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1 IntroductionThis paper extends and updates our earlier survey and analysis of work on the extensionof logic programming to perform abductive reasoning [88]. The purpose of the paper isto provide a critical overview of some of the main research results, in order to developa common framework for evaluating these results, to identify the main unresolved prob-lems, and to indicate directions for future work. The emphasis is not on technical detailsbut on relationships and common features of di�erent approaches. Some of the mainissues we will consider are the contributions that abduction can make to the problems ofreasoning with incomplete or negative information, the evolution of knowledge, and thesemantics of logic programming and its extensions. We also discuss recent work on theargumentation-theoretic interpretation of abduction, which was introduced in the earlierversion of this paper.The philosopher Pierce �rst introduced the notion of abduction. In [133] he identi�edthree distinguished forms of reasoning.Deduction, an analytic process based on the application of general rules to particularcases, with the inference of a result.Induction, synthetic reasoning which infers the rule from the case and the result.Abduction, another form of synthetic inference, but of the case from a rule and a result.Peirce further characterised abduction as the \probational adoption of a hypothesis" asexplanation for observed facts (results), according to known laws. \It is however a weakkind of inference, because we cannot say that we believe in the truth of the explanation,but only that it may be true"[133].Abduction is widely used in common-sense reasoning, for instance in diagnosis, to reasonfrom e�ect to cause [22, 142]. We consider here an example drawn from [131].Example 1.1Consider the following theory Tgrass-is-wet  rained-last-nightgrass-is-wet  sprinkler-was-onshoes-are-wet  grass-is-wet:If we observe that our shoes are wet, and we want to know why this is so, frained-last-nightgis a possible explanation, i.e. a set of hypotheses that together with the explicit knowledgein T implies the given observation. fsprinkler-was-ong is another alternative explana-tion.Abduction consists of computing such explanations for observations. It is a form ofnon-monotonic reasoning, because explanations which are consistent with one state of aknowledge base may become inconsistent with new information. In the example above theexplanation rained-last-night may turn out to be false, and the alternative explanationsprinkler-was-on may be the true cause for the given observation. The existence ofmul-tiple explanations is a general characteristic of abductive reasoning, and the selectionof \preferred" explanations is an important problem.3

1.1 Abduction in logicGiven a set of sentences T (a theory presentation), and a sentence G (observation), to a�rst approximation, the abductive task can be characterised as the problem of �nding aset of sentences � (abductive explanation for G) such that:(1) T [� j= G,(2) T [� is consistent.This characterisation of abduction is independent of the language in which T , G and �are formulated. The logical implication sign j= in (1) can alternatively be replaced by adeduction operator `. The consistency requirement in (2) is not explicit in Peirce's moreinformal characterisation of abduction, but it is a natural further requirement.In fact, these two conditions (1) and (2) alone are too weak to capture Peirce's notion. Inparticular, additional restrictions on � are needed to distinguish abductive explanationsfrom inductive generalisations [27]. Moreover, we also need to restrict � so that it conveyssome reason why the observations hold, e.g. we do not want to explain one e�ect in termsof another e�ect, but only in terms of some cause. For both of these reasons, explanationsare often restricted to belong to a special pre-speci�ed, domain-speci�c class of sentencescalled abducible. In this paper we will assume that the class of abducibles is always given.Additional criteria have also been proposed to restrict the number of candidate explana-tions:� Once we restrict the hypotheses to belong to a speci�ed set of sentences, we canfurther restrict, without loss of generality, the hypotheses to atoms (that \name"these sentences) which are predicates explicitly indicated as abducible, as shown byPoole [145].� In section 1.2 we will discuss the use of integrity constraints to reduce the numberof possible explanations.� Additional information can help to discriminate between di�erent explanations, byrendering some of them more appropriate or plausible than others. For exampleSattar and Goebel [173] use \crucial literals" to discriminate between two mutu-ally incompatible explanations. When the crucial literals are tested, one of theexplanations is rejected. More generally Evans and Kakas [56] use the notion of cor-roboration to select explanations. An explanation fails to be corroborated if someof its logical consequences are not observed. A related technique is presented bySergot in [175], where information is obtained from the user during the process ofquery evaluation.� Moreover various (domain speci�c) criteria of preference can be speci�ed. Theyimpose a (partial) order on the sets of hypotheses which leads to the discriminationof explanations [13, 22, 61, 77, 143, 148, 180].Cox and Pietrzykowski [29] identify other desirable properties of abductive explanations.For instance, an explanation should be basic, i.e. should not be explainable in terms of4



other explanations. For instance, in example 1.1 the explanationfgrass-is-wetgfor the observation shoes-are-wetis not basic, whereas the alternative explanationsfrained-last-nightgfsprinkler-was-ongare.An explanation should also beminimal, i.e. not subsumed by another one. For example,in example 1.1 the explanationfrained-last-night; sprinkler-was-ongfor the observation shoes-are-wetis not minimal, while the explanationsfrained-last-nightgfsprinkler-was-ongare.So far we have presented a semantic characterisation of abduction and discussed someheuristics to deal with the multiple explanation problem, but we have not described anyproof procedures for computing abduction. Various authors have suggested the use oftop-down, goal-oriented computation, based on the use of deduction to drive the genera-tion of abductive hypotheses. Cox and Pietrzykowski [29] construct hypotheses from the\dead ends" of linear resolution proofs. Finger and Genesereth [57] generate \deductivesolutions to design problems" using the \residue" left behind in resolution proofs. Poole,Goebel and Aleliunas [150] also use linear resolution to generate hypotheses.In contrast, the ATMS [102] computes abductive explanations bottom-up. The ATMScan be regarded as a form of hyper-resolution, augmented with subsumption, for propo-sitional logic programs [162]. Lamma and Mello [115] have developed an extension of theATMS for the non-propositional case. Resolution-based techniques for computing abduc-tion have also been developed by Demolombe and Fari~nas del Cerro [31] and Gaifmanand Shapiro [64].Abduction can also be applied to logic programming (LP). A (general) logic programis a set of Horn clauses extended by negation as failure [24], i.e. clauses of the form:A  L1; : : : ; Ln5

where each Li is either an atom Ai or its negation � Ai 1, A is an atom and each vari-able occurring in the clause is implicitly universally quanti�ed. A is called the head andL1; : : : ; Ln is called the body of the clause. A logic program where each literal Li in thebody of every clause is atomic is said to be de�nite.Abduction can be computed in LP by extending SLD and SLDNF [23, 53, 54, 91, 94, 34,181]. Instead of failing in a proof when a selected subgoal fails to unify with the head ofany rule, the subgoal can be viewed as a hypothesis. This is similar to viewing abduciblesas \askable" conditions which are treated as quali�cations to answers to queries [175]. Inthe same way that it is useful to distinguish a subset of all predicates as \askable", it isuseful to distinguish certain predicates as abducible. In fact, it is generally convenientto choose, as abducible predicates, ones which are not conclusions of any clause. As weshall remark at the beginning of section 5, this restriction can be imposed without loss ofgenerality, and has the added advantage of ensuring that all explanations will be basic.Abductive explanations computed in LP are guaranteed to be minimal, unless the programitself encodes non-minimal explanations. For example, in the propositional logic programp  qp  q; rboth the minimal explanation fqg and the non-minimal explanation fq; rg are computedfor the observation p.The abductive task for the logic-based approach has been proved to be highly intractable:it is NP-hard even if T is a set of acyclic [7] propositional de�nite clauses [174, 48], andis even harder if T is a set of any propositional clauses [48]. These complexity resultshold even if explanations are not required to be minimal. However, the abductive task istractable for certain more restricted classes of logic programs (see for example [52]).There are other formalisations of abduction. We mention them for completeness, but inthe sequel we will concentrate on the logic-based view previously described.� Allemand, Tanner, Bylander and Josephson [6] and Reggia [155] present a mathe-matical characterisation, where abduction is de�ned over sets of observations andhypotheses, in terms of coverings and parsimony.� Levesque [117] gives an account of abduction at the \knowledge level". He charac-terises abduction in terms of a (modal) logic of beliefs, and shows how the logic-basedapproach to abduction can be understood in terms of a particular kind of belief.In the previous discussion we have briey described both semantics and proof proce-dures for abduction. The relationship between semantics and proof procedures can beunderstood as a special case of the relationship between program speci�cations and pro-grams. A program speci�cation characterises what is the intended result expected fromthe execution of the program. In the same way semantics can be viewed as an abstract,1In the sequel we will represent negation as failure as �.6



possibly non-constructive de�nition of what is to be computed by the proof procedure.From this point of view, semantics is not so much concerned with explicating meaning interms of truth and falsity, as it is with providing an abstract speci�cation which \declar-atively" expresses what we want to compute. This speci�cation view of semantics ise�ectively the one adopted in most recent work on the semantics of LP, which restrictsinterpretations to Herbrand interpretations. The restriction to Herbrand interpretationsmeans that interpretations are purely syntactic objects, which have no bearing on the cor-respondence between language and \reality". A purely syntactic view of semantics, basedupon the notion of knowledge assimilation described in section 2 below, is developed in[110].One important alternative way to specify the semantics of a language, which will be usedin the sequel, is through the translation of sentences expressed in one language intosentences of another language, whose semantics is already well understood. For exampleif we have a sentence in a typed logic language of the form \there exists an object oftype t such that the property p holds" we can translate this into a sentence of the form9x (p(x) ^ t(x)), where t is a new predicate to represent the type t, whose semantics isthen given by the familiar semantics of �rst-order logic. Similarly the typed logic sentence\for all objects of type t the property p holds" becomes the sentence 8x(p(x)  t(x)).Hence instead of developing a new semantics for the typed logic language, we apply thetranslation and use the existing semantics of �rst-order logic.1.2 Integrity ConstraintsAbduction as presented so far can be restricted by the use of integrity constraints. In-tegrity constraints are useful to avoid unintended updates to a database or knowledgebase. They can also be used to represent desired properties of a program [116].The concept of integrity constraints �rst arose in the �eld of databases and to a lesserextent in the �eld of AI knowledge representation. The basic idea is that only certainknowledge base states are considered acceptable, and an integrity constraint is meant toenforce these legal states. When abduction is used to perform updates (see section 2), wecan use integrity constraints to reject abductive explanations.Given a set of integrity constraints, I, of �rst-order closed formulae, the second condition(2) of the semantic de�nition of abduction (see section 1.1) can be replaced by:(20) T [� satis�es I.As previously mentioned, we also restrict � to consist of atoms drawn from predicatesexplicitly indicated as abducible. Until the discussion in section 5.7, we further restrict� to consist of variable-free atomic sentences.In the sequel an abductive framework will be given as a triple hT; A; Ii, where T isa theory, A is the set of abducible predicates, i.e. � � A 2 and I is a set of integrityconstraints.2Here and in the rest of this paper we will use the same symbol A to indicate both the set of abduciblepredicates and the set of all their variable-free instances.7

There are several ways to de�ne what it means for a knowledge base KB (T [� in ourcase) to satisfy an integrity constraint � (in our framework � 2 I). The consistencyview requires that: KB satis�es � i� KB [ � is consistent:Alternatively the theoremhood view requires that:KB satis�es � i� KB j= �:These de�nitions have been proposed in the case where the theory is a logic program Pby Kowalski and Sadri [165] and Lloyd and Topor [118] respectively, where KB is theClark completion [24] of P .Another view of integrity constraints [85, 90, 107, 160, 161] regards these as epistemicor metalevel statements about the content of the database. In this case the integrityconstraints are understood as statements at a di�erent level from those in the knowledgebase. They specify what must be true about the knowledge base rather than what is trueabout the world modelled by the knowledge base. When later we consider abduction inLP (see sections 4,5), integrity satisfaction will be understood in a sense which is strongerthan consistency, weaker than theoremhood, and arguably similar to the epistemic ormetalevel view.For each such semantics, we have a speci�cation of the integrity checking problem. Al-though the di�erent views of integrity satisfaction are conceptually very di�erent, theintegrity checking procedures based upon these views are not very di�erent in practice(e.g. [30, 165, 118]). They are mainly concerned with avoiding the ine�ciency which arisesif all the integrity constraints are retested after each update. A common idea of all theseprocedures is to render integrity checking more e�cient by exploiting the assumption thatthe database before the update satis�es the integrity constraints, and therefore if integrityconstraints are violated after the update, this violation should depend upon the updateitself. In [165] this assumption is exploited by reasoning forward from the updates. Thisidea is exploited for the purpose of checking the satisfaction of abductive hypotheses in[54, 93, 94]. Although this procedure was originally formulated for the consistency viewof constraint satisfaction, it has proved equally appropriate for the semantics of integrityconstraints in abductive logic programming.1.3 ApplicationsIn this section we briey describe some of the applications of abduction in AI. In general,abduction is appropriate for reasoning with incomplete information. The generation ofabducibles to solve a top-level goal can be viewed as the addition of new information tomake incomplete information more complete.Abduction can be used to generate causal explanations for fault diagnosis (see for exam-ple [25, 151]). In medical diagnosis, for example, the candidate hypotheses are the possiblecauses (diseases), and the observations are the symptoms to be explained [146, 155]. Ab-duction can also be used for model-based diagnosis [51, 159]. In this case the theorydescribes the \normal" behaviour of the system, and the task is to �nd a set of hypothe-ses of the form \some component A is not normal" that explains why the behaviour of8



the system is not normal.Abduction can be used to perform high level vision [29]. The hypotheses are the objectsto be recognised, and the observations are partial descriptions of objects.Abduction can be used in natural language understanding to interpret ambiguoussentences [22, 62, 78, 179]. The abductive explanations correspond to the various possibleinterpretations of such sentences.In planning problems, plans can be viewed as explanations of the given goal state to bereached [50, 176].These applications of abduction can all be understood as generating hypotheses which arecauses for observations which are e�ects. An application that does not necessarily havea direct causal interpretation is knowledge assimilation [94, 105, 114, 125], describedin greater detail below. The assimilation of a new datum can be performed by adding tothe theory new hypotheses that are explanations for the datum. Knowledge assimilationcan also be viewed as the general context within which abduction takes place. Databaseview updates [17, 91, 28] are an important special case of knowledge assimilation. Up-date requests are interpreted as observations to be explained. The explanations of theobservations are transactions that satisfy the update request.Another important application which can be understood in terms of a \non-causal" useof abduction is default reasoning. Default reasoning concerns the use of general rulesto derive information in the absence of contradictions. In the application of abductionto default reasoning, conclusions are viewed as observations to be explained by meansof assumptions which hold by default unless a contradiction can be shown [53, 145]. AsPoole [145] argues, the use of abduction avoids the need to develop a non-classical, non-monotonic logic for default reasoning. In section 3 we will further discuss the use ofabduction for default reasoning in greater detail. Because negation as failure in LP is aform of default reasoning, its interpretation by means of abduction will be discussed insection 4.Some authors (e.g. Pearl [132]) advocate the use of probability theory as an alternativeapproach to common sense reasoning in general, and to many of the applications listedabove in particular. However, Poole [149] shows how abduction can be used to simulate(discrete) Bayesian networks in probability theory. He proposes the language of proba-bilistic Horn abduction: in this language an abductive framework is a triple hT; A; Ii,where T is a set of Horn clauses, A is a set of abducibles without de�nitions in T (with-out loss of generality, see section 5), and I is a set of integrity constraints in the form ofdenials of abducibles only. In addition, for each integrity constraint, a probability value isassigned to each abducible, so that the sum of all the values of all the abducibles in eachintegrity constraint is 1. If the abductive framework satis�es certain assumptions, e.g. Tis acyclic [7], the bodies of all the clauses de�ning each non-abducible atom are mutu-ally exclusive and these clauses are \covering", and abducibles in A are \probabilisticallyindependent", then such a probabilistic Horn abduction theory can be mapped onto a(discrete) Bayesian network and vice versa. 9

