
~ LnKTAZI£U 9~ ~Ed~

Robert K~als~i
Department o f Cclpuing

Imperial College
180 Queen's Oate

London SW7 2BZ

Feigenbaum C4], commenting on the Fifth Gerieration
Project, has said that logic is not important,
but knowledge is. I agree that knowledge is more
important than logic. But logic is important too.
Knowledge-based systems need both knowledge and
formalism. Although knowledge is more important
than formalism, formalism is important because the
use of a poor formalism can interfere with the
representation of knowledge and can restrict the
uses to which that knowledge can be put. I
believe that logic is the least restrictive and
most appropriate formalism for knowledge-based
systems.

Knowledge-based systems combine both complex
knowledge and sophisticated formalisms. I believe
that this combination of knowledge and formalism
accounts for some of the difficulty practicioners
have had in explaining what knowledge-based
systems are. Problems arise because we confuse
knowledge with formalism. Many characterizations
of expert systems for example concentrate simply
on formalism, on rule-based languages for example
and say very little about what makes such
formalisms particularly appropriate for expressing
and reasoning with knowledge.

Logic is strong on formalism but weak on concepts.
It contains no knowledge, and is all form and no
content. Indeed the significance of the model
theoretic semantics of logic is precisely that:
Model theory defines as valid precisely those
sentences which are true in any interpretation.
As a consequence, logic tells us nothing about the
actual world itself.

To use logic to represent knowledge we have to
identify a useful vocabulary of symbols to
represent concepts. We have to f o r m u l a t e
appropriate sentences, with the aid of that
vocabulary, to represent the knowledge itself.
Logic can help us to test an initial choice of
vocabulary and sentences, by helping us to derive
logical consequences and identify the assumptions

which participate in t h e derivation of those
consequences. It provides us with no help,
however, in identifying the right concepts and
knowledge in the first place.

A typical AI knowledge representation scheme, such
as semantic networks or frames, combines concepts
and formalism at the same time. It provides a
built-in framework of ready-made concepts to help
with the initial representation of knowledge. But
it also provides a formalism to go along with the
concepts. In the same way that a computer
salesman might try to convince us that to run a
particular piece of software we need to buy the
appropriate hardware, a LISP machine for example,
the developer of an AI system typically tries to
convince us that to use a particular collection of
concepts we need to buy an associated formalism.
My thesis is that, in the same we can separate
software from the hardware on which it is
implemented, we can also separate concepts from
formalisms. The same concepts can be implemented
in other formalisms, including the formalism of
logic.

Semantle Wetworks

Semantic networks, for example, combine the
concepts of events and hierarchies with a
graphical formalism in which nodes represent
individuals and arcs represent binary
relationships. The same concepts, however, can be
represented in other formalisms. Of particular
importance, in my opinion, is the prominence given
in semantic networks to the notion of event. The
event calculus, whleh my colleague Marek Sergot
and I [11] have developed, borrows concepts about
events from semantic networks and implements them
within a logic programming framework. I n s t e a d of
representing the semantics of a sentence

An e a r l i e r v e r s i o n o f t h i s paper was p r e s e n t e d a t
The Workshop on Knowledge Base Management Systems,
he ld i n Chania, C re t e , June 1985, t o be pub l i shed
by 3pringer Ver lag .

"John gives the book to Mary"

by means of a network

John

Gives
E

Book

Mary

we represent the same "knowledge" either by means
of binary relationships

Actor(E John)
Act(E Gives)
Object(E book)
Recipient(E Mary)

or by means of a single relationship

Event(E John gives book Mary).

The contribution of semantic networks here has
been the identification of events as a concept for
building knowledge representations. Of some
importance also is its identification of networks
as a convenient user-friendly notation. (We shall
discuss the relationship between formalism and
notation later).

Semantic networks also focus attention on the
concept of hierarchy. The concept of hierarchy,
however, can be abstracted from the graphical
notation and can be represented in other
formalisms. For example, the hierarchy fragment

• hing

concrete-object ~ b abstract-object

Isa / ~Isa

animate-object ~ b inanimate-object

vertebrai~a / ~ I-~ver tebrate

can be represented in logic either by means of
binary relationships or by means of general rules:

Isa(vertebrate anlmate-object)
Isa(invertebrate inanimate-object)
Isa(animate-obJect concrete-object)
Isa(concrete-obJect thing)
etc.

or

Isa(x animate-object) if Isa(x vertebrate)
Isa(x animate-object) if Isa(x invertebrate)
Isa(x concrete-object) if Isa(x animate-object)
Isa(x thing) if Isa(x concrete-object)

Notice that An the first representation
transitivity of "Isa" needs to be expressed by a
general rule.

