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Abstract. Abductive logic programming (ALP) can be used to model 
reactive, proactive and pre-active thinking in intelligent agents. Reactive 
thinking assimilates observations of changes in the environment, 
whereas proactive thinking reduces goals to sub-goals and ultimately to 
candidate actions. Pre-active thinking generates logical consequences of 
candidate actions, to help in deciding between the alternatives. These 
different ways of thinking are compatible with any way of deciding 
between alternatives, including the use of both decision theory and 
heuristics. 
The different forms of thinking can be performed as they are needed, or 
they can be performed in advance, transforming high-level goals and 
beliefs into lower-level condition-action rule form, which can be 
implemented in neural networks. Moreover, the higher-level and lower-
level representations can operate in tandem, as they do in dual-process 
models of thinking. In dual process models, intuitive processes form 
judgements rapidly, sub-consciously and in parallel, while deliberative 
processes form and monitor judgements slowly, consciously and 
serially. 
ALP used in this way can not only provide a framework for constructing 
artificial agents, but can also be used as a cognitive model of human 
agents. As a cognitive model, it combines both a descriptive model of 
how humans actually think with a normative model of humans can think 
more effectively. 
 
 

1 Introduction 
 
Symbolic logic is one of the main techniques used in Artificial Intelligence, to develop 
computer programs that display human intelligence. However, attempts to use 
symbolic logic for this purpose have identified a number of shortcomings of 
traditional logic and have necessitated the development of various improvements and 
extensions. This paper - and the draft book [6] on which it is based -  aims to show 
that many of these developments can also be used for the original purpose of logic – to 
improve the quality of human thinking.  
 I have written the book informally, both to reach a wider audience and to 
demonstrate that the enhanced logic is in fact relevant and congenial for human 



thinking. However, in this paper, I will draw attention to some of the more technical 
issues, for the consideration of a more academic audience. 
 The logic used in the book is based on an extension of abductive logic 
programming (ALP) to logic-based agents [7]. In ALP agents, beliefs are represented 
by logic programs and goals are represented by integrity constraints. The agent’s 
observations and actions are represented by abducible predicates. Beliefs and goals 
have both a declarative interpretation in logical terms, as well as a procedural 
interpretation in computational terms. 
 ALP agents are both reactive to changes they observe in the environment and 
proactive in planning ahead and reducing goals to sub-goals. In this paper I show that 
ALP agents can also be pre-active in thinking about the possible consequences of 
actions before deciding what to do.  
 In conventional ALP, the logical consequences of abductive hypotheses are 
checked to determine whether they violate any integrity constraints. However, in ALP 
agents, where abductive hypotheses include alternative, candidate actions, the pre-
actively generated consequences of candidate actions are used to decide between the 
alternatives. This decision can be made in different ways. One way is to use 
conventional Decision Theory, judging the utilities and probabilities of the 
consequences of the alternative candidates and choosing an action that maximizes 
expected utility. However, other ways of deciding between actions are also compatible 
with ALP, including ways that compile decision making into heuristics. 
 The combination of reactive, proactive and pre-active thinking is obtained in ALP 
agents by combining forward and backward reasoning. This reasoning can be 
performed whenever the need arises, or it can be performed once and for all by 
reasoning in advance. Reasoning in advance transforms and compiles higher-level 
goals and beliefs into lower-level goals, which are similar to condition-action rules, 
which implement stimulus-response associations compiled into neural networks. 
 In modern computing, it is common to develop programs in a high-level 
representation and then to transform or compile them into a lower-level representation 
for the sake of efficiency. If it later becomes necessary to correct or enhance the 
resulting lower-level program, this is generally done by first modifying the higher-
level representation and then recompiling it into a new lower-level form. 
 However, many existing computer systems are legacy systems developed before 
the existence of higher-level programming languages. It is often possible to decompile 
these lower-level programs into higher-level form, although, because of the 
undisciplined nature of lower-level languages, sometimes the relationship is only 
approximate. 
 The relationship between higher-level and lower-level computer programs is 
analogous to the relationship between higher-level and lower-level representations in 
ALP agents. It is also similar to the relationship between deliberative and intuitive 
thinking in the dual process model of human thinking [10]. In the dual process model, 
one system, which is older in evolutionary terms, is responsible for intuitive thinking. 
It is associative, automatic, unconscious, parallel, and fast. The other system, which is 
distinctively human, is responsible for deliberative thinking. It is rule-based, 
controlled, conscious, serial, and slow. 
 In computing, high-level and low level representations normally operate 
separately, but can be compiled or decompiled from one into the other. In the dual 



