
Artificial Intelligence/
Language Processing

C. Montgomery
Editor

Logic and Semantic
Networks
Amaryllis Deliyanni
University of Athens

Robert A. Kowalski
University of London

In this paper we shall define an extended form of
semantic network which can be regarded as a syntactic
variant of the clausal form of logic. We define top-down
and bottom-up inference and resolution more generally
for the extended semantic network. In particular, top-
down inference gives us a procedural interpretation of
reasoning in the network.

Not only can the extended semantic network be
regarded as a syntactic variant of logic, but it can also be
used as an abstract data structure for the representation
of clauses in an implementation of a predicate logic
proof procedure. The semantic network data structure
provides an indexing scheme and helps to guide the
search for a solution. In particular, as a data structure
for an interpreter of predicate logic programs, it guides
the execution of procedure calls. The strategy suggested
by the network gives the proof procedure a path-finding
flavor.

An extended form of semantic network is defined,
which can be regarded as a syntactic variant of the
clausal form of logic. By virtue of its relationship with
logic, the extended semantic network is provided with a
precise semantics, inference rules, and a procedural
interpretation. On the other hand, by regarding
semantic networks as an abstract data structure for the
representation of clauses, we provide a theorem-prover
with a potentially useful indexing scheme and path-
following strategy for guiding the search for a proof.

Key Words and Phrases: logic, semantic networks,
theorem-proving, indexing, resolution, deduction, logic
programming

CR Categories: 3.42, 3.64, 5.21

Introduction

Logic and semantic networks are different formal-
isms for representing information. Several authors have
shown that simple semantic networks can be extended
so that they have the same expressive power of predicate
logic [5, 15, 16]. Still more recently, deductive inference
systems for semantic networks have been investigated [2,
3, 17, 18].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Authors' Addresses: R.A. Kowalski, Department of Computing
and Control, Imperial College of Science and Technology, London
SW7 2BZ, England; A. Deliyanni, Division of Electronics, University
of Athens, Athens, Greece.
© 1979 ACM 0001-0782/79/0300-0184 $00.75

184

1. Simple Semantic Networks

A semantic network is a directed graph whose nodes
represent individuals and whose arcs represent relation-
ships between individuals. An arc is labeled by the name
of the relationship it represents. Several arcs can have
the same label. However, each individual is represented
by only a single node. The English sentences "John gives
the book to Mary" and "John and Mary are human" are
represented in the following semantic network:

book Mary
~el j >human

give John

Here "e l " names an event which is an act of giving,
whose actor is John, object is book, and recipient is
Mary.

Arcs are not to be confused with access pointers.
However, given a node in the network, it is assumed that
the network provides direct access to all the relationships
in which the node participates, independent of the direc-
tion of the arc.

2. The Clausal Form of Logic

The relationships in the network above can be ex-
pressed in the clausal form of logic as follows:

Obj (el, book)
Act (el, give) ~--
Actor (e 1, John) ~--
Rec (e 1, Mary) <---
Isa (John, human)
Isa (Mary, human) ~--

Communications March 1979
of Volume 22
the ACM Number 3

Relations are named by predicate symbols (in this case,
"Obj," "Act," "Actor," "Rec," and "Isa") and individ-
uals are named by constants ("el ," "book," "give,"
"John," "Mary," and "human"). Predicate symbols cor-
responding to labels on the arcs of semantic networks
always have two arguments. But in general a predicate
symbol can have n arguments, n _> 1. For example the
sentence "John gives the book to Mary" might equally
well be represented in logic by using a three argument
predicate symbol:

Give (John, book, Mary)

In addition to simple assertions, logic can also express
general propositions. The sentence "John gives the book
to everyone he likes" is expressed by the clause

Give (John, book, x) ~ Likes (John, x)

Here the symbol "x" is a variable representing any
individual. The arrow represents the logical connective
"if." In general a clause can have several conditions, all
of which must hold for the conclusion to hold. For
example the clause

Likes (John, x) *--- Give (John, y, x), Likes (John, y)

expresses that if John gives away something he likes,
then he must like the person he gives it to. (Variables in
different clauses are unrelated even if they look the
same.) A clause can have several alternative conclusions,
at least one of which must hold if all the conditions hold.
That every animate being is either an animal or a
vegetable is expressed by the clause

