
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2519366

Variants of the Event Calculus

Article · October 2000

Source: CiteSeer

CITATIONS

42
READS

88

2 authors:

Some of the authors of this publication are also working on these related projects:

Non-modal deontic logic View project

SOCS - Societies of Computees View project

Fariba Sadri

Imperial College London

114 PUBLICATIONS 2,761 CITATIONS

SEE PROFILE

Robert Kowalski

Imperial College London

154 PUBLICATIONS 12,446 CITATIONS

SEE PROFILE

All content following this page was uploaded by Fariba Sadri on 12 September 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2519366_Variants_of_the_Event_Calculus?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2519366_Variants_of_the_Event_Calculus?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Non-modal-deontic-logic?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SOCS-Societies-of-Computees?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fariba_Sadri?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fariba_Sadri?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Imperial_College_London?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fariba_Sadri?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Kowalski5?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Kowalski5?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Imperial_College_London?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Kowalski5?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fariba_Sadri?enrichId=rgreq-fcf4873fccd767f081df4af835efb933-XXX&enrichSource=Y292ZXJQYWdlOzI1MTkzNjY7QVM6MTQwNTg0MjI0MzAxMDU3QDE0MTA1MjkyOTk0MTA%3D&el=1_x_10&_esc=publicationCoverPdf

1

Variants of the Event Calculus
ICLP 95

Fariba Sadri and Robert Kowalski
Department of Computing, Imperial College of Science,
Technology and Medicine, 180, Queens Gate, London SW7 2BZ
fs@doc.ic.ac.uk rak@doc.ic.ac.uk

Abstract

The event calculus was proposed as a formalism for reasoning about time

and events. Through the years, however, a much simpler variant (SEC) of the

original calculus (EC) has proved more useful in practice.

We argue that EC has the advantage of being more general than SEC, but

the disadvantage of being too complex and in some cases erroneous. SEC has

the advantage of simplicity, but the disadvantage of being too specialised.

This paper has two main objectives. The first is to show the formal

relationship between the two calculi. The second is to propose a new

variant (NEC) of the event calculus, which is essentially SEC in iff-form

augmented with integrity constraints, and to argue that NEC combines the

generality of EC with the simplicity of SEC.

We argue that NEC also demonstrates the more general potential of

using theories consisting of iff-definitions and integrity constraints as a

new logic programming paradigm.

1 Introduction

The original event calculus (EC) [10] was formulated as a logic program for

representing and reasoning about the occurrence of events, the properties

that events initiate and terminate, and the maximal time periods for which

those properties hold. It also contained rules to derive the existence of

implied events from incomplete information about explicitly given events.

Subsequent to the original paper [10], most further development of the

EC focused on a variant [15, 7, 5, 16, 4] which employed time points instead

of time periods. This simplified event calculus (SEC) was applied to such

problems as database updates [7], planning [5, 12], explanation [16],

hypothetical reasoning [14] and air traffic management [17]. A further

special case of SEC, where time points are identified with global situations,

has been shown to be equivalent to the situation calculus with induction

[9].

In this paper we present two sets of results which help to explain why

SEC has replaced EC in practice and to justify our proposal for NEC. The

first shows that, in the special case in which all event occurrences are

explicitly and completely given, the two calculi derive equivalent

consequences about what properties hold at what time points. The second

shows that in those cases where information about explicitly given events

is incomplete the if-and-only-if form (iff-form) of SEC, augmented with

appropriate integrity constraints, can be used, in place of EC, to derive the

existence of implied events. We call this new variant of SEC the new event

calculus (NEC). We also show that, in certain cases of incomplete

information about events, both EC and SEC give incorrect results, which are

2

avoided in NEC.

To prove our first set of results, we use the Clark completion [2] (i.e.

iff-form together with the Clark equality theory) as the semantics of the EC

and SEC logic programs. To prove our second set of results about NEC, we

use the completion augmented with integrity constraints. Elsewhere, we are

investigating other uses of the completion with integrity constraints as a

computational paradigm [8, 6, 11].

The remainder of the paper is structured as follows. In sections 2 and

3 we introduce and discuss SEC and EC, respectively. In section 4 we

discuss some of the shortcomings of EC. In section 5 we show how EC and

SEC are formally related. In sections 6 and 7 we introduce NEC and argue

that it subsumes most of the functionality of EC.

2 The simplified event calculus (SEC)
2.1 Axioms

Throughout this paper we use the notational conventions that variables

start in the upper case and that constant, function and predicate symbols

start in the lower case. All variables, which are not otherwise explicitly

quantified, are implicitly bound by universal quantifiers in front of the

formula in which they occur.

