clause L K  contains two subgoals L and K, which consist of re- 
futing L and K, respectively 

garded as achieved, conditionally, upon the later achievement of L. Both subgoals K and 
M are now conditionally achieved subject to the later achievement of the first occurrence 
of subgoal L. C3' is obtained from C3 by merging the two occurrences of L and by trunca- 
twn,  a bookkeeping operation which recognizes and removes accomplished subgoals from 
the top of the stack. 

In  Figure 2, C4 is obtained by replacing the goal L by the subgoal K. Ca is obtained 
by replacing goal K by subgoal L. But  now L is a subgoal of L. Proof by contradmtion 
allows us to assume that  L is true during the course of trying to refute L. But  then, by 
assuming L, we acbaeve the subgoal L of refuting L. 

The definition of SL-derivation determines, for a given set of input  clauses, for a given 
top clause, and for a given criterion for selecting most recent subgoals, a search space of 
all possible SL-derivations. Figure 3 illustrates the entire search space of all SL-deriva- 
tions determined by the choice of S and C1 in the preceding example. The space is ar- 
ranged in the form of a tree whose derivations share common initial subderivations. In  
this example, terminal nodes not labeled by the mark of success, O, violate the admzssi- 
bzlity restriction, which rejects a chain whenever it  contains distinct occurrences of the 
same atomic formula, unless merging or ancestor resolution can be performed and the 
literal removed by the operation has just  been entered at the top of the stack. 

The definition of SL-resolution in no way prejudices the order in which derivations can 
be generated by a search strategy. Breadth-first, depth-first, and various ordering strate- 
gies guided by merit orderings or by  evaluation functions can be used to sequence the 
generation of derivations in the search space. The search strategy can reach its decisions 
autonomously as a result of its own deliberations or it can execute search strategic advice 
formulated by a user in a language especially provided for that  purpose. This paper is 
concerned primarily with search spaces, although aspects of search strategy are dealt 
with m the last section. 

Deficiencies of SL-Reso lu twn 

PROBLEM 1. CONTRADICTORY UNITS. Figure 3 illustrates what is possibly the most 
obvious defect of SL-resolution. that  contradictory uni t  clauses, K and h:, can appear on 
different branches of the search space, while the generation of an explicit contradiction is 
prohibited by the restriction that  clauses resolve only with axioms or ancestors. 

This problem has an obvious and easy solution: Supplement SL-resolution with a 
procedure which checks, whenever a unit  clause is generated, whether it contradicts some 



A Proof Procedure Using Cqnnection Graphs 575 

LEEM L EL 

I?L°°L  I? L 
© [] [] L 

FIG 3. The search space for the example of Figures 1 and 2. The selection function activates in 
the top clause LK, the subgoal K before L. Nodes denoted by an asterisk violate the admissibility 
restriction, because their labeling chains contain distract occurrences of the same atomic formula L 
and neither merging nor ancestor resolution is possible. 

previously generated unit. This solution has the advantage of solving the problem in the 
least demanding manner, bringing immediate short- term benefits. However it  is an ad 
hoc solution which resolves none of the many other related problems. I t  shares with other 
ad hoc solutions the danger of camouflaging the original problem and of inhibiting its 
satisfactory solution. 

PROBLEM 2. REDUNDANCY. More worrisome and less obvious than the problem of 
contradictory units is the more general problem of redundancy in SL-search spaces. 
SL-resolutlon eliminates the n! redundancy present in systems like set-of-support and 
linear resolution which, without a selection restriction, consider all the n ! ways of sequenc- 
ing for solution the n subgoals associated with n literals in a clause. However, other re- 
dundancies can be generated by  SL-resolution when more than one operator applies to 
a subgoal and when more than one is necessary for its solution. The occurrence of con- 
t radictory units in Figure 3 is a consequence of this redundancy. Figure 4 i l lustrates the 
same redundancy in a simplified example. 

Considered in isolation from the many other problems of SL-rcsolution, redundancy is 
an easy problem admit t ing a var ie ty  of solutions. One, possibly the most straightforward, 
solution involves ordering operators when more than one applies to the same subgoal. 
In  Figure 4, for example, order B1 before B~ when both  are used as operators which apply 
to subgoals of the form L. Between the activation and eventual achievement of a subgoal, 
operators may  occur only in increasing order. Thus the second branch in Figure 4, la- 
beled by  operator B2 followed by  B1, violates this restriction. Unfortunately,  in this 
example, the solution to problem 2 does not  solve the associated problem 1. 

A second solution a t t r ibutes  the problem to the loss of information which occurs when 
sentences are converted into clausal form. The operators LK and LK share the l i teral L. 
The two operators might usefully be replaced by  the single sentence L(K & I~) and resolu- 
tion of clauses might  usefully be extended to resolution of such sentences. This approach 
merits  serious consideration if only because it is a popular objection against  clausal form 
tha t  i t  destroys useful information implicit  in nonclausal formulations of problems. The 
subject  of clausal form, like tha t  of the unnaturalness of resolution, is a controversial 
one. Here we note only tha t  our solution to the problem of redundancy in SL-resolution 
retains the use of clausal form. A well-reasoned argument for liberalizing clausal form and 
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FiG 4. Redundancy in SL-resolution 

an extension of SL-resolution to nonclausal sentences has been made by Wilkins [34]. 
In  [20] we dealt in detail with the arguments for and against the naturalness of both  
clausal form and resolution 

PROBLEM 3. MORE FLEXIBLE ACTIVATION OF SUBGOALS The first two problems 
concern the most obvious faults of SL-resolution. Although one can argue about the 
respective merits of alternative solutions, it is more difficult to argue tha t  these problems 
are not worth serious consideration The situation is different for the remaining problems 
which we wish to consider. These problems concern not so much identifiable inefficiencies 
as much as they concern limitations which restrict problem-solving capabilities. The 
restriction, in SL-resolution, to the activation and achievement of subgoals in a last-in- 
first-out manner  is such a problem. 

In the propositional case, without ancestor resolution, SL-resolution search spaces 
can be regarded as search trees obtained from and-or trees by  imposing a depth-first 
search on and-branches. Although in many  cases such a strategy is desirable, in other 
cases a more flexible rule is useful. The ability to a t tempt  the achievement of several 
subgoals simultaneously is especially important  in the general case when subgoals are 
not independent. The reduction of problems to dependent subproblems and the simul- 
taneous consideration of several subproblems are topics dealt with elsewhere [20]. 

Example. Clauses (1)-(11) define a nondeterministic predicate logic program for 
sorting lists whose elements are among the numbers 1, 2, 3. Clause (1) asserts that  y is a 
sorted version of x if y is a permutation of x and y is ordered. Clauses (2) and (3) recur- 
sively define permutation in terms of deletion Del(x, y, z) states tha t  z is obtained by 
deleting x from y and is defined by  (4) and (5). Clauses (6), (7), and (8) define ordered- 
ness. Clauses (9), (10), and (11) list parts of the "less than"  relation necessary for sorting 
lists whose elements contain just the numbers 1, 2, or 3. 
(1) S(x, y) P(x, y) O(y), 
(2) P(nil, nil), 
(3) P(z, cons(x, y)) ~](x,  z, z') P(z', y), 
(4) Del(x, cons(x, y), y), 
(5) Del(x, cons(y, z), cons(y, z')) D~(x,  z, z'), 
(6) O(nil), 
(7) 0(cons(x, nil)), 
(8) O(cons(x, cons(y, z))) L"T(x, y) O(cons(y, z)), 
(9) LE(1, 2), 
(10) LE(1, 3), 
(11) LE(2, 3). 