Animal (x), Vegetable (x) *--- Animate (x)

Thus, the conclusions of a single clause are a disjunction
of alternatives, whereas the conditions are a conjunction.
A clause without conditions is an unconditional asser-
tion. However, a clause without conclusions is a denial.
The clause

Give (x, y, John), Likes (John, y)

denies that anyone gives John anything which John likes.
The existence of individuals is expressed by using

constant symbols or function symbols. "Someone likes
John" requires a constant to name the anonymous indi-
vidual who likes John, for example:

Likes (A, John) ,---

However, "everyone is liked by someone" is ambiguous.
It requires a constant symbol if one individual likes
everyone

Likes (B, x) ~-- Human (x)

and a function symbol if different individuals like dif-
ferent people

Likes (f(x), x) ,--- Human (x)

Here, for any individual x, the expressionf(x) names the
individual who likes x.

A more formal definition of the clausal form of logic
is the following:

A sentence is a collection of clauses.
A clause is an expression of the form

A1, ... , An ~-- B1 Bm

where A1, ... , An are called the conclusions of the
clause and B1 Bm are called the conditions. Both
conclusions and conditions are expressions of the form

P (tl tk)

called atoms, where P is a k-argument predicate sym-
bol and tx, ..., tk are terms. Terms are either constants,
variables, or functional terms which are expressions of
the form

At1, ..., t~)

where f is an/-argument function symbol and tx
tz are terms.

Convention: Throughout this paper variables begin
with one of the letters u, v, w, x, y, z, in order to
distinguish them from constants.

Deductive inference rules have been developed for
the clausal form of logic. Bottom-up inference derives
new assertions from old ones. For example by matching
the assertions

Give (John, book, Mary) ~--
Likes (John, book) *--

with the conditions of the general clause

Likes (John, x) ~ Give (John, y, x), Likes (John, y)

we obtain the new assertion

Likes (John, Mary) *---

Top-down inference derives new denials from old ones.
By matching the denial

Likes (John, Mary)

with the conclusion of the same general clause, we obtain
the new denial

Give (John, y, Mary), Likes (John, y)

Both top-down and bottom-up reasoning are special
cases of resolution. Resolution involves matching a con-
dition of one clause d with a conclusion of another
clause ~ . The derived clause, called the resolvent, con-
sists of the unmatched conditions and conclusions of d
and ~ , instantiated by the matching substitution. The
clauses d and ~ are called the parents of the resolvent.
Matching two atoms amounts to finding a substitution of
terms for variables which if applied to the atoms would
make them identical. A more formal definition of reso-
lution can be found in the original paper [12].

Bottom-up inference is a form of hyper-resolution
[13], and top-down inference is a form of model elimi-

185 Communicat ions March 1979
of Volume 22
the ACM Number 3

nation [8] and linear resolution [8, 9]. More detailed
references can be found in [7].

Clauses which contain at most one conclusion (Horn
clauses) can be given a procedural interpretation [6].

A clause of the form A ~-- B1 Bn is interpreted as
aprocedure with head A and body B1 Bn. Each atom
in the body of the procedure is interpreted as a procedure
call. A denial is interpreted as a set of procedure calls
and is called a goal clause. Top-down inference, which
matches a selected procedure call in a goal clause with
the head of a procedure, is interpreted as procedure
invocation. The new goal consists of the old procedure
calls, which are the instantiated copies of the unmatched
procedure calls in the old goal clause, and the new
procedure calls, which are the instantiated copies of the
procedure calls in the body of the invoked procedure. It
is useful to divide the matching substitution associated
with procedure invocation into two parts. One part af-
fects variables in the procedure head and transmits input
into the body of the procedure. This is the input compo-
nent of the substitution. The other part affects variables
in the procedure call and transmits output to the remain-
ing procedure calls of the goal clause. This is the output
component.

The restriction of semantic networks to the represen-
tation of two-argument relationships is not a significant
limitation. On the contrary, it has several advantages.