2 Knowledge AssimilationAbduction takes place in the context of assimilating new knowledge (information, belief ordata) into a theory (or knowledge base). There are four possible deductive relationshipsbetween the current knowledge base (KB), the new information, and the new KB whicharises as a result [105, 110].1. The new information is already deducible from the current KB. The new KB, as aresult, is identical with the current one.2. The current KB = KB1 [ KB2 can be decomposed into two parts. One part KB1together with the new information can be used to deduce the other part KB2. Thenew KB is KB1 together with the new information.3. The new information violates the integrity of the current KB. Integrity can berestored by modifying or rejecting one or more of the assumptions which lead to thecontradiction.4. The new information is independent from the current KB. The new KB is obtainedby adding the new information to the current KB.In case (4) the KB can, alternatively, be augmented by an explanation for the new datum[94, 105, 114]. In [114] the authors have developed a system for knowledge assimilation(KA) based on this use of abduction. They have identi�ed the basic issues associatedwith such a system and proposed solutions for some of these.Various motivations can be given for the addition of an abductive explanation insteadof the new datum in case (4) of the process of KA. For example, in natural languageunderstanding or in diagnosis, the assimilation of information naturally demands an ex-planation. In other cases the addition of an explanation as a way of assimilating new datais forced by the particular way in which the knowledge is represented in the theory. Thisis the case, for instance, for the formulation of temporal reasoning in the Event Calculus[113, 108], as illustrated by the following example.Example 2.1The simpli�ed version of the event calculus we consider contains an axiom that expressesthe persistence of a property P from the time T1 that it is initiated by an event E to alater time T2: holds at(P; T2)  happens(E;T1);T1 < T2;initiates(E; P );persists(T1; P; T2):New information that a property holds at a particular time point can be assimilatedby adding an explanation in terms of the happening of some event that initiates thisproperty at an earlier point of time together with an appropriate assumption that theproperty persists from one time to the other [50, 89, 176, 186]. This has the additionale�ect that the new KB will imply that the property holds until it is terminated in thefuture by the happening of some event [176]. The fact that a property P cannot persist10



from a time T1 to a later time T2 if an event E happens at a time T between T1 and T2such that E terminates P is expressed by the following integrity constraint::[persists(T1; P; T2) ^ happens(E; T ) ^ terminates(E; P ) ^ T1 < T < T2]:Assimilating new information by adding explanations that satisfy the integrity constraintshas the further e�ect of resolving conicts between the current KB and the new informa-tion [89, 176]. For example, suppose that KB contains the facts 3happens(takes book(mary); t0)initiates(takes book(X); has book(X))terminates(gives book(X;Y ); has book(X))initiates(gives book(X;Y ); has book(Y ))Then, given t0 < t1 < t2, the persistence axiom predicts holds at(has book(mary); t1) byassuming persists(t0; has book(mary); t1), and holds at(has book(mary); t2) by assumingpersists(t0; has book(mary); t2). Both these assumptions are consistent with the integrityconstraint. Suppose now that the new information holds at(has book(john); t2) is addedto KB. This conicts with the prediction holds at(has book(mary); t2). However, the newinformation can be assimilated by adding to KB the hypotheseshappens(gives book(mary; john); t1) and persists(t1; has book(john); t2) and by retract-ing the hypothesis persists(t0; has book(mary); t2). Therefore, the earlier predictionholds at(has book(mary); t2) can no longer be derived from the new KB.Note that in this example the hypothesis happens(gives book(mary; john); t1) can beadded to KB since it does not violate the further integrity constraint:[happens(E;T ) ^ precondition(E;T; P )^ � holds at(P; T )]expressing that an event E cannot happen at a time T if the preconditions P of E do nothold at time T . In this example, we may assume that KB also contains the factprecondition(gives book(X;Y ); has book(X)):Once a hypothesis has been generated as an explanation for an external datum, it itselfneeds to be assimilated into the KB. In the simplest situation, the explanation is justadded to the KB, i.e. only case (4) applies without further abduction. Case (1) doesn'tapply, if abductive explanations are required to be basic. However case (2) may apply, andcan be particularly useful for discriminating between alternative explanations for the newinformation. For instance we may prefer a set of hypotheses which entails informationalready in the KB, i.e. hypotheses that render the KB as \compact" as possible.Example 2.2Suppose the current KB contains p  qpr  qr  s3Note that here KB contains a de�nition for the abducible predicate happens. In section 5 we willsee that new predicates and clauses can be added to KB so that abducible predicates have no de�nitionsin the transformed KB. 11

and r is the new datum to be assimilated. The explanation fqg is preferable to theexplanation fsg, because q implies both r and p, but s only implies r. Namely, theexplanation fqg is more relevant.Notice however that the use of case (2) to remove redundant information can cause prob-lems later. If we need to retract previously inserted information, entailed informationwhich is no longer explicitly in the KB might be lost.It is interesting to note that case (3) can be used to check the integrity of abductivehypotheses generated in case (4).Any violation of integrity detected in case (3) can be remedied in several ways [105]. Thenew input can be retracted as in conventional databases. Alternatively the new inputcan be upheld and some other assumptions can be withdrawn. This is the case withview updates. The task of translating the update request on the view predicates to anequivalent update on the extensional part (as in case (4) of KA) is achieved by �ndingan abductive explanation for the update in terms of variable-free instances of extensionalpredicates [91]. Any violation of integrity is dealt with by changing the extensional partof the database.Example 2.3Suppose the current KB consists of the clausessibling(X;Y ) parent(Z;X); parent(Z; Y )parent(X;Y ) father(X;Y )parent(X;Y ) mother(X;Y )father(john;mary)mother(jane;mary)together with the integrity constraintsX = Y  father(X;Z); father(Y;Z)X = Y  mother(X;Z); mother(Y;Z)X 6= Y  mother(X;Z); father(Y;W )where sibling and parent are view predicates, father and mother are extensional, and=; 6= are \built-in" predicates such thatX = X ands 6= t for all distinct variable-free terms s and t:Suppose the view update insert sibling(mary; bob)is given. This can be translated into either of the two minimal updatesinsert father(john; bob)insert mother(jane; bob)12



on the extensional part of the KB. Both of these updates satisfy the integrity constraints.However, only the �rst update satis�es the integrity constraints if we are given the furtherupdate insert mother(sue; bob):The general problem of belief revision has been studied formally in [65, 128, 129, 37].G�ardenfors proposes a set of axioms for rational belief revision containing such constraintson the new theory as \no change should occur to the theory when trying to delete a factthat is not already present" and \the result of revision should not depend on the syn-tactic form of the new data". These axioms ensure that there is always a unique way ofperforming belief revision. However Doyle [37] argues that, for applications in AI, thisuniqueness property is too strong. He proposes instead the notion of \economic ratio-nality", in which the revised sets of beliefs are optimal, but not necessarily unique, withrespect to a set of preference criteria on the possible beliefs states. This notion has beenused to study the evolution of databases by means of updates [86]. It should be notedthat the use of abduction to perform belief revision in the view update case also allowsresults which are not unique, as illustrated in example 2.3. Aravindan and Dung [8] havegiven an abductive characterisation of rational belief revision and have applied this resultto formulate belief revision postulates for the view update problem.A logic-based theory of the assimilation of new information has also been developed inthe Relevance Theory of Sperber and Wilson [178] with special attention to natural lan-guage understanding. Gabbay, Kempson and Pitts [63] have investigated how abductivereasoning and relevance theory can be integrated to choose between di�erent abductiveinterpretations of a natural language discourse.KA and belief revision are also related to truth maintenance systems. We will discusstruth maintenance and its relationship with abduction in section 8.3 Default Reasoning viewed as AbductionDefault reasoning concerns the application of general rules to draw conclusions providedthe application of the rules does not result in contradictions. Given, for example, thegeneral rules \birds y" and \penguins are birds that do not y" and the only fact aboutTweety that Tweety is a bird, we can derive the default conclusion that Tweety ies.However, if we are now given the extra information that Tweety is a penguin, we can alsoconclude that Tweety does not y. In ordinary, common sense reasoning, the rule thatpenguins do not y has priority over the rule that birds y, and consequently this newconclusion that Tweety does not y causes the original conclusion to be withdrawn.One of the most important formalisations of default reasoning is the Default Logic ofReiter [158]. Reiter separates beliefs into two kinds, ordinary sentences used to express\facts" and default rules of inference used to express general rules. A default rule is aninference rule of the form �(X) : M�1(X); : : : ;M�n(X)(X)13

which expresses, for all variable-free instances t of X 4, that (t) can be derived if �(t)holds and each of �i(t) is consistent, where �(X); �i(X); (X) are �rst-order formulae.Default rules provide a way of extending an underlying incomplete theory. Di�erent ap-plications of the defaults can yield di�erent extensions.As already mentioned in section 1, Poole, Goebel and Aleliunas [150] and Poole [145]propose an alternative formalisation of default reasoning in terms of abduction. LikeReiter, Poole also distinguishes two kinds of beliefs:� beliefs that belong to a consistent set of �rst order sentences F representing \facts",and� beliefs that belong to a set of �rst order formulae D representing defaults.Perhaps the most important di�erence between Poole's and Reiter's formalisations is thatPoole uses sentences (and formulae) of classical �rst order logic to express defaults, whileReiter uses rules of inference. Given a Theorist framework hF ; Di, default reasoning canbe thought of as theory formation. A new theory is formed by extending the existingtheory F with a set � of sentences which are variable-free instances of formulae in D.The new theory F [� should be consistent. This process of theory formation is a formof abduction, where variable-free instances of defaults in D are the candidate abducibles.Poole [145] shows that the semantics of the theory formation framework hF ; Di is equiv-alent to that of an abductive framework hF 0; A; ;i (see section 1.2) where the defaultformulae are all atomic. The set of abducibles A consists of a new predicatepw(x)for each default formula w(x)in D with free variables x. The new predicate is said to \name" the default. The set F 0is the set F augmented with a sentence8X [pw(X) ! w(X)]for each default in D.The theory formation framework and its correspondence with the abductive frameworkcan be illustrated by the ying-birds example.Example 3.1In this case, the framework hF ; Di is 5F = f penguin(X) ! bird(X);4We use the notation X to indicate a tuple of variables X1; : : : ; Xn and t to represent a tuple of termst1; : : : ; tn.5Here, we use the conventional notation of �rst-order logic, rather than LP form. We use ! for theusual implication symbol for �rst-order logic in contrast with  for LP. However, as in LP notation,variables occurring in formulae of F are assumed to be universally quanti�ed. Formulae of D, on theother hand, should be understood as schemata standing for the set of all their variable-free instances.14



penguin(X) ! : fly(X);penguin(tweety);bird(john)gD = f bird(X) ! fly(X) g: (1)The priority of the rule that penguins do not y over the rule that birds y is obtainedby regarding the �rst rule as a fact and the second rule as a default. The atom fly(john)is a default conclusion which holds in F [� with� = f bird(john) ! fly(john) g:We obtain the same conclusion by naming the default (1) by means of a predicatebirds-fly(X), adding to F the new \fact"birds-fly(X) ! [bird(X) ! fly(X)] (2)and extending the resulting augmented set of facts F 0 with the set of hypotheses�0 = f birds-fly(john) g. On the other hand, the conclusion fly(tweety) cannot bederived, because the extension� = f bird(tweety) ! fly(tweety) gis inconsistent with F , and similarly the extension�0 = f birds-fly(tweety) gis inconsistent with F 0.Poole shows that normal defaults without prerequisites in Reiter's default logic: M�(X)�(X)can be simulated by Theorist (abduction) simply by making the predicates �(X) ab-ducible. He shows that the default logic extensions in this case are equivalent to maximalsets of variable-free instances of the default formulae �(X) that can consistently be addedto the set of facts.Maximality of abductive hypotheses is a natural requirement for default reasoning, be-cause we want to apply defaults whenever possible. However, maximality is not appro-priate for other uses of abductive reasoning. In particular, in diagnosis we are generallyinterested in explanations which are minimal. Later, in section 5.1 we will distinguish be-tween default and non-default abducibles in the context of abductive logic programming.In the attempt to use abduction to simulate more general default rules, however, Pooleneeds to use integrity constraints. The new theory F [ � should be consistent with theseconstraints. Default rules of the form:�(X) : M�1(X); : : : ;M�n(X)(X)15

are translated into \facts", which are implications�(X) ^M�1(X) ^ : : : ^M�n(X) ! (X)where M�i is a new predicate, and M�i(X) is a default formula (abducible), for all i =1; : : : ; n. Integrity constraints :�i(X) ! :M�i(X)are needed to link the new predicates M�i appropriately with the predicates �i, for alli = 1; : : : ; n. A further integrity constraint: (X)! :M�i(X);for any i = 1; : : : ; n, is needed to prevent the application of the contrapositive: (X) ^M�1(X) ^ : : : ^M�n(X) ! :�(X)of the implication, in the attempt to make the implication behave like an inference rule.This use of integrity constraints is di�erent from their intended use in abductive frame-works as presented in section 1.2.Poole's attempted simulation of Reiter's general default rules is not exact. He presentsa number of examples where the two formulations di�er and argues that Reiter's defaultlogic gives counterintuitive results. In fact, many of these examples can be dealt withcorrectly in certain extensions of default logic, such as Cumulative Default Logic [121],and it is possible to dispute some of the other examples. But, more importantly, there arestill other examples where the Theorist approach arguably gives the wrong result. Themost important of these is the now notorious Yale shooting problem of [73, 74]. This canbe reduced to the propositional logic programalive-after-load-wait-shoot  alive-after-load-wait,� abnormal-alive-shootloaded-after-load-wait loaded-after-load,� abnormal-loaded-waitabnormal-alive-shoot  loaded-after-load-waitalive-after-load-waitloaded-after-load:As argued in [127], these clauses can be simpli�ed further: First, the factsalive-after-load-wait and loaded-after-load can be eliminated by resolving them againstthe corresponding conditions of the �rst two clauses, givingalive-after-load-wait-shoot  � abnormal-alive-shootloaded-after-load-wait � abnormal-loaded-waitabnormal-alive-shoot  loaded-after-load-waitThen the atom loaded-after-load-wait can be resolved away from the second and thirdclauses leaving the two clauses 16



alive-after-load-wait-shoot  � abnormal-alive-shootabnormal-alive-shoot  � abnormal-loaded-waitThe resulting clauses have the form p  � qq  � r:Hanks and McDermott showed, in e�ect, that the default theory, whose facts consist of:q ! p:r ! qand whose defaults are the normal defaults: M: q: q : M: r: rhas two extensions: one in which : r, and therefore q holds; and one in which : q, andtherefore p holds. The second extension is intuitively incorrect under the intended in-terpretation. Hanks and Mc Dermott showed that many other approaches to defaultreasoning give similarly incorrect results. However, Morris [127] showed that the defaulttheory which has no facts but contains the two non-normal defaults: M: qp : M: rqyields only one extension, containing q, which is the correct result. In contrast, all naturalrepresentations of the problem in Theorist give incorrect results.As Eshghi and Kowalski [53], Evans [55] and Apt and Bezem [7] observe, the Yale shoot-ing problem has the form of a logic program, and interpreting negation in the problem asnegation as failure yields only the correct result. This is the case for both the semanticsand the proof theory of LP. Moreover, [53] and [89] show how to retain the correct resultwhen negation as failure is interpreted as a form of abduction.On the other hand, the Theorist framework does overcome the problem that some defaulttheories do not have extensions and hence cannot be given any meaning within Reiter'sdefault logic. In the next section we will see that this problem also occurs in LP, but thatit can also be overcome by an abductive treatment of negation as failure. We will also seethat the resulting abductive interpretation of negation as failure allows us to regard LPas a hybrid which treats defaults as abducibles in Theorist but treats clauses as inferencerules in default logic.The inference rule interpretation of logic programs, makes LP extended with abduc-tion especially suitable for default reasoning. Integrity constraints can be used, not forpreventing application of contrapositives, but for representing negative information andexceptions to defaults. 17