We choose this example not because it is an especially good example of programming an 
predicate logic, but  because it provides an illustration of the utility of more flexibly 
activating subgoals than is allowed by  SL-resolution. Figure 5 illustrates part  of the SL- 
search space determined by  the problem of sorting the hst cons(2, cons(l, cons(3, nil))). 
Execution of the program (1)-(11) is initiated by the addition of the top clause S(cons(2, 
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C1 = S(cons(2, cons(l, cons(3, nil))) ~) 

(1) 

(3) 

(3) 

~ / ~  (3) 

~ (2) 

(8) 

C2 = P(cons(2~ cons(l, cons(3, ml))), y)O(y) 
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C3 = O(cons(x, y')) D~e(x, cons(2, cons(l, cons(3~ ml))) 1 z')P(z', y') 

C4 = O(cons(2, y')) P(cons(1, cons(3, ml)), y') 

C5 = 0(cons(2, cons(x', y"))) De--'7(x'~ cons(l~ cons(3~ nil))t z:.')P(z', y") 

C6 = 0(cons(2, cons(l, y"))) P(cons(3, ml), y") 

C7 = O0(cons(2, cons(l, cons(x", y'"))))De-"l(x", cons(3, nil), z'")P(z'", y'") 

Cs = O(cons(2, cons(l, cons(3, y'"))))P(ml, y ' " )  

C9 = O(cons(2, cons(l, cons(3, ml)))) 

C~0 = LE(2~l)6(cons(1, cons(3, ml))) 

FIG. 5. Part of the search space for the sorting problem. Selected hterals are underlined. Active 
subgoals are not illustrated for lack of space. 

cons(l, cons(3, nil))), y), which denies that  the list can be sorted. This contradicts what 
is implicit m (1)-(11) and provokes the theorem-prover into deriving a contradmtion 
which is explicit. This example is also considered m [19]. Van Emden [9] compares this 
representation of the sorting problem with another representation corresponding to the 
Quicksort algorithm. 

For this set of clauses, and for an appropriate selection function, SL-resolution exe- 
cutes the following algorithm for sorting lists: Generate permutations of the original list 
and test each permutation for orderedness. A permutation which survives the test is a 
solution. Since we are not concerned here with search strategy, the algorithm is non- 
deterministic in the sense that  it does not specify whether permutations should be gen- 
erated in parallel, by  backtracking or by  some other sequencing strategy. 

For the same set of clauses, more flexible selection of subgoals results in the following 
more efficient, nondetermmistic algorithm: Generate sublists cons(x, y) of the original 
list and test each such sublist for orderedness, assuming that  the tail, y, is ordered and 
checking only that  the head, x, is less than the first element in y. If  the sublist is ordered, 
then add a new element to the front of the list and test that  orderedness is preserved; 
otherwise reject the sublist and consider no extensions of it. 

The second algorithm is obtained from the first by  activating subgoals of the form 
0(cons(x, cons(y, z))) as soon as it can be tested whether ~ ( x ,  y). Thus the unsuccessful 
derivation illustrated in Figure 5 could be terminated earlier by  activating and recogniz- 
ing the unsolvability of the passive subgoal 0(cons(2, cons(l, y,/))). For SL-resolution, 
activation of this subgoM is impossible because it is not  most recent. 

Considered in isolation from the other problems of SL-resolution, it is not  difficult to 
find systems which liberalize the order in which subgoals can be activated and achieved. 
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What is more difficult is to refrain from constructing locally optimal solutions to individ- 
ual subproblems and to work instead toward the construction of globally optimal solu- 
tions ~o the many problems which need eventually to be solved. 

PROBLEM 4. SUPPORT SETS AND MULTIDIRECTIONAL SEARCH. Suppose that a set of 
clauses S can be partitioned into two sets, one containing the axioms and the hypotheses 
of the theorem to be proved and the other containing a single clause which is the negation 
of the conclusion of the theorem. If the axioms and hypotheses are consistent and if the 
conclusion of the theorem is a logical consequence of the axioms and hypotheses, then 
there exists an SL-refutation of S with a top clause which is the negation of the conclu- 
sion of the theorem. Similarly, if the axioms of S are consistent and if all of the hypothe- 
ses of the theorem are necessary to establish the conclusion, then if S is unsatisfiable, 
for every clause which is a hypothesis of the theorem there exists an SL-refutation of S 
having that hypothesis as top clause. More generally, it suffices for completeness to 
generate only SL-derivations whose top clause belongs to some subset S' of the input set 
of clauses. What is required is that the subset, called set-of-support, contains at least one 
clause necessary for a refutation, i e. that S - S' be satisfiable [37]. 

In general there exist several alternative support sets for a given set of input clauses. 
In SL-resolution it is possible to choose and employ just a single set-of-support. We need 
a proof procedure which, hke those employed by Bledsoe and his colleagues [2-4], allows 
us to tackle a problem simultaneously from several pomts of view: chaining backward 
from the conclusion of the theorem and forward from the hypotheses. 

Example. S = {P(0), P(x)P(s(x)), P(s(s(s(O))))}. I t  is easy to show that, on purely 
syntactic grounds, both P(0) and P(8(s(s(0)))) must occur in any refutation of S (because 
every unsatisfiable set of clauses must contain at least one positive clause, containing no 
negative literals, as well as at least one negative clause, contaimng no positive literals). 
Alternatively on "semantic" grounds it can be argued that the negative clause corre- 
sponds to the conclusion of the theorem and the positive clause to its hypothesis. There- 
fore attention can be bruited either to SL-derivations with top clause P(0) or to those 
with top clause P(s(s(s(O)))). Either choice gives us effectively a unidirectional search, 
either "forward" from P(0) or "backward" from P(s(s(s(0)))). SL-resolution provides 
no facilities for bidirectional search. 

Example. Sentences (and other strings of objects) can be represented by directed 
graphs whose edges are labeled by words, e.g. "(1) The (2) girl (3) guides (4) fish (5)." 
Axioms (1)-(4) below assert that "the girl guides fish" is a string of four words. Axioms 
(5)-(11) define the grammatical categories of the words in the string. A grammar ade- 
quate to determine the two ambiguous parses of the string as a sentence ls given by 
axic)ms (12)-(17). Clause (18) is the negation of the theorem: that the string between 
points 1 and 5 is a sentence. This axlomatization of the parsing problem was devel- 
oped by Colmerauer and the author. It  is based upon Colmerauer's Q-systems [6] for 
writing and parsing grammars. Minker and Van der Brug [26] have independently investi- 
gated the application of theorem-provers to the parsing problem. Van Emden [9] com- 
pares the theorem-proving approach with more conventional methods. In [8] Colmerauer 
and his colleagues describe their use of predicate logic as a programming language for 
writing a natural language question-answering syste._.m. 

