
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221135726

The Situation Calculus and Event Calculus Compared.

Conference Paper · January 1994

Source: DBLP

CITATIONS

49
READS

194

2 authors:

Some of the authors of this publication are also working on these related projects:

CLOUT (Computational Logic for Use in Teaching) View project

SOCS - Societies of Computees View project

Robert Kowalski

Imperial College London

154 PUBLICATIONS   12,446 CITATIONS   

SEE PROFILE

Fariba Sadri

Imperial College London

114 PUBLICATIONS   2,761 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Robert Kowalski on 14 August 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221135726_The_Situation_Calculus_and_Event_Calculus_Compared?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221135726_The_Situation_Calculus_and_Event_Calculus_Compared?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CLOUT-Computational-Logic-for-Use-in-Teaching-2?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SOCS-Societies-of-Computees?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Kowalski5?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Kowalski5?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Imperial_College_London?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Kowalski5?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fariba_Sadri?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fariba_Sadri?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Imperial_College_London?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fariba_Sadri?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Kowalski5?enrichId=rgreq-2ef1a562b75cd9f359c86d0fa8e9b8a9-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzNTcyNjtBUzoyNjIzMjkxMDMyODYyNzJAMTQzOTU1NTU0MDc2Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


1

The Situation Calculus and
Event Calculus Compared

Robert Kowalski and Fariba Sadri ILPS 94
Department of Computing, Imperial College,
180 Queen's Gate, London SW7 2BZ
rak@doc.ic.ac.uk      fs@doc.ic.ac.uk

Abstract

The situation calculus and event calculus both formalise common sense

reasoning about the initiation and persistence of properties and

relationships over the course of time. The main difference is that, whereas

the situation calculus deals with transitions between global situations, the

original event calculus was designed to deal with the effect of actions on

local states of affairs. In this paper, to facilitate comparison, we deal with

a special case of the event calculus where, like the situation calculus,

actions bring about transitions between global situations.

Another difference is that, whereas the event calculus was intended

primarily for reasoning about actual events (narratives), the situation

calculus was designed primarily for reasoning about hypothetical actions

and situations. In this paper we consider variants of the two calculi which

combine the use of deduction to reason about narratives with abduction to

reason about hypothetical events.

With these and a number of other minor modifications to the original

situation and event calculi, we show that the event calculus logically

implies the situation calculus and that the situation calculus augmented

with induction logically implies the event calculus. To facilitate the proof,

we formulate both calculi as logic programs and use the technique of

proving properties of logic programs by reasoning with their completions

augmented with induction.

We also explore extensions to the two calculi to deal with ramifications.

1   Introduction

It has long been known that the situation calculus ([20], [21]) can be

formulated as a logic program (e.g. [14]). An obvious advantage of such a

formulation is that it facilitates implementation. Another is that through

the use of negation as failure it  provides both an implementation and a

variety of sound and useful semantics for default reasoning. In particular,

it has been shown that the interpretation of negation as negation as failure

solves the Yale shooting problem ([10], [11], [2]).

In this paper we illustrate another advantage of the logic programming

formulation, namely that it  allows well established techniques for proving

properties of logic programs to be applied both to the situation calculus

and to the event calculus. One of the most powerful of such techniques and
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the one we shall use in this paper is to regard the meaning of a logic

program as represented by its iff-completion augmented by axioms of

induction. This technique was developed by Clark and Tarnlund [5] who

observed that the use of this technique for logic programs is analogous to

the  use of Peano axioms for reasoning about arithmetic. A similar

formulation of the situation calculus has recently been developed by Reiter

[25].

In contrast to the situation calculus, the event calculus [19] was originally

formulated as a logic program, although it was derived from a formulation

in standard first-order logic. The original version of the event calculus was

very general and allowed both reasoning with maximal periods as well as

forward and backward persistence. This version of the event calculus has

some similarities [26] with Allen's interval calculus [1].

Later, simplified versions of the event calculus focused on the special case

which allows only  forward persistence ([9], [27], [17]). Although the

original event calculus was intended only for narratives, Eshghi showed

that the simplified event calculus could be used for planning by allowing

the occurrence of events and the temporal relationships between them to be

"abducible". Shanahan showed that abduction could also be used for

explanation. Kowalski, on the other hand, discussed an implementation of

the simplified event calculus, and informally compared it with the

situation calculus. More recently, Pinto and Reiter [24] criticised this

comparison and argued that the event calculus is not sufficiently precise to

allow a formal comparison with the situation calculus.