SEC consists of one core axiom, S, and any number of auxiliary domain

dependent definitions. The core axiom in conventional logic programming

if-form is:

holdsAt(P, T) ← happens(E1, T1) ∧ initiates(E1, P) ∧ T1< T ∧

 ¬ ∃ E2, T2 [happens(E2, T2) ∧ terminates(E2, P) ∧ T1< T2 ∧ T2< T] S

This states that a property P which is initiated by an event persists until

it is terminated by a subsequent event.

In addition to S, further axioms are needed to define the <, initiates,

terminates and happens predicates. The exact definition of < is not

directly relevant for the purposes of this paper, provided the definition

satisfies such integrity constraints as transitivity and anti-symmetry.

Domain dependent axioms are needed to define the initiates and

terminates predicates. For example:

initiates(E, has(X, Y)) ← act(E, give(Z, Y, X))

initiates(E, has(X, Y)) ← act(E, steal(X, Y, Z))

terminates(E, has(Z, Y)) ← act(E, give(Z, Y, X))

terminates(E, has(Z, Y)) ← act(E, steal(X, Y, Z))

which state that the property of possession is initiated and terminated by

giving and stealing events.

Note that in this formulation of SEC the event variables represent

event tokens, i.e. occurrences of events. Some other formulations [e.g. 9]

use event types instead of tokens. We employ the event token formulation

in this paper to facilitate the comparison with EC later.

Problem dependent axioms define event occurrences, e.g.:

3

happens(e1, 1) act(e1, give(bob, book, mary))

happens(e2, 10) act(e2, give(mary, book, tom))

If we assume that such axioms provide a complete description of event

happenings, then their semantics can be expressed in iff-form, e.g.:

happens(X, Y) ↔ [(X = e1 ∧ Y = 1) ∨ (X = e2 ∧ Y = 10)]

act(X, Y) ↔ [(X = e1 ∧ Y = give(bob, book, mary)) ∨

 (X = e2 ∧ Y = give(mary book, tom))]

Given such axioms, and the completion of terminates and <, it is possible to

derive conclusions of the form holdsAt(p, t) for concrete properties p and

specific time points t. However, it is also possible to derive more general

conclusions about what properties hold for what time intervals.

2.2 Derivation of properties holding over time
intervals

Suppose we are given a complete history of all the events that initiate or

terminate a given property p. Pictorially:

e1 e2 e3 e4 e2i-1 e2i en

o----------o o---------o ... o-----------o ... o

t1 t2 t3 t4 t2i-1 t2i tn

where, for each i >1, ei happens at time ti, ti < ti+1 and ei initiates p if i is

odd and terminates p if i is even. Then, assuming a total ordering on time

points, the completion of S together with the completed definitions of the

initiates, terminates and happens predicates implies:

holdsAt(p,T) ↔ [t1< T < t2 ∨ t3 < T < t4 ∨... t2i-1 < T < t2i ∨... tn < T] S*

in case en initiates p. If en terminates p, the last condition is replaced by

tn-1< T < tn, where T < tk abbreviates T< tk ∨ T=tk.

Literally, S* defines when a property holds at a time point. However, if

the inequality predicate is treated as a constraint in a constraint logic

programming context, the use of S* simulates reasoning about properties

holding for maximal time intervals.

2.3 SEC may give incorrect results

SEC was formulated to deal with complete information about events. It can

give incorrect results if event information is incomplete.

Example: Suppose that event e1 at time 1 is an act of Bob giving a book to

Mary, and e2 at time 10 is an act of John giving the book to Tom. Given the

descriptions of these events, the definitions of initiates and terminates

and S, and using the completion of such definitions, we can derive

4

holdsAt(has(mary, book), T) ↔ 1< T

holdsAt(has(tom, book), T) ↔ 10< T

which imply incorrectly that after time 10 both Mary and Tom have the

book, and that at no time at all does John have the book.

The first incorrect implication can be corrected by revising the

definition of terminates:

terminates(E, has(Z', Y)) ← act(E, give(Z, Y, X)) ∧ ¬ Z'= X

terminates(E, has(Z', Y)) ← act(E, steal(X, Y, Z)) ∧ ¬ Z'= X

Correcting the second incorrect implication is both more difficult and more

interesting. We shall explain how it can be corrected by using NEC in

section 6.