(1) The(l, 2) (10) fish(x, y) vb(x, y) 
(2) girl(2, 3) (11) ~ ( x ,  y) noun(x, y) 
(3) guides(3, 4) (12) ~ ( x ,  y) n ~ ( y ,  z) np(x, z) 
(4) fish(4, 5) (13) ~ ( x ,  y) ~ ( y ,  z) n ~ ( z ,  v) np(z, v) 
(5) ~ e ( x ,  y) det(x, y) (14) n ~ ( x ,  y) np(x, y) 
(6) gir--'l(x, y) adj(x, y) (15) ~ ( x ,  y) vp(x, y) 
(7) gir"--l(x, y) noun(x, y) (16) ~ ( x ,  y) ~ ( y ,  z) vp(x, z) 
(8) ~ ( x ,  y) vb(x, y) (17) ~ ( x ,  y ) ~  (y, z) S(x, z) 
(9) ~ ( x ,  y) noun(x, y) (18) ~(1, 5) 
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Corresponding to every refutation of (1)-(18) is a parse of the sentence. I t  is obvious, 
therefore, that  every refutation must contain all five of the clauses (1)-(4), (18). To each 
such clause there corresponds an SL-refutation having that  clause as top clause. Using 
the first clause (1), the search space corresponds to a bottom-up, left-to-right analysis of 
the sentence. Using the fourth clause (4), we obtain a bottom-up, right-to-left analysis. 
Using the negation of the theorem (18) results in a top-down parse. (In fact, the criterion 
for selecting literals determines, in all of these cases, whether the choice is uniformly one 
direction or another.) Although SL-resolution allows a certain degree of flexibility in that  
it permits an initial choice of different top clauses, it does not provide for the simultane- 
ous exploitation of the different possibihties. We will see later that  the new proof pro- 
cedure provides us with the ability to execute a multidirectional search, with the search 
strategy determining which initial focus of attention to search from and when to switch 
from one focus to another. We will see how the problem of intersecting different &rec- 
tions of search, discussed by Pohl [28], is solved without introducing any mechanisms 
not already required for implementing the solution of the other problems we consider. 

PROBLEM 5. OTHER RESOLUTION SYSTEMS. I t  is tempting to argue that  SL-resolu- 
tion is more efficient than all other resolution systems. Indeed, in the cases of set-of- 
support [37], A-ordering [14], resolution with merging [1], and general linear resolution 
[22, 24, 38], such arguments can be pursued a long way. But at least two other resolution 
systems need to be treated more seriously. 

Hyperresolution [31] and its implementation by means of selective Pl-deduction [14] 
sometimes behaves more efficiently than SL-resolution. In  the parsing problem, for 
example, selective Pl-deduction generates a bottom-up analysis which is completely 
flexible as to direction. The choice of left-to-right, right-to-left, or parallel bottom-up 
is left entirely to the discretion of the search strategy. Other examples can be cited where 
this kind of Pl-deduction admits no obvious redundancies and determines, in other re- 
spects, a satisfactory search space. 

A second alternative to SL-resolution is Colmerauer's cancellation system [7]. I t  bears 
a greater resemblance to the new resolution system than does either SL-resolution or 
hyperresolution. I t  has the advantage of solving the first two problems of SL-resolution 
as well as of incorporating the two preprocessing procedures discussed below in connection 
with problem 6. Cancellation can be regarded as a variation of SL-resolution in which 
ancestor resolution is replaced by a restrmted resolution of clauses occurring on different 
branches of an SL-search space. Without going into details, the system is easy to describe: 
Let S be the input set of clauses and let S'  be an initial set-of-support. Let all literals in 
input clauses be equally most recent. Repeat the following procedure until [] E S ' :  Pick 
a clause C E S'. Pick a most recent literal L E C. Add to both S and S' all resolvents D 
obtained by resolving on L in C with some clause B E S. All literals in D descending 
from B are more recent than literals descending from C Delete C from S and S'. 

I t  might be argued that SL-resolution, selective Prdeduction,  and cancellation ought 
to be regarded as .alternatives, each of which is a useful member of a larger repertoire of 
solution methods Special problems require special methods. For one problem, one method 
might be useful, whereas for another problem a different method might be more useful. 
Our approach to the problem of reconciling competing resolution systems is less tolerant 
of differences. 

Our goal is to design a single system which incorporates the best features of other sys- 
tems but avoids the worst of their faults. The new theorem-proving system allows us to 
simulate SL-resolution, Prdeduetion,  and cancellation. I t  Mlows us, moreover, to com- 
bine the different systems during the course of searching for a proof. In  the course of 
simulating SL-resolution we avoid the inefficiencies and redundancies discussed in con- 
nection with problems 1 and 2. 

PROBLEM 6. PREPROCESSING PROCEDURES. Preprocessing procedures transform one 
set of clauses into another set more highly instantiated, containing fewer clauses, or in 
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some other way better suited for input to a theorem-prover. On the other hand, various 
preprocessing procedures themselves resemble certain proof procedures. Colmerauer's 
cancellation is such a proof procedure. I t  can be used to good effect as a preprocessing 
procedure to delete clauses C which resolve with a small number of other clauses in the 
input set. I t  seems to us a deficiency of SL-resolution that various preprocessmg pro- 
cedures need to supplement the basic proof procedure. The theorem-proving system 
described later in this paper satisfactorily integrates preprocessing and proof procedure. 
In particular, preprocessing is not limited to an initial operation performed only on the 
set of input clauses, but is applicable at all stages in the course of searching for a proof. 

The purity principle [30] asserts that a clause C may be deleted from an unsatisfiable 
set of clauses S if it contains some literal L such that  no clause in S resolves with C on 
the literal L. The purity principle is one of the more useful preprocessing tools incor- 
porated in the new theorem-proving system. 

The purity principle is also incorporated in Colmerauer's cancellation" If L is pure in 
C, then pick C, pick L E C. The set of resolvents obtained by resolving on L m C is 
empty. Adding the empty set of resolvents to the current unsatisfiable set of clauses S 
and deleting the parent clause C result overall in the deletion from S of the clause C con- 
taining the pure literal L. 

More generally, cancellation incorporates a second preprocessing procedure which 
allows, under certain circumstances, one or both parents of a resolvent to be deleted 
when the resolvent is created. The second preprocessing procedure is just the operation 
whmh is the basis of the cancellation system: Select a clause C in S. Select a literal L in 
C. Generate and add to S all clauses which result from resolving on L in C with a clause 
B ~i S. Delete C from S. 

A similar deletion procedure has been investigated by Gelperin [10]. Related deletion 
procedures, reported by other authors [15, 25, 29], are also incorporated in the connection 
graph proof procedure. 

Example. In the parsing problem, select for cancellation the single literals in the unit 
clauses (1)-(4), which specify the words occurring in the input string. These literals 
resolve only with clauses (5)-(11), which define the grammatical categories of the words 
in the input string. The resolvents obtained are the following clauses. 

det(1, 2), adj(2, 3), noun(2, 3), vb(3, 4), noun(3, 4), vb(4, 5), noun(4, 5). 