In this paper we partly address the Pinto-Reiter criticism by presenting a

formal comparison of the situation calculus and the simplified event

calculus. For this purpose we formulate the two calculi as logic programs

sharing a common vocabulary and common axioms, except for a core axiom

in each, which defines what sentences hold in a given situation. In both

cases, event descriptions are given explicitly for narratives and are

abduced for hypothetical reasoning.

In the following sections we present the logic programming formulations of

both calculi, present their "semantics" in terms of iff-completions and

axioms of induction, and then show that the situation calculus with

induction implies the event calculus, whereas the event calculus without

induction implies the situation calculus. We also show how actual and

hypothetical events can be combined and how ramifications can be dealt

with in both calculi.

2   The situation calculus

The following two clauses constitute the core of our formulation of the

situation calculus as a logic program. Together they define what sentences

P hold in the situation result(A, S)  that results from performing an action

of type A in situation S.

holds(P, result(A, S)) ← happens(A, S) ∧ initiates(A, S, P) S1
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holds(P, result(A, S)) ← happens(A, S) ∧ holds(P, S) ∧

                                      ¬ terminates(A, S, P) S2

Terms starting in the upper case are variables. Unless otherwise indicated,

all variables are assumed to be universally quantified in front of the

formula in which they occur.

The first clause defines what sentences hold because they are initiated by

an action. The second clause, called the frame axiom, defines what

sentences hold because they held before the action and were not terminated

by it.

The predicate holds(P, S) can be understood as a metapredicate which

expresses that the sentence named P holds explicitly (i.e. as an axiom) in

the situation named S. A situation can be thought of either as a time point

or as the set of all sentences, namely the theory,  that hold at a given  time

point. Under this latter interpretation, holds(P, S) is a special case of the

predicate demo(S, P) used to represent the proof predicate in

metaprogramming (e.g. [14]).

A definition of demo for the simple case of propositional Horn sentences P

and the relationship of demo to holds can be given simply by three clauses:

demo(S, P) ←  holds(P, S) D1

demo(S, P) ←  demo(S, P← Q) ∧  demo(S, Q) D2

demo(S, P∧Q) ←  demo(S, P) ∧  demo(S, Q) D3

Of course, the definition of demo can be extended to handle more general

forms of object level sentences. Of special interest are the additional

clauses:

demo(S, ¬P) ←   ¬ demo(S, P) D4

demo(S, P) ←  demo(S, ∀  X P) D5

which we will use later. Clause D5 can be regarded as relating the so-called

ground and non-ground representations of variables as discussed in [16].

This interpretation of the relationship between holds and demo appears to

improve upon the conventional formulations of the situation calculus. The

most obvious improvement is that it allows actions to initiate and terminate

arbitrary sentences. This enables the treatment of such actions  as

updating a deductive database, or as passing or repealing legislation. The

conventional formulations are normally restricted to actions that update

atomic sentences, as in "closed world" relational databases, or that update

atomic sentences or their negations in "open world" domains. We will show

later in the paper that combining actions that initiate or terminate

arbitrary sentences with the definition of demo  in terms of holds  provides

a simple treatment of the  ramification problem.

The definitions of the predicates initiates and terminates are domain-
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dependant. For example, the fact that an act of donor X giving object Y to

recipient Z initiates the property of Z possessing Y and terminates the

property of X possessing Y can be defined by the two clauses:

initiates(give(X, Y, Z), S, possess(Z, Y))

terminates(give(X, Y, Z), S, possess(X, Y))

Similarly, in the Yale shooting problem, the fact that if the gun is loaded

then an act of shooting initiates the death of the turkey and terminates its

life can be represented by the conditional clauses:

initiates(shoot, S, dead) ←  demo(S, loaded)

terminates(shoot, S, alive) ←  demo(S, loaded)

(The use of the conditions demo(S, loaded) instead of holds(loaded, S)

facilitates the treatment of ramifications.)

A possibly more familiar formulation of the situation calculus uses a

single predicate abnormal ([3], [28]) instead of the two predicates initiates

and terminates. The frame axiom in this formulation is often given in the

form:

[holds(P, S) ↔ holds(P, result(A, S))]  ←  ¬abnormal(A, S, P)

In our formulation we can derive an analogous formula

[ holds(P, S) ↔ holds(P, result(A, S)) ]  ←

happens(A, S) ∧ ¬initiates(A, S, P)  ∧  ¬terminates(A, S, P)

by using the iff-completion of clauses S1 and S2, which is exactly the

semantics we use for our formulation of the situation calculus. This

semantics is discussed in section 3.