process model, however, intuitive and deliberative thinking can operate in tandem, as 
when the intuitive, subconscious level “quickly proposes intuitive answers to 
judgement problems as they arise”, while the deliberative, conscious level “monitors 
the quality of these proposals, which it may endorse, correct, or override” [3]. This 
interaction between intuitive and deliberative thinking can be mimicked in part by the 
use of pre-active thinking in ALP agents, to monitor and evaluate candidate actions 
generated by reactive thinking. In ALP agents both the deliberative level and the 
intuitive level are represented in logical form. 
 These topics are expanded upon in the remainder of the paper. Section 2 outlines 
the basic features of the ALP agent model, including reactive, proactive, and pre-
active thinking. Section 3 investigates the relationship between thinking and deciding. 
Section 4 discusses the transformation of high-level representations into lower-level, 
more efficient form, and the way in which high-level and lower-level representations 
interact. Section 5 shows how low-level feed-forward neural networks can be 
represented in logical form and can be simulated by forward reasoning. Section 6 
discusses some of the implications of this for the notion that logic can serve as a wide-
spectrum language of thought. Section 7 addresses some of the arguments against 
logic as a model of human thinking, and section 8 is the conclusion. 
 
 
2 The Basic ALP Agent Model 

 
 2.1 Putting Logic in its Place in the Agent Cycle 

 
The logic used in the book is based on an extension of abductive logic programming 
(ALP) to logic-based agents [7]. The most important feature of the extension is that it 
embodies logic in the thinking component of an agent’s observe-think-decide-act 
cycle: 
 
 
 
 
 
 
 
 
 

  The agent cycle can be viewed as a generalisation of production systems, in which 
thinking is performed by using condition-action rules of the form: 

 
    If conditions then candidate actions. 
 

Condition-action rules look a lot like logical implications, but they do not have the 
declarative semantics of implications. Nonetheless, as we will later see, in ALP 
agents, condition-action rules are represented by goals expressed in logical form. 
 This view of logic in the mind of an agent embodied in the world is pictured in 
figure 1. In this picture, the agent uses logic to represent its goals and beliefs, and to 

 
To cycle, 
observe the world,  
think,   
decide what actions to perform, 
act,   
cycle again. 



help control its interactions with the world. It transforms its experience into 
observations in logical form and uses its goals and beliefs to generate candidate 
actions, to satisfy its goals and to maintain itself in a satisfactory relationship with the 
changing world. 
 The agent’s body, in addition to being a part of the world, transforms both raw 
experience into observations and the will to act into physical changes in the world. 
This is analogous to the way in which hardware and software are related in a 
computer. The hardware transforms stimuli from the environment into inputs and 
transforms outputs into physical changes in the environment. The internal processing 
of inputs into outputs is performed by the hardware, but is controlled conceptually by 
software. In this analogy, the brain and body of an agent are to the mind as hardware 
is to software. 
 
 

 
 In general, the result of thinking is a set of candidate actions, which are the input to 
the decision-making component of the agent cycle. In the same way that Logic is only 
one way of thinking, there are many ways of deciding what to do. Decision theory, 
which combines judgements about the utility of the outcomes of actions with 
judgements about their probability, is one such way of deciding. As we will see in an 
example later, it is also possible to compile decision-making directly into lower-level 
goals and beliefs. In production systems, decision making is called “conflict 
resolution”.  

  An agent’s ultimate goal is to maintain itself in a satisfactory relationship with the 
surrounding world, and thinking and deciding are only one way of achieving that goal. 
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Fig. 1 The agent cycle. 
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An agent can also act to satisfy its goals instinctively, by means of stimulus-response 
associations, in a way that might be characterised as acting without thinking. 
Instinctive behaviour can be hardwired into an agent’s body, without entering into its 
mind. Or it might be learned as the result of repeated performance and feedback. 
Instinctive behaviour is a near relation of intuitive thinking in the dual process model.  
 The agent cycle, as described above, concerns the real time behaviour of an agent, 
and does not address the processes involved in learning new behaviours and updating 
old ones. Suffice it to say that learning, belief revision and goal revision are essential 
activities for a real agent interacting with the real world. Because of the logical nature 
of ALP agents, such techniques as inductive logic programming are especially suitable 
to model such activities. They are, however, beyond the scope of this paper. 
 