Clauses (1)-(4) are now deleted. If  in clauses (5)-(11) we now select the first literals for 
cancellation, we notice that these literals have become pure and that therefore clauses 
(5)-(11) can also be deleted. Thus, in this example, the rcsolvents have replaced both of 
their parents in the input set of clauses. As m cancellation we aim for a proof procedure 
in which such a deletion procedure is an integral part. 

PROBLEM 7. ACCESSING RELEVANT OPERATORS. A distressing characteristic of 
resolution proof procedures is the excessive amount of search which can be involved in 
accessing clauses which resolve with a selected literal. In the worst case, in nonlinear 
systems without some scheme for classifying clauses, it is necessary to search through the 
entire set of clauses before finding the subset of all clauses which resolve with the given 
literal. At any given time, a discriminating search strategy might examine only a small 
subset of the whole. But eventually it too examines the entire set of clauses. I t  is typical 
of resolution proof procedures that they occupy most of their time testing for resolvability 
of clauses which do not resolve. A recent paper concerned with this problem is devoted 
almost entirely to the task of speeding up the recognition that a pair of clauses fails to 
resolve [33]. 

With SL-resolution and with linear resolution systems generally, the situation improves 
significantly. For a given selected literal, it is necessary to search only through the set 
of input clauses for operators which resolve with the given literal. This set is fixed in size 
and does not grow during the course of searching for a proof. The situation can be further 
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improved by storing input operators according to the predicate letters they contain. In  
order to access operators it is necessary then to search only among those input clauses 
which contain the same predicate symbol as the selected literal but  opposite in sign. I t  
was the elaboration of this idea, m order to take into account the syntactic structure of 
the terms in literals, which resulted m the notion of classification tree Classification trees 
eventually evolved into matrices and finally into connection graphs. These structures 
were found useful not only for accessing operators but also for facihtating look-ahead. 
Although they were originally intended to supplement SL-resolution, they eventually 
assumed all the functions of a complete proof procedure. Thus it was the solution of the 
last of our seven problems which resulted in the solution of the other six. 

Classification Trees 

Classification trees [21] store input operators according to the syntactic structure of the 
literals with which they resolve. To any given selected literal there corresponds a unique 
branch of the tree. At the tip of the branch are located pointers to all the input operators 
which resolve with the hteral scheme associated with the branch. The selected hteral is 
an instance of this scheme and resolves only with input operators pointed to at the tip of 
the branch. 

Example. The set of clauses classified by the tree in Figure 6 consists of five clauses, 
each containing two literals. Each input clause, therefore, has two associated operators. 
We employ the convention that  an operator, written PQ, is resolved only upon its first 
literal P. 

The leftmost branch in the figure has the associated literal scheme L(v), where v is any 
variable. The nghtmost  branch is associated with literals of the form M(f(t)), where t 
is any term. Such literals resolve only with the single operator 2' listed at the tip of the 
branch. 

Connection Graphs 

The idea that  matrices or graphs might provide a useful alternative to classification trees 
was suggested by Boyer. Figure 7 illustrates the connection graph for the example of 
Figure 6. 

To every occurrence of a literal in an input clause there corresponds a node in the 
graph, labeled by the literal. Two nodes are connected by an undirected arc (called a 
link) if their literals are potentially complementary (Le. if their literals can be made 

(1) L(x)K(x) (1') K(x)L(x) 
(2) K_(f(y))M(y) (2') M(y)K~(y)) 
(3) ¥(u)L(f(a)) (3') L(f(a))M(u) 
(4) L(x)K(x) (4') K(x)L(x) 
(5) K(f(x))L{f(x)) (5') L(f(x))K(f(x)) 

L 

4 4 1 1 2 2 1' 1' 3 3 2' 2' 
5' 5' 3' 3' 5 5 4' 4 '  

Fro. 6 A classification tree for operators (1)-(5) and (lr)-(5 ') 
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complementary by applying some substitution, after renaming variables so that different 
clauses contain different variables). Nodes corresponding to literals which belong to the 
same clause are "grouped together" in the graph Since, in order to construct the graph, 
it is necessary to test pairs of literals to determine whether they are potential comple- 
ments, it involves little additional computational effort to label each link with its asso- 
ciated most general unifying substitution. 

Connection graphs can be used to store the entire set of clauses as it is generated. With 
each link in the graph is associated the single resolvent obtained by resolving away the 
two literals at the opposite ends of the link. When the resolvent is generated, it is a 
simple matter to add it and its associated links to the graph. The new links connected 
to literals L' in the resolvent are constructed without searching by examining the old 
links connected to the literals L from which L' descends: A new link connects L' to K 
if (1) an old link connects L to K, and (2) the substitution associated with the old link 
is compatible with the substitution associated with the link whose activation generated 
the resolvent. The substitution associated with the new link can be computed directly 
from the two compatible substitutions. An algorithm for computing these substitutions 
has been developed by Jophien van Vaalen at the Mathematical Centre in Amsterdam. 
Figure 8 illustrates the operations involved in adding a resolvent to a connection graph. 

Given a selected link in a connection graph, a new connection graph is obtained by 
adding the associated resolvent to the graph, adding the new hnks connected to its 
literals, and deleting certain links and clauses from the old connection graph: 

1. When a resolvent is generated and added to a graph, the link whch generated the 
resolvent is deleted from the graph. 

L (x )K (x ) 

K(f(y))M(y) 

\ 

Kff(x))L~f(x}) ~ 

~(u)L(f(a)} 

FiG. 7. The connection graph for the example of Figure 6 

~ y  .= b x = c -- 
L(c) / 

x = f~y) g(x)L(x) ~ \ 

Y M(y)L(f(y)) 
Fro. 8 The addition of a resolvent to a connection graph. The arrow points from the link which 

generates the resolvent to the resolvent itself. The links connected to the literals M(y) and L(f(y)) 
m the resolvent descend from the links connected to the literals M (y) and L (x) from which they de- 
scend in the parent clauses. 
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2. If  a node has no links (i.e if its labeling literal is pure), then the clause in which the 
node occurs and all links attached to nodes in the clause are deleted from the graph. 

3. If  a clause is a tautology, then it is deleted together with all its nodes and their 
links. 

The new proof procedure consists of the application of the following nondeterministic 
procedure to the initial connection graph for the input set of clauses: 

1. Terminate successfully if the graph contains the empty clause. 
2. Otherwise, select a link in the graph, generate the associated resolvent, and construct 

the connection graph for the new set of clauses. Apply the procedure recursively to the 
new connection graph. 

Much of the flexibility and power of the proof procedure owes to its nondeterminism: 
the fact that  any link can be selected to generate the new connection graph from the 
old one. 

In order to make the definition precise it is necessary to pay attention to details, taking 
special care with operations for self-resolving clauses (i.e. clauses which resolve with a 
copy of themselves) and with the merging and factoring operations. Ignonng these details 
for the moment, Figure 9 illustrates a sequence of transformations of a connection graph 
which detects the unsatisfiability of the set of clauses in Figures 1-3. 

Historically, the step from connection graphs to the connection graph proof procedure 
was suggested by Winston's description [35], in 1972, of Waltz's picture interpretation 
algorithm. 