We use the predicates initiates and terminates instead of abnormal because

they facilitate the comparison with the event calculus. Moreover, it can be

argued that they provide a semantically more meaningful formulation of the

situation calculus itself, distinguishing between abnormalities due to

initiation of sentences and those due to termination.

The inclusion of the condition happens(A, S) in S1 and S2 is a more

significant deviation from  standard formulations. It is this condition

which allows the same axioms, S1 and S2, to be used both for narratives and

for hypothetical reasoning. For narratives it suffices simply to add

assertions that certain events have actually happened. For hypothetical

reasoning it suffices to prove that goals can be achieved or observations can

be explained provided that appropriate, relevant events can consistently be

assumed to happen. Such assumptions can be determined by means of

abduction.

Although our formulation of the situation calculus can be used for
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planning and for many other kinds of hypothetical reasoning, there is one

particular kind, namely counterfactual reasoning, which needs further

investigation. Counterfactual reasoning in this case has the form:

"Supposing that an event e1 had happened resulting in outcome p, what

would have been the outcome if event e2 had happened instead?"

Some formulations of the situation calculus can reason with such

counterfactuals relatively easily, at the expense of not being able to deal

with narratives. We conjecture that our formulation could perform this

kind of counterfactual reasoning either by employing an appropriate form

of abduction or by using metalevel reasoning. Further discussion of this

issue is beyond the scope of this paper.

Before accepting an actual or hypothetical event, it is necessary to verify

that all its preconditions can hold. This can be done by verifying that the

following integrity constraint is maintained:

demo(S, P) ← happens(A, S) ∧ precondition(A, S, P) I1

In the case of narratives the constraint should be verified whenever an

update asserts that an event has happened. In the case of hypothetical

reasoning it should be checked whenever an event is assumed to happen.

In general, an integrity constraint can be any first-order formula. There

are many different views of integrity satisfaction and different techniques

for integrity verification. For the main purpose of this paper, namely the

theorem of section 5, these differences are not significant, and we shall not

discuss them further.

As with the domain-specific predicates initiates and terminates, the

definition of the predicate precondition is domain dependant, for example:

precondition(give(X, Y, Z), S, possess(X, Y))

In the standard formulations of the situation calculus, either the

preconditions of actions are ignored or they are catered for by including

extra conditions in the analogues of clauses S1  and S2. In [18] we showed

how a theory with integrity constraints can be transformed into an

equivalent theory without constraints by including extra conditions in

some of the rules. The proof of equivalence was based on the answer set

semantics of Gelfond and Lifschitz [12]. Whether this equivalence can also

be demonstrated for the completion semantics, which we use in this paper,

has still to be investigated.

In addition to I1, other integrity constraints are needed, including:

A1 = A2 ←   happens(A1, S) ∧ happens( A2, S) I2

I2 is necessary to prevent different actions from happening in the same

situation. Although the original formulation of the event calculus allows



6

concurrent events, we will also apply I2 to the special case of the event

calculus which we investigate later in this paper. This will facilitate our

comparison of the situation calculus with the event calculus.

Before we present the semantics of the situation calculus logic program in

the next section, we need to discuss the representation of the initial state,

s0. There are at least two possibilities. We can define the properties of the

initial state by means of a clause

holds(P, s0) ←  initially(P)

together with appropriate clauses defining the predicate initially.

Alternatively, we may assume, without loss of generality, that nothing

holds in the initial state s0 and that all properties of the initial state are

actually properties of the successor of the initial state,

result(creation, s0), where creation is defined by clauses of the form

initiates(creation, s0, P).  For our purpose, the second alternative is more

convenient than the first.

Because a creation  event can initiate any property and has no

preconditions, we need an integrity constraint

S = s0 ←  happens(creation, S) I3

to prevent abducing the occurrence of creation in any situation other than

the initial situation. Alternatively, we could simply formulate the relevant

initiates facts so that creation initiates properties only in the initial

situation.

3   The semantics of the situation calculus program

Many different semantics have been defined for proving properties of logic

programs. To compare the situation and event calculi, it is convenient to

use the completion semantics [4] augmented with axioms of induction [5].