3 The original event calculus (EC)

One of the main reasons for the greater complexity of EC compared with SEC

is that EC attempts to deal with incomplete information. Another is that its

vocabulary is more complex, arguably because its ontology is concerned

primarily with maximal time periods rather than with time points. Below

we present the domain-independent axioms of EC.

holds(after(E, P)) ← initiates(E, P) O1

holds(before(E, P)) ← terminates(E, P) O2

start(after(E, P), E) O3

end(before(E, P), E) O4

start(before(E2, P), E1) ← equal(after(E1, P), before(E2, P)) O5

end(after(E1, P), E2) ← equal(after(E1, P), before(E2, P)) O6

equal(after(E1, P), before(E2, P)) ← holds(after(E1, P)) ∧

holds(before(E2, P)) ∧ E1 < E2 ∧ ¬ broken(E1, P, E2) O7

broken(E1, P, E2) ← holds(after(E*, P*)) ∧ exclusive(P, P*) ∧

 E1 < E* ∧ E* < E2 O8

broken(E1, P, E2) ← holds(before(E*,P*)) ∧ exclusive(P, P*) ∧

E1 < E* ∧ E* < E2 O9

exclusive(P, P) O10

exclusive(P, P*) ← incompatible(P, P*) O11

holdsAt(P, T) ← holds(after(E, P)) ∧ in(T, after(E, P)) O12

holdsAt(P, T) ← holds(before(E, P)) ∧ in(T, before(E, P)) O13

in(T, Period) ← start(Period, E1) ∧ end(Period, E2) ∧ time(E1, T1) ∧

time(E2, T2) ∧ T1< T ∧ T< T2 O14

in(T, Period) ← start(Period, E1) ∧ time(E1, T1) ∧ T1 < T ∧

¬ end(Period, E2) O15

[start(before(E2, P2), init(before(E2, P2))) ∧

 lequal(E1, init(before(E2, P2)))] ←

holds(before(E1, P1)) ∧ holds(before(E2, P2)) ∧

exclusive(P1, P2) ∧ E1 < E2 ∧ ¬ broken(E1, P2, E2) O16

5

[end(after(E1, P1), fin(after(E1, P1))) ∧

 lequal(fin(after(E1, P1)), E2)] ←

holds(after(E1, P1)) ∧ holds(after(E2, P2)) ∧

exclusive(P1, P2) ∧ E1 < E2 ∧ ¬ broken(E1, P1, E2) O17

[end(after(E1, P1), fin(after(E1, P1))) ∧

 start(before(E2, P2), init(before(E2, P2))) ∧

 lequal(fin(after(E1, P1)), init(before(E2, P2)))] ←

holds(after(E1, P1)) ∧ holds(before(E2, P2)) ∧

incompatible(P1, P2) ∧ E1 < E2 ∧ ¬ broken(E1, P1, E2) O18

O1-O4: An event E initiating a property P starts a maximal period, named

after(E, P), during which P holds. Similarly, an event E terminating P ends

a maximal period before(E, P) during which P holds. The predicates

initiates and terminates are defined by domain-dependent axioms as in

SEC, with act given as part of the problem-specific input.

O5-O9: Because one event can initiate a property and a subsequent

event can terminate it, the same period can be named both as an after(E1, P)

and as a before(E2, P) period. It is necessary to determine, therefore, when

two such periods are equal. This is the case (by default) when there is no

event E* which happens between the two events and breaks the holding of P

by initiating or terminating some property P* which excludes P. The

equality of two periods after(E1, P) and before(E2, P) allows us to derive an

end for the first period and a start for the second.

Note that in [10] the symbol = was used instead of the predicate equal.

We use equal here to avoid confusion when we consider the completion of

EC where we use = as the identity predicate. The Clark equality theory, CET

[2], holds for =, but not for equal.

O10-O11: Properties P and P* are exclusive if they are identical or

incompatible with one another. Incompatibility is defined by domain

dependent rules, such as

incompatible(has(X, Y), has(Z Y)) ← ¬ X=Z.

O12-O13: A property holds at a time point when the time point is in a time

period for which the property holds.

O14-O15: A time point is in a period if it is between the start and end

of the period, or when the period has no end and the time point is after its

start.

O16-O18: These axioms derive implied events from incomplete event

descriptions. This ensures that periods are maximal and that incompatible

properties do not hold for overlapping periods.

Axiom O16 deals with the case P1 E1 P2 E2
 <----------o <---------o

where two events terminate exclusive properties, and no explicitly given

event breaks the holding of P2 between the two events. The axiom derives

an implicit event which initiates P2 and occurs after E1 or is the same as

E1.