Connection Graphs and the Waltz Algomthm 

Waltz is concerned with the problem of constructing from local information a global 
interpretation of a two-dimensional line drawing as a scene. In order to do so, he con- 
structs a graph whose nodes represent vertices in the picture and whose edges represent 
lines joining vertices. With each node in the graph is associated a large set of possible 
local interpretations of the corresponding vertex A single global interpretation of the 
entire drawing is obtained by selecting, for every node in the graph, a single interpretation 
from among the complete set of possible interpretations associated with the node. Nodes 
joined by an edge must be labeled by interpretations which satisfy certain compatibility 
restrictions If  all pairs of nodes joined by an edge are labeled by compatible pairs of 
interpretations, then the labeling determines a single global interpretation of the draw- 
ing. 

The algorithm starts with each node in the graph labeled by the complete set of all its 
possible interpretations. I t  proceeds by consecutively examining pairs of nodes joined 
by an edge, deleting an interpretation from the labeling of one of the nodes if it is in- 
compatible with all interpretations in the labeling of the other node. Later certain inter- 
pretations in the labeling of the second node may become deleted because of incompati- 
bilities associated with other edges in the graph. At such a time it will be necessary to 

L 

L 

FIG. 9 A sequence of transformations of the connection graph for the set of clauses in Figures 
1-3. Links C), O, Q, and Q have resolvents which are tautologies These links may be deleted from 
the graph as soon as they are generated, without waiting until the tautologies are added and deleted. 
Links 0 and (~) have merge resolvents whmh revolve identifying hterals from different parents. The 
resoJvents corresponding to O, (~), Q, and (~) replace both of their parents, because once the resolvents 
are generated and the links deleted, both parent clauses contain unlinked literals. 
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reconsider the original edge and to test whether any other interpretations associated 
with the first node can be deleted because they have become incompatible with all in- 
terpeetations in the diminished set associated with the second node. The deletion of in- 
compatible interpretations continues until eventually no node has an associated interpre- 
tation which is incompatible with all interpretations associated with some neighboring 
node. Winston claimed that by this time there usually remained only a very small num- 
ber of interpretations associated with every node. 

I t  was immediately clear that a procedure analogous to Waltz's could be applied to 
dim]nish the number of links in a connection graph. Suppose that L and K are distinct 
literals belonging to the same clause. A link connected to the literal L can be deleted 
from the graph if its associated substitution is incompatible with all substitutions asso- 
ciated with the links connected to K. The consequences of deleting a hnk propagate 
throughout the connection graph in the same way that they do for deleting an interpre- 
tation m Waltz's picture graph. Figure 10 illustrates the transformation of a connection 
graph effected by deleting incompatible links. 

That  incompatibility deletion occupies the central role i~ Waltz's algorithm suggested 
that  the analogous operation might play an important role in a complete proof procedure 
based on connection graphs. From this suggestion it was an easy step to the definition 
of the operation which deletes a link and adds to the connection graph the associated 
resolvent and the new links connected to its literals. I t  is interesting to note that this op- 
eration together with the operation of deleting clauses containing pure literals subsumes 
the operation of deleting incompatible links: If a link connected to a literal L is incom- 
patible with all links connected to a literal K in the same clause, then generate the re- 
soh'ent corresponding to the incompatible link, delete the link, and add the resolvent to 
the graph. But notice that the incompatibility of all links connected to K with the de- 
leted link connected to L means that the descendant of the literal K in the resolvent is 
now pure and therefore the entire resolvent may be deleted from the graph. The total 

y = a ~  (a) 

L(b, b) y = b L(b, y)M(y) J y = u, . M(u)K(a, u) 

y = a  
x = b  

L(a, a) x = L(x, a)K(x, b) . K(e, b) 
® ® 

y = b  y = u  
L(b. b) L(b, y)M(y) . • M(u)K(a, u) 

u = b / / / / ~ / ~  
X = a  

L~a, a) - x = a • Ltx, a)K(x, b) J 

FIG 10. Deletion of incompatible hnks Link (~) is incompatible with both @ and @. Deletion 
of i~ makes clause K(c, b) contain a pure hteral  This clause may consequently be deleted from the 
graph Link @ is incompatible with @. Deletion of @ makes ® incompatible with all hnks connected 
to L(b, g). Deletion of (~) makes ll;~/(a) pure and consequently this clause is also deleted from the  
graph, 
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effect of this sequence of operat ions is s imply to delete  the  original incompat ib le  link 
connected  to the  l i teral  L f rom the  connect ion graph 

Not ice  tha t  Wal tz ' s  incompat ib i l i ty  deletion is used s imply as an  init ial  preprocessing 
procedure.  In  connect ion graphs, incompat ib i l i ty  delet ion is an integral  par t  of the  proof 
procedure  and can be applied a t  any t ime  during the  course of searching for a proof. 

Connectzon Graphs and the New Proof Procedure 

I t  is necessary to supplement  the  resolut ion operat ion with  a factoring opera t ion  which 
merges  po ten t ia l ly  ident ical  l i terals in the same clause. An instance C0 of a clause C is a 
factor of C if 0 is a most  general  unifier of some subset  of l i terals in C Like the resolution 
operat ion,  the  operat ion of genera t ing  factors leads to excessive redundancy  unless re- 
s tr ict ions are placed on its use. Such restr ict ions have been  imposed upon the  factoring 
opera t ion  in SL-resolut ion and in o ther  systems [16]. In  order  to simplify the  definition 
of the  connect ion graph proof procedure,  we shall ignore restr ict ions on the  factor ing 
rule. The  m-fac tor ing  me thod  employed in SL-resolut lon and o ther  forms of factor ing 
employed  in o ther  proof procedures  can easily be adapted  to the  new proof procedure 
On the  o ther  hand, i t  is l ikely tha t  new factoring me thods  which t ake  account  of the  
special bookkeeping s t ructure  of connect ion graphs will be more  s tatable  for the  new 
proof procedure.  

The  proof procedure is the  fol lowing nondeterminisf ic  program:  

(1) In order to determine that a set S of clauses is unsatisfiable: 
(a) Construct and 
(b) Process the initial connection graph for S 

(2) In order to construct the mitial connection graph for S 
(a) Generate and include m the graph all factors of clauses in S. 
(b) For every pair of potentially complimentary hterals in &stmct clauses in the graph, insert 

a hnk connecting the hterals. 
(c) Label each hnk by the most general unifying substitution which makes the literals comph- 

mentary. 
(3) In order to process a connection graph. 

If the graph contams the empty clause, 
Terminate successfully, 
If the graph does not contain the empty clause: 
(a) Select a link m the graph, 

Generate the associated resolvent, 
Add its factors to the graph, and 
Delete the selected link 

(b) Add links connecting literals in the newly generated factors to other literals in the graph. 
(1) If L0 m a new clause descends from L in a parent clause, 

If a link labeled by a connects L to K, and 
If 0 and a are compatible, then 
Add to the graph a link connecting LO and K labeled by the substitution 0 * a which is the 
most general umfier of/.~ and K. 

(ii) If L0 in a new clause is potentially complimentary to a literal occurrence K in another 
factor of the resolvent or in a parent clause, then 
Add a link connecting L0 and K, labeled by the most general unifier of L0 and K. 