Isa(x y) if Isa(x z) and Isa(z y),

whereas in the second representation it comes for
free. In both cases the inheritance of
"mortality" by anything which is classified as an
animate-object is represented by the rule

Mortal(x) if Isa(x animate-object)

Entity - relatlonshlps

Object-oriented programming, abstract data types,
and the entity-relationship database model, like
semantic networks, promote the concept of object
as a way of organislng knowledge. Whereas object-
oriented programming and abstract datatypes
single-mindedly force all knowledge to be stored
with and accessed through objects, the entitly-
relationship model allows entities to enter into
relationships with other entities. Although the
entlty-relationshlp model may seem to conflict
with the relational model, it now seems to be the
consensus in the database community that the two
models deal with different levels of knowledge
representation and are not in conflict. Relations
in the relational model can be used at a lower
level as a formalism to implement the concepts of
both properties and relationships in the higher
level entity-relationship model. For example, the
entity John with the properties of being 24 years
old, male and born in the U.K. and with the
relationship of being married to the entity Mary
can all be represented as relationships, which can
in turn be expressed in the formalism of logic:

Age(John 24)
Birth-place(John U.K.)
Sex(John Male)
Married(John Mary)

(Note that object-oriented programming, in
contrast with the entity-relationship model, would
force the "married" relationship either to be
duplicated for both John and Mary or to be made
into a separate entity with husband and wife
properties).

Thus the entlty-relationship model and the allied
object-orlented programming and abstract data type
models can be regarded as contributing primarily
to the level of concepts, whereas the relational
model and formal loglc operate primarily at the
lower level of formalism.

Frames

Frames are another example. Besides the concepts
of hierarchy borrowed from semantic networks and
of objects taken from object-oriented programming,
frames focus attention on the concepts of
stereotypes and default reasoning.

Frames encourage us, instead of reasoning from
first principles on every occasion, to reason by
comparing new occasions with preconceived
stereotypes. Default assumptions about the new
occasion are made in the absence of
countradlctions and are withdrawn if contradictory
information is later made known.

The concepts of stereotype and default reasoning
are useful for building knowledge-based systems.
But in the context of frame-based systems they are
generally combined with rather loosely defined
formalisms associated with forms, slots and
fillers. As Pat Hayes has pointed out [6], in
many ways these formalisms are closer to logic
than many of their predecessors, because a slot is
like an argument place of a relation and a filler
is like an argument. It should not be surprising
therefore ifi we can implement stereotypes and
default reasoning in other formalisms.

Consider, for example, the frame for "bird",
represented as a form with slots for holding
properties of birds. In the absence of
information to the contrary, certain properties
may have default values.

[
bird frame I Isa vertebrate

m

primary locomotion = ~ flight

number of legs = default 2

etc.

This might be represented in logic programming
formalism by the sentences

Isa(x vertebrate) If Isa(x bird)
Prlmary-locomotlon(x flight) if Isa(x bird)

and not [Primary-locomotlon(x y) and y ~ flight]
Number-of-legs(x 2) if Isa(x bird)

and not [Number-of-legs(x y) and y ~ 2]

Here the negation symbol "not" is interpreted as
negation by failure [2]. This gives a good
approximation to default reasoning (though, in
this case, if executed by PROLOG, would give rise
to an infinite loop, which can, however, be
eliminated by program transformation techniques
[8]).

Notice that another characteristic of the frame-
based representation is the use of forms as a
notation. This is undoubtedly more user-friendly
than the notation of symbolic 1ogle. Our defence
of logic as a formalism, therefore, is not a
defenoe of its notation but rather a defence of
its abstract syntax, its semantics and its proof
procedures.

Thus, to'be more precise, I would have to argue
that non-loglc-based systems contribute to the
identification beth of useful concepts and of
useful, user-frlendly notations. Other
formalisms, such as formal logic, can be used to
implement the same concepts and notations.

In each of the preeeedlng examples, semantic
networks, entlty-relatlonshlps and frames,
concepts are combined with formallem to a lesser
or greater extent. The resulting formalisms and
their associated notations facilitate expressing
those particular concepts, but often hinder the
expression of other concepts. The alternative to
tying concepts and formalism so closely together
is to employ a single universal formalism within
which different and even competing concepts can be
expressed and integrated. First-order predicate
logic with certain embelllsbments seems to be the
best candidate for such a formalism.