Every n-argument (n-ary) relationship can be reex-
pressed as a conjunction of two-argument (binary) rela-
tionships. I f n > 2, n + 1 binary relationships are needed.
If n = 1, then only one is necessary. For example the 3-
ary relationship

Give (John, book, Mary) ~--

can be reexpressed (as in the beginning of Section 2) as
a set of four assertions using binary predicate symbols.
In general, it is necessary to introduce a name for the
original n-ary relationship, "e 1" in this example. The n-
ary predicate symbol becomes a constant symbol. For
each argument of the n-ary relationship, as well as for its
predicate symbol, we express how it is related to the
original n-ary relationship by means of a binary relation-
ship.

I fn = 1, the predicate symbol also becomes a constant
symbol, and it is only necessary to introduce a single
binary relationship which expresses how the original
predicate symbol is related to its argument. For example,

Human (x)

becomes

Isa (x, human)

The transformation from n-ary to binary replaces
predicate symbols with constant symbols. In the new
formulation the original predicate symbols can also be
replaced by variables; this gives some of the expressive
power of higher order logic.

The use of binary predicate symbols also has the

186

advantage that unknown arguments of the original n-ary
relationship can be ignored. To express that "John was
given the book," we only need the assertions

Act (e2, give) ,,---
Obj (e2, book)
Rec (e2, John) ,---

whereas in the n-ary representation, it is necessary to
name the unknown donor

Give (C, book, John)

In database applications the binary formulation corre-
sponds to the use of variable-length records. Space is
saved, and the unnecessary introduction of constant
symbols is avoided.

The binary representation is also at an advantage
when additional information needs to be associated with
the n-ary relationship. To express that "John was given
the book in the park," it is only necessary to add the
assertion

Location (e2, park) ~--

In the n-ary representation the original 3-ary relationship
would have to be replaced by a new 4-ary one

Give* (C, book, John, park)

The binary representation suggests a way of dealing
with simple aspects of time. For example the addition of
the assertion

After (e 1, e2)

can be used to express that "John gave the book to Mary
after it was given to him in the park."

The translation from the n-ary to binary representa-
tion does not always result in an improvement. The
three-place Plus-relation, for example,

Plus (x, y, z) x plus y is z

can be reexpressed by means of binary relations

Isa (w, Plus) w is a Plus-fact
Addl (w, x) x is the first number added in w
Add2 (w, y) y is the second number added in w
Sum (w, z) z is the sum of the numbers added in w

The binary formulation is more obscure and no more
useful than the original three-place relation.

3. Extended Semantic Networks

Simple semantic networks can only express collec-
tions of variable-free assertions. We define an extended
form of semantic network which can be interpreted as a
variant syntax for the clausal form of logic. It is an
immediate consequence of this interpretation that the
semantics of the extended semantic network is identical
to that of the clausal form of logic.

In the extended semantic network, terms are repre-

Communicat ions March 1979
of Volume 22
the ACM Number 3

sented by nodes. Constant, variable, and functional terms
are represented by constant, variable, and functional
nodes respectively. As in the simple semantic network,
every term is represented by a single node. The same
conventions for distinguishing variables from constants
are employed as in the clausal form of logic. Binary
predicate symbols are represented by labels on arcs. An
atom is a labeled arc together with its two end nodes.
The direction of the arc (link) indicates the order of the
arguments of the predicate symbol which labels the arc.
Conclusions and conditions are represented by different
kinds of arcs: conditions are drawn with two lines

and conclusions are drawn with one heavy line as before.
A clause is represented by the network representation of
its conditions and conclusions. As in the clausal form of
logic, different clauses have different variables. Conse-
quently, variables in different clauses are represented by
different nodes.

That every animate is a vegetable or an animal is
represented by the following network:

animal ~ x Isa
, ~> animate

vegetable ~ ~s~

That the actor of any act of taking is also the recipient
of the action is expressed by the network:

Act x, , ~, taRe

Rec (~ A c t o r

u

Rec (x, u) ~ Act (x, take), Actor (x, u)

The network

Act t(x) I) take

Act x, " "~ give

Act (t(x), take) ~ Act (x, give)

expresses that for every act of giving, there is an act of
taking.