(c) Delete a clause and all links connected to its literals 
(i) If the clause is a tautology, or 

(il) If the clause contains a pure literal (one not connected by a link to any other literal in 
the graph). 

(d) Process the new connection graph 

Figures  11-13 i l lustrate  var ious  detai ls  of the  algori thm. 
The  a lgor i thm as i t  has jus t  been defined is nondetcrminis t ic .  For  implementa t ion  on a 

determinis t ic  machine  it  needs the  specification of a search procedure which determines  
the  selection of links. There  are two approaches  to the specification of search procedures.  
One approach,  advoca ted  by Hayes  [12], is to devise a control  language wi th  facilities for 
the axiom wri ter  to specify the  cri ter ia  for the  selection of links. The  other,  more  conven- 
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P(a) P(f(f(a))) . . . . . .  PEa)) ~ .P(f(a)) 

P(x)P(f(x)) P(x)P(f(x)) 

Fxo. 11 Bidirectional search with a self-resolving clause A self-resolving clause, more precisely, 
is one which resolves with a copy of ~tself The first transformation is obtained by selecting hnk (i). 
The insolvent is its own only factor. Its parent P(a) is deleted because it contains a pure literal after 
deletion of (X) The new link (~) is added by step (3-b-n). According to step (3-b-1) an attempt is made 
to add link (~) Thin attempt fails The next hnk selected is (~) The parent P(f(.f(a))) of the new re- 
solvent is deleted because it now contains a literal which is pure. New links (~) and 0 are added to 
the graph. The null clause results from the selectmn of hnk ®. 

P(c, b) P(a, b) P(a, c) 

~ KP(y,b)P(a,x)fft 

Fm 12. The addition of factors to a connection graph. Link (:) is selected The two factors of the 
associated resolvent are added to the graph. Notice that selection of hnk O or link Q, instead of 
link (9, would have resulted in the generatlon of a much mmpler graph. The graph in Figure 13 is ob- 
tained by selecting link Q m the new graph 

tional, approach is to devise an autonomous sequencing algorithm which decides for it- 
self. We shall have more to say about search procedures in the final section of this paper. 
But  first we shall explain the criteria used for selecting links in the examples of the next 
section. For purposes of simplicity we ignore the factoring operation altogether. 

In  general it is desirable to select links whose activation simphfies the graph by reducing 
the total number  of clauses, hteral occurrences, or links. The ideal si tuahon occurs when a 
link connects a pair of literals and no other link is connected to either literal In  such a case 
the resolvent completely replaces its parents (because after deletion of the link, both 
parents contain pure literals) The graph is further simplified when the resolvent merges 
literals and links descending from different parents. The selection of links (~) and (~) in the 
graph of Figure 9 illustrates such a situation. The next most desirable circumstance is the 
one in which a literal occurrence in a clause is connected to just a single link. In  this case 
the one clause is replaced by its resolvent. In  the special subcase where the other parent 
is a uni t  clause or where all literMs and connecting links descending from the undeleted 
parent merge into those descending from the deleted parent, selection of the link simplifies 
the graph by  removing one literal occurrence and one link. In  situations where the activa- 
t ion of no link simplifies the graph, it is necessary to select a link whose activation least 
complicates it. In  such cases preference should be given to links whose resolvents contain 
the fewest literals. Both the criterion of selecting links which least complicate the graph 
and the criterion of generating clauses containing fewest literals can be improved by using 
the look-ahead procedure described in the last section of this paper. 

When it is necessary to complicate the graph, the selected link should belong to a set-of- 
support, i.e. it should descend either from the negation of the conclusion of the theorem or 
from one of its hypotheses. Such a goal-oriented selection of links simulates the forward- 
and backward-chaining theorem-provers of Bledsoe and his colleagues [2-4]. 
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FiG. 13 The addition of links to a connection graph. The clause KL results from the selection of 
link @ in the graph of Figure 12. Notice that no hnk is added connecting the occurrence of L in KL 
to the occurrence of L in L P(a, x) ~1, even though these two hterals are complementary. This is be- 
cause the graph contains no hnk connecting L in the parent of the resolvent to L in L P(a, x) .~. 
That link has Mready been activated and deleted. 

The New Proof Procedure and the Deficiencies of SL-Resolution 

We shall investigate how the new proof procedure copes with the deficiencies of SL- 
resolut:on. 

Recall tha t  problem 7, the problem of accessing relevant operators, has been solved b y  
using connection graphs to store clauses. Indeed, immediately after a clause is generated, 
all resolvents which can be obtained from the clause are implicitly represented by  the 
neMy added links which connect literals in the new clause to other literals in the graph. 
The new links are generated by  copying them from the old links connected to literals in 
the parent  clauses. Moreover, the substitutmns associated with the new links can be com- 
puted directly from the substitutions associated with the parent  links together with the 
substi tution associated with the link whose activation generated the resolvent 

Operations on connection graphs solve problem 6, the problem of incorporating pre- 
processing procedures into the proof procedure itself. This is obvious for the pur i ty  princi- 
ple which plays a central role in the new theorem-proving system. The new system also 
incorporates the preprocessing procedure of Colmerauer 's  cancellation system In  connec- 
tion graphs cancellatmn is accomplished by  simultaneously selecting at  every stage all 
the links connected to some selected literal occurrence in a given clause. When the corre- 
sponding resolvents are generated the selected literal occurrence becomes pure and the 
clause in which it occurs is deleted from the graph. 

The new theorem-proving system reconciles problem 5, the problem of competing resol- 
ution systems by  incorporating them (or rather  improved varmtions of them) as special 
ways of determining the selection of links. We have just  remarked how links can be 
selected in order to simulate Colmerauer 's  cancellation. To simulate selective Pl-deduc- 
tion it suffices always to select a link connected to a literal in a positive clause. Such a 
clause always exists in any unsatisfiable set of clauses. To simulate SL-resolution with a 
given set of top clauses, it  suffices always to select a link connected to a most recent hteral  
in some clause descending from a top clause. In  the first example at  the end of this section, 
we see how the new system solves problems 1 and 2, the problem of dealing with contra- 
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dictory units and the problem of avoiding redundancy when the selection of links is used 
to simulate SL-resolution. 

The solution of problem 4, the problem of support sets and multidirectional search, 
has already been illustrated in the example of Figure 11. Notice in that example how the 
test for intersection of the bidirectional searches is accomplished automatically by the 
at tempt to add new links to the graph whenever a new clause is generated. Pohl recom- 
mends a scheme of hash coding to alleviate the computational difficulties of intersecting 
bidirectional searches [28]. I t  is significant that the use of connection graphs to solve the 
problem of accessing operators also solves the problem of intersecting multidirectional 
searches. Multidirectional search for the parsing problem is illustrated in the second of the 
three examples which follow. 

Problem 3, the problem of more flexible activation of subgoals, is solved by the absence 
of restrictions on the selection of links in the connection graph proof procedure. Not only 
can the selection of links be constrained so as to simulate SL-resohition, but selection can 
be liberalized so as to perform a generalization of SL-resohition which allows the simul- 
taneous consideration of several subgoals. The third example below illustrates such a 
selection of links for the sorting example considered earlier. 