Example 3.2The default (1) in the ying-birds example 3.1 can be represented by the logic programfly(X)  bird(X); birds-fly(X);with the abducible predicate birds-fly(X). Note that this clause is equivalent to the\fact" (2) obtained by renaming the default (1) in Theorist. The exception can be repre-sented by an integrity constraint:: fly(X)  penguin(X):The resulting logic program, extended by means of abduction and integrity constraints,gives similar results to the Theorist formulation of example 3.1.In sections 4, 5 and 6 we will see other ways of performing default reasoning in LP. In sec-tion 4 we will introduce negation as failure as a form of abductive reasoning. In section 5we will discuss abductive logic programming with default and non-default abducibles anddomain-speci�c integrity constraints. In section 6 we will consider an extended LP frame-work that contains clauses with negative conclusions and avoids the use of explicit integrityconstraints in many cases. In section 7 we will present an abstract argumentation-basedframework for default reasoning which uni�es the treatment of abduction, default logic,LP and several other approaches to default reasoning.4 Negation as Failure as AbductionWe noted in the previous section that default reasoning can be performed by means ofabduction in LP by explicitly introducing abducibles into rules. Default reasoning canalso be performed with the use of negation as failure (NAF) [24] in general logic pro-grams. NAF provides a natural and powerful mechanism for performing non-monotonicand default reasoning. As we have already mentioned, it provides a simple solution to theYale shooting problem. The abductive interpretation of NAF that we will present belowprovides further evidence for the suitability of abduction for default reasoning.To see how NAF can be used for default reasoning, we return to the ying-birds example.Example 4.1The NAF formulation di�ers from the logic program with abduction presented in the lastsection (example 3.2) by employing a negative condition� abnormal-bird(X)instead of a positive abducible conditionbirds-fly(X)and by employing a positive conclusionabnormal-bird(X)18



in an ordinary program clause, instead of a negative conclusion: fly(X)in an integrity constraint. The two predicates abnormal-bird and birds-fly are oppositeto one another. Thus in the NAF formulation the default is expressed by the clausefly(X)  bird(X); � abnormal-bird(X)and the exception by the clauseabnormal-bird(X)  penguin(X):In this example, both the abductive formulation with an integrity constraint and theNAF formulation give the same result. We will see later in section 5.5 that there existsa systematic transformation which replaces positive abducibles by NAF and integrityconstraints by ordinary clauses. This example can be regarded as an instance of thattransformation.4.1 Logic programs as abductive frameworksThe similarity between abduction and NAF can be used to give an abductive interpreta-tion of NAF. This interpretation was presented in [53] and [54], where negative literalsare interpreted as abductive hypotheses that can be assumed to hold provided that, to-gether with the program, they satisfy a canonical set of integrity constraints. A generallogic program P is thereby transformed into an abductive framework hP �; A�; I�i (seesection 1) in the following way.� A new predicate symbol p� (the opposite of p) is introduced for each p in P , andA� is the set of all these predicates.� P � is P where each negative literal � p(t) has been replaced by p�(t).� I� is a set of all integrity constraints of the form 6:8X : [p(X) ^ p�(X)] and8X [p(X) _ p�(X)]:6In the original paper the disjunctive integrity constraints were written in the formDemo(P �[�, p(t)) _ Demo(P �[�, p�(t)),where t is any variable-free term. This formulationmakes explicit a particular (meta-level) interpretationof the disjunctive integrity constraint. The simpler form8X [p(X) _ p�(X)]is neutral with respect to the interpretation of integrity constraints and allows the meta-level interpreta-tion as a special case. 19

The semantics of the abductive framework hP �; A�; I�i, in terms of extensions 7 P �[�of P �, where � � A�, gives a semantics for the original program P . A conclusion Q holdswith respect to P if and only if the query Q�, obtained by replacing each negative literal� p(t) in Q by p�(t), has an abductive explanation in the framework hP �; A�; I�i. Thistransformation of P into hP �; A�; I�i is an example of the method, described at the endof section 1.1, of giving a semantics to a language by translating it into another languagewhose semantics is already known.The integrity constraints in I� play a crucial role in capturing the meaning of NAF. Thedenials express that the newly introduced symbols p� are the negations of the correspond-ing p. They prevent an assumption p�(t) if p(t) holds. On the other hand the disjunctiveintegrity constraints force a hypothesis p�(t) whenever p(t) does not hold.Hence we de�ne the meaning of the integrity constraints I� as follows: An extensionP �[ � (which is a Horn theory) of P � satis�es I� if and only if for every variable-freeatom p, P � [ � 6j= p ^ p�; andP � [ � j= p or P � [ � j= p�:Eshghi and Kowalski [54] show that there is a one to one correspondence between stablemodels [68] of P and abductive extensions of P �. We recall the de�nition of stable model:Let P be a general logic program, and assume that all the clauses in P are variable-free 8.For any set M of variable-free atoms, let PM be the Horn program obtained by deletingfrom P :i) each rule that contains a negative literal � A, with A 2 M ,ii) all negative literals in the remaining rules.If the minimal (Herbrand) model of PM coincides with M , then M is a stable model forP .The correspondence between the stable model semantics of a program P and abductiveextensions of P � is given by:� For any stable model M of P , the extension P �[� satis�es I�, where� = fp� j p is a variable-free atom,p 62 Mg.� For any � such that P �[ � satis�es I�, there is a stable model M of P , whereM = fp j p is a variable-free atom,p� 62 �g.Notice that the disjunctive integrity constraints in the abductive framework correspondto a totality requirement that every atom must be either true or false in the stable model7This use of the term \extension" is di�erent from other uses. For example, in default logic an extensionis formally de�ned to be the deductive closure of a theory \extended" by means of the conclusions ofdefault rules. In this paper we also use the term \extension" informally (as in example 3.1) to refer to �alone.8If P is not variable-free, then it is replaced by the set of all its variable-free instances.20



semantics. Several authors have argued that this totality requirement is too strong, be-cause it prevents us from giving a semantics to some programs, for example p  � p. Wewould like to be able to assign a semantics to every program in order to have modularity,as otherwise one part of the program can a�ect the meaning of another unrelated part.We will see below that the disjunctive integrity constraint also causes problems for theimplementation of the abductive framework for NAF.Notice that the semantics of NAF in terms of abductive extensions is syntactic rather thanmodel-theoretic. It is a semantics in the sense that it is a non-constructive speci�cation.Similarly, the stable model semantics, as is clear from its correspondence with abductiveextensions, is a semantics in the sense that it is a non-constructive speci�cation of whatshould be computed. The computation itself is performed by means of a proof procedure.4.2 An abductive proof procedure for LPIn addition to having a clear and simple semantics for abduction, it is also important tohave an e�ective method for computing abductive explanations. Any such method willbe very useful in practice in view of the many diverse applications of abductive reason-ing, including default reasoning. The Theorist framework of [145, 150] provides such animplementation of abduction by means of a resolution based proof procedure.In their study of NAF through abduction Eshghi and Kowalski [54] have de�ned an ab-ductive proof procedure for NAF in logic programming. We will describe this procedurein some detail as it also serves as the basis for computing abductive explanations moregenerally within logic programming with other abducibles and integrity constraints (seesection 5). In this section we will refer to the version of the abductive proof procedurepresented in [39]. 9The abductive proof procedure interleaves two types of computation. The �rst type,referred to as the abductive phase, is standard SLD- resolution, which generates (neg-ative) hypotheses and adds them to the set of abducibles being generated, while thesecond type, referred to as the consistency phase 10, incrementally checks that the hy-potheses satisfy the integrity constraints I� for NAF. Integrity checking of a hypothesisp�(t) reasons forward one step using a denial integrity constraint to derive the new denial: p(t), which is then interpreted as the goal  p(t). Thereafter it reasons backward inSLD-fashion in all possible ways. Integrity checking succeeds if all the branches of theresulting search space fail �nitely, in other words, if the contrary of p�(t), namely p(t),�nitely fails to hold. Whenever the potential failure of a branch of the consistency phasesearch space is due to the failure of a selected abducible, say q�(s), a new abductive phaseof SLD-resolution is triggered for the goal q(s), to ensure that the disjunctive integrityconstraint q�(s) _ q(s) is not violated by the failure of both q�(s) and q(s). This attemptto show q(s) can require in turn the addition of further abductive assumptions to the setof hypotheses which is being generated.9As noticed by Dung [39], the procedure presented in [54] contains a mistake, which is not present,however, in the earlier unpublished version of the paper.10We use the term \consistency phase" for historical reasons. However, in view of the precise de�nitionof integrity constraint satisfaction, some other term might be more appropriate.21
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Figure 1: computation for example 4.2To illustrate the procedure consider the following logic program, which is a minor elabo-ration of the propositional form of the Yale shooting problem discussed in section 3.Example 4.2 s  � pp  � qq  � rThe query s succeeds with answer � = fp�; r�g. The computation is shown in �gure 1.Parts of the search space enclosed by a double box show the incremental integrity checkingof the latest abducible added to the explanation �. For example, the outer double boxshows the integrity check for the abducible p�. For this we start from  p � : p(resulting from the resolution of p� with the integrity constraint : (p ^ p�) � : p _ : p�)and resolve backwards in SLD-fashion to show that all branches end in failure, depictedhere by a black box. During this consistency phase for p� a new abductive phase (shownin the single box) is generated when q� is selected since the disjunctive integrity constraintq� _ q implies that failure of q� is only allowed provided that q is provable. The SLDproof of q requires the addition of r� to �, which in turn generates a new consistencyphase for r� shown in the inner double box. The goal r fails trivially because there areno rules for r and so r� and the enlarged explanation � = fp�; r�g satisfy the integrityconstraints. Tracing the computation backwards, we see that q holds, therefore q� failsand, therefore p� satis�es the integrity constraints and the original query s succeeds.In general, an abductive phase succeeds if and only if one of its branches ends in a whitebox (indicating that no subgoals remain to be solved). It fails �nitely if and only if all22



branches end in a black box (indicating that some subgoal cannot be solved). A consis-tency phase fails if and only if one of its branches ends in a white box (indicating thatintegrity has been violated). It succeeds �nitely if and only if all branches end in a blackbox (indicating that integrity has not been violated).It is instructive to compare the computation space of the abductive proof procedure withthat of SLDNF. It is easy to see that these are closely related. In particular, in bothcases negative atoms need to be variable-free before they are selected. On the other hand,the two proof procedures have some important di�erences. A successful derivation of theabductive proof procedure will produce, together with the usual answer obtained fromSLDNF, additional information, namely the abductive explanation �. This additionalinformation can be useful in di�erent ways, in particular to avoid recomputation of neg-ative subgoals. More importantly, as the next example will show, this information willallow the procedure to handle non-strati�ed programs and queries for which SLDNF isincomplete. In this way the abductive proof procedure generalises SLDNF. Furthermore,the abductive explanation � produced by the procedure can be recorded and used inany subsequent revision of the beliefs held by the program, in a similar fashion to truthmaintenance systems [94]. In fact, this abductive treatment of NAF allows us to identifya close connection between logic programming and truth maintenance systems in general(see section 8). Another important di�erence is the distinction that the abductive proofprocedure for NAF makes between the abductive and consistency phases. This allowsa natural extension of the procedure to a more general framework where we have otherhypotheses and integrity constraints in addition to those for NAF [91, 92, 93] (see sec-tion 5.2).To see how the abductive proof procedure extends SLDNF, consider the following pro-gram.Example 4.3 s  qs  pp  � qq  � pThe last two clauses in this program give rise to a two-step loop via NAF, in the sensethat p (and, similarly, q) \depends" negatively on itself through two applications of NAF.This causes the SLDNF proof procedure, executing the query s, to go into an in�niteloop. Therefore, the query has no SLDNF refutation. However, in the correspondingabductive framework the query has two answers, � = fp�g and � = fq�g, correspondingto the two stable models of the program. The computation for the �rst answer is shownin �gure 2. The outer abductive phase generates the hypothesis p� and triggers theconsistency phase for p� shown in the double box. In general, whenever a hypothesis istested for integrity, we can add the hypothesis to � either at the beginning or at the end ofthe consistency phase. When this addition is done at the beginning (as originally de�nedin [54]) this extra information can be used in any subordinate abductive phase. In thisexample, the hypothesis p� is used in the subordinate abductive proof of q to justify thefailure of q� and consequently to render p� acceptable. In other words, the acceptability23
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Figure 2: computation for example 4.3of p� as a hypothesis is proved under the assumption of p�. The same abductive proofprocedure, but where each new hypothesis is added to � only at the successful completionof its consistency phase, provides a sound proof procedure for the well-founded semantics[187].Example 4.4Consider the query  p with respect to the abductive framework corresponding to thefollowing program r  � rr  qp  � qq  � p:Note that the �rst clause of this program give rise to a one-step loop via NAF, in thesense that r \depends" negatively on itself through one application of NAF. The abductiveproof procedure succeeds with the explanation fq�g, but the only set of hypotheses whichsatis�es the integrity constraints is fp�g.So, as Eshghi and Kowalski [54] show by means of this example, the abductive proofprocedure is not always sound with respect to the above abductive semantics of NAF. Infact, following the result in [39], it can be proved that the proof procedure is sound forthe class of order-consistent logic programs de�ned by Sato [168]. Intuitively, this is theclass of programs which do not contain clauses giving rise to odd-step loops via NAF.For the overall class of general logic programs, moreover, it is possible to argue that itis the semantics and not the proof procedure that is at fault. Indeed, Sacc�a and Zaniolo[164], Przymusinski [153] and others have argued that the totality requirement of stable24



models is too strong. They relax this requirement and consider partial or three-valuedstable models instead. In the context of the abductive semantics of NAF this is an argu-ment against the disjunctive integrity constraints.An abductive semantics of NAF without disjunctive integrity constraints has been pro-posed by Dung [39] (see section 4.3 below). The abductive proof procedure is sound withrespect to this improved semantics.An alternative abductive semantics of NAF without disjunctive integrity constraints hasbeen proposed by Brewka [14], following ideas presented in [104]. He suggests that theset which includes both accepted and refuted NAF hypotheses be maximised. For eachsuch set of hypotheses, the logic program admits a \model" which is the union of the setsof accepted hypotheses together with the \complement" of the refuted hypotheses. Forexample 4.4 the only \model" is fp�; q; rg. Therefore, the abductive proof procedure is stillunsound with respect to this semantics. Moreover, this semantics has other undesirableconsequences. For example, the programp � p;� qadmits both f� qg and f� pg as \models", while the only intuitively correct \model" isf� qg.An alternative three-valued semantics for NAF has been proposed by Giordano, Martelliand Sapino [72]. According to their semantics, given the programp pp and p� are both unde�ned. In contrast, p� holds in the semantics of [39], as well as inthe stable model [68] and well-founded semantics [187]. Giordano, Martelli and Sapino[72] modify the abductive proof procedure so that the modi�cation is sound and completewith respect to their semantics.Satoh and Iwayama [171], on the other hand, show how to extend the abductive proof pro-cedure of [54] to deal correctly with the stable model semantics. Their extension modi�esthe integrity checking method of [165] and deals more generally with arbitrary integrityconstraints expressed in the form of denials.Casamayor and Decker [20] also develop an abductive proof procedure for NAF. Theirproposal combines features of the Eshghi-Kowalski procedure with ancestor resolution.Finally, we note that, to show that � p holds for programs such as p  p, it is possibleto de�ne a non-e�ective extension of the proof procedure, that allows in�nite failure inthe consistency phases.4.3 An argumentation-theoretic interpretationDung [39] replaces the disjunctive integrity constraints by a weaker requirement similarto the requirement that that the set of negative hypotheses � be a maximally consistent25

set. Unfortunately, simply replacing the disjunctive integrity constraints by maximalitydoes not work, as shown in the following example.Example 4.5With this change the program p  � qhas two maximally consistent extensions �1 = f p� g and �2 = f q� g. However, onlythe second extension is computed both by SLDNF and by the abductive proof procedure.Moreover, for the same reason as in the case of the propositional Yale shooting problemdiscussed before, only the second extension is intuitively correct.To avoid such problems Dung's notion of maximality is a more subtle. He associateswith every logic program P an abductive framework hP �; A�; I�i where I� contains onlydenials 8X : [p(X) ^ p�(X)]as integrity constraints. Then, given sets �; E of (negative) hypotheses, i.e. � � A�and E � A�, E can be said to attack � (relative to hP �; A�; I�i) if P � [ E ` p forsome p� 2 �. 11 Dung calls an extension P �[� of P � preferred if� P � [ � is consistent with I� and� � is maximal with respect to the property that for every attack E against �, �attacks E (i.e. � \counterattacks" E or \defends" itself against E).Thus a preferred extension can be thought of as a maximally consistent set of hypothesesthat contains its own defence against all attacks. In [39] a consistent set of hypotheses� (not necessarily maximal) satisfying the property of containing its own defence againstall attacks is said to be admissible (to P �). In fact, Dung's de�nition is not formulatedexplicitly in terms of the notions of attack and defence, but is equivalent to the one justpresented.Preferred extensions solve the problem with disjunctive integrity constraints in exam-ple 4.4 and with maximal consistency semantics in example 4.5. In example 4.4 thepreferred extension semantics sanctions the derivation of p by means of an abductivederivation with generated hypotheses f q� g. In fact, Dung proves that the abductiveproof procedure is sound with respect to the preferred extension semantics. In exam-ple 4.5 the de�nition of preferred extension excludes the maximally consistent extensionf p� g, because there is no defence against the attack q�.The preferred extension semantics provides a unifying framework for various approachesto the semantics of negation in LP. Kakas and Mancarella [95] show that it is equivalentto Sacc�a and Zaniolo's partial stable model semantics [164]. Like the partial stable modelsemantics, it includes the stable model semantics as a special case.Dung [39] also de�nes the notion of complete extension. An extension P �[� is completeif 11Alternatively, instead of the symbol j= we could use the symbol `, here and elsewhere in the paperwhere we de�ne the notion of \attack". 26