In the extended semantic network, functional terms
are represented by single nodes. This contrasts with
many semantic network schemes, which require that
everything be represented either by a node or an arc. For
example the atom

Act t (x) II take

would be represented by the more complicated network

t ~functi°no Act | take

~LArg I
x

187

It is worth noting that although such a representation
might be useful for indexing purposes, it interferes with
the semantics of the network. The new arcs no longer
represent semantic relationships between individuals but
syntactic relationships between the constituents of names
of individuals.

Given a set of clauses, if all occurrences of the same
term are represented by a single node, then all the clauses
should be incorporated in a single network. This gives
rise to the problem of distinguishing which arcs belong
to which clauses. The delimitation of clauses can be
effected in several ways:
(i) Clause numbers can be associated with arcs.

(ii) The network can be "partitioned" into subnetworks,
each of which represents a single clause. Partitions
overlap if the clauses they represent contain the
same fully instantiated atom.

In this paper we delimit clauses pictorially, as in the
following example, by partitions drawn around clauses
which contain more than one atom.

~ e l ~ ~ec c,or jphuman,
give

Act (t(z), take) *-- Act (z, give)
Isa (x, vegetable), Isa (x, animal) , - Isa (x, animate)
Isa (y, animal) *-- Isa (y, human)
Obj (el, book)
Rec (e 1, Mary) .--
Actor (e 1, John)
Act (el, give)
Isa (Mary, human)
Isa (John, human)

The extended semantic network, being equivalent to
the clausal form of logic, is a uniform, general-purpose
formalism for the representation of information. The Isa
and Part-of hierarchies, which are characteristic of many
semantic networks, are special cases of the extended
semantic network.

Isa hierarchies, which in simple semantic networks
are represented by sets of Isa or Subset assertions, e.g.

Isa human ~ animal

o r
subset human II animal

can be represented in the extended semantic network in
two different ways. One representation expresses state-
ments of the form "X is a Y" where both X and Y name
sets of objects by means of clauses of the form

C o m m u n i c a t i o n s March 1979
of Volume 22
the ACM Number 3

Y i l Isa z r i s a ~>x

The other representation retains the simple variable-free
assertions but adds a general law which expresses the
semantics of the Isa and Subset predicate symbols.

I s a

Isa Subset

Recently Fikes and Hendrix [3], Shapiro [17], and
Chester and Simmons [18] have described deductive
inference procedures for their extended semantic net-
works. We share their interest in extending tlhe deductive
capabilities of semantic networks. However, we are also
concerned whether semantic networks have anything to
contribute to improving the efficiency of proof proce-
dures.

The clauses in the first representation are logically
implied by those in the second representation. They can
be derived by means of the bottom-up inference rule
defined in the next section.

Part-of hierarchies can also be represented in two
different ways, with the complication that Part-of asser-
tions conceal a hidden existential quantifier. For example
the assertion

Part-of
wing I I bird

means that for every bird, there is a wing which is part
of the bird. In clauses:

wlng ~ w (x)

Isa (w(x), wing) ~ Isa (x, bird)
Part-of (w(x), x) ~ Isa (x, bird)

Several authors [5, 15, 16] have defined extensions of
simple semantic networks. These extensions are all based
on the standard form of logic, rather than on the clausal
form. Some of them, however, avoid existential quanti-
tiers by using functional terms. A common characteristic
of these extensions is that they use explicit nodes and
arcs to represent the logical connectives and quantifica-
tion. Like the use of arcs for representing the structure
of functional terms, this introduces the complication of
distinguishing arcs which represent semantic relation-
ships from those which represent syntactic ones. Some
authors [11, 18] also include in their networks explicit
"result," "causes," or "enables" relations which, like Isa-
and Part-of arcs, conceal implicit implication or quanti-
fication. Hendrix [5], in addition, also uses multilevel
partitions to indicate logical structure.

McSkimin and Minker [10] describe a theorem-prov-
ing system which uses semantic networks. They regard
arbitrary clauses as part of their semantic network, but
treat the Isa-hierarchy in a special manner which is
essentially compiled.