Example. This example deals with the solution of problem 1, the problem of contra- 
dictory units, and of problem 2, the problem of redundant derivations. Figure 14 illus- 
trates a redundant SL-resolution search space and Figure 15 illustrates a connection graph 
simulation of SL-resohition with a breadth-first search strategy for the same set of input 
clauses. The connection graph simulation generates the upper half of the SL-search space. 
But then it finds (in link O)  the contradictory pair of units S and S. After the contradic- 
tion has been generated, nothing remains in the connection graph, corresponding to the 
lower half of the SL-search space. The connection graph simulation avoids both problems 
1 and 2 of SL-resohition. 

I t  is interesting to perform, for this set of clauses, a connection graph simulation of 
SL-resolution with other search strategies. SL-resolution with backtracking (depth-first 
search) directly generates one of the two redundant refutations m the SL-search space. 
After the first refutation has been generated, the second refutation remains a candidate 
for generation in the SL-search space. The connection graph simulation of SL-resolution 
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Input  se t  of  c lauses  = 

{R, RSQ, RSQ, QU, U} 

FIG. 14. A redundant SL-search space, with unrecogmzed contradictory units ,.~ and S. 
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with backtracking generates the same first refutation but, having done so, leaves no other 
candidate resolution in the search space. 

The new theorem-proving system is interesting for the maximal confusion it makes 
between search space and search strategy. I t  is especially interesting how an unnecessary 
search in an irrelevant part of a connection graph alters the search space in general. In 
particular, an unnecessary search often simplifies the graph and makes it easier to find 
the necessary parts of the search space. 

Example. The graph in Figure 16 is obtained from the initial connection graph for the 

Q 
~ v  

RS 

Q~~ u 
SQ 

gu @ 0 

@_ G ' [ ]  
SU U S 

FiG. 15 A connection graph simulation of SL-resolutlon with breadth-first search, for the set 
of clauses and selectmn function of FFlgure 14 The numbering of hnks indicates the order m which 

they are selected for deletion. 

vb(3, 4) vb(4, 5) 

~(x, y)~p(y, z)vp(x, z) v-b(x, y)vp(x, y) 

adj(2, z)h~bfffi-n(z, w)np(1, w) n~n(x, y)np(x, y) fioun(2, z)np(1, z) 

adj(2, 3) noun(2, 3) noun(3, 4) noun(4, 5) 

Fro. 16. The connection graph for the parsing problem, after initial preproeessing. The next 
transformatmn of the graph is obtained by first deleting the incompatible links @-@, and then seleet- 
ing for aetivation hnks 0 -@ The resolvent assoemted with hnk @ replaces both its parents The re- 
solvents ~soe~ated with @, @, and @ replaee and are simpler than their nonunit parents. Thus ac- 
tivatmn of each of links ~ simplifies the graph. 



590 ROBERT KOWALSKI 

parsing problem by generating most of the resolvents which replace both their parents 
because the associated link is the only link connected to the literals resolved upon m the 
parents. Notice that this initial "preprocessing" of the graph is an integral part of the 
proof procedure Notice too that during preprocessing the connection graph operations 
simulate both SL-resolution and hyperresolution. The parsing method pursued so far has 
been a multidirectional bottom-up and top-down analysis. Figures 17-19 illustrate suc- 

vb(3, 4) vb(4, 5) 

vb(x, y)~p(y, z)vp(x, z) 

np(1, 4) 

vp(4, 5) 

noun(x, y)np(x, y) np(1, 3) 

noun(2, 3) noun(3, 4) noun(4, 5) 

F m  17. The connection graph which results from deleting links (~)--@ in Figure 16. The next 
transformation of the graph results from the activation of links (~-(~) The associated resolvents all 
replace their parents. Notice tha t  deletion of Q - Q  simulates Colmerauer's cancellation. 

Fm 18 

vb(3, 4) vb(4, 5) 

vb(x, y) ~p(y, z) vp(x, z) vp(4, 5) 

np(2, 3) np(3, 4) np(4, 5) 

The connection graph resulting from the deletion of links ( ~ ) i n  Figure 17. Links 
(~-~)are  now incompatible and can be deleted 
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cessive t ransformat ions  of the  original graph. In  this example,  the  remainder  of the  
pars ing is done pr imar i ly  in a bo t tom-up  manner .  B u t  notice t h a t  delet ion of links @ 
and (~  can be in te rp re ted  as e i ther  bo t tom-up  or top-down In  fact, delet ion of these links 
effects the  in tersect ion of the bo t tom-up  and top-down analyses. 

Example. Figures  20-22 i l lustrate the  connect ion graph s imulat ion of the  SL-der iva-  
t ion of Figure  5 for the  sort ing problem. The  connect ion graph  in Figure  22, however ,  
p rowdes  the  oppor tun i ty  to ac t iva te  the  new instance ()(cons(2, cons( l ,  y))) of an old 
subgoal. The  new instance is easily recognized as unsolvable.  This  example  i l lustrates the  
abi l i ty  to consider subgoals in a more flexible sequence than  is al lowed by  SL-resolution.  
In  the  p rogramming  interpreta t ion,  the  example i l lustrates the impor t an t  abi l i ty  of con- 
nec t ion  graphs to imp lemen t  coroutines.  

vb(3, 4) 

@ 

v-b(x, y)fi~(y, z)vp(x, z) 

np(4, 5) V-p(3, 5) 

vp(4, 5) 

Wp(4, 5) 
FIG 19 The connection graph which results flora deleting the incompatible l i n k s ( X ) .  In this 

graph, deletion of hnk~(~-4~ results in a refutation corresponding to one parse of the ambiguous 
sentence, and deletion of link Oresul t s  in a different refutation corresponding to the other parse 

S([2, 1, 3], u) 

S(x, y)P(x, y)O(y) 

P(ml, nil) P~, cons(x, y))De'--l(x, z, z')fi(z', y) 

Del(x, cons(x, y), yJ Del(x, consb,, z), consb,, z'))Del(x, z, z') 

Fm 20 The eonnection graph for the sorting problem Here [2, 1, 3] is an abbreviation for the 
longer cons(2, cons(I, eons(3, ml))) Notice that three of the clauses in this graph are self-resolving. 
Thus, although some of their hterals appear to have lust single links connecting them to other literals 
in the graph, these clauses cannot be deleted when the links are deleted, beeause the literals do not 
become pure but rather become hnked to other literals In the resolvent. Keeping this in mind, it is 
clear that initially only deletion of link @ results in simphficatmn of the graph But then the descend- 
ant of hnk 0 can be deleted because it is incompatible. The descendant of link (~) is then the only 
link whose deletion results In a hteral becoming pure with the consequent deletion of a parent clause 
from the graph. 

O(nil) O(cons(x, ml)) 

O(cons(x, consb,, z))) ~(x ,  y)0(eonsb,, z)) 

LE(1, 2) LE(2, 3) LE(1, 3) 
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I t  is worth remarking that, although the sequence of transformations in Figures 20-22 
has been chosen in order to simulate SL-resolution, the same sequence of transformations 
is determined by  the autonomous selection procedure outlined in the preceding section. 
At every stage the selected link is one connected to a clause descending from the negation 
S([2, 1, 3], u) of the conclusion of the theorem, whose activation least complicates the 
graph and whose resolvent contains fewest literals. 