 
2.2 ALP Combines Forward and Backward Reasoning 
 
Abductive logic programming [4] comes in many forms and variations, both in terms 
of its semantics and in terms of its proof procedures. However, in all of these forms, 
abductive logic programs have two components: ordinary logic programs and integrity 
constraints. They also have two, corresponding kinds of predicates – ordinary 
predicates that are defined by logic programs and abducible predicates that are, 
directly or indirectly, constrained by integrity constraints. 
 In ALP agents, logic programs are used to represent an agent’s beliefs, and 
integrity constraints to represent its goals. The abducible predicates are used to 
represent the agent’s observations and actions. The integrity constraints are active, in 
the sense that they can generate representations of actions that the agent can perform, 
in order to maintain integrity.  
 Consider, for example, the goal of getting help in an emergency on the London 
underground.  
 
Goal  If there is an emergency then I get help. 
 
Beliefs  There is an emergency if there is a fire. 
   There is an emergency if one person attacks another. 
   There is an emergency if someone becomes seriously ill. 
   There is an emergency if there is an accident. 
 
   There is a fire if there are flames.1 
   There is a fire if there is smoke. 
 

                                                 
1 These two rules, relating fire, flames and smoke are the converse of the causal rules, which 
state that if there is a fire then there are flames and smoke. The causal rules are a higher-level 
representation, whereas the rules used here are a lower-level, more efficient representation. The 
higher-level, causal representation would need abduction to explain that an observation of 
smoke or flames can be caused by fire. In fact, the term “abduction” normally refers to such 
generation of hypotheses to explain observations. The lower-level representation used here 
replaces abduction by deduction. 



   A person gets help  
   if the person alerts the driver. 
 
   A person alerts the driver  
   if the person presses the alarm signal button. 
 
 Here, for simplicity, the abducible predicates associated with observations are the 
predicates “there are flames”, “there is smoke”, “one person attacks another”, 
“someone becomes seriously ill”, and “there is an accident”. The only abducible 
predicate associated with candidate actions is “the person presses the alarm signal 
button”. All of these abducible predicates are indirectly constrained by the goal of 
getting help whenever there is an emergency. All the other predicates, including the 
higher-level actions of getting help and alerting the driver are ordinary predicates, 
defined by the agent’s beliefs. 
 The goal itself is a maintenance goal, which an agent can use to derive actions to 
maintain itself in a desired relationship with the changes that it observes in its 
environment. Maintenance goals can be viewed as a generalization of condition-action 
rules. 
 Maintenance goals are triggered as a consequence of observations, similarly to the 
way in which integrity constraints in a database are triggered as the result of updates. 
An agent reasons forwards from its beliefs, to derive consequences of its observations. 
Suppose, for example, that I am travelling as a passenger on the underground and that 
my body experiences a combination of sensations that my mind interprets as an 
observation of smoke. The observation triggers my beliefs, which I use to reason 
forward in two steps, to recognize that there is an emergency. 
 The conclusion that there is an emergency triggers the maintenance goal, which I 
then use to reason forward one more step, to derive the achievement goal of getting 
help. The achievement goal triggers other beliefs, which I use to reason backwards in 
two steps, to reduce the achievement goal to the action sub-goal of pressing the alarm 
signal button. Since there are no other candidate actions in this simple example, I 
decide to press the alarm signal button, which my body then transforms into a 
combination of motor activities that is intended to accomplish the desired action. 
 The fact that pure logic programs are declarative means that they can be used to 
reason in many different ways. In the procedural interpretation, they are used only to 
reason backwards, as procedures that reduce goals to sub-goals. However, in ALP 
they are used to reason both backwards and forwards. 
 This combination of forward and backward reasoning, together with the interface 
between the agent’s mind and the world, is pictured in figure 2. Arguably, this 
treatment of maintenance goals as integrity constraints generalizes condition-action 
rules in production systems. Condition-action rules are the special case where no 
forward reasoning is needed to trigger the maintenance goal and no backward 
reasoning is needed to reduce the achievement goal to actions. Thus maintenance 
goals include condition-action rules as a special case, but in general are much higher-
level.  
 Vickers [12], in particular, championed the idea that human activity and 
organizations should be viewed as maintaining relationships with the changing 
environment. He characterized Simon’s view of management and problem solving as 



 

the narrower view of only solving achievement goals. Vickers view-point has been 
taken up by in recent years by the soft systems school of management [2]. 
 