� P � [ � is consistent with I� and� � = fp� j for each attack E against fp�g; � attacks Eg(i.e. � is admissible and it contains all hypotheses it can defend against all attacks).Stationary expansions [154] are equivalent to complete extensions, as shown in [16]. More-over, Dung shows that the well-founded model [187] is the smallest complete extensionthat can be constructed bottom-up from the empty set of negative hypotheses, by addingincrementally all admissible hypotheses. Thus the well-founded semantics is minimalistand sceptical, whereas the preferred extension semantics is maximalist and credulous.The relationship between these two semantics is further investigated in [47], where thewell-founded model and preferred extensions are shown to correspond to the least �xedpoint and greatest �xed point, respectively, of the same operator.Kakas and Mancarella [96, 97] propose an improvement of the preferred extension seman-tics. Their proposal can be illustrated by the following example.Example 4.6Consider the program p  � qq  � q:Similarly to example 4.4, the last clause gives rise to a one-step loop via NAF, since q\depends" negatively on itself through one application of NAF. In the abductive frame-work corresponding to this program consider the set of hypotheses � = fp�g. The onlyattack against � is E = fq�g, and the only attack against E is E itself. Thus � is notan admissible extension of the program according to the preferred extension semantics,because � cannot defend itself against E. The empty set is the only preferred extension.However, intuitively � should be admissible because the only attack E against � attacksitself, and therefore should not be regarded as an admissible attack against �.To deal with this kind of example, Kakas and Mancarella [96, 97] modify Dung's semantics,increasing the number of ways in which an attack E can be defeated. Whereas Dung onlyallows � to defeat an attack E, they also allow E to defeat itself. They call a set ofhypotheses � weakly stable if� for every attack E against �, E [ � attacks E ��.Moreover, they call an extension P � [� of P � a stable theory if � is maximally weaklystable. Note that here the condition \P � [ � is consistent with I�" of the de�nition ofpreferred extensions and admissible sets of hypotheses is subsumed by the new condition.This is a consequence of another di�erence between [96, 97] and [39], namely that foreach attack E against � the counter-attack is required to be against E �� rather thanagainst E. In other words, the defence of � must be a genuine attack that does not atthe same time also attack �. Therefore, if � is inconsistent, it contains as a subset anattack E, which can not be counterattacked because E �� is empty. In [97], Kakas andMancarella show how these notions can also be used to extend the sceptical well-foundedmodel semantics. In example 4.6 above this extension of the well-founded model willcontain the negation of p. 27

Like the original de�nition of admissible sets of hypotheses and preferred extension, thede�nition of weakly stable sets of hypotheses and stable theories was not originally for-mulated in terms of attack, but is equivalent to the one presented here.Kakas and Mancarella [97] argue that the notion of defeating an attack needs to beliberalised further. They illustrate their argument with the following example.Example 4.7Consider the program P s  � pp  � qq  � rr  � p:The last three clauses give rise to a three-step loop via NAF, since p (and, similarly, q andr) \depends" negatively on itself through three application of NAF. In the correspondingabductive framework, the only attack against the hypothesis s� is E = fp�g. But althoughP � [fs�g [ E does not attack E, E is not a valid attack because it is not stable (oradmissible) according to the de�nition above.To generalise the reasoning in this example so that it gives an intuitively correct semanticsto any program with clauses giving rise to an odd-step loop via NAF, we need to liberalisefurther the conditions for defeating E. Kakas and Mancarella suggest a recursive de�nitionin which a set of hypotheses is deemed acceptable if no attack against it is acceptable.More precisely, given an initial set of hypotheses �0, a set of hypotheses � is acceptableto �0 i� for every attack E against ���0, E is not acceptable to � [�0:The semantics of a program P can be identi�ed with any � which is maximally acceptableto the empty set of hypotheses ;. As before with weak stability and stable theories, theconsideration of attacks only against ���0 ensures that attacks and counterattacks aregenuine, i.e. they attack the new part of � that does not contain �0.Notice that, as a special case, we obtain a basis for the de�nition:� is acceptable to �0 if � � �0:Therefore, if � is acceptable to ; then � is consistent.Notice, too, that applying the recursive de�nition twice, and starting with the base case,we obtain an approximation to the recursive de�nition� is acceptable to �0 if for every attack E against ���0,E [ � [ �0 attacks E � (� [�0).Thus, the stable theories are those which are maximally acceptable to ;, where accept-ability is de�ned by this approximation to the recursive de�nition.28



A related argumentation-theoretic interpretation for the semantics of NAF in LP has alsobeen developed by Ge�ner [67]. This interpretation is equivalent to the well-founded se-mantics [43]. Based upon Ge�ner's notion of argumentation, Torres [185] has proposed anargumentation-theoretic semantics for NAF that is equivalent to Kakas and Mancarella'sstable theory semantics [96, 97], but is formulated in terms of the following notion ofattack: E attacks � (relative to P �) if P � [ E [ � ` p for some p� 2 �.Alferes and Pereira [4] apply the argumentation-theoretic interpretation introduced in [88]to expand the well-founded model of normal and extended logic programs (see section 5).In the case of normal logic programming, their semantics gives the same result as theacceptability semantics in example 4.7.Simari and Loui [177] de�ne an argumentation-theoretic framework for default reasoningin general. They combine a notion of acceptability with Poole's notion of \most speci�c"explanation [143], to deal with hierarchies of defaults.In section 7 we will present an abstract argumentation-theoretic framework which is basedupon the framework for LP but uni�es many other approaches to default reasoning.4.4 An argumentation-theoretic interpretation of the abduc-tive proof procedureAs mentioned above, the incorrectness (with respect to the stable model semantics) of theabductive proof procedure can be remedied by adopting the preferred extension, stabletheory or acceptability semantics. This reinterpretation of the original abductive proofprocedure in terms of an improved semantics, and the extension of the proof procedure tocapture further improvements in the semantics, is an interesting example of the interac-tion that can arise between a program (proof procedure in this case) and its speci�cation(semantics).To illustrate the argumentation-theoretic interpretation of the proof procedure, consideragain �gure 1 of example 4.2. The consistency phase for p�, shown in the outer-mostdouble box, can be understood as searching for any attack against fp�g. The only attack,namely fq�g, is counterattacked (thereby defending fp�g) by assuming the additional hy-pothesis r�, as this implies q. Hence the set � = f p�; r� g is admissible, i.e. it can defenditself against any attack, since all attacks against fp�g are counterattacked by fr�g andthere are no attacks against fr�g.In general, the proof procedure constructs an admissible set of negative hypotheses in twosteps. First, it constructs a set of hypotheses which is su�cient to solve the original goal.Then, it augments this set with the hypotheses necessary to defend the �rst set againstattack.The argumentation-theoretic interpretation suggests how to extend the proof procedureto capture more fully the stable theory semantics and more generally the semantics givenby the recursive de�nition for acceptability. The extension, presented in [182], involvestemporarily remembering a (selected) attack E and using E itself together with the subset29
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Figure 3: computation for example 4.6 with respect to the revisited proof procedureof � generated so far, to counterattack E, in the subordinate abductive phase.For example 4.6 of section 4.3, as shown in �gure 3, to defend against the attack q� onp�, we need to temporarily remember q� and use it in the subordinate abductive phase toprove q and therefore to attack q� itself.In the original abductive proof procedure of [54], hypotheses in defences are always addedto �. However, in the proof procedure for the acceptability semantics defences D can notalways be added to �, because even though D might be acceptable to �, �[D might notbe acceptable to ;. This situation arises for the three step loop program of example 4.7,where D = fq�g is used to defend � = fs�g against the attack E = fp�g, but � [D isnot acceptable to ;.To cater for this characteristic of the acceptability semantics, the extended proof proce-dure non-deterministically considers two cases. For each hypothesis in a defenceD againstan attack E against �, the hypothesis either can be added to � or can be rememberedtemporarily to counterattack any attack E 0 against D, together with � and E. In gen-eral, a sequence of consecutive attacks and defences E; D; E 0; D0; : : : can be generatedbefore an acceptable abductive explanation � is found, and the same non-deterministicconsideration of cases is applied to D0 and all successive defences in the sequence.The de�nitions of admissible, stable and acceptable sets � of hypotheses all require thatevery attack against � be counterattacked. Although every superset of an attack is alsoan attack, the abductive proof procedure in [54] only considers those \minimal" attacks30



generated by SLD, 12 without examining superset attacks. This is possible because allsupersets of an attack can be counterattacked in exactly the same way as the attack it-self, which is generated by SLD. For this reason, the proof procedure of [54] is sound forthe admissibility semantics. Unfortunately, supersets of attacks need to be considered toguarantee soundness of the proof procedure for the acceptability semantics. In [182], how-ever, Toni and Kakas prove that only certain supersets of \minimally generated" attacksneed to be considered.The additional features required for the proof procedure to capture more fully the accept-ability semantics render the proof procedure considerably more complex and less e�cientthan proof procedures for simpler semantics. However, this extra complexity is due tothe treatment of any odd-step loops via NAF and such programs seem to occur veryrarely in practice. Therefore, in most cases it is su�cient to consider the approximationof the proof procedure which computes the preferred extension and stable theory seman-tics. This approximation improves upon the Eshghi-Kowalski proof procedure, since inthe case of �nite failure it terminates earlier, avoiding unnecessary computation.5 Abductive Logic ProgrammingAbductive Logic Programming (ALP), as understood in the remainder of this paper, isthe extension of LP to support abduction in general, and not only the use of abductionfor NAF. This extension was introduced already in section 1, as the special case of anabductive framework hT; A; Ii, where T is a logic program. In this paper we will assume,without loss of generality, that abducible predicates do not have de�nitions in T , i.e. donot appear in the heads of clauses in the program T 13. This assumption has the advan-tage that all explanations are thereby guaranteed to be basic.Semantics and proof procedures for ALP have been proposed by Eshghi and Kowalski[53], Kakas and Mancarella [90] and Chen and Warren [23]. Chen and Warren extendthe perfect model semantics of Przymusinski [152] to include abducibles and integrityconstraints over abducibles. Here we shall concentrate on the proposal of Kakas andMancarella, which extends the stable model semantics.5.1 Generalised stable model semanticsKakas and Mancarella [90] develop a semantics for ALP by generalising the stable modelsemantics for LP. Let hP; A; Ii be an abductive framework, where P is a general logic12As illustrated in section 1, these attacks are genuinely minimal unless the logic program encodesnon-minimal explanations.13In the case in which abducibile predicates have de�nitions in T , auxiliary predicates can be introducedin such a way that the resulting program has no de�nitions for the abducible predicates. This can be doneby means of a transformation similar to the one used to separate extensional and intensional predicatesin deductive databases [124]. For example, for each abducible predicate a(X) in T we can introduce anew predicate �a(X) and add the clause a(X)  �a(X):The predicate a(X) is no longer abducible, whereas �a(X) is now abducible.31

program, and let � be a subset of A. M(�) is a generalised stable model of hP; A; Iii� � M(�) is a stable model of P [ �, and� M(�) j= I.Here the semantics of the integrity constraints I is de�ned by the second condition in thede�nition above. Consequently, an abductive extension P [ � of the program P satis-�es I if and only if there exists a stable modelM(�) of P [� such that I is true inM(�).Note that in a similar manner, it is possible to generalise other model-theoretic semanticsfor logic programs, by considering only those models of P [� (of the appropriate kind,e.g. partial stable models, well-founded models etc.) in which the integrity constraintsare all true.Generalised stable models are de�ned independently from any query. However, given aquery Q, we can de�ne an abductive explanation for Q in hP; A; Ii to be any subset �of A such that� M(�) is a generalised stable model of hP; A; Ii, and� M(�) j= Q.Example 5.1Consider the program P p  aq  bwith A = fa; bg and integrity constraint Ip q:The interpretations M(�1) = fa; pg and M(�2) = fa; b; p; qg are generalised stablemodels of hP; A; Ii. Consequently, both �1 = fag and �2 = fa; bg are abductiveexplanations of p. On the other hand, the interpretation fb; qg, corresponding to theset of abducibles fbg, is not a generalised stable model of hP; A; Ii, because it is not amodel of I as it does not contain p. Moreover, the interpretation fb; q; pg, although it isa model of P [ I and therefore satis�es I according to the consistency view of constraintsatisfaction, is not a generalised stable model of hP; A; Ii, because it is not a stable modelof P . This shows that the notion of integrity satisfaction for ALP is stronger than theconsistency view. It is also possible to show that it is weaker than the theoremhood viewand to argue that it is similar to the metalevel or epistemic view.An alternative, and perhaps more fundamental way of understanding the generalisedstable model semantics is by using abduction both for hypothetical reasoning and forNAF. The negative literals in hP; A; Ii can be viewed as further abducibles according tothe transformation described in section 4. The set of abducible predicates then becomesA [ A�, where A� is the set of negative abducibles introduced by the transformation. Thisresults in a new abductive framework hP �; A [A�; I [ I�i, where I� is the set of special32



integrity constraints introduced by the transformation of section 4 14. The semanticsof the abductive framework hP �; A [ A�; I [ I�i can then be given by the sets �� ofhypotheses drawn from A[A� which satisfy the integrity constraints I [ I�.Example 5.2Consider P p  a; � qq  bwith A = fa; bg and I = ;. If Q is  p then �� = fa; q�; b�g is an explanation forQ� = Q in hP �; A [ A�; I�i. Note that b� is in �� because I� contains the disjunctiveintegrity constraint b _ b�.Kakas and Mancarella show a one to one correspondence between the generalised stablemodels of hP; A; Ii and the sets of hypotheses �� that satisfy the transformed frameworkhP �; A [ A�; I [ I�i. Moreover they show that for any abductive explanation �� fora query Q in hP �; A [ A�; I [ I�i, � = �� \ A is an abductive explanation for Q inhP; A; Ii.Example 5.3Consider the framework hP; A; Ii and the query Q of example 5.2. We have already seenthat �� = fa; q�; b�g is an explanation for Q� in hP �; A [ A�; I�i. Accordingly thesubset � = fag is an explanation for Q in hP; A; Ii.Note that the generalised stable model semantics as de�ned above requires that for eachabducible a, either a or a� holds. This can be relaxed by dropping the disjunctive in-tegrity constraints a _ a� and de�ning the set of abducible hypotheses A to include botha and a�. Such a relaxation would be in the spirit of replacing stable model semantics byadmissible or preferred extensions in the case of ordinary LP.Generalised stable models combine the use of abduction for default reasoning (in theform of NAF) with the use of abduction for other forms of hypothetical reasoning. In thegeneralised stable model semantics, abduction for default reasoning is expressed solelyby NAF. However, in the event calculus persistence axiom presented in section 2 thepredicate persists is a positive abducible that has a default nature. Therefore, instancesof persists should be abduced unless some integrity constraint is violated. Indeed, instandard formulations of the persistence axiom the positive atom persists(T1; P; T2) isreplaced by a negative literal � clipped(T1; P; T2) [176, 35]. In contrast, the abduction ofhappens is used for non-default hypothetical reasoning. The distinction between defaultreasoning and non-default abduction is also made in Konolige's proposal [103], whichcombines abduction for non-default hypothetical reasoning with default logic [158] fordefault reasoning. This proposal is similar, therefore, to the way in which generalisedstable models combine abduction with NAF. Poole [147], on the other hand, proposes anabductive framework where abducibles can be speci�ed either as default, like persists, or14Note that the transformation described in section 4 also needs to be applied to the set I of integrityconstraints. For notational convenience, however, we continue to use the symbol I to represent the resultof applying the transformation to I (otherwise we would need to use the symbol I�, conicting with theuse of the symbol I� for the special integrity constraints introduced in section 4).33