Connection Graphs and Search Strategy 

In  connection graphs, the problem of search strategy is the problem of deciding at every 
stage which hnk should be selected. This problem is the same as the problem of sequencing 
the generation of resolvents in more conventional resolution systems. In  particular, the 
usual search strategies for resolution systems, such as unit preference [36] or diagonal 
search [17], apply without complication to the new theorem-proving system. Moreover, 
search strategic advice of the kind employed m programming languages such as PLANNER 
[13] and supplied, for example, in the form of recommendation lists and filters (for se- 
quencing the application of operators to subgoals) can also be employed to guide the 
search in connection graphs. What  distinguishes connection graphs is that  they facihtate 
the implementation of methods for obtaining useful information about ungenerated parts 
of the search space. This information can be used in a variety of ways, one of the most 
interesting of which is for the calculation of lower bounds on the complexity of a simplest 
refutation containing a given resolvent. Present diagonal search strategies use a very 
crude and approximate lower bound which is just the number of literals in the resolvent. 
A well-known property of search strategies which are guided by lower bounds is that  their 
efficiency improves significantly with a significant improvement in the accuracy of the 
lower bound. The number of literals in a clause is equivalent to the lower bound obtained 
by just a one-level look-ahead in the connection graph. One-level look-ahead assumes that  
all literals in a clause might be linked to unit clauses. The lower bound can be improved 
significantly by n-level look-ahead. 

O(nil) O(cons(x, nil)) 

Z ~  ~el(x, [2, 1, 3], z')P(z', y)O(eons~, y)) "O(cons(x, cons(y, z)))~(x, y)0(cons(y, z)) 

Del(x, cons(x, y), y) Del(x, cons(y, z),eons(y, z')) Del(x, z, z') 

FIG. 21. The connection graph which results from deleting (~)--@ in Figure 20. Link @ can be 
deleted because it is incompatible Link @ is deleted, simulating the SL-derivation of Figure 5. But 
then the descendant of link @ in the resolvent is ineompatible and the descendant of hnk @ean 
be activated with the associated resolvent replacing one of its parents In the new resolvent, the 
descendant of link (~) m not present because links Q and (~) are incompatible. 
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O(cons(x, ml)) 

)Otcons(x )) /~ '~-  s(x c n" z ~ x  0 c  De--"l(x, [2, 1, 3], z')P(z' ,  y , Y ~ v~cun ~ , o sty, ))) ( , y)  ( ons(y, z)) 

~ ' - ' - LE(1, 2) LE(2, 3) LE(1, 3) 

Del(x, cons(x, y), y) Del(x, eonsb,, z), tense,, z')lDel(x, z, z ' )  

FiG 22. The connection graph which results from deleting @-@ in Figure 21 Continuing the 
simulation of the SL-derivation in Figure 5, we delete link @ But now the descendant of link @ in 
the resolvent is incompatible with links @, @, and @ The descendant of link @ can therefore be 
deleted But then the resotvent contains a pure literal and the entire resolvent together with all its 
links can be deleted from the graph The total effect of thin sequence of operations is simply to delete 
link @ from the graph Ordinary SL-resolutlon, with its rigid last-in-first-out activation of subgoals, 
would generate the resolvent associated with link ® and then generate the resolvent associated with 
the descendant of link @. 

In the example below, we show how to compute the quantities which estimate, by  
looking ahead n-levels in the connection graph, the minimum number  of links which need 
to be activated in order to achieve the goal L. Notice below that  the computational effort 
needed to compute these estimates is just a linear function of n, even though the size of 
the search space n-levels deep is generally an exponential function of n. Notice too that  
the look-ahead ignores the possibility of merging, factoring, and deleting tautologies. 
Moreover, it assumes that  all substitutions are, and will be, compatible. For these reasons 
our look-ahead method resembles the relaxation method for fathoming subgoals and for 
computing lower bounds. A useful discussion of such applications of relaxation can be 
found in G eoffrion and Marsten 's  survey of integer programming [11]. 

Figure 23 illustrates the calculation of the quantities h~ for each literal occurrence in 
the connection graph of Figure 24. h a ( L )  estimates the minimum number of links which 
need to be activated in order to achieve the subgoal L .  h i ( L )  is calculated by assuming 
that  each literal in every clause directly connected by a link to L can be achieved in a 
single step by activating a single link. Thus h a ( L )  is the minimum, over all clauses 
connected by a link to L, of the number  of literals in such clauses. More generally, hn(L) 
is one plus the minimum, over all clauses L K 1  . . .  K m  connected by a link to L, of the 
sums ~,=1,,~ ~_i (K,) .  Notice that,  ignoring situations which involve merging, h ~ ( L )  is 
a lower bound on the number  of resolvents which need to be generated in order to achieve 
the goal of refuting L. 

Look-ahead can be usefully employed to compute quantities other than h,. In  particu- 
lar, it can be used to estimate the size of the entire search space n-levels deep which is 
generated by attempting to achmve in n steps a subgoal in all possible ways. We have 
already observed the utility of employing the one-level look-ahead estimate of this quan- 
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h~ h2 ha h4 h5 

A 3 6 7 7 7 
B 1 1 1 1 1 

D 2 2 2 2 2 
E I I 1 1 1 
F 3 4 4 4 4 

~ V  G 2 2 2 2 2 
t l  3 5 6 6 6 
1 1 1 1 1 1 
J 2 4 6 7 7 Q 

BCD.  

A I l l  

E 

FIG 23 The matrix of the 
values h~ for the literal oc- 
currences in the graph of Fig- 
ure 24. h~(L) = hs(L)  = h~(L) 

for all n _~ 5 and for allL = 
A, B, - . . , J .  

FiG 24 The assignment of unique names to distinct occur- 
rences of hterals m a connection graph. For example, the occur- 
rence of R in R S Q is called B, whereas the occurrence of R in 
R S Q is called E Thin assignment is used in Figure 23 for com- 
puting the function h~ 

t i ty,  name ly  the  to ta l  number  of l inks connected  to a l i teral  Good use can be made  of 
mo{e accurate  n-level  look-ahead es t imates  We shall no t  pursue fur ther  in this paper  the  
detai ls  of these computat ions ,  nor  thei r  e m p l o y m e n t  for the  guidance of the  search 
s t ra tegy.  

M o r e  e laborate  look-ahead computa t ion  can be performed in order to es t imate  the  
symbol  complexi ty  [17] of a s implest  re fu ta t ion  conta in ing a given clause, r a ther  t han  to 
es t imate  its size (number  of clauses). We  have  argued m this  section tha t  connect ion 
graphs provide  new opportuni t ies  for improv ing  search s t rategies  by  exploi t ing efficient 
me thods  for looking ahead in the  ungenera ted  par t  of the  search space. We do no t  c la im 
to have solved the  general  p roblem of des~guing intel l igent  search strategies. We believe,  
however ,  t ha t  the  emp loymen t  of connect ion graphs and look-ahead will con t r ibu te  to 
its even tua l  solution. 
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