6

lequal is defined as

lequal(X, Y) ← X< Y

lequal(X, Y) ← equal(X, Y)

We use the predicate lequal instead of < used in [10] to ensure that equality

of events is not confused with identity (=) used in the completion.

Axiom O17 deals analogously with the case E1 P1 E2 P2

 o--------> o-------->

where two events initiate exclusive properties, and no explicitly given

event breaks the holding of P1 between the two events.

Axiom O18 deals with the case E1 P1 P2 E2

o-----------> <----------o

where one event initiates a property incompatible with a property

terminated by a later event, and no explicitly given event breaks the

holding of P1 between the two events.

Note that EC does not have a predicate that corresponds directly to

happens in SEC. But the intended meaning of initiates(E, P) is that event E

happens and initiates property P. Similarly the intended meaning of

terminates(E, P) is that E happens and terminates P. Also the intended

meaning of time(E, T) is that event E happens at time T. Similarly to SEC, EC

also contains suitable definitions for < on time points. In addition, it may

contain problem-specific facts about the < relation between events.

4 Some problems with EC

Most of the problems with EC arise from the complexity of its vocabulary,

which includes many different predicates which are not always properly

related to one another. For example, none of the following properties can be

shown from EC or its completion:

a) The start of a period is before its end. That is

start(Period, E1) ∧ end(Period, E2) → E1< E2

b) An event that ends/starts a period terminates/initiates the property

that holds for that period. That is

end(after(E1, P), E2) → terminates(E2, P)

start(before(E2, P), E1) → initiates(E1, P)

c) If a property is terminated after it has been initiated then the period of

time for which it holds due to that initiation must have an end, i.e.

holds(after(E1, P)) ∧ terminates(E3, P) ∧ E1< E3 → ∃ E2 end(after(E1, P), E2)

7

Property (c) fails to hold because it is consistent with EC for an event e to

initiate a property p which is then terminated infinitely many times

without there being an earliest termination. This can be eliminated by

insisting that the ordering relation on events be well-ordered, or that the

set of events be finite.

A somewhat less serious problem [13] is the inaccuracy of axioms O3

and O4. Axiom O3, for example, states that

start(after(E, P), E)

even when E does not affect P. This problem does not lead to other, more

serious consequences, and can be avoided by adding extra conditions

holds(after(E, P)) and holds(before(E, P)) to O3 and O4, respectively.

One final problem is that the treatment of incompatible properties, in

axioms O11 and O16-O18, caters for only two incompatible properties.

The fact that two properties p1 and p2 are incompatible, i.e.

incompatible(p1, p2)

can be expressed by an integrity constraint

¬ [holdsAt(p1, T) ∧ holdsAt(p2, T)].

By extending the language to include such integrity constraints explicitly

we can deal with any number of incompatible properties. In NEC given the

constraint

¬ [holdsAt(p1, T) ∧ holdsAt(p2, T) ∧ ... ∧ holdsAt(pn, T)]

and a description of n events

e1 p1
o------------------

e2 p2
o------------------

.

.

. en pn
o------------------

violating the constraint, we have two options. Either we reject one of the

event descriptions, or we restore integrity by deriving an event E that ends

one of the periods before en. The axioms O16-O18 of EC build in the latter

option. Explicit use of integrity constraints has the added advantage of

allowing both alternative ways of dealing with violations of integrity.

5 The relationship between EC and SEC

Perhaps the most prominent difference between the two calculi is that EC is

concerned with properties holding for time periods as well as at time

8

points, whereas SEC is concerned explicitly only with time points. It is not

clear that the EC concern with time periods has any advantages. For this

reason, in our comparison of the two calculi, we will focus on the holdsAt

facts that can be derived in both cases.

One rather trivial difference between the two calculi is that in EC

properties hold neither at their initiation nor at their termination,

whereas in SEC they hold at termination but not at initiation. The

advantage of the SEC convention is that it makes it possible to express the

integrity constraints which state that preconditions of events and

properties terminated by events must hold at the time of the event

occurrences. We will exploit this possibility later in our formulation of

NEC.

Except for the conventions about properties holding at end points, the

two calculi imply equivalent holdsAt facts when the explicitly given event

occurrences are complete. When they are incomplete, SEC derives at least

the same holdsAt facts as EC. In the remainder of this section we express

these claims more precisely. The proofs are omitted for lack of space.