Woods in his analysis of the semantics of semantic
network links [19] is more concerned with the semantics
of natural language and the representation of natural
language meanings than with the semantics of the se-
mantic network formalism itself.

4. Deduction in Extended Semantic Networks

The correspondence between logic and the extended
semantic network provides the network with not only
semantics but also inference rules. Moreover, top-down
inference provides the network with a procedural inter-
pretation.

In order to demonstrate that a set of clauses in a
network implies a conclusion, we add the denial of the
conclusion to the network and show that the resulting
set of clauses is inconsistent. This is done by performing
successive steps of resolution until an explicit contradic-
tion is generated.

Resolution and the special cases of top-down and
bottom-up inference have already been defined for the
clausal form. By virtue of the correspondence between
extended semantic networks and clausal form, the defi-
nition of resolution also applies to semantic networks.

For example applied to the network

U ~ " ' ~ R e c

~r r" r - - i 'q~es " Likes J

g i v e ~ Likes _ John
• book ~, - - , M a r y

Likes (x, z) *-- Act (u, give), Obj (u, y), Actor (u, x),
Rec (u, z), Likes (x, y)

Act (e, give) *-- Rec (e, Mary) ~--
Obj (e, book) ~-- Likes (John, Mary) ~--
Actor (e, John) ~--

bottom-up inference derives the new assertion

Likes
John I I M a r y

Applied to the network

Likes

John ~=======~ v

Dis l ikes

Likes (x, z) ~ Act (u, give), Obj (u, y), Actor (u, x),
Rec (u, z), Likes (x, y)

Likes (John, v), Dislikes (v, John)

188 Communications March 1979
of Volume 22
the ACM Number 3

top-down inference derives the new denial
u'

give y ~ o h n <Dislik y z~ , A ~__ ~ e~sZ,

~-- Act (u', give), Obj (u', y'), Actor (u', John),
Likes (John, y'), Rec (u', z'), Dislikes (z', John)

In a computer implementation, clauses can be rep-
resented explicitly by adding them to the network or
implicitly by using the structure-sharing method of Boyer
and Moore [1], in which resolvents are represented by
pointers to their parents together with a record of the
matching substitution. Anything explicit in the first rep-
resentation can be computed in the second. Throughout
the paper, without prejudicing the manner in which
clauses are represented in a computer implementation,
networks are drawn with resolvents added to them ex-
plicitly.

Independently, whether in an implementation resol-
vents are represented explicitly or implicitly because of
the purity principle [12], a clause can be deleted if one of
its atoms matches no other atom in the network. In
particular, when a resolvent is created, a parent may be
deleted if no other match exists for the atom being
matched in that parent. Such a situation might arise if
either there was only one match initially, or else all other
matches have already taken place. In practice, when
deletion is possible, it is generally more convenient to
construct the resolvent from the constituents of the de-
leted parent.

Applied to the problem of finding a fallible Greek,
top-down inference together with the deletion rule trans-
forms the initial network until it eventually contains only
the empty clause.

,o, Yoof . .

human

tYY

Turing Isa ~ h u m a n ~

human ~

,,%(/,-
(d} Greek k_~,

Socrates

Isa~ ~lsa

(e) Greek

After matching the condition x = Isa ~ fallible of the
initial goal clause in the only possible way, we add the
resolvent to the network and delete both parents. The
condition x m Isa ~ human matches two assertions.

When the assertion Turing - - Isa - ~ h u m a n is chosen to
match the condition, the assertion is deleted from the
network, but the other parent remains. The new resolvent
Turing = Isa ~ Greek matches no other atom in the
network and is deleted. The remaining alternative match
for the condition x "-- Isa ~ human is made, and both
parents can now be deleted. The last two clauses in the
network have the empty clause as their resolvent and are
also deleted.

Deletion of clauses potentially destroys the original
network. If it is desired to use the network for another
purpose, then it is necessary to either save a copy of the
original network or restore it to its original form.

The preceding example also illustrates the procedural
interpretation of top-down reasoning in the semantic
network. In a conventional semantic network, proce-
dures would be written in the host programming lan-
guage. In the extended semantic network, procedures are
integrated with the rest Of the database and are executed
by the same general purpose mechanism which performs
inference in the network.