Some other systems with concepts which can
usefully be reformulated in logic are Hewitt's
Open Systems [7] and Schank's Conceptual
Dependency Theory [12].

Open Systems

Hewitt regards the requirements of open systems as
conflicting with the constraints of logic and
logic programming. I believe that he has
correctly identified an important class of
problems previously neglected by students of
logic. But, in my opinion, this neglect is not
the result of any inherent limitation of logic.

Open systems consist of multl-actor knowledge-
based systems, each with their own internal goals
and able to perform actions to accompllsh those
goals. An actor's goals may be internally
incompatible or con/liot with the goals of other
actors.

Actors in an open system dynamlcally change both
their beliefs and their goals as a result of
interacting with other actors and the changing
environment. Such changing systems have been
studied within the framework of knowledge
assimilation in loglo-based systems [9]. Logical
deduction can assist the process of knowledge
assimilation by focussing attention on the logical
r~latlonshlps between new knowledge and the
current state of the knowledge-base. It can be
used to determine whether the new knowledge
loglcally implies existing knowledge, is implled
by it, is inconsistent with it or is logically
independent. The detection of these relationships
is constrained by the amount of resources which
can be expended.

To improve the efflcleney of performing
deductions, proof procedures attempt to avoid the
derivation of irrelevant consequences. As a
result an inconsistent set of beliefs can still be
useful in practice - both because inconsistencies
may not be detected and because the derivation of
inconsistency need not lead to the derivation of
irrelevant further consequences.

To achieve the power of open systems, however,
such 1ogle-based systems need to be augmented with
their own internal goals and need to construct and
execute plans of aotlon to acccaplish their goals
[10]. For this purpose an actor needs to have a
model of the current state of the environment and
of the expected effect its aotlons have upon it.
Both of these can be represented by sentences
expressed in formal logic. An actor can use

logical deduction to construct a plan of action to
accomplish one or more of its goals. Several such
systems of plan-formation have been developed
within the formalism of logic. The degree of
success of failure of these systems, however, has
depended more on the appropriateness of the world
model than on its representation in logical
formalism. This can be taken as further evidence
for the thesis that knowledge is more important
than logic.

Actors in open systems need to be able to perform
actions to accomplish their own goals. Such an
actor can be represented logically by means of a
metalevel predicate

Process(input-stream knowledge-base output-stream)

For example, the (over-simplified) case where an
actor processes an item of "input" which is at the
head of an input-stream

cons(input rest-input-stream)

and
from
rule

does nothing to it if the input is derivable
the knowledge base can be represented by the

Process(cons(input rest-input-stream)
knowledge-base output-stream)
if Process(rest-input-stream

knowledge-base output-steam)

The parallel interaction of many such actors can
be represented by a metalevel sentence executed by
a parallel logic-programming interpreter, such as
PARLOG [3] or concurrent PROLOG [13]. Loglc-based
systems of this kind have been proposed and
investigated by Shapiro and Takeuchi [14] and
Furukawa et al [5]. To a large extent these
investigations have been motivated by the attempt
to implement in logical formalism concepts first
identified and highlighted in other, non-loglc-
based systems. They are an example of the
benefits to logic of borrowing concepts from other
formalisms.

Co n cep tu a l Dependenc7 Theor7

Conceptual dependency theory combines concepts
about reducing the semantics of complex events to
the semantics of a few primitive acts with a
pictorial formalism. To take a specific example,
the acts of "giving" and "taking" can both be
reduced to special cases of the primitive act of
transferrlng possession. In the case of "giving",
the actor is the donor; in the case of "taking",
the actor is the recipient. Schank describes
these reductions of "giving" and "taking" in
English and implements them in LISP. He uses his
graphical formalism for representing concrete
events, but has no formalism other than LISP for
describing the reduction of events in general.

The reduction of "giving" and "taking" to
"transfer-possession" can, however, be represented
by means of logic programs which have both
declarative and procedural interpretations:

Act(x transfer-posseslon) if Act(x giving)
Donor(x y) if Act(x giving) and Actor(x y)
Actor(x y) if Act(x giving) and Donor(x y)
Act(x transfer-posseslon) if Act(x taking)
Reclplent(x y) if Act(x taking) and Actor(x y)
Actcr(x y) if Act(x taking) and Reclplent(x y)

Interpreted as logic programs these rules will be
used backwards only when needed. Like many other
declarative programs, however, when executed by
PROLOG, they can go into infinite loops. These
loops can be avoided by program transformations,
or by applying more sophisticated proof procedures
(employlng loop-detection perhaps). In any case,
by separating the declarative knowledge from its
mode of use we obtain potentlally greater
flexibility and power than we have with the
corresponding LISP routines, which can use the
same knowledge in only one, previously
anticipated, way.