Let Oi, 1<i < 18, be the axioms of EC

KER = {Oi : 1 < i < 15}

DER = {Oi : 16 < i < 18}

Input: a finite set of facts about event happenings and their types, times

and ordering in the vocabulary of EC, i.e. facts of the form

time(E, T), act(E, A), E1< E2.

Input': the same facts as in Input, but in the vocabulary of SEC, i.e. facts

of the form happens(E, T), act(E, A).

Domain: the set of domain dependent axioms defining initiates, terminates

and incompatible.

Domain': same as Domain without any rules for incompatible.

Ineq: a definition of the inequality predicate, <, on time points,

satisfying the usual axioms of transitivity, anti-symmetry, etc.

We assume that the facts in Input about the < relation between events are

compatible with the < relation between time points, i.e. we assume that the

following property is satisfied.

E1< E2 ↔ ∃ T1, T2 [time(E1, T1) ∧ time(E2, T2) ∧ T1< T2]

We assume that the SEC vocabulary does not contain the function symbols

fin and init and the events in both Input and Input' are all named by

constant symbols.

We assume the completion semantics for both EC and SEC. Therefore, in

the rest of this section, we let

EC = Comp(KER ∪ DER ∪ Input ∪ Domain ∪ Ineq)

SEC = Comp(S ∪ Input' ∪ Domain' ∪ Ineq)

By the standard definition of Comp (2), both EC and SEC contain CET.

9

Theorem 1: SEC implies at least the same holdsAt facts as EC, i.e.:

If EC |= holdsAt(p, t)

then SEC |= holdsAt(p, t).

Theorem 2 states that the converse of Theorem 1 holds when the input

contains complete information about events, i.e. when the axioms, DER are

redundant. The redundancy condition can be expressed by:

if EC |= W

then Comp(KER ∪ Input ∪ Domain ∪ Ineq) |= W Ψ

for all W of the form start(period , e) or end(period, e). (Actually, for the

proof of theorem 2 it is sufficient that Ψ holds for W of the form

end(period, e).)

Theorem 2: If Ψ then if SEC |= holdsAt(p, t)

then EC |= holdsAt(p, t)

except for end points, i.e. except for the case

EC |= end(after(e, p), e1) ∧ time(e1, t).

Note that the if-form of S in SEC can be rewritten as

holdsAt(P, T) ← happens(E1, T1) ∧ initiates(E1, P) ∧ T1< T ∧

 ¬ discontinued(E1, P, T)

discontinued(E1, P, T) ← happens(E2, T2) ∧ terminates(E2, P) ∧

T1< T2 ∧ T2< T

Let SEC1 be SEC with S replaced by the two clauses above. Now the if-forms

of both SEC1 and EC are acyclic. Therefore SLDNF is complete as well as

sound for these theories [1]. Therefore, we have the following two

corollaries. Let EC' be the if-form of EC and SEC1' be the if-form of SEC1.

Corollary 1: If EC' |=SLDNF holdsAt(p, t)

then SEC1' |=SLDNF holdsAt(p, t).

Corollary 2: If Ψ and SEC1' |=SLDNF holdsAt(p, t)

 then EC' |=SLDNF holdsAt(p, t)

except for end points, i.e. except for the case

EC |= end(after(e, p), e1) ∧ time(e1, t).

6 Towards a new event calculus (NEC)

In this section we propose the core of a new calculus, NEC, based on SEC.

First, we modify SEC by replacing the binary predicate happens(E, T) in S

with a unary predicate happens(E), and assume (it is easy to write) a

definition of < that applies when either operand is an event name or a time

point. As a result, we can input information about event occurrences

without knowledge of their absolute times. As before, the actual definition

10

of < is immaterial. What matters is that the definition satisfies the usual

properties, such as transitivity and anti-symmetry. We can now define

holdsAt(P, TE) so that properties hold either at time points or at events:

holdsAt(P, TE) ↔ ∃ E1 { happens(E1) ∧ initiates(E1, P) ∧ E1< TE ∧

 ¬ ∃ E2 [happens(E2) ∧ terminates(E2, P) ∧ E1< E2 ∧ E2< TE] } N

The definitions of all other predicates in NEC remain the same as in SEC

and EC. The domain-specific predicates, initiates, terminates and < between

time points, are defined in iff-form. However, the problem-specific

predicates, happens, act, time and < where one of the arguments is an event,

are defined in if-form. The use of if-form for the definition of problem-

specific predicates is necessary, as we will see later, because of the

derivation of implicit event occurrences not contained in the input.