The procedural interpretation of logic can be re-
garded as the thesis that computation is controlled de-
duction [4, 7]. Consider for example the following prob-
lem: "John gives the book to Mary. Who takes the
book?" Its solution requires using the knowledge that
every act of giving results in a corresponding act of
taking. In a conventional procedure this knowledge
would be mixed with information about how it is to be
used. In the extended semantic network it is integrated,
as it stands, with the rest of the network, and the infor-
mation about its use is incorporated in the uniform,
general-purpose inference system.

e ~ J o h n

Similarly, special-purpose inference rules are unnec-
essary. Their effect is achieved by applying general-
purpose inference rules to domain-specific information
expressed in logic. In particular, it is common in semantic
networks to employ special-purpose inference rules
which are used to show that types lower in an Isa-
hierarchy inherit properties of types higher in the hier-

189 Communicat ions March 1979
of Volume 22
the ACM Number 3

archy. In the extended semantic network, to show that
humans inherit from animates the property of having a
parent, we assert that someone is human, deny that he
has a parent, and use general-purpose top-down infer-
ence.

½.S I an'mal ~ ani ate

humanl~ a ~ anlrnal human~__~lsa

(c) ~ A ~Isa (d) l ~ " A (e)

Note that resolution alone, as we have defined it, is
inadequate for demonstrating the inconsistency of cer-
tain sets of clauses. Russell's "Barber paradox," for
example, can only be demonstrated with the aid of the
factoring rule.

The factoring rule applies to a single clause and
derives an instance of the clause. The instantiating sub-
stitution matches two atoms of the same kind in the
clause (either both conditions or both conclusions). The
substitution makes the two atoms identical and only one
of them is retained in the derived clause, which is called
a factor. The figure below illustrates the use of resolution
together with factoring to obtain a refutation for a variant
of the Barber's paradox. Factoring is applied to each of
the two initial clauses. The resolvent of the two factors
is the empty clause.

John likes anyone who doesn't like himself.
John likes no one who likes himself.

John

(a)

Likes~ ~--~Likes

(b)

190

[]

© \

5. The Use of Semantic Networks to Guide the Search
for a Solution

Not only can the extended semantic network be
regarded as a syntactic variant of the clausal form of
logic, but it can also be regarded as an abstract data
structure for an implementation of a proof procedure.
Regarded as an abstract data structure, the semantic
network provides an indexing scheme which can be used
for guiding the search for a solution.

An indexing scheme is a method of organizing infor-
mation for the purpose of accessing it efficiently. It is the
characteristic feature of semantic networks that, given a
term, direct access is provided to all atoms (both condi-
tions and conclusions) containing that term. We call this
indexing on arguments. It is also possible to index on
predicate symbols: given a predicate symbol, direct access
is provided to all atoms containing that predicate symbol.
Indexing on predicate symbols is employed in almost all
predicate logic implementations. It is interesting there-
fore, from a theorem-proving point of view, to investigate
the consequences of using the semantic network indexing
on arguments.

Given two atoms which have just been matched to
create a resolvent, the extended semantic network pro-
vides direct access to their end nodes and consequently
to all (adjacent) atoms which contain those nodes. The
accessibility of adjacent atoms suggests the opportunistic
strategy of selecting adjacent atoms for matching in the
next resolution step. Repeatedly selecting adjacent atoms
for resolution gives the proof procedure a path-following
flavor.

Without intending to restrict the application of the
path-following strategy, we shah discuss in detail only
its application to top-down execution of Horn clauses.
Selection of adjacent atoms guides the execution of both
new procedure calls and old procedure calls, as well as
the choice of procedures.

When the matching substitution has an input com-
ponent which transmits input from the procedure call to
the procedure body, the strategy of selecting adjacent
atoms suggests selecting for execution an (adjacent) new
procedure call which contains the input. Different pat-
terns of input determine the selection of different pro-
cedure calls. In the example below, the initial procedure
call John = Likes ~ v determines the selection of one
(or both) of the new procedure calls John = Likes =* z

Communicat ions March 1979
of Volume 22
the ACM Number 3

and u = Actor ~ John (containing the input x --- John).
The initial procedure call v = Likes =* Mary, on the
other hand, determines the selection of u ~ Rec ~ Mary
(containing the input y = Mary).