Notice that rules which express properties of
"transfer possession" such as

Possesses(y z after(e)) if Act(x transfer-
possession)

and Recipient(x y)
and Object(x z)

Start(after(e) e)

i.e. "The recipient of an event of "transfer
possession" possesses the object of the event
for some, possibly indeterminate period of time
after(e), which starts at e".

are automatically inherited by "giving" and
"taking".

Thus concepts which have been originally
introduced within the context of systems with non-
logical formalisms can be rationally reconstructed
in logical formalism and gain greater clarity and
power as a result. Once knowledge has been
represented explicitly in logical terms, it can be
used to derive arbitrary logical consequences, in
ways not originally anticipated and not catered
for in the original non-loglcal formalisms. The
price that sometimes has to be paid for this
greater power, however, is that more flexible uses
of the knowledge may require the application of
more powerful proof procedures than are currently
a v a i l a b l e . Th i s can be p a r t i a l l y a l l e v i a t e d by
t h e use of program t r a n s f o r m a t i o n s , bu t i n t h e
longer term will require the development of more
powerful and more efficient proof procedures.

The practice of logic itself benefits from such
borrowing of concepts from non-loglcal systems.
Non-loglcal systems, by comparison with logic, are
more concept-orlented and can tell us therefore
about the kinds of knowledge which need to be
represented in any formalism. Logic can not
progress without applications. Non-loglcal systems
can help IdentIDg the concepts that are needed for
building such applications.

~n-elass£eml Logic

The combination of concept and formalism which is
characteristic of A.I. systems not based on logic
is also a feature of non-classlcal logics.

10

Logicians themselves can be as inclined as A.I.
practitioners to invent different formalisms for
different concepts. Thus we have temporal logics
for dealing with time, relevance logics for
relevant implication and fuzzy logics for
uncertainty. According to the methodology
associated with non-classical logic, to determine
what logic is needed for a given application, it
is necessary to analize the application in detail,
identify the concepts needed and find a logic
which formalizes those concepts. If the analysis
is mistaken or a change needs to be made to the
application for some other reason, then the entire
application may need to be reformulated in
another, more appropriate logic. Even if the
better logic has already been developed and is
available for the purpose, the process of complete
reformalization creates an intolerable
discontinuity in the knowledge representation
process. This methodology is the complete
opposite of the process of formalisation by top-
down, successive refinement which is the hallmark
of good practice in software engineering.

The inadequacy of this methodology is even more
apparent with complex applications which require a
multiplicity of different concepts associated with
different logics. There are only two ways of
tackling such applications - either by developing
a methodology which allows different formalisms to
be combined within a single application; or by
abandoning special-purpose logics for the right
universal formalism in the first place. The
first alternative is workable for many
applications of intermediate complexity where the
problem can be decomposed into relatively self-
contained subproblems each of which can be tackled
with a single formalism. It will not work,
however, for more complex problems, where several
different concepts are intimately connected, as
they might be, for example, within a single
natural language sentence involving time,
uncertainty and obligation:

"/~9_~F-QH I will probably need to change my mind".

In my opinion the second alternative is better.
We need a universal formalism, which is not tied
to specific concepts, but within which different
concepts can be represented and integrated. These
concepts can be borrowed from other more
specialized logics, extracted from non-logical
systems or formulated specially for the problem at
hand.

Classical I~gle

There may be several candidates for the universal
language; and it may not be obvious how to choose
between them. My own belief is that the best
candidate is classical first-order logic. Some
extensions and even some restrictions will
undoubtably be necessary. The Horn clause subset
of first-order logic augmented with negation by
failure, upon which logic programming is based, is
such a restriction; the amalgamation of object
language and metalanguage is such an extension.
Amalgamation logic, however, does not really go
beyond first-order logic, but simply gives more of
it - at both the object language and metalanEuage
levels.