Strictly speaking, we need four different inequality predicates. One

for inequality between time points, one for inequality between events, one

for inequality between a time point and an event, and < defined in terms of

the first three. We should complete only the first and the last.

The remainder of NEC consists of domain-independent integrity

constraints I2 and I2' and domain-dependent ones of the form of I1 and I3.

For any n incompatible properties p1, ... , pn:

¬ [holdsAt(p1, T) ∧ holdsAt(p2, T) ∧ ... ∧ holdsAt(pn, T)] I1

To obtain the functionality of derived events (axioms O16-O18 in EC) we

add the following integrity constraint:

holdsAt(P, E) ← happens(E) ∧ terminates(E, P) I2

We treat preconditions of events in a similar way:

holdsAt(P, E) ← happens(E) ∧ precond(E, P) I2'

The predicate precond is domain-specific, similar to the predicates

initiates and terminates, for example:

precond(E, P) ↔ ∃ X, Y, Z [(act(E, move(X, Y, Z)) ∧ P = clear(X)) ∨ ...]

which states that a precondition of moving block X from Y to Z is that X be

clear. Although we include I2' in NEC, we do not need it for any of the

results presented in the remainder of this paper.

The final type of integrity constraint, I3, imposes maximality of time

periods for particular domain-specific properties. In EC maximality is

assumed to hold for all properties and is built into the calculus. For

example, if two events cause you to be happy, i.e.

e1 happy e2 happy

o------------> o------------->

11

then the two subsequent periods are not allowed to overlap. This is a

consequence of O17, which implies that your first period of happiness

must have ended some time in between the two events.

In NEC we do not build such a general maximality assumption into the

axioms, but allow it to be imposed, when desired for a particular property

p, by means of a domain-specific integrity constraint of the form:

¬ [happens(E) ∧ initiates(E, p) ∧ holdsAt(p, E)] I3

N together with I2, I2', and domain-specific constraints of the form of I1

and I3 constitute the core of NEC. This core can be extended in many

directions, for example to include the treatment of ramifications, the

holding of properties for maximal or non-maximal time intervals and to

deal with concurrency. These are topics of continuing research, and we will

not pursue them further in this paper.

Example: Suppose event e happens and terminates property p, i. e.

happens(e) F

terminates(e, p) F

In SEC (if or iff form) we cannot derive further consequences from this. In

EC we can conclude only holds(before(e, p)). In particular, we cannot

conclude that p holds at any time point before e. In fact, from the iff-form

of EC we can even derive the undesirable conclusion ¬∃ T holdsAt(p, T).

In NEC, however, we can conclude that, for some event occurrence E, p

holds at all time points between E and e, i.e.

∃ E [happens(E) ∧ initiates(E, p) ∧ E< e ∧ ∀ T (E< T< e → holdsAt(p, T))]

This conclusion is derived by using the given facts F with I2 to derive

holdsAt(p, e), then using the only-if direction of N and finally using

transitivity of < and N in the if direction. A similar result is obtained by

[16] using abduction with the if-form of EC.

7 NEC versus SEC and EC

In this section we show that NEC implies consequences analogous to axioms

O16-O18 of EC. Recall that the intention of O16-O18 is twofold: first, to

ensure that periods are maximal, and second, to ensure that periods of

incompatible properties are disjoint (i.e. do not overlap). The analogous

theorems are formulated in the vocabulary of NEC, and contain existential

quantifiers instead of the Skolem functions init and fin. We use the

following correspondence between the vocabularies of EC and NEC:

 EC NEC

--

initiates(E, P) initiates(E, P) ∧ happens(E)

terminates(E, P) terminates(E, P) ∧ happens(E)

incompatible(P1, P2) ¬∃ T (holdsAt(P1, T) ∧ holdsAt(P2, T))

12

E1< E2 E1< E2

broken(E1, P, E2) not needed

exclusive(P1, P2) ¬∃ T [holdsAt(P1, T) ∧ holdsAt(P2, T)]

∨ [P1=P2 ∧ ¬∃E(happens(E) ∧ initiates(E, P1)

 ∧ holdsAt(P1, E)]

(i.e. either P1 and P2 are incompatible or

they are the same and maximal)

Note that in the completion of EC, which is our semantics for EC,

holds(after(E, P)) ↔ initiates(E, P)

holds(before(E, P)) ↔ terminates(E, P)

Theorem 3 below, which shows that NEC implies the analogue of O16, has

two parts. Part (a) deals with incompatible properties and (b) deals with a

single property which is maximal. Let Φ1 and Φ2 be as follows:

 ∃ E3 [happens(E3) ∧ initiates(E3, P2) ∧ E3< E2 ∧ ¬ E3< E1] ←

 happens(E1) ∧ terminates(E1, P1) ∧ happens(E2) ∧

 terminates(E2, P2) ∧ E1< E2 ∧ ¬∃ T (holdsAt(P1, T) ∧ holdsAt(P2, T)) Φ1

∃ E3 [happens(E3) ∧ initiates(E3, P) ∧ E3< E2 ∧ ¬ E3< E1] ←

 happens(E1) ∧ terminates(E1, P) ∧ happens(E2) ∧

 terminates(E2, P) ∧ E1< E2 ∧

 ¬∃ E (happens(E) ∧ initiates(E, P) ∧ holdsAt(P, E)) Φ2

Theorem 3: a) NEC |= Φ1

b) NEC |= Φ2

Proof:

a) We assume the conditions of Φ1 and show the conclusion. The

conditions of Φ1 and I2 imply

holdsAt(P2, E2)

This and the only-if half of N imply

∃ E3 [happens(E3) ∧ initiates(E3, P2) ∧ E3< E2 ∧

 ¬ ∃E4 (happens(E4) ∧ terminates(E4, P2) ∧ E3< E4 ∧ E4< E2)] (1)

Moreover, the conditions of Φ1 also imply

holdsAt(P1, E1) and so ¬ holdsAt(P2, E1).

From this latter conclusion and the contrapositive of the if-half of N we

conclude

∀ E3 { happens(E3) ∧ initiates(E3, P2) →

 ¬ [E3< E1 ∧ ¬ ∃ E* (happens(E*) ∧ terminates(E*, P2) ∧

 E3< E* ∧ E*< E1)] } (2)

13

(1) and (2) imply

∃ E3 [happens(E3) ∧ initiates(E3, P2) ∧ E3< E2 ∧

 ¬ ∃ E4 (happens(E4) ∧ terminates(E4, P2) ∧ E3< E4 ∧ E4< E2) ∧

 ¬ (E3< E1 ∧ ¬∃ E* (happens(E*) ∧ terminates(E*, P2) ∧

 E3< E* ∧ E*< E1))].

Using transitivity of <, the equivalence

¬(A ∧ ¬B) ≡ ¬A ∨ B

and the elimination of a false disjunct we show the conclusion of Φ1.

If we assume a total ordering on events, we can replace the negative

conclusion

¬ E3< E1 in Φ1 by the positive conclusion

E1< E3 ∨ E1 || E3

where E1 || E3 means that E1 happens at the same time as E3. This

assumption of total ordering is built into axioms O16-O18 of EC.

b) The proof of part (b) is similar to that of part (a).

Theorem 4 shows that NEC implies the analogue of O17. Part (a) deals with

incompatible properties and part (b) deals with a single maximal property.

Let Φ3 and Φ4 be:

∃ E3 [happens(E3) ∧ terminates(E3, P1) ∧ E1< E3 ∧ ¬ E2< E3] ←

 happens(E1) ∧ initiates(E1, P1) ∧

 happens(E2) ∧ initiates(E2, P2) ∧ E1< E2 ∧

 ¬∃ T (holdsAt(P1, T) ∧ holdsAt(P2, T)) Φ3

∃ E3 [happens(E3) ∧ terminates(E3, P) ∧ E1< E3 ∧ ¬ E2< E3] ←

 happens(E1) ∧ initiates(E1, P) ∧

 happens(E2) ∧ initiates(E2, P) ∧ E1< E2 ∧

 ¬ ∃ E (happens(E) ∧ initiates(E, P) ∧ holdsAt(P, E)) Φ4

Theorem 4: Assume that the input facts concerning happens and the

definition of < satisfy the property that

(∃T E< T) ← happens(E),

and that there are a finite number of event occurrences. Then

a) NEC |= Φ3

b) NEC |= Φ4

The proofs of theorems 4 and 5 are omitted for lack of space.

Theorem 5 shows that NEC implies the analogue of O18. Let Φ5 be:

14

∃ E3, E4 [happens(E3) ∧ terminates(E3, P1) ∧ happens(E4) ∧

 initiates(E4, P2) ∧ E1< E3 ∧ E4< E2 ∧ ¬ E4< E3] ←

happens(E1) ∧ initiates(E1, P1) ∧

happens(E2) ∧ terminates(E2, P2) ∧ E1< E2 ∧

¬∃ T (holdsAt(P1, T) ∧ holdsAt(P2, T)) Φ 5

Theorem 5: NEC |= Φ5.