John. Likes ~v

L kes Likes gives z<~ ,x ~,i i~i l~ y

A c t ~ u g ~'Rec

Likes John give z ~ v

(b)

Likes Likes
give z<~ ,~ Mary v

(a) A C ~ I /4"" Rec
(b')

Matching a variable in a procedure call with a vari-
able in a procedure head can be regarded either as
transmitting input or as transmitting output. It is advan-
tageous, however, to treat it as transmitting input. The
input is a variable, for which it is desired eventually to
obtain output by means of subsequent execution of new
procedure calls containing the variable. It is a conse-
quence of the semantic network storage scheme that
when the output is eventually determined (by matching
the variable with a nonvariable), it is transmitted directly
to all old procedure calls which contain the same varia-
ble. The old procedure calls can use that output as input.

Applied to the execution of new procedure calls,
selection of adjacent atoms has two characteristics. Out-
put is sought without delay by executing procedure calls
containing variable input. Input is used as soon as it is
available by executing procedure calls containing non-
variable input. Thus selecting adjacent new procedure
calls is bidirectional search, working both forwards from
the input and backwards from the output.

When the matching substitution has an output com-
ponent, the strategy of selecting adjacent atoms suggests
selecting for execution an (adjacent) old procedure call
which contains the output. This can be interpreted as
coroutining: The last executed procedure call has "pro-
duced" output to be "consumed" by old procedure calls
waiting to be activated.

Suppose for example:

John gives the book to Mary.
John likes the book.
Anyone who gives away anything he likes
must like the person he gives it to.
Mary knows everyone who does
anything with books.

Consider the problem:

Does Mary know anyone
who likes her?

191

~ A c t o r ~ ~ O b b k

e lit John

Suppose we first select the procedure call Mary
Knows ~ v and then decide to suspend the new

procedure calls because the only adjacent one contains
only variables. We activate the old procedure call v

Likes ~ Mary and match it with the procedure head
x = Likes ~ y. Input is transmitted to the procedure
body.

afloo k ~ Likes JoAh n

' T.e
We activate the new procedure call u = Rec ~ Mary
adjacent to the input constant "Mary." This transmits
output u = e to the three old procedure calls containing
u. Activating the one e = Actor ~ v which contains the
most recent variable v transmitted as input transmits
output v = John to the previously suspended old proce-
dure call which is now. u' = Actor ~ John. Every
procedure call which remains to be executed now
matches an adjacent assertion.

The network guides not only the selection of proce-
dure calls but also the selection of procedures (including
assertions). Given a procedure call, the strategy of se-
lecting adjacent atoms suggests choosing a procedure
head which shares a node (constant or functional term)
with the procedure call. This strategy is useful in some
cases but can be misleading in others. It is misleading
for example when applied to the problem, given in the
preceding section, of determining who took the book. If
in the initial goal clause we select the procedure call
x = Obj ~ book and match it with the adjacent assertion,
then we are led to a failure. The procedure head t(z)
~ Obj ~ w l which needs to be matched with the
procedure call contains no common node.

In order to access procedure heads, like the one

Communications March 1979
of Volume 22
the ACM Number 3

needed in the last example, it is useful to supplement the
semantic network indexing on arguments with indexing
on predicate symbols. Indexing on predicate symbols is
also useful when a procedure call shares a node with a
large number of procedure heads. We can avoid inves-
tigating all of the procedure heads, searching for one
which matches the call, by using the predicate symbol
index to identify the ones which have the same predicate
symbol as the procedure call.

6. Conclusions

Not only are logic and semantic networks compatible
formalisms, but each has something to contribute to the
other. Logic extends the expressive power of simple
semantic networks, provides them with a semantics, in-
ference rules, and a procedural interpretation. Semantic
networks, on the other hand, draw attention to the
advantages of using binary rather than n-ary relations.
They provide a predicate logic inference system, with
both an indexing scheme and a potentially useful path-
following strategy for guiding the search for a solution.