The completion of axioms S1 and S2  can be represented in the form

holds(P, S2) ↔

∃A1,S1 [ [S2= result(A1, S1) ∧ happens(A1, S1) ∧ initiates(A1, S1, P) ] ∨

              [S2= result(A1, S1) ∧ happens(A1, S1) ∧ holds(P, S1) ∧

                ¬ terminates(A1, S1, P)] ] SC

together with the Clark equality theory (CET), which consists of the unique

name axioms including

[A1=A2 ∧ S1=S2]  ← result(A1, S1) = result(A2, S2) CET1

¬ ∃ S [s0 = result(A, S)] CET2

and the usual axioms of equality.
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In fact, the proof of the theorem in section 5  requires no further unique

names axioms  additional to CET2.

Similarly, we need to complete the definitions of the initiates, terminates,

precondition and demo predicates as well as any other non-abducible

predicates.

Alternatively, we may  "selectively" complete only certain instances of

predicates and treat the remaining instances as abducible. This is

particularly useful for combining actual and hypothetical events. For

example, a theory can contain a completed clause

happens(X, s0) ↔ X = load

to record the actual occurrence of an event, while leaving other instances of

the predicate abducible.

We will use the technique of selective completion later in sections 6 and 7.

Another approach [7], which achieves similar results is to treat all

instances of incompletely defined predicates as abducible and to represent

information about incomplete predicates by means of integrity constraints.

In all of these approaches, the fact that a predicate or an instance of a

predicate is abducible is represented by excluding it from the completion

and thereby leaving it undefined. Console et al [6] have shown that, with

this representation,  abduction using the if-form of a logic program

becomes deduction using the iff-completion.

One of the limitations of most formulations of the situation calculus is that

situations need to be named explicitly in terms of a sequence of actions

following the initial state. As a result, it is virtually impossible to

represent narratives with incomplete information. This limitation can be

overcome by relating situations to one another by means of an ordering

relation. Such ordering relations have been defined for the situation

calculus by Shanahan [28] and Reiter [25].

S < result(A, S) ← happens(A, S)

S < result(A1, S1) ←  happens(A1, S1) ∧ S < S1

The "semantics" of this program  is given by its completion:

S1< S2 ↔ ∃ A,S  [ S2=result(A, S) ∧ happens(A, S) ∧ S1 ≤  S ] LESS

where   S1 ≤  S   abbreviates   S1=S ∨ S1< S.

Here the condition happens(A, S) ensures that the only situations

considered are those that result from actions that actually happen in the

case of narratives or that can happen in the case of hypothetical actions.

To ensure that situations have the intended form of a finite sequence of
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actions following the initial state, we need the further integrity constraint

s0 ≤ S  ←  happens( A, S) I4

Here (and elsewhere) the expression  s0 ≤ S functions as a type expression,

stating that S is of the type "situation".

Induction can now be expressed in the form

∀S  [Φ(S) ← s0 ≤ S]  ←  Φ(s0) ∧ ∀ A,S [Φ(result(A, S)) ← Φ( S) ∧ s0 ≤ S]  IND

Φ is either a metavariable standing for any first-order formula (as in Peano

arithmetic) or a universally quantified second-order variable (as in

complete axiomatisations of arithmetic).  In practice, the metavariable

version is sufficient for our purposes.

Similarly to ([24], [25]), given LESS, CET2 and IND we can show the

following properties of the predicate < .  We need most of these in the proof

of the main theorem in section 5.

a) ¬ ∃ S  [S< s0]

b) ∀S1,S2,S3 [S1< S3 ← S1< S2 ∧   S2< S3]   

c) ∀S1,S2 [¬S2 ≤  S1 ← S1< S2]

d) ∀S,A ¬ ∃ S1 [S< S1 ∧  S1< result(A,S)]

e) ∀S  ¬S< S

4   The simplified event calculus

The original version of the event calculus [19] allowed concurrent and

partially ordered events as well as the persistence of properties both

backwards and forwards over time. It also catered for properties holding

both during time periods and at time points.

To compare the event calculus with the situation calculus we shall consider

a special case of the former that is analogous to the restrictions of the

latter. We can obtain this special case by pre-processing away the time

periods and removing any consideration of backward persistence of

properties. Such a special case was introduced in ([15], [17], [27]).  This

version of the event calculus has at its core a single axiom:

holds(P, T2) ← happens(E1, T1) ∧ initiates(E1, P) ∧   T1< T2 ∧

                 ¬ ∃  E*,T*[happens(E*, T*) ∧ terminates(E*,  P) ∧ T1< T*∧ T*< T2]

which expresses that a property holds at a time point if it was initiated by

an event which happened at an earlier time point and no intervening event

happened to terminate the property.