non-default, like happens. In [183], Toni and Kowalski show how both default and non-default abducibles can be reduced to NAF. This reduction is discussed in section 5.5 below.The knowledge representation problem in ALP is complicated by the need to decidewhether information should be represented as part of the program, as an integrity con-straint, or as an observation to be explained, as illustrated by the following example takenfrom [9].Example 5.4 fly(X) bird(X);� abnormal bird(X)abnormal bird(X) penguin(X)has beak(X) bird(X):Suppose that bird is abducible and consider the three cases in whichfly(tweety)is either added to the program, added to the integrity constraints, or considered as theobservation to be explained. In the �rst case, the abducible bird(tweety) and, as aconsequence, the atom has beak(tweety) belong to some, but not all, generalised stablemodels. Instead, in the second case every generalised stable model contains bird(tweety)and has beak(tweety). In the last case, the observation is assimilated by adding theexplanation fbird(tweety)g to the program, and therefore has beak(tweety) is derived inthe resulting generalised stable model. Thus, the last two alternatives have similar e�ects.Denecker and DeSchreye [35] argue that the second alternative is especially appropriatefor knowledge representation in the temporal reasoning domain.5.2 An abductive proof procedure for ALPIn [91, 92, 93], a proof procedure is given to compute abductive explanations in ALP. Thisextends the abductive proof procedure for NAF [54] described in section 4.2, retainingthe basic structure which interleaves an abductive phase that generates and collects ab-ductive hypotheses with a consistency phase that incrementally checks these hypothesesfor integrity. We will illustrate these extended proof procedure by means of examples.Example 5.5Consider again example 4.2. The abductive proof procedure for NAF fails on the query p. Ignoring, for the moment, the construction of the set �, the computation is thatshown inside the outer double box of �gure 1 with the abductive and consistency phasesinterchanged, i.e. the type of each box changed from a double box to a single box and vice-versa. Suppose now that we have the same program and query but in an ALP settingwhere the predicate r is abducible. The query will then succeed with the explanation� = fq�; rg as shown in �gure 4. As before the computation arrives at a point where rneeds to be proved. Whereas this failed before, this succeeds now by abducing r. Henceby adding the hypothesis r to the explanation we can ensure that q� is acceptable.34
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Figure 4: extended proof procedure for example 5.5An important feature of the abductive proof procedures is that they avoid performing afull general-purpose integrity check (such as the forward reasoning procedure of [111]).In the case of a negative hypothesis, q� for example, a general-purpose forward reasoningintegrity check would have to use rules in the program such as p  q� to derive p. Theoptimised integrity check in the abductive proof procedure avoids this inference and onlyreasons forward one step with the integrity constraint : (q ^ q�), deriving the resolvent q, and then reasoning backward from the resolvent.Similarly, the integrity check for a positive hypothesis, r for example, avoids reasoningforward with any rules which might have r in the body. Indeed, in a case, such as ex-ample 5.5 above, where there are no domain speci�c integrity constraints, the integritycheck for a positive abducible, such as r, simply consists in checking that its complement,in our example r�, does not belong to �.To ensure that this optimised form of integrity check is correct, the proof procedureis extended to record those positive abducibles it needs to assume absent to show theintegrity of other abducibles in �. So whenever a positive abducible, which is not in �, isselected in a branch of a consistency phase, the procedure fails on that branch and at thesame time records that this abducible needs to be absent. This extension is illustrated bythe following example.Example 5.6Consider the program p  � q; rq  r35
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Figure 5: extended proof procedure for example 5.6where r is abducible and the query is p (see �gure 5). The acceptability of q� requiresthe absence of the abducible r. The simplest way to ensure this is by adding r� to�. This, then, prevents the abduction of r and the computation fails. Notice that theproof procedure does not reason forward from r to test its integrity. This test has beenperformed backwards in the earlier consistency phase for q�, and the addition of r� to �ensures that it is not necessary to repeat it.The way in which the absence of abducibles is recorded depends on how the negationof abducibles is interpreted. Under the stable and generalised stable model semantics,as we have assumed in example 5.6 above, the required failure of a positive abducible isrecorded by adding its complement to �. However, in general it is not always appropri-ate to assume that the absence of an abducible implies its negation. On the contrary, itmay be appropriate to treat abducibles as open rather than closed (see section 6.1), andcorrespondingly to treat the negation of abducible predicates as open. As we shall arguelater, this might be done by treating such a negation as a form of explicit negation, whichis also abducible. In this case recording the absence of a positive abducible by adding itscomplement to � is too strong, and we will use a separate (purely computational) datastructure to hold this information.Integrity checking can also be optimised when there are domain speci�c integrity con-straints, provided the constraints can be formulated as denials 15 containing at least oneliteral whose predicate is abducible. In this case the abductive proof procedure needs15Notice that any integrity constraint can be transformed into a denial (possibly with the introductionof new auxiliary predicates). For example:p  q � : [q ^ : p];36
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Figure 6: extended computation for example 5.7only a minor extension [92, 93]: when a new hypothesis is added to �, the proof proce-dure resolves the hypothesis against any integrity constraint containing that hypothesis,and then reasons backward from the resolvent. To illustrate this extension consider thefollowing example.Example 5.7Let the abductive framework be:P : s  a I : : [a ^ p]p  � q : [a ^ q]q  bwhere a, b are abducible and the query is  s (see �gure 6).Assume that the integrity check for a is performed Prolog-style, by resolving �rst with the�rst integrity constraint and then with the second. The �rst integrity constraint requiresthe additional hypothesis b as shown in the inner-most single box. The integrity check forb is trivial, as b appears only in the integrity constraint :[b^ b�] in I�, and the goal  b�trivially fails, given � = fa; bg (inner-most double box). But � = fa; bg violates theintegrity constraints, as can be seen by reasoning forward from b to q and then resolvingwith the second integrity constraint : [a ^ q]. However, the proof procedure does notperform this forward reasoning and does not detect this violation of integrity at this stage.p _ q � : [: p ^ : q]:37

Nevertheless the proof procedure is sound because the violation is found later by backwardreasoning when a is resolved with the second integrity constraint.In summary, the overall e�ect of additional integrity constraints is to increase the sizeof the search space during the consistency phase, with no signi�cant change to the basicstructure of the backward reasoning procedure.Even if the absence of abducibles is not identi�ed with the presence of their complement,the abductive proof procedure [91, 92, 93] described above su�ers from the same sound-ness problem shown in section 4 for the abductive proof procedure for NAF. This problemcan be solved similarly, by replacing stable models with any of the non-total semanticsfor NAF mentioned in section 4 (partial stable models, preferred extensions, stable the-ories or acceptability semantics). Replacing the stable models semantics by any of thesesemantics requires that the notion of integrity satisfaction be revised appropriately. Thisis an interesting problem for future work.The soundness problem can also be addressed by providing an argumentation-theoreticsemantics for ALP which treats integrity constraints and NAF uniformly via an appropri-ately extended notion of attack. In section 5.3 we will see that this alternative approacharises naturally from an argumentation-theoretic re-interpretation of the abductive proofprocedure for ALP.The proof procedure can be also modi�ed to provide a sound computational mechanismfor the generalised stable model semantics. This approach has been followed by Satohand Iwayama [170], as we illustrate in section 5.4.5.3 An argumentation-theoretic interpretation of the abduc-tive proof procedure for ALPSimilarly to the LP case, the abductive proof procedure for ALP can be reinterpretedin argumentation-theoretic terms. For the ALP procedure, attacks can be provided asfollows:� via NAF:Relative to hP �; A [ A�; I [ I�i, E attacks � via NAF ifE attacks � as in section 4.3, i.e. P � [ E ` p for some p� 2 �, ora� is in E, for some abducible a in �;� via integrity constraints:Relative to hP �; A [ A�; I [ I�i, E attacks � via an integrity constraint:(L1 ^ : : : ^ Ln) in I if P � [ E ` L1; : : : ; Li�1; Li+1; : : : ; Ln, for some Li in �. 16To illustrate the argumentation-theoretic interpretation of the proof procedure for ALP,consider again �gure 6 of example 5.7. The consistency phase for a, shown in the outerdouble box, can be understood as searching for attacks against fag. There are two such16Recall that the abductive proof procedure for ALP employs the restriction that each integrity con-straint contains at least one literal with an abducible predicate.38



attacks, fq�g and fbg, shown by the two branches in the �gure. fq�g attacks fag via theintegrity constraint :(a^ p) in I, since q� implies p. Analogously, fbg attacks fag via theintegrity constraint :(a^q) in I, since b implies q. The �rst attack fq�g is counterattackedby fbg, via NAF (as in section 4.3), since this implies q. This is shown in the single box.The hypothesis b is added to � since the attack fb�g against fbg, via NAF, is triviallycounterattacked by fbg, via NAF, as sketched in the inner double box. However, fbgattacks fag, as shown by the right branch in the outer double box. Therefore, � attacksitself, and this causes failure of the proof procedure.The analysis of the proof procedure in terms of attacks and counterattacks suggests thefollowing argumentation-theoretic semantics for ALP. A set of hypotheses � is KM-admissible if� for every attack E against �,� attacks (E ��) via NAF alone.In section 6.5 we will see that the notion of KM-admissible set of hypotheses is similarto the notion of admissibility proposed by Dung [45] for extended logic programming, inthat only attacks via NAF are allowed to counterattack.The argumentation-theoretic interpretation of ALP suggests several ways in which thesemantics and proof procedure for ALP can be modi�ed. Firstly, the notion of attackitself can be modi�ed, e.g. following Torres' equivalent formulation of the stable theorysemantics [185] (see section 4.3). Secondly, the notion of admissibility can be changed toallow counterattacks via integrity constraints, as well as via NAF. Finally, as in the caseof standard LP, the notion of admissibility can be replaced by other semantic notions suchas weak stability and acceptability (see section 4.3). The proof procedure for ALP canbe modi�ed appropriately to reect each of these modi�cations. Such modi�cations ofthe semantics and the corresponding modi�cations of the proof procedure require furtherinvestigation.Using the de�nition of well-founded semantics given in section 4.3, (non-default) ab-ducibles are always unde�ned, and consequently ful�ll no function, in the well-foundedsemantics of ALP, as illustrated by the following example.Example 5.8Consider the propositional abductive framework hP; A; Ii where P isp aA = fag, and I = ;. The well-founded model of hP; A; Ii is ;.In [136], Pereira, Aparicio and Alferes de�ne an alternative, generalised well-foundedsemantics for ALP where �rst programs are extended by a set of abducibles as in the caseof generalised stable models, and then the well-founded semantics (rather than stablemodel semantics) is applied to the extended programs. As a result, the well-foundedmodels of an abductive framework are not unique. In the example above, ;, fp�; a�g andfp; ag are the generalised well-founded models of hP; A; Ii. Note that in this applicationof the well-founded semantics, if an abducible is not in a set of hypotheses � then its39

negation does not necessarily belong to �. Thus the negation of an abducible is notinterpreted as NAF. Moreover, since abducible predicates can be unde�ned some of thenon abdicible predicates can also be unde�ned.5.4 Computation of abduction through TMSSatoh and Iwayama [170] present a method for computing generalised stable models forlogic programs with integrity constraints represented as denials. The method is a bottom-up computation based upon the TMS procedure of [36]. Although the computation is notgoal-directed, goals (or queries) can be represented as denials and be treated as integrityconstraints.Compared with other bottom-up procedures for computing generalised stable model se-mantics, which �rst generate stable models and then test the integrity constraints, themethod of Satoh and Iwayama dynamically uses the integrity constraints during the pro-cess of generating the stable models, in order to prune the search space more e�ciently.Example 5.9Consider the program P p  qr  � qq  � rand the set of integrity constraints I = f: pg. P has two stable models M1 = fp; qgand M2 = frg, but only M2 satis�es I. The proof procedure of [170] deterministicallycomputes only the intended model M2, without �rst computing and then rejecting M1.In section 8 we will see more generally that truth maintenance systems can be regardedas a form of ALP.5.5 Simulation of abductionSatoh and Iwayama [170] also show that an abductive logic program can be transformedinto a logic program without abducibles but where the integrity constraints remain. Foreach abducible predicate p in A, a new predicate p0 is introduced, which intuitively rep-resents the complement of p, and a new pair of clauses 17p(X)  � p0(X)p0(X)  � p(X)is added to the program. In e�ect abductive assumptions of the form p(t) are therebytransformed into NAF assumptions of the form � p0(t). Satoh and Iwayama apply thegeneralised stable model semantics to the transformed program. However, the transforma-tional semantics, which is e�ectively employed by Satoh and Iwayama, has the advantagethat any semantics can be used for the resulting transformed program.17Satoh and Iwayama use the notation p� instead of p0 and explicitly consider only propositionalprograms. 40



Example 5.10Consider the abductive framework hP; A; Ii of example 5.1. The transformation generatesa new theory P 0 with the additional clausesa  � a0a0  � ab  � b0b0  � b:P 0 has two generalised stable models that satisfy the integrity constraints, namelyM 01 =M(�1) [ fb0g = fa; p; b0g, and M 02 = M(�2) = fa; b; p; qg where M(�1) and M(�2)are the generalised stable models seen in example 5.1.An alternative way of viewing abduction, which emphasises the defeasibility of abducibles,is retractability [70]. Instead of regarding abducibles as atoms to be consistently addedto a theory, they can be considered as assertions in the theory to be retracted in thepresence of contradictions until consistency (or integrity) is restored (c.f. section 6.2).One approach to this understanding of abduction is presented in [111]. Here, Kowalski andSadri present a transformation from a general logic program P with integrity constraintsI, together with some indication of how to restore consistency, to a new general logicprogram P 0 without integrity constraints. Restoration of consistency is indicated bynominating one atom as retractable in each integrity constraint 18. Integrity constraintsare represented as denials, and the atom to be retracted must occur positively in theintegrity constraint. The (informally speci�ed) semantics is that whenever an integrityconstraint of the form : [p ^ q]has been violated, where the atom p has been nominated as retractable, then consistencyshould be restored by retracting the instance of the clause of the formp  rwhich has been used to derive the inconsistency.The transformation of [111] replaces a program P with integrity constraints I by a pro-gram P 0 without integrity constraints which is always consistent with I; and if P isinconsistent with I, then P 0 represents one possible way to restore consistency (relativeto the choice of the retractable atom).Given an integrity constraint of the form: [p ^ q]where p is retractable, the transformation replaces the integrity constraints and everyclause of the form p  r18Many di�erent atoms can be retractable in the same integrity constraint. Alternative ways of nomi-nating retractable atoms correspond to alternative ways of restoring consistency in P .41

by p  r;� qwhere the condition � q may need to be transformed further, if necessary, into generallogic program form, and where the transformation needs to be repeated for every integrityconstraint. Kowalski and Sadri show that if P is a strati�ed program with appropriatelystrati�ed integrity constraints I, so that the transformed program P 0 is strati�ed, thenP 0 computes the same consistent answers as P with I.Notice that retracting abducible hypotheses is a special case where the abducibility of apredicate a is represented by an assertiona(X):The following example illustrates the behaviour of the transformation when applied toALP.Example 5.11Consider the simpli�ed version of the event calculus presented in example 2.1. If theintegrity constraint:[persists(T1; P; T2) ^ happens(E; T ) ^ terminates(E; P ) ^ T1 � T � T2]is violated, then it is natural to restore integrity by retracting the instance ofpersists(T1; P; T2) that has led to the violation. Thus, persists(T1; P; T2) is the re-tractible in this integrity constraint. By applying the transformation sketched above, theintegrity constraint and the use of abduction can be replaced by the clauses obtained byfurther transformingpersists(T1; P; T2) � (happens(E; T ); terminates(E; P ); T1 � T � T2)into general LP form.One problem with the retractability semantics is that the equivalence of the original pro-gram with the transformed program was proved only in the case where the resultingtransformed program is locally strati�ed. Moreover the proof of equivalence was based ona tedious comparison of search spaces for the two programs. This problem was addressedin a subsequent paper [112] in which integrity constraints are re-expressed as extendedclauses and the retractable atoms become explicitly negated conclusions. This use ofextended clauses in place of integrity constraints with retractibles is discussed later insection 6.3.The transformation of [111], applied to ALP, treats all abducibles as default abducibles.In particular, abducibles which do not occur as retractibles in integrity constraints aresimply asserted in the transformed program P 0. Therefore, this transformation can onlybe used to eliminate default abducibles together with their integrity constraints. A morecomplete transformation [183] can be obtained by combining the use of retractibles toeliminate integrity constraints with the transformation of [170] for reducing non-defaultabducibles to NAF. The new transformation is de�ned for abductive frameworks whereevery integrity constraint has a retractible which is either an abducible or the NAF of an42