First-order logic makes a good candidate for the
universal language, because it is the only logic
which has been extensively applied, both inside
and outside computing. It is the only formalism
which has demonstrated its adequacy for
formalising the foundations of mathematics. In
computer science it is the only formalism which
has been used not only for knowledge
representation and problem-solving in Artificial
Intelligence, but also for progrem specifications,
databases, formal grammars and computer programs.

Building flrst-order logic on top of systems which
efficiently implement the Horn clause subset of
logic has an advantage, because the procedural
interpretation of Horn clauses potentially gives
such systems the efficiency of a computer
programming languages.

Negation as failure:

not P holds if P fails to bold

for example, can be implemented very simply and
very efficiently on top of Horn clause proof
procedures. It gives a correct implementation of
classical negation [2] under the assumption that
the formalization contains a comple t e
characterisation of the predicate P. Even with
this assumption, however, negation as failure does
not always give a complete implementation of
classical negation. Nonetheless it can be used to
implement conditions which have the expressive
power of full flrst-order logic (even if they do
not necessarily have its full deductive power).
Consider for example, the definition of the subset
relation:

x subset of y if for all z
z is in y If z is in x.

can be reduced to Horn clause form augmented with
negation as failure:

x st~bset of y if not exists z
z is in x and not z is in y.

Executed backwards, logic programming style, with
negation interpreted as failure, this behaves as a
procedure which shows

x is a subset of y by
testing each element z in x and
showing each such z is in y.

This is a correct interpretation of the original
definition of "subset", provided the "knowledge-
base" contains a complete characterization of the
"is in" relation. However, as it stands, the
interpretation is incomplete because it can only
be used to test whether x is a subset of y and not
to generate subsets x of y or supersets y of x

The use of first-order logic at both the object
level and the metalevel adds greatly to
expressiveness and problem solving power. It can
be used, not only at the ordinary object level,
but also at the metalevel for programs and
databases which manipulate and describe object
level programs and databases. It can be used, in
particular, to describe and implement knowledge

11

assimilation and multl-actor belief systems. It
is even possible to devise an amalgamation of
o b j e c t language and metalanguage [1] which can
self-referentlally apply to itself - for an editor
which can be used to edit itself or a compiler
which will compile itself.

Classical first-order 1ogle as presented in
traditional logic books, however, is not
necessarily the best starting point for its
practical application. Indeed it might even be
argued that the very success of symbolic logic
applied to mathematics has contributed to its
failure to be applied more widely outside of
mathematics. The style of logic which has proved
useful for foundations of mathematics, is bottom-
up and reductionist, with all concepts reduced to
the bare minimum. This is the opposite of the
approach needed f o r most knowledge-based
a p p l i c a t i o n s , which i s top-down and c o n c e p t - r i c h .

The bottom-up, reductionist use of logic, which is
adequate for foundations of mathematics is not
even useful for its practice. The notion of
subset, for example, which is so central to the
mathematical practice of set theory and which is
the mathematical basis of ISA-hierchies is
eliminated in the foundations of set theory in
favour of the primitive membership relation.
Logic as it has been applied to the foundations of
mathematics teaches us not to worry about
identifying useful concepts, but rather to
eliminate them in favour of primitive concepts.
Such primitives, however, are virtually impossible
to use in practice.

The tradition of mathematical logic has other
characteristics which can make it ill-suited for
complex non-mathematical applications. It places
inordinate emphasis on consistency and
completeness and inhibits the process of trial and
error, which is needed for developing such
applications and which is an essential ingredient
of expert systems methodology in particular.

The mathematical tradition of logic, however, is
not an inherent characteristic of logic itself.
Logic is sufficiently neutral with respect to both
concepts and methodologies that it can integrate
different concepts and it can adapt itself to
different methodologies including t h a t associated
with top-down, trial and error development of
knowledge.

The universal formalism whose adoption I have
advocated is an elaboration of classical first-
order logic. I have argued in its favour on
theoretical grounds. Until recently the
theoretical arguments might have been overshadowed
by problems of efficiency. Advances in logic
programming technology, however, have reached the
stage where logic-based implementations of
c o n c e p t s a r e o f t e n a s l e a s t a s e f f i c i e n t a s
im p lemen ta t i ons i n s p e c i a l - p u r p o s e l anguages . The
a p p l i c a t i o n o f compi le r t echno logy to t h e
imp lemen ta t i on o f I S A - h i e r c h i e s and i n h e r i t a n c e
f o r m u l a t e d in logic, for example, compares well
with their implementation in conventional
programming languages.