The condition T1< T2  has the effect of ensuring that properties hold only

after their initiating event happens. The inequality T*< T2  ensures that

properties , including preconditions of events, hold at the time they are
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terminated by some event. The inequality T1< T*, instead of the stronger

inequality T1 ≤ T*, builds in the assumptions that two different events do

not occur at the same time (expressed by I2), and that no event initiates

and terminates the same property.

We further restrict our version of the event calculus to the special case

where the < relation on time points is identified with the < relation on

situations. In this case, event tokens are unnecessary because individual

events can be identified by their action or event types and the situations in

which they occur. We may, therefore, instantiate the event calculus axiom

by means of a particular representation for events, representing  event

tokens E  by pairs (A, S) consisting of an action or event type A and a

situation S.  This reformulates the event calculus predicates in the

situation calculus vocabulary, replacing

happens(E,T)           by                            happens(A, S, S)

                               which simplifies to   happens(A, S)

initiates(E, P)           by                            initiates(A, S, P)

terminates(E, P)       by                            terminates(A, S, P)

The resulting completion of the event calculus axiom has the iff-form:

holds(P, S2)  ↔ 

∃A1,S1 { happens(A1, S1) ∧ initiates(A1, S1, P) ∧ S1< S2 ∧

        ¬ ∃A*,S* [ happens(A*, S*) ∧  terminates(A*, S*, P) ∧  S1< S* ∧ S*< S2 ] }

EC

Like our version of the situation calculus, this formulation of the

simplified event calculus can be used either for narratives by letting

happens  assertions be given as input, or for hypothetical reasoning by

letting them be generated by abduction. In both cases, integrity of the

happening  of events can be checked by verifying that such assertions

satisfy the integrity constraints I1-I4.

Our formulations of the situation calculus and of the simplified event

calculus differ only in the core axioms SC and EC. The remaining axioms,

IND, LESS, CET, D1-D5 and constraints I1-I4 are common to both calculi.

Although the axiom EC itself is noncommittal with respect to the notion of

time (which could be continuous or discrete), the axiom LESS identifies

time with the discrete situations of the situation calculus.

5   The relationship between the situation and event 
    calculi

The relationship between our formulations of the situation and event

calculi can now be stated as follows.

Theorem: i) COMM, EC |= SC

ii) COMM, SC, IND |= EC
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where SC and  EC are the iff-forms of the situation calculus and event

calculus core axioms respectively, IND is the axiom schema of induction

and COMM consists of I2, I4, LESS and the properties (a)-(d)  common to the

two calculi.

Proof:

i)     Given COMM, EC is equivalent to

holds(P, S2)  ↔  (event1)  ∨  (event2)

where (event1) has the form

 ∃ A1,S1,A,S

{ happens(A, S) ∧ happens(A1, S1) ∧ S2=result(A, S) ∧

initiates(A1, S1, P) ∧  S1=S  ∧

¬ ∃ A*,S* [happens(A*, S*) ∧ terminates(A*, S*, P) ∧ S1< S* ∧ S*< S2] }

and (event2) has the form

∃ A1,S1,A,S

{ happens(A, S) ∧ happens(A1, S1) ∧ S2=result(A, S) ∧

initiates(A1, S1, P) ∧ S1< S ∧

¬ ∃ A*,S* [happens(A*, S*) ∧ terminates(A*, S*, P) ∧ S1< S* ∧ S*< S2] }

This equivalence can be shown by replacing the condition S1< S2 in EC by

its definition in LESS and distributing disjunction over conjunction.

On the other hand, SC is equivalent to

holds(P, S2 )  ↔  ( sit1)   ∨   ( sit2)

where (sit1) has the form

∃ A,S [S2 = result(A, S) ∧  happens(A, S) ∧ initiates(A, S, P)]

and  ( sit2)  has the form

∃ A,S [S2 = result(A, S) ∧ happens(A, S) ∧ holds(P, S) ∧  ¬ terminates(A, S, P)]

It is not difficult to show that (event1) and  (sit1)  are equivalent in the

theory COMM  using lemma (d), stating that there is no situation S*

between S and result(A, S),  and the assumption I2, that only one event

occurs in any situation. Also (event2) is equivalent to

∃ A1,S1,A,S

{ happens(A, S) ∧ happens(A1, S1) ∧ S2=result(A, S) ∧

initiates(A1, S1, P) ∧   S1< S  ∧  ¬ terminates(A, S, P) ∧

¬∃A*,S* [happens(A*, S*) ∧ terminates(A*, S*, P) ∧ S1< S* ∧ S*< S] }
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