abducible.As an example, consider the propositional abductive logic program hP; A; Ii where Pcontains the clause p aa is in A, and I contains the integrity constraint:[a ^ q]where a is retractible. If a is a default abducible, the transformation generates the logicprogram P 0 p � a0a0 qa � a0where, as before, a0 stands for the complement of a. The �rst clause in P 0 is obtainedby replacing the positive condition a in the clause in P by the NAF literal � a0. Thesecond clause replaces the integrity constraint in I. Note that this replaces \a shouldbe retracted" if the integrity constraint :[a ^ q] is violated by \the complement a0 of ashould be asserted". Finally, the last clause in P 0 expresses the nature of a as a defaultabducible. Namely, a holds by default, unless some integrity constraint is violated. Inthis example, a holds if q does not hold.If a is a non-default abducible, then the logic program P 0 obtained by transforming thesame abductive program hP; A; Ii also contains the fourth clausea0 � athat, together with the third clause, expresses that neither a nor a0 need hold, even if nointegrity constraint is violated. Note that the last two clauses in P 0 are those used bySatoh and Iwayama [170] to simulate non-default abduction by means of NAF.Toni and Kowalski [183] prove that the transformation is correct and complete in the sensethat there is a one-to-one correspondence between attacks in the framework hP; A; Ii andin the framework corresponding to the transformed program P 0. Thus, for any semanticsthat can be de�ned argumentation-theoretically there is a one-to-one correspondence be-tween the semantics for an abductive logic program and the semantics of the transformedprogram. As a consequence, any proof procedure for LP which is correct for one of thesesemantics provides a correct proof procedure for ALP for the analogous semantics (and,less interestingly, vice versa).In addition to the transformations from ALP to general LP, discussed above, transforma-tions between ALP and disjunctive logic programming (DLP) have also been investigated.Inoue et al. [83] 19, in particular, translate ALP clauses of the formp  q; a19A description of this work can also be found in [76].43

where a is abducible, into DLP clauses(p ^ a) _ a0  qwhere a0 is a new atom that stands for the complement of a, as expressed by the integrityconstraint : (a ^ a0): (3)A model generation theorem-prover (such as SATCHMO or MGTP [58]) can then beapplied to compute all the minimal models that satisfy the integrity constraints (3). Thistransformation is related to a similar transformation [82] for eliminating NAF.Elsewhere [167], Sakama and Inoue demonstrate a one-to-one correspondence betweengeneralised stable models for ALP and possible models [166] for DLP. Consider, for ex-ample, the abductive logic program hP; A; Ii where P isp aA = fag and I is empty. M1 = ; and M2 = fa; pg are the generalised stable models ofhP; A; Ii. The program can be transformed into a disjunctive logic program PDp aa _ �:PD has possible models M 01 = f�g, M 02 = fa; pg and M 03 = f�; a; pg, such that M 01�f�g =M1 and M 02 � f�g = M 03 � f�g = M2.Conversely, [167] shows how to transform DLP programs into ALP. For example, considerthe disjunctive logic program PD a _ b ccwhose possible models are M1 = fc; ag, M2 = fc; bg and M3 = fc; a; bg. It can betransformed into an abductive logic program hP; A; Ii where P consists ofa c; a0b c; b0ca0 and b0 are new atoms, A = fa0; b0g, and I consists of:[c^ � a^ � b]:hP; A; Ii has generalised stable models M 01 = fc; a; a0g, M 02 = fc; b; b0g and M 03 =fc; a; a0; b; b0g, such that, if HB is the Herbrand base of PD, M 0i \ HB = Mi, for eachi = 1; 2; 3. 44



Whereas the transformation of [167] deals with inclusive disjunction, Dung [41] presents asimpler transformation that deals with exclusive disjunction, but works only for the caseof acyclic programs. For example, the clausep _ qcan be replaced by the two clauses p  � qq  � p:With this transformation, for acyclic programs, the Eshghi-Kowalski procedure presentedin section 4.2 is sound. For the more general case, Dung [42] represents disjunction ex-plicitly and extends the Eshghi-Kowalski procedure by using resolution-based techniquessimilar to those employed in [57].5.6 Abduction through deduction from the completionIn the approaches presented so far, hypotheses are generated by backward reasoning withthe clauses of logic programs used as inference rules. An alternative approach is presentedby Console, Dupr�e and Torasso [26]. Here clauses of programs are interpreted as if-halvesof if-and-only-if de�nitions that are obtained from the completion of the program [24]restricted to non-abducible predicates. Abductive hypotheses are generated deductivelyby replacing atoms by their de�nitions, starting from the observation to be explained.Given a propositional logic program P with abducible predicates A without de�nitions inP , let PC denote the completion of the non-abducible predicates in P . An explanationformula for an observation O is the most speci�c formula F such thatPC [ fOg j= F;where F is formulated in terms of abducible predicates only, and F is more speci�cthan F 0 i� j= F ! F 0 and 6j= F 0 ! F .Based on this speci�cation, a proof procedure that generates explanation formulas is de-�ned. This proof procedure replaces atoms by their de�nitions in PC , starting from agiven observation O. Termination and soundness of the proof procedure are ensured forhierarchical programs. The explanation formula resulting from the computation char-acterises all the di�erent abductive explanations for O, as exempli�ed in the followingexample.Example 5.12Consider the following program Pwobbly-wheel  broken-spokeswobbly-wheel  flat-tyreflat-tyre  punctured-tubeflat-tyre  leaky-valve;45

where the predicates without de�nitions are considered to be abducible. The completionPC is: wobbly-wheel $ broken-spokes _ flat-tyreflat-tyre $ punctured-tube _ leaky-valve:If O is wobbly-wheel then the most speci�c explanation F isbroken-spokes _ punctured-tube _ leaky-valve;corresponding to the abductive explanations�1 = fbroken-spokesg;�2 = fpunctured-tubeg;�3 = fleaky-valveg:Console, Dupr�e and Torasso extend this approach to deal with propositional abductivelogic programs with integrity constraints I in the form of denials of abducibles and ofclauses expressing taxonomic relationships among abducibles. An explanation formulafor an observation O is now de�ned to be the most speci�c formula F , formulated interms of abducible predicates only, such thatPC [ I [ fOg j= F:The proof procedure is extended by using the denial and taxonomic integrity constraintsto simplify F .In the more general case of non-propositional abductive logic programs, the Clark equal-ity theory CET [24], is used; the notion that F is more speci�c than F 0 requires thatF ! F 0 be a logical consequence of CET and that F 0 ! F not be a consequence ofCET. The explanation formula is unique up to equivalence with respect to CET. Theproof procedure is extended to take into account the equality theory CET.Denecker and De Schreye [33] compare the search space obtained by reasoning backwardusing the if-half of the if-and-only-if form of a de�nite program with that obtained byreasoning forward using the only-if-half. They show an equivalence between the searchspace for SLD-resolution extended with abduction and the search space for model gener-ation with SATCHMO [122] augmented with term rewriting to simulate uni�cation.5.7 Abduction and Constraint Logic ProgrammingALP has many similarities with constraint logic programming (CLP). Recognition of thesesimilarities has motivated a number of recent proposals to unify the two frameworks.Both frameworks distinguish two kinds of predicates. The �rst kind is de�ned by ordinaryLP clauses, and is eliminated during query evaluation. The second kind is \constrained"either by integrity constraints in the case of ALP or by means of a built-in semanticdomain in the case of CLP. In both cases, an answer to a query is a \satis�able" formula46



involving only the second kind of predicate.Certain predicates, such as inequality, can be treated either as abducible or as constraintpredicates. Treated as abducible, they are constrained by explicitly formulated integrityconstraints such as X < Z; Z < Y ! X < Y:[X < Y ^ Y < X]:Treated as constraint predicates, they are tested for satis�ability by using specialisedalgorithms which respect the semantics of the underlying domain. Constraints can alsobe simpli�ed, replacing, for example, 2 < t ^ 3 < tby 3 < t:Such simpli�cation is less common in abductive frameworks.A number of proposals have been made recently to unify the treatment of abducibles andconstraints. Several of these, [50, 176, 120, 100] in particular, have investigated the im-plementation of specialised constraint satisfaction and simpli�cation algorithms of CLP(speci�cally for inequality) by means of general-purpose integrity checking methods ap-plied to domain-speci�c integrity constraints as in the case of ALP.Kowalski [109] proposes a general framework which attempts to unify ALP and CLP us-ing if-and-only-if de�nitions for ordinary LP predicates and using integrity constraints forabducible and constraint predicates. Abduction is performed by means of deduction inthe style of [26] (see section 5.6). This framework has been developed further by Fung[60] and has been applied to job-shop scheduling by Toni [184]. A related proposal, toinclude user-de�ned constraint handling rules within a CLP framework, has been madeby Fr�uhwirth [75].B�urchert [18] and B�urchert and Nutt [19], on the other hand, de�ne a framework forgeneral clausal resolution and show how abduction without integrity constraints can betreated as a special case of constrained resolution.Another approach, which integrates both frameworks while preserving their identity, hasbeen developed by Kakas and Michael [101]. In this approach, the central notions ofthe two frameworks are combined, so that abduction and constraint handling cooperateto solve a common goal. Typically, the goal is reduced �rst by abduction to abduciblehypotheses whose integrity checking reduces this further to a set of constraints to be sat-is�ed in CLP.Constructive abduction is the generation of non-ground abductive explanations, such as� = f9X a(X)g. The integrity checking of such abducible hypotheses involves the in-troduction of equality assumptions, which can naturally be understood in CLP terms. A47

procedure for performing constructive abduction within a framework that treats equalityas an abducible predicate and the Clark equality theory as a set of integrity constraintwas �rst proposed by Eshghi [50]. Building upon this proposal, Kakas and Mancarella[98] extend the abductive proof procedure for LP in [54] (see section 4.2) to combine con-structive negation with constructive abduction in a uniform way, by reducing the formerto the latter using the abductive interpretation of NAF.The problem of constructive abduction has also been studied within the completion se-mantics. Denecker and De Schreye [34] de�ne a proof procedure for constructive abduc-tion, SLDNFA, which they show is sound and complete. Teusink [181] extends Drabent's[38] procedure, SLDNA, for constructive negation to perform constructive abduction anduses three-valued semantics to show soundness and completeness. In both proposals, [34]and [181], integrity constraints are dealt with by means of a transformation, rather thanexplicitly.6 Extended Logic ProgrammingExtended Logic Programming (ELP) extends general LP by allowing, in addition to NAF,a second, explicit form of negation. Explicit negation can be used, when the de�nition ofa predicate is incomplete, to explicitly de�ne negative instances of the predicate, insteadof having them inferred implicitly using NAF.Clauses with explicit negation in their conclusions can also serve a similar function tointegrity constraints with retractibles. For example, the integrity constraint:[persists(T1; P; T2) ^ happens(E; T ) ^ terminates(E; P ) ^ T1 � T � T2]with persists(T1; P; T2) retractible can be reformulated as a clause with explicit negationin the conclusion:persists(T1; P; T2) happens(E; T ); terminates(E; P ); T1 � T � T2:6.1 Answer set semanticsIn general logic programs, negative information is inferred by means of NAF. This isappropriate when the closed world assumption [157], that the program gives a completede�nition of the positive instances of a predicate, can safely be applied. It is not appro-priate when the de�nition of a predicate is incomplete and therefore \open", as in thecase of abducible predicates.For open predicates it is possible to extend logic programs to allow explicit negationin the conclusions of clauses. In this section we will discuss the extension proposed byGelfond and Lifschitz [69]. This extension is based on the stable model semantics, andcan be understood, therefore, in terms of abduction, as we have already seen.Gelfond and Lifschitz de�ne the notion of extended logic programs, consisting ofclauses of the form: L0  L1; : : : ; Lm; � Lm+1; : : : ;� Ln;48



where n � m � 0 and each Li is either an atom (A) or the explicit negation of an atom(:A). This negation denoted by \:" is called \classical negation" in [69]. However, aswe will see below, because the contrapositives of extended clauses do not hold, the term\classical negation" can be regarded as inappropriate. For this reason we use the term\explicit negation" instead.A similar notion has been investigated by Pearce and Wagner [130], who develop an ex-tension of de�nite programs by means of Nelson's strong negation. They also suggest thepossibility of combining strong negation with NAF. Akama [1] argues that the semanticsof this combination of strong negation with NAF is equivalent to the answer set semanticsfor extended logic programs developed by Gelfond and Lifschitz.The semantics of an extended program is given by its answer sets, which are like stablemodels but consist of both positive and (explicit) negative literals. Perhaps the easiestway to understand the semantics is to transform the extended program P into a generallogic program P 0 without explicit negation, and to apply the stable model semantics tothe resulting general logic program. The transformation consists in replacing every oc-currence of explicit negation : p(t) by a new (positive) atom p0(t). The stable models ofP 0 which do not contain a ontradiction of the form p(t) and p0(t) correspond to the con-sistent answer sets of P . The corresponding answer sets of P contain explicit negativeliterals : p(t) wherever the stable models contain p0(t). In [69] the answer sets are de�neddirectly on the extended program by modifying the de�nition of the stable model seman-tics. The consistent answer sets of P also correspond to the generalised stable models(see section 5.1) of P 0 with a set of integrity constraints 8X : [p(X) ^ p0(X)], for everypredicate p.In the general case a stable model of P 0 might contain a contradiction of the form p(t) andp0(t). In this case the corresponding inconsistent answer set is de�ned to be the set ofall the variable-free (positive and explicit negative) literals. It is in this sense that explicitnegation can be said to be \classical". The same e�ect can be obtained by explicitlyaugmenting P 0 by the clauses q(X)  p(X); p0(X)for all predicate symbols q and p in P 0. Then the answer sets of P simply correspondto the stable models of the augmented set of clauses. If these clauses are not added, thenthe resulting treatment of explicit negation gives rise to a paraconsistent logic, i.e. onein which contradictions are tolerated.Notice that, although Gelfond and Lifschitz de�ne the answer set semantics directly with-out transforming the program and then applying the stable model semantics, the transfor-mation can also be used with any other semantics for the resulting transformed program.Thus Przymusinski [153] for example applies the well-founded semantics to extended logicprograms. Similarly any other semantics can also be applied. As we have seen before,this is one of the main advantages of transformational semantics in general.An important problem for the practical use of extended programs is how to distinguishwhether a negative condition is to be interpreted as explicit negation or as NAF. This49

problema will be addressed in sections 6.4 and 9.6.2 Restoring consistency of answer setsThe answer sets of an extended program are not always consistent.Example 6.1The extended logic program: : fly(X) � bird(X)fly(X) bat(X)bat(tom)has no consistent answer set.As mentioned in section 6.1, this problem can be dealt with by employing a paraconsistentsemantics. Alternatively, in some cases it is possible to restore consistency by removingsome of the NAF assumptions implicit in the answer set. In the example above we canrestore consistency by rejecting the NAF assumption � bird(tom) even though bird(tom)does not hold. We then get the consistent set fbat(tom); fly(tom)g. This problem hasbeen studied in [46] and [137]. Both of these studies are primarily concerned with therelated problem of inconsistency of the well-founded semantics when applied to extendedlogic programs [153].To deal with the problem of inconsistency in extended logic programs, Dung and Ru-amviboonsuk [46] apply the preferred extension semantics to a new abductive frameworkderived from an extended logic program. An extended logic program P is �rst trans-formed into an ordinary general logic program P 0 by renaming explicitly negated literals: p(t) by positive literals p0(t). The resulting program is then further transformed intoan abductive framework by renaming NAF literals � q(t) by positive literals q�(t) andadding the integrity constraints 8X : [q(X) ^ q�(X)]as described in section 4.3. Thus if p0 expresses the explicit negation of p the set A� willcontain p0� as well as p�. Moreover Dung includes in I� additional integrity constraints ofthe form 8X : [p(X) ^ p0(X)]to prevent contradictions.Extended preferred extensions are then de�ned by modifying the de�nition of preferredextensions in section 4 for the resulting abductive framework with this new set I� ofintegrity constraints. The new integrity constraints in I� have the e�ect of removing aNAF hypothesis when it leads to a contradiction. Clearly, any other semantics for logicprograms with integrity constraints could also be applied to this framework.Pereira, Aparicio and Alferes [137] employ a similar approach within the context of Przy-muszynski's extended stable models [153]. It consists in identifying explicitly all the50



possible sets of NAF hypotheses which lead to an inconsistency and then restoring consis-tency by removing at least one hypothesis from each such set. This method can be viewedas a form of belief revision, where if inconsistency can be attributed to an abducible hy-pothesis or a retractable atom (see below section 5.5), then we can reject the hypothesisto restore consistency. In fact Pereira, Aparicio and Alferes have also used this method tostudy counterfactual reasoning [139]. Alferes and Pereira [5] have shown that this methodof restoring consistency can also be viewed in terms of inconsistency avoidance.This method [137] is not able to restore consistency in all cases, as illustrated by thefollowing example.Example 6.2given the extended logic program p qq pr � p:r � pthe method of [137] is unable to restore consistency by withdrawing the hypothesis p�.In [134] and [140], Pereira and Alferes present two di�erent modi�cations of the methodof [137] to deal with this problem. For the program in example 6.2, the method in [134]restores consistency by letting p unde�ned, while the method in [140] restores consistencyby assigning p to truth. This second method is more suitable for diagnosis applications.Both methods, [46] and [137, 134, 140], can deal only with inconsistencies that can beattributed to NAF hypotheses, as shown by the following example.Example 6.3It is not possible to restore consistency by removing NAF hypotheses given the program:p: p:However, Inoue [81, 80] suggests a general method for restoring consistency, which isapplicable to this case. This method (see also section 6.3) is based on [66] and [145] andconsists in isolating inconsistencies by �nding maximally consistent subprograms. In thisapproach a knowledge system is represented by a pair (P; H), where:1. P and H are both extended logic programs,2. P represents a set of facts,3. H represents a set of assumptions. 51