Theorems 3-5 and the discussion in section 6 shows that NEC extends SEC

and EC. To exploit this extension, however, requires the use of an

appropriate proof procedure for logic programs in iff-form augmented with

integrity constraints. One such proof procedure, with appropriate

soundness and completeness results, has been developed by Fung [6].

As we remarked earlier in section 6, because NEC can be used to

derive implied events, the predicates happens, act, time, and < where one of

the arguments is an event occurrence cannot be completed. As a

consequence, whereas in SEC and EC we might derive unconditional

conclusions of the form

holdsAt(p, t)

in NEC, we derive conditional conclusions of the form

holdsAt(p, t) ← ¬ ∃ E2 [happens(E2) ∧ terminates(E2, p) ∧ e< E2 ∧ E2< t].

The proof procedure in [6] allows unconditional holdsAt conclusions to be

derived by "retrospectively" completing the input. The proof procedure of

Denecker and De Schreye [3] seems to give similar results.

8 Conclusions

We believe that the theorems presented in this paper help to explain why

simplified forms of the event calculus have gradually replaced the original

event calculus in practice. We believe that they also demonstrate the more

general potential computational advantages of the iff-form of logic

programs augmented with integrity constraints.

Acknowledgements
This research was supported by Fujitsu Laboratories.

References
[1] Cavedon, L., "Acyclic programs and the completeness of SLDNF-

resolution", Theoretical computer science 86(1), 1991, 81-92.

[2] Clark K.L., "Negation as failure", in "Logic and data bases", Gallaire

H. and Minker J. [eds.] , Plenum Press, 1978, 292-322.

[3] Denecker M. and De Schreye D., "SLDNFA: an abductive procedure for

normal abductive programs", Proceedings of International Conference

and Symposium on Logic Programming , 1992, 686-700.

15

[4] Denecker M., Missiaen, L., Bruynooghe M., "Temporal reasoning with

abductive event calculus", Proceedings of ECAI, 1992.

[5] Eshghi K., "Abductive planning with event calculus", Proceedings of

International Conference on Logic Programming,, MIT Press, 1988.

[6] Fung T.H., "An abductive proof procedure based on Clark

completion", Proceedings of Logic Programming Workshop, GLP, 1994,

Zurich.

[7] Kowalski R., "Database Updates in the Event Calculus", Journal of

Logic Programming,, Vol. 12, No. 162, 1992, pp. 121-146.

[8] Kowalski R., "A dual form of logic programming", Lecture Notes,

Workshop in Honour of Jack Minker, University of Maryland, 1992.

[9] Kowalski, R. and Sadri, F., "The Situation Calculus and Event

Calculus Compared", Proceedings of International Logic Programming

Symposium, MIT Press, 1994.

[10] Kowalski, R. and Sergot, M., "A Logic-based Calculus of Events", New

Generation Computing, Vol. 4, No. 1, February 1986, pp. 67-95.

[11] Kowalski, R., Toni, F. and Wetzel, G., "Towards a declarative and

efficient glass-box CLP," Proceedings of Logic Programming

Workshop, GLP, 1994, Zurich.

[12] Missiaen L., "Localized abductive planning with the event calculus",

PhD Thesis, Department of Computer Science, K. U. Leuven, 1991.

[13] Pinto J. and Reiter R., "Temporal reasoning in logic programming: a

case for the situation calculus", Proceedings of International

Conference on Logic Programming,, MIT Press, 1993, 203-221.

[14] Provetti A., "Hypothetical reasoning about actions: from situation

calculus to event calculus", Computational Intelligence, Vol. 12, No.

2, 1995.

[15] Sadri F., "Three recent approaches to temporal reasoning", in

"Temporal logics and their applications", Galton A. [ed.], Academic

Press, 1987, 121-168.

[16] Shanahan M.P., "Prediction is deduction but explanation is

abduction", Proceedings of International Joint Conference on

Artificial Intelligence, 1989.

[17] Sripada, S., Rosser, B., Bedford, J., Kowalski, R., “Temporal Database

Technology for Air Traffic Flow Management”, Proceedings of First

International Conference on Applications of Databases, ADB-94,

Lecture Notes in Computer Science, 819, Springer-Verlag, 1994.

16

View publication statsView publication stats

https://www.researchgate.net/publication/2519366