12. Robinson, J.A. A machine-oriented logic based on the resolution
principle. J, ACM 12, 1 (Jan. 1965), 23-41.
13. Robinson, J.A. Automatic deduction with hyper-re,;olution.
lnternat. .I. Comput. Math. 1, 1965, 227-34.
14. Robinson, J.A. Computational logic: The unification
computation. In Machine Intelligence 6, B. Meltzer and D. Michie,
Eds., Edinburgh University Press, 1971, pp. 63-72.
15. Schubert, L.K. Extending the expressive power of semantic
networks. Proc. Fourth Int. Joint Conf. Artif. Intel., Tiblisi, Georgia,
1975, pp. 158-164.
16. Shapiro, S.C. A net structure for semantic information storage,
deduction and retrieval. Proc. Sec. Int. Joint Conf. Artif. Intel.,
London, 1971, pp. 512-523.
17. Shapiro, S.C. Representing and locating deduction rules in a
semantic network. Proc. of the Workshop on Pattern Directed
Inference Systems, Sigart Newsletter (ACM), 63 (June 1977), pp. 14-
18.
18. Simmons, R.F., and Chester, D. Inferences on quantified
semantic networks. Proc. Fifth Int. Joint Conf. Artif. Intel., M.I.T.,
1977, pp. 267-273.
19. Woods, W.A. What's in a link. In Representation and
Understanding, D. Bobrow and A. Collins, Eds., Academic Press,
New York, 1975.

Acknowledgments. This research was supported by
assistance from the Science Research Council. We have
benefited from useful discussions with K. Clark about
his call-by-need design for a logic programming inter-
preter and B. Marsh about his indexing scheme for a
logic database system. Helpful comments on the paper
were given by D. Brough, F. Brown, and K. Clark.

Received August 1977

References
1. Boyer, R.S., and Moore JS. The sharing of structure in theorem-
proving programs. In Machine Intelligence 7, B. Meltzer and D.
Michie, Eds., Edinburgh University Press, 1972, pp. 101-16.
2. Deliyanni, A.J. A comparative study of semantic networks and
predicate logic. M. Sc. Th., Dept. of Comptg. and Control, Imperial
College, University of London, Sept. 1976.
3. Fikes, R.E., and Hendrix, G.G. A network-based knowledge
representation and its natural deduction system. Proc. Fifth Int. Joint
Conf. Artif. Intel., M.I.T., 1977, pp. 235-246.
4. Hayes, P.J. Computation and deduction. Proc. 2nd MFCS
Symp., Czechoslovak Acad. Sciences, 1973, pp. 105-I 18.
5. Hendrix, G.G. Expanding the utility of semantic networks
through partitioning. Proc. Fourth Int. Joint Conf. Artif. Intel.,
Tiblisi, Georgia, 1975, pp. 115-121.
6. Kowalski, R.A. Predicate logic as programming language.
Information Processing 74, North Holland Pub. Co., Amsterdam,
1974, pp. 569-574.
7. Kowalski, R.A. Algorithm = logic + control. Res. Rep. 77/3,
Dept. of Comptg. and Control, Imperial College, University of
London, Nov. 1976; to appear in Comm. ACM.
8. Loveland, D.W. A unifying view of some linear Herbrand
procedures. £ ACM 19, 2 (April 1972), 366-84.
9. Luckham, D. Refinement theorems in resolution theory. Proc.
IRIA Symp. on Automatic Demonstration, Versailles, France, 1970,
pp. 162-90 (available from Springer-Verlag).
10. McSkim!n, J.R., and Minker, J. A predicate calculus based
semantic network for question-answering systems. Tech. Rep. TR-
509, Dept. Cornptr. Sci., U. of Maryland, March 1977.
11. Mylopoulos, J., Cohen, P., Borgida, A., and Sugar, L. Semantic
networks and the generation of context. Proc. Fourth Int. Joint Conf.
Artif. Intel., Tiblisi, Georgia, 1975, pp. 134-142.

192 Communications March 1979
of Volume 22
the ACM Number 3