The semantics is given using abduction as in [145] (see section 3) by means of theoryextensions P [ � of P , with � � H maximal with respect to set inclusion, such thatP [ � has a consistent answer set.In this approach, whenever the answer set of an extended logic program P is inconsistent,it is possible to restore consistency by regarding it as a knowledge system of the form(;; P ):For example 6.3 this will give two alternative semantics, fpg or f:pg.A similar approach to restoring consistency follows also from the work in [87, 99] (seesection 7), where argumentation-based semantics can be used to select acceptable (andhence consistent) subsets of an inconsistent extended logic program.6.3 Rules and exceptions in LPAnother way of restoring consistency of answer sets is presented in [112], where sentenceswith explicitly negated conclusions are given priority over sentences with positive conclu-sions. In this approach, extended clauses with negative conclusions are similar to integrityconstraints with retractibles.Example 6.4Consider the program fly(X) bird(X)walk(X) ostrich(X)bird(X) ostrich(X)ostrich(john)and the integrity constraint : [fly(X) ^ walk(X)];with fly(X) retractable. The integrity constraint is violated, because both walk(john)and fly(john) hold. Following the approach presented in section 5.5, integrity can berestored by retracting the instancefly(john)  bird(john)of the �rst clause in the program. Alternatively, the integrity constraint can be formulatedas a clause with an explicit negative conclusion: fly(X)  walk(X):In the new formulation it is natural to interpret clauses with negative conclusions asexceptions, and clauses with positive conclusions as default rules. In this example, theextended clause : fly(X)  walk(X)52



can be interpreted as an exception to the \general" rulefly(X)  bird(X):To capture the intention that exceptions should override general rules, Kowalski and Sadri[112] modify the answer set semantics, so that instances of clauses with positive conclu-sions are retracted if they are contradicted by explicit negative information.Kowalski and Sadri [112] also present a transformation, which preserves the new seman-tics, and is arguably a more elegant form of the transformation presented in [111] (seesection 5.5). In the case of the ying-birds example described above the new transforma-tion gives the clause fly(X)  bird(X); � : fly(X):This can be further transformed by \macroprocessing" the call to : fly(X), giving theresult of the original transformation in [111]fly(X)  bird(X); � walk(X):In general, the new transformation introduces a new condition� : p(t)into every clause with a positive conclusion p(t). The condition is vacuous if there areno exceptions with : p in the conclusion. The answer set semantics of the new programis equivalent to the modi�ed answer set semantics of the original program, and both areconsistent. Moreover, the transformed program can be further transformed into a generallogic program by renaming explicit negations : p by new positive predicates p0. Becauseof this renaming, positive and negative predicates can be handled symmetrically, andtherefore, in e�ect, clauses with positive conclusions can represent exceptions to ruleswith (renamed) negative conclusions. Thus, for example, a negative rule such as: fly(X)  walk(X)with a positive exception fly(X)  super ostrich(X)can be transformed into a clause: fly(X)  walk(X); � fly(X)and all occurrences of the negative literal : fly(X) can be renamed by a new positiveliteral fly0(X). This is not entirely adequate for a proper treatment of exceptions toexceptions. However, this approach can be extended, as we shall see in section 6.6.More direct approaches to the problem of treating positive and negative predicates sym-metrically in default reasoning are presented in [81, 80], following the methods of [66] and[145] (see section 6.2 for a discussion), and in [87, 99], based on an argumentation-theoreticframework (see sections 6.4 and 7). 53

6.4 (Extended) Logic Programming without Negation as Fail-ureKakas, Mancarella and Dung [99] show that the Kowalski-Sadri transformation presentedin section 6.3 can be applied in the reverse direction, to replace clauses with NAF byclauses with explicit negation together with a priority ordering between extended clauses.Thus, for example, fly(X) bird(X);� walk(X)can be transformed \back" to fly(X) bird(X):fly(X) walk(X)together with an ordering that indicates that the second clause has priority over the �rst.In general, the extended clauses r : p q1; : : : ; qnr1 : :p s1...rk : :p skgenerated by transforming the clausep q1 : : : qn;� s1; : : : ;� skare ordered so that rj > r for 1 � j � k. In [99], the resulting prioritised clauses areformulated in an ELP framework (with explicit negation) without NAF but with an or-dering relation on the clauses of the given program.This new framework for ELP is proposed in [99] as an example of a general theory of theacceptability semantics (see section 4.3) developed within the argumentation-theoreticframework introduced in [88] (see section 7). Its semantics is based upon an appropriatenotion of attack between subtheories consisting of partially ordered extended clauses in atheory T . Informally, for any subsets E and � of T such that E [� have a contradictoryconsequence, E attacks � if and only if either E does not contain a clause which is lowerthan some clause in � or if E does contain such a clause, it also contains some clausewhich is higher than a clause in �. Thus, the priority ordering is used to break thesymmetry between the incompatible sets E and �. Hence in the example above, if wehave a bird that walks, then the subtheory which, in addition to these two facts, consistsof the second clause :fly(X) walk(X)attacks the subtheory consisting of the clausefly(X) bird(X)and the same two facts, but not vice versa; so, the �rst subtheory is acceptable whereasthe second one is not. 54



Kakas, Mancarella and Dung show that, with this notion of attack in the new frameworkwith explicit negation but without NAF, it is possible to capture exactly the semantics ofNAF in LP. This shows that, if LP is extended with explicit negation, then NAF can besimulated by introducing a priority ordering between clauses. Moreover, the new frame-work of ELP is more general than conventional ELP as it allows any ordering relation onthe clauses of extended logic programs.In the extended logic program which results from the transformation described above,if :p holds then � p holds in the corresponding general logic program, for any atomp. We can argue, therefore, that the transformed extended logic program satis�es thecoherence principle, proposed by Pereira and Alferes [135], namely that whenever :pholds then � p must also hold. They consider the satisfaction of this principle to bea desirable property of any semantics for ELP, as illustrated by the following example,taken from [3].Example 6.5Given the extended logic program:drivers striketake bus � drivers strikeone should derive the conclusion take bus.The coherence principle automatically holds for the answer set semantics. Pereira andAlferes [135] and Alferes, Dung and Pereira [3] have de�ned new semantics for ELP thatincorporates the coherence principle. These semantics are adaptations of Przymuszynski'sextended stable model semantics [153] and Dung's preferred extension semantics [39],respectively, to ELP. Alferes, Damasio and Pereira [2] provide a sound and completeproof procedure for the semantics in [135]. The proof procedure is implemented in Prologby means of an appropriate transformation from ELP to general LP.6.5 An argumentation-theoretic approach to ELPThe Dung and Ruamviboonsuk semantics for ELP [46] in e�ect reduces ELP to ALP byrenaming the explicit negation :p of a predicate p to a new predicate p0 and employingintegrity constraints 8X:[p(X) ^ p0(X)]for all predicates p in the program. This reduction automatically provides us with anargumentation-theoretic interpretation of ELP, where attacks via these integrity con-straints become attacks via explicit negation. Such notions of attack via explicitnegation have been de�ned by Dung [45] and Kakas, Mancarella and Dung [99]. Dung'snotion can be formulated as follows: a set of NAF literals E 20 attacks another such set� via explicit negation (relative to a program P 0) 21 if20Note that, for simplicity, here we use NAF literals directly as hypotheses, without renaming them aspositive atoms.21P 0 stands for the extended logic program P where all explicitly negated literals of the form :p(t) arerewritten as atoms p0(t). 55

� P 0 [ E [ � ` p; p0, for some atom p, andP 0 [ E 6` p; p0, and P 0 [ � 6` p; p0, for all atoms p.Kakas, Mancarella and Dung's notion can be formulated as follows: E attacks a non-empty set � via explicit negation (relative to a program P 0) if� P 0 [ E ` l and P 0 [ � ` l, for some literal l,where p = p0 and p0 = p.Augmenting the notion of attack via NAF by either of these new notions of attack viaexplicit negation, we can de�ne admissibility, weak stability and acceptability semanticssimilarly to the de�nitions in section 4.3. However, the resulting semantics might giveunwanted results, as illustrated by the following example given in [45].Example 6.6Given the extended logic programfly(X) bird(X);� ab bird(X):fly(X) penguin(X);� ab penguin(X)bird(X) penguin(X)penguin(tweety)ab bird(X) penguin(X);� ab penguin(X)fab penguin�(tweety)g attacks fab bird�(tweety)g via NAF. However, fab bird�(tweety)gattacks fab penguin�(tweety)g via explicit negation (and vice versa). Therefore,fab bird�(tweety)g counterattacks all attacks against it, and is admissible. As a con-sequence, fly(tweety) holds in the extension given by fab bird�(tweety)g. However, in-tuitively fly(tweety) should hold in no extension.To cope with this problem, Dung [45] suggests the following semantics, while keeping thede�nition of attack unchanged. A set of hypotheses is D-admissible if� � does not attack itself, either via explicit negation or via NAF, and� for every attack E against �, either via explicit negation or via NAF, � attacks Evia NAF.Note that, if ELP is seen as a special instance of ALP, then D-admissibility is very similarto KM-admissibility, presented in section 5.3 for ALP, in that the two notions share thefeature that counterattacks can only be provided by means of attacks via NAF.It can be argued, however, that the problem in this example lies not so much with thesemantics but with the representation itself. The last clauseab bird(X) penguin(X);� ab penguin(X)can be understood as attempting to assign a higher priority to the second clause of theprogram over the �rst. This can be done, without this last clause, explicitly in the ELPframework with priorities of [99] (section 6.4) or in the rules and exceptions approach56



[112] (section 6.3).An argumentation-theoretic interpretation for ELP has also been proposed by Bondarenko,Toni and Kowalski [11]. Their proposal, which requires that P 0 [ � be consistent withthe integrity constraints 8X:[p(X) ^ p0(X)]for each predicate p, instead of using a separate notion of attack via explicit negation, hascertain undesirable consequences, as shown in [4]. For example, the programp � p;� qadmits both f� qg and f� pg as admissible extensions, while the only intuitively correctextension is f� qg.Alferes and Pereira [4] use argumentation-theoretic notions to extend the well-foundedsemantics for ELP in [135]. Kakas, Mancarella and Dung [99] also de�ne a well-foundedsemantics for ELP based upon argumentation-theoretic notions.6.6 A methodology for default reasoning with explicit negationCompared with other authors, who primarily focus on extending or modifying the seman-tics of LP to deal with default reasoning, Pereira, Aparicio and Alferes [136] develop amethodology for performing default reasoning with extended logic programs. Defaults ofthe form \normally if q then p" are represented by an extended clausep  q; � :nameqp; � : p (4)where the condition nameqp can be understood as a name given to the default. Thecondition � : p deals with exceptions to the conclusion of the rule, whilst the condition� :nameqp deals with exceptions to the rule itself. An exception to the rule would berepresented by an extended clause of the form:nameqp  rwhere the condition r represents the conditions under which the exception holds. In theying-birds example, the second clause offly(X)  bird(X); � : birds fly; � : fly(X) (5): birds fly(X)  penguin(X) (6)expresses that the default named birds fly does not apply for penguins.The possibility of expressing both exceptions to rules as well as exceptions to predicatesis useful for representing hierarchies of exceptions. Suppose we want to change (6) to thedefault rule \penguins usually don't y". This can be done by replacing (6) by: fly(X)  penguin(X); � : penguins don0t fly(X); � fly(X) (7)57

where penguins don0t fly is the name assigned to the new rule. To give preference tothe more speci�c default represented by (7) over the more general default (5), we add theadditional clause: birds fly(X)  penguin(X); � : penguins don0t fly(X):Then to express that superpenguins y, we can add the rule::penguins don0t fly(X)  superpenguin(X):Pereira, Aparicio and Alferes [136] use the well-founded semantics extended with explicitnegation to give a semantics for this methodology for default reasoning. However it isworth noting that any other semantics of extended logic programs could also be used. Forexample Inoue [81, 80] uses an extension of the answer set semantics (see section 6.2), butfor a slightly di�erent transformation.6.7 ELP with abductionInoue [80] (see also section 6.3) and Pereira, Aparicio and Alferes [136] investigate ex-tended logic programs with abducibles but without integrity constraints. They transformsuch programs into extended logic programs without abduction by adding a new pair ofclauses p(X)  � : p(X): p(X)  � p(X)for each abducible predicate p. Notice that the transformation is identical to that ofSatoh and Iwayama [170] presented in section 5.5, except for the use of explicit negationinstead of new predicates. Inoue [80] and Pereira, Aparicio and Alferes [136] assign di�er-ent semantics to the resulting program. Whereas Inoue applies the answer set semantics,Pereira, Aparicio and Alferes apply the extended stable model semantics of [153]. Pereira,Aparicio and Alferes [138] have also developed proof procedures for this semantics.As mentioned above, Pereira, Aparicio and Alferes [136] understand the transformedprograms in terms of (three-valued) extended stable models. This has the advantage thatit gives a semantics to every logic program and it does not force abducibles to be eitherbelieved or disbelieved. But the advantage of the transformational approach, as we havealready remarked, is that the semantics of the transformed program is independent ofthe transformation. Any semantics can be used for the transformed program (includingeven a transformational one, e.g. replacing explicitly negated atoms : p(t) by a new atomp0(t)).7 An Abstract Argumentation-based Framework forDefault ReasoningFollowing the argumentation-theoretic interpretation of NAF introduced in [88], Kakas[87] generalised the interpretation and showed how other logics for default reasoning can58



be based upon a similar semantics. In particular, he showed how default logic can beunderstood in such terms and proposed a default reasoning framework based on theargumentation-theoretic acceptability semantics (see section 4.3) as an alternative to de-fault logic.Dung [44] proposed an abstraction of the argumentation-theoretic interpretation of NAFintroduced in [88], where arguments and the notion of one argument attacking anotherare treated as primitive concepts which can be superimposed upon any monotonic logicand can even be introduced into non-linguistic contexts. Stable, admissible, preferred,and well-founded semantics can all be de�ned in terms of sets of arguments that are ableto attack or defend themselves against attack by other arguments. Dung shows that manyproblems from such di�erent areas as AI, game theory and economics can be formulatedand studied within this argumentation-theoretic framework.Bondarenko, Toni and Kowalski [11] modi�ed Dung's notion of an abstract argumentation-theoretic framework by de�ning an argument to be a monotonic derivation from a set ofabductive assumptions. This new framework, like that of [87], can be understood as anatural abstraction and extension of the Theorist framework in two respects. First, theunderlying logic can be any monotonic logic and not just classical �rst-order logic. Sec-ond, the semantics of the non-monotonic extension can be formulated in terms of anyargumentation-theoretic notion, and not just in terms of maximal consistency.To give an idea of this framework, we show here how a simpli�ed version of the frameworkcan be used to de�ne an abstract notion of stable semantics which includes as special casesstable models for logic programs and extensions for default logic [158], autoepistemic logic[126] and non-monotonic logic II [119]. We follow the approach of Bondarenko, Dung,Kowalski and Toni [12] (see also [87]).Let T be a set of sentences in any monotonic logic, ` the provability operator for thatlogic and A a set of candidate abducible sentences. For any � 2 A, let � be some sentencethat represents the \contrary" of �. Then, a set of assumptions E is said to attack a setof assumptions � i�� T [ E ` � for some � 2 �.Note that the notion a sentence � being the contrary of an assumption � can be regardedas a special case of the more general notion that � is retractible in an integrity constraint:[� ^ �] (here � is \a contrary" of �):This more general notion is useful for capturing the semantics of ALP.To cater for the semantics of LP, T is a general logic program, ` is modus ponens and Ais the set of all negative literals. The contrary of � p is p.For default logic, default rules are rewritten as sentences of the form(x) �(x) ^M�1(x) ^ : : : ^M�n(X)59