Finally, we should note that the adoption of
flrst-order logic as a universal formalism does
not p r ec l u d e t h e c o n t i n u i n g use of o t h e r
l anguages . F i r s t - o r d e r l o g i c can c o e x i s t w i t h
o t h e r fo rma l i sms and can l n t e r o p e r a t e w i t h them.
Existing applications implemented in o t h e r
formalisms can be incorporated within larger
systems implemented in flrst-order logic, provided
such applications can be viewed logically from the
o u t s i d e . Taking a w e l l - s t r u c t u r e d , top-down
p o i n t - o f - v i e w , t h e r e i s no need t o look i n s i d e .
The a c t u a l i m p l e m e n t a t i o n i t s e l f can be viewed a s
a compi led v e r s i o n o f i t s r a t i o n a l r e c o n s t r u c t i o n
f o r m u l a t e d i n f i r s t - o r d e r l o g i c .

30, t he u n i v e r s a l l o g i c language can c o e x i s t w i t h
o t h e r l anguages , e s p e c i a l l y i n t he s h o r t te rm. I t
can even b e n e f i t from them by bor rowing t h e i r
c o n c e p t s t o f a c L l i t a t e t he f o r m a l i z a t i o n o f
knowledge i n l o g i c a l te rms. I t can a l s o be of
b e n e f i t t o o t h e r l anguages by h e l p i n g t o l i b e r a t e
t h e i r c o n c e p t s from t h e i r fo rma l i sms and, by
r e p r e s e n t i n g them i n t h e fo rma l i sm o f l o g i c ,
enabling those concepts to interoparate with other
concepts liberated from other formalisms.

Ao~le~ents

An earlier version of this paper was presented at
The Workshop on Knewledge Base Management Systems,
held in ChaDia, Crete, June 1985, to be published
by Springer Verlag.

Be£erenems

[1] Bowen K. A. and Kowalski R. A., [1982] .
"Amalgamating language and meta language i n
l o g i c programming", i n Logic ~ g ,
(K. L. Clark and S-A. Tara lund, E d s .) ,
Academic P r e s s , London.

[s] Clark K. L., [1978]. "Negation as failure",
in LQEI~ pata Bases, (H. Gallaire and J.
Minker, Eds.), Plenum Press, New York.

[3]

[.]

Clark K. L. and Gregory S., [1985].
"PARLOG : parallel programming in logic", to
appear in ~QH Trans. ~
J ~ K K g K ~ and.~.y..~/.~.~, 1986.

Felgenbaum E. A., [1982]. "Innovation and
symbol manipulation in Fifth Generation
Computer Systems", in ~ ~eneratlon
.Q~PJA~.~E~x~JH~, PP. 223-22~, (T. Moto-Oka,
Eds.), North Holland, Amsterdam.

[5] Furukawa K. et al., [1984]. "Mandala : A
logic based knowledge programming system",
in Proee~dln~s ~ the ~ E ~

~ F i f t h Generation
• X~.~, Pp. 613-622, Ohmsha Ltd., Tokyo.

[6] Hayes P. J., [1979]. "The Logic of Frames"t
in ~ Coneentions and Text
J ~ . ~ d ~ d ~ g , PP- 46-61, (D. He tz lng ,
Eds.). Walter de Gruyter and Co.. Berlin.

[7] Hewitt C., [1985]. "The Challer~e of Open
~ystems". BYTE, April 1985, pp. 223-242.

12

[8]

[9]

[10]

[11]

[12]

[133

[14]

Hogger C. J., [1984]. "Introduction to
Logic Programming". Academic Press. London.

Kowalski R. A., [1979]. "Logic for Problem
Solving". Elsevier North-Holland. New York.

Kowalski R. A., [1985]. "Logic-based Open
Systems", Department of Computing, Imperial
College, London.

Kowalski R. A. and Sergot M. J., [1984].
"Towards a loglc-based calculus of events",
to appear in~_~g Generation g_~p_~i~g, Vol.
4, No. I, February 1986, Ohmsha Ltd.,
Tokyo, and Springer Verlag, Berlin.

Schank R. C., [1975]. "Conceptual
Information Processing", North Holland,
Amsterdam.

Shapiro E. Y., [1983]. "A subset of
Concurrent Prolog and its interpreter", in
ICOT Technical RePort TR-OOR, Institute
New Generation Computing Technology, Tokyo.

Shapiro E. Y. and Takeuchi A., [1983].
"Object oriented programming in Concurrent
Prolog", in New ~ ~ I,
Springer Verlag. Berlin.

13