(similarly to Poole's simulation of default logic, section 3), where the underlying languageis �rst-order logic augmented with a new symbol "M" which creates a sentence from asentence not containing M , and with a new implication symbol  in addition to theusual implication symbol for �rst-order logic. The theory T is F [D, where F is the setof "facts" and D is the set of defaults written as sentences. ` is ordinary provability forclassical logic augmented with modus ponens for the new implication symbol. (This isdi�erent from Poole's simulation, which treats  as ordinary implication.) The set A isthe set of all sentences of the form M�. The contrary of M� is :�.For autoepistemic logic, the theory T is any set of sentences written in modal logic. How-ever, ` is provability in classical (non-modal) logic. The set A is the set of all sentencesof the form :L� or L�. The contrary of :L� is �, whereas the contrary of L� is :L�.For non-monotonic logic II, T is any set of sentences of modal logic, as in the case ofautoepistemic logic, but ` is provability in modal logic (including the inference rule ofnecessitation, which derives L� from �). The set A is the set of all sentences of the form:L�. The contrary of :L� is �.Given any theory T in any monotonic logic, candidate assumptions A and notion of the\contrary" of an assumption, a set of assumptions � is stable i�� � does not attack itself and� � attacks all f�g such that � 2 A��.This notion of stability includes as special cases stable models in LP and extensions indefault logic, autoepistemic logic and non-monotonic logic II.Based upon this abductive interpretation of default logic, Satoh [169] proposes a soundand complete proof procedure for default logic, by extending the proof procedure for ALPof [172].At a similar level of abstraction, Kakas, Mancarella and Dung [99] also propose a generalargumentation-theoretic framework based primarily on the acceptability semantics. Aswith LP, other semantics such as preferred extension and stable theory semantics can beobtained as approximations of the acceptability semantics. A sceptical form of semantics,analogous to the well-founded semantics for LP, is also given in [99], based on a strongform of acceptability.Kakas, Mancarella and Dung de�ne a notion of attack between conicting sets of sen-tences, but these can be any subtheories of a given theory, rather than being subtheoriesdrawn from a pre-assigned set of assumption sentences as in [11, 12]. Also as in the specialcase of LP (see section 4.3) this notion of attack together with the acceptability semanticsensures that defences are genuine counterattacks, i.e. that they do not at the same timeattack the theory that we are trying to construct.60



Because this framework does not separate the theory into facts and candidate assump-tions, the attacking relation would be symmetric. To avoid this, a priority relation can begiven on the sentences of the theory. As an example of this approach, Kakas, Mancarellaand Dung propose a framework for ELP where programs are accompanied by a priorityordering on their clauses and show how in this framework NAF can be removed fromthe object-level language (see also section 6.4). More generally, this approach provides aframework for default reasoning with priorities on sentences of a theory, viewed as defaultrules. It also provides a framework for restoring consistency in a theory T by using theacceptable subsets of T (see sections 6.2 and 6.3).Brewka and Konolige [15] also propose an abductive framework which uni�es and pro-vides new semantics for LP, autoepistemic logic and default logic, but does not useargumentation-theoretic notions. This semantics generalises the semantics for LP givenin [14].8 Abduction and Truth MaintenanceIn this section we will consider the relationship between truth maintenance (TM) andabduction. TM systems have historically been presented from a procedural point of view.However, we will be concerned primarily with the semantics of TM systems and the rela-tionship to the semantics of abductive logic programming.A TM system is part of an overall reasoning system which consists of two components: adomain dependent problem solver which performs inferences and a domain independentTM system which records these inferences. Inferences are communicated to the TMsystem by means of justi�cations, which in the simplest case can be written in the formp  p1; : : : ; pnexpressing that the proposition p can be derived from the propositions p1; : : : ; pn. Jus-ti�cations include premises, in the case n = 0, representing propositions which hold inall contexts. Propositions can depend upon assumptions which vary from context tocontext.TM systems can also record nogoods, which can be written in the form: (p1; : : : ; pn);meaning that the propositions p1; : : : ; pn are incompatible and therefore cannot hold to-gether.Given a set of justi�cations and nogoods, the task of a TM system is to determine whichpropositions can be derived on the basis of the justi�cations, without violating the no-goods.For any such TM system there is a straight-forward correspondence with abductive logicprograms: 61

� justi�cations correspond to propositional Horn clause programs,� nogoods correspond to propositional integrity constraints,� assumptions correspond to abducible hypotheses, and� contexts correspond to acceptable sets of hypotheses.The semantics of a TM system can accordingly be understood in terms of the semantics ofthe corresponding propositional logic program with abducibles and integrity constraints.The two most popular systems are the justi�cation-based TM system (JTMS) of Doyle[36] and the assumption-based TM system (ATMS) of deKleer [102].8.1 Justi�cation-based truth maintenanceA justi�cation in a JTMS can be written in the formp  p1; : : : ; pn; � pn+1; : : : ;� pm;expressing that p can be derived (i.e. is IN in the current set of beliefs) if p1; : : : ; pn canbe derived (are IN) and pn+1; : : : ; pm cannot be derived (are OUT).For each proposition occurring in a set of justi�cations, the JTMS determines an IN orOUT label, taking care to avoid circular arguments and thus ensuring that each propo-sition which is labelled IN has well-founded support. The JTMS incrementally revisesbeliefs when a justi�cation is added or deleted.The JTMS uses nogoods to record contradictions discovered by the problem solver and toperform dependency-directed backtracking to change assumptions in order to restoreconsistency. In the JTMS changing an assumption is done by changing an OUT label toIN.Suppose, for example, that we are given the justi�cationsp  � qq  � rcorresponding to the propositional form of the Yale shooting problem. As Morris [127]observes, these correctly determine that q is labelled IN and that r and p are labelledOUT. If the JTMS is subsequently informed that p is true, then dependency-directedbacktracking will install a justi�cation for r, changing its label from OUT to IN. Noticethat this is similar to the behaviour of the extended abductive proof procedure describedin example 5.5, section 5.2.Several authors have observed that the JTMS can be given a semantics correspondingto the semantics of logic programs, by interpreting justi�cations as propositional logicprogram clauses, and interpreting � pi as NAF of pi. The papers [49, 71, 92, 141], inparticular, show that a well-founded labelling for a JTMS corresponds to a stable model62



of the corresponding logic program. Several authors [49, 59, 92, 156], exploiting the inter-pretation of stable models as autoepistemic expansions [68], have shown a correspondencebetween well-founded labellings and stable expansions of the set of justi�cations viewedas autoepistemic theories.The JTMS can also be understood in terms of abduction using the abductive approach tothe semantics of NAF, as shown in [40, 71, 92]. This has the advantage that the nogoodsof the JTMS can be interpreted as integrity constraints of the abductive framework. Thecorrespondence between abduction and the JTMS is reinforced by [170], which gives aproof procedure to compute generalised stable models using the JTMS (see section 5.4).8.2 Assumption-based truth maintenanceJusti�cations in ATMS have the more restricted Horn clause formp  p1; : : : ; pn:However, whereas the JTMS maintains only one implicit context of assumptions at a time,the ATMS explicitly records with every proposition the di�erent sets of assumptions whichprovide the foundations for its belief. In ATMS, assumptions are propositions that havebeen pre-speci�ed as assumable. Each record of assumptions that supports a propositionp can also be expressed in Horn clause formp  a1; : : : ; anand can be computed from the justi�cations, as we illustrate in the following example.Example 8.1Suppose that the ATMS contains justi�cationsp  a; bp  b; c; dq  a; cq  d; eand the single nogood : (a; b; e)where a; b; c; d; e are assumptions. Given the new justi�cationr  p; qthe ATMS computes explicit records of r's dependence on the assumptions:r  a; b; cr  b; c; d; e:The dependence r  a; b; d; e:63

is not recorded because its assumptions violate the nogood. The dependencer  a; b; c; dis not recorded because it is subsumed by the dependencer  a; b; c:Reiter and deKleer [162] show that, given a set of justi�cations, nogoods, and candi-date assumptions, the ATMS can be understood as computing minimal and consistentabductive explanations in the propositional case (where assumptions are interpreted asabductive hypotheses). This abductive interpretation of ATMS has been developed fur-ther by Inoue [79], who gives an abductive proof procedure for the ATMS.Given an abductive logic program P and goal G, the explicit construction in ALP of aset of hypotheses �, which together with P implies G and together with P satis�es anyintegrity constraints I, is similar to the recordG  �computed by the ATMS. There are, however, some obvious di�erences. Whereas ATMSdeals only with propositional justi�cations, relying on a separate problem solver to in-stantiate variables, ALP deals with general clauses, combining the functionalities of botha problem solver and a TM system.The extension of the ATMS to the non-propositional case requires a new notion of mini-mality of sets of assumptions. Minimality as subset inclusion is not su�cient, but needs tobe replaced by a notion of minimal consequence from sets of not necessarily variable-freeassumptions [115].Ignoring the propositional nature of a TM system, ALP can be regarded as a hybridof JTMS and ATMS, combining the non-monotonic negative assumptions of JTMS andthe positive assumptions of ATMS, and allowing both positive and negative conditionsin both justi�cations and nogoods [92]. Other non-monotonic extensions of ATMS havebeen developed in [84, 163].It should be noted that one di�erence between ATMS and ALP is the requirement inATMS that only minimal sets of assumptions be recorded. This minimality of assumptionsis essential for the computational e�ciency of the ATMS. However, it is not essential forALP, but can be imposed as an additional requirement when it is needed.9 Conclusions and Future WorkIn this paper we have surveyed a number of proposals for extending LP to perform abduc-tive reasoning. We have seen that such extensions are closely linked with other extensionsincluding NAF, integrity constraints, explicit negation, default reasoning, belief revision64



and argumentation.Perhaps the most important link, from the perspective of LP, is that between default ab-duction and NAF. On the one hand, we have seen that default abduction generalises NAF,to include not only negative but also positive hypotheses, and to include general integrityconstraints. On the other hand, we have seen that logic programs with abduction andintegrity constraints can be transformed into logic programs with NAF without integrityconstraints. We have also seen that, in the context of ELP with explicit negation, thatNAF can be replaced by a priority ordering between clauses. The link between abductionand NAF includes both their semantics and their implementations.The use of default abduction for NAF is a special case of abduction in general. The dis-tinction between default and non-default abduction has been clari�ed. Semantics, proofprocedures and transformations that respect this distinction have all been de�ned. How-ever, more work is needed to study the integration of these two kinds of abduction ina common framework. The argumentation-based approach seems to o�er a promisingframework for such an integration.We have seen the importance of clarifying the semantics of abduction and of de�ning asemantics that helps to unify the di�erent forms of abduction, NAF, and default reason-ing within a common framework. We have seen, in particular, that a proof procedurewhich is incorrect under one semantics (e.g. [54]) can be correct under another improvedsemantics (e.g. [39]). We have also introduced an argumentation-theoretic interpretationfor the semantics of abduction applied to NAF, and we have seen that this interpretationcan help to understand the relationships between di�erent semantics.The argumentation-theoretic interpretation of NAF has been abstracted and shown tounify and simplify the semantics of such di�erent formalisms for default reasoning asdefault logic, autoepistemic logic and non-monotonic logic. In each case the standardsemantics of these formalisms has been shown to be a special instance of a single abstractnotion that a set of assumptions is a (stable) semantics if it does not attack itself butdoes attack all other assumptions it does not contain. The stable model semantics, gener-alised stable model semantics and answer set semantics are other special cases. We haveseen that stable model semantics and its extensions have de�ciencies which are avoidedwith admissibility, preferred extension, complete scenaria, weak stability, stable theoryand acceptability semantics. Because these more re�ned semantics for LP can be de�nedabstractly for any argumentation-based framework, they automatically and uniformlyprovide improvements for the semantics of other formalisms for default reasoning.Despite the many advances in the application of abduction to LP and to non-monotonicreasoning more generally, there is still much scope for further development. Importantproblems in semantics still need to be resolved. These include the problem of clarifyingthe role of integrity constraints in providing attacks and counterattacks in ALP.The further development, clari�cation and simpli�cation of the abstract argumentation-theoretic framework and its applications both to existing formalisms and to new for-malisms for non-monotonic reasoning is another important direction for future research.65

Of special importance is the problem of relating circumscription and the if-and-only-ifcompletion semantics to the argumentation-theoretic approach. An important step inthis direction may be the \common sense" axiomatisation of NAF [188] by Van Gelderand Schlipf, which augments the if-and-only-if completion with axioms of induction. Theinclusion of induction axioms relates this approach to circumscription, whereas the rewrit-ing of negative literals by new positive literals relates it to the abductive interpretationof NAF.The development of systems that combine ALP and CLP is another important area thatis still in its infancy. Among the results that might be expected from this developmentare more powerful systems that combine constructive abduction and constructive nega-tion, and systems in which user-de�ned constraint handling rules might be formulatedand executed e�ciently as integrity constraints.It is an important feature of the abductive interpretation of NAF that it possesses ele-gant and powerful proof procedures, which signi�cantly extend SLDNF and which canbe extended in turn to accommodate other abducibles and other integrity constraints.Di�erent semantics for NAF require di�erent proof procedures. It remains to be seenwhether the ine�ciency of proof procedures for the acceptability semantics, in particular,can somehow be avoided in practice.We have seen that abductive proof procedures for LP can be extended to ALP. We havealso seen that ALP can be reduced to LP by transformations. The comparative e�ciencyof the two di�erent approaches to the implementation of ALP needs to be investigatedfurther.We have argued that the implementation of abduction needs to be considered withina broader framework of implementing knowledge assimilation (KA). We have seen thatabduction can be used to assist the process of KA and that abductive hypotheses them-selves need to be assimilated. Moreover, the general process of checking for integrity inKA might be used to check the acceptability of abductive hypotheses.It seems that an e�cient implementation of KA can be based upon combining two pro-cesses: backward reasoning both to generate abductive hypotheses and to test whetherthe input is redundant and forward reasoning both to test input for consistency and totest whether existing information is redundant. Notice that the abductive proof proce-dure for ALP already has this feature of interleaving backward and forward reasoning.Such implementations of KA need to be integrated with improvements of the abductiveproof procedure considered in isolation.We have seen that the process of belief revision also needs to be considered within a KAcontext. In particular, it could be useful to investigate relationships between the beliefrevision frameworks of [37, 65, 128, 129] and various integrity constraint checking andrestoration procedures.The extension of LP to include integrity constraints is useful both for abductive LP andfor deductive databases. We have seen, however, that for many applications the use of66



integrity constraints with retractibles can be replaced by clauses with explicitly negatedconclusions with priorities. Moreover, the use of explicit negation with priorities seemsto have several advantages, including the ability both to represent and derive negativeinformation, as well as to obtain the e�ect of NAF.The relationship between integrity constraints with retractibles and explicit negation withpriorities needs to be investigated further: To what extent does this relationship, whichholds for abduction and default reasoning, hold for other uses of integrity constraints,such as those employed in deductive databases; and what are the implications of thisrelationship on the semantics and implementation of integrity constraints?We have remarked upon the close links between the semantics of LP with abduction andthe semantics of truth maintenance systems. The practical consequences of these links,both for building applications and for e�cient implementations, need further investiga-tion. What is the signi�cance, for example, of the fact that conventional TMSs andATMSs correspond only to the propositional case of logic programs?We have seen the rapid development of the abduction-based argumentation-theoretic ap-proach to non-monotonic reasoning. But argumentation has wider applications in areassuch as law and practical reasoning more generally. It would be useful to see to whatextent the theory of argumentation might be extended to encompass such applications.It would be especially gratifying, in particular, if such an extended argumentation theorymight be used, not only to understand how one argument can defeat another, but also toindicate how conicting arguments might be reconciled.AcknowledgementsThis research was supported by Fujitsu Research Laboratories and by the Esprit BasicResearch Action Compulog II. The authors are grateful to Katsumi Inoue and Ken Satohfor helpful comments on an earlier draft, and to Jos�e J�ulio Alferes, Phan Minh Dung,Paolo Mancarella and Luis Moniz Pereira for many helpful discussions.References[1] Akama, S., Answer set semantics and constructive logic with strong negation. Tech-nical Report (1992)[2] Alferes, J.J., Damasio, C.V., Pereira, L.M., Top-down query evaluation for well-founded semantics with explicit negation. Proc. European Conference on Arti�cialIntelligence, ECAI '94,John Wiley, Amsterdam (1994)[3] Alferes, J.J., Dung, P.M., Pereira, L.M., Scenario semantics of extended logic pro-grams. Proc. 2nd International Workshop on Logic Programming and NonmonotonicReasoning MIT press (Pereira and Nerode eds.), Lisbon (1993) 334{34867
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