 
 
2.3 ALP Combines Reactive and Proactive Thinking 
 
The combination of forward and backward reasoning enables ALP agents to be both 
reactive and proactive. They are reactive when they use forward reasoning to respond 
to changes in the environment, and they are proactive when they use backward 
reasoning to achieve goals by reducing them to sub-goals. In everyday life, human 
agents are both reactive and proactive to varying degrees. 
 Consider, as another example, a simplified ALP version of Aesop’s fable of the 
fox and the crow. Suppose the fox has the following achievement goal and beliefs: 
 
Goal  I have the cheese. 
  
Beliefs  The crow has the cheese. 
   
   An animal has an object 
   if the animal is near the object 
   and the animal picks up the object. 
    
   I am near the cheese 

  
      If there is an emergency then get help 
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reasoning
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There is smoke

The worldFig. 2.  



    if the crow has the cheese  
    and the crow sings. 
    
   The crow sings if I praise the crow. 
 
 The fox can use its beliefs as a logic program, to reason backwards, to reduce its 
goal to the actions of praising the crow and picking up the cheese.2 The fox’s 
reduction of its goal to sub-goals is pictured in figure 3. 
 In keeping with the view that the primary goals of an agent are all maintenance 
goals, the fox’s achievement goal almost certainly derives from a maintenance goal, 
such as this: 
 
   If I become hungry, then I have food and I eat it. 
 
 Here the condition of being hungry is triggered by an observation of being hungry, 
which the fox receives from its body. Notice that the achievement goal of having the 
food is only half of the story. To satisfy the maintenance goal, the fox also needs to eat 
the food. 
 

 
 
                                                 
2 The story is simplified partly because the element of time has been ignored. Obviously, the fox 
needs to praise the crow before picking up the cheese. 
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 The world              

 In Aesop’s fable, the fox’s belief about the behaviour of the crow is true. The crow 
is a purely reactive agent, which responds to praise as the fox believes. The reactivity 
of the crow can be viewed as reasoning forwards in one step from an observation to 
derive an achievement goal, which is an action, from a maintenance goal. This is 
pictured in figure 4. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 This view of the crow’s behaviour is a logical abstraction of behaviour that might 
be hardwired into the crow as a system of lower-level stimulus-response associations. 
The relationship between such a logical abstraction and the stimulus-response 
associations is, arguably, like the relationship between software and hardware. 
 Notice the difference between the sentence 
 
   If the fox praises me, then I sing. 
 
which is a goal for the crow, and the sentence 
 
   The crow sings if I praise the crow. 
 
which is a belief for the fox. Both sentences are implications. However, for the crow, 
the implication is used as a goal, to generate its behaviour. But for the fox, the 
implication is used as a belief, to describe the crow’s behaviour and to reduce goals to 
sub-goals.  
 The difference between the two sentences has nothing to do with the order in 
which the conclusion and condition of the implication is written, because there is no 
semantic difference between writing an implication forwards in the form 

 

If the fox praises me, then I sing. 
 

The fox praises me. I sing. 

Fig. 4. 

The crow 



 
   If conditions then conclusion. 
 
and writing it backwards in the form 
 
   Conclusion if conditions. 
 
Semantically both implications have the same declarative meaning. (In the same way 
that both inequalities 1 < 2 and 2 > 1 have the same meaning.)  
 However, no matter how implications are written, there is an important distinction 
between them depending upon whether they are used as goals or as beliefs. When they 
are used as beliefs, they represent the world as it actually is. When they are used as 
goals, they represent the world as the agent would like it to be. When a goal is an 
implication, the agent performs actions to make the implication true. It only needs to 
perform these actions to make the conclusion of the implication true when the world 
makes the conditions of the implication true. It need not worry about performing 
actions when the world makes the conditions of the implication false. The analogous 
distinction in deductive databases between implications used as integrity constraints 
and implications used as rules was first investigated by Nicolas and Gallaire [ ].  
 
 
2.4 ALP Includes Pre-active Thinking 
 
Aesop’s fable shows how a proactive fox outwits a reactive crow. But there is an even 
more important moral to the story - namely that an intelligent agent should think 
before it acts. Thinking before acting is more than just proactive thinking. It is 
thinking about the possible consequences of candidate actions - pre-actively – before 
deciding what to do. Pre-active thinking is obtained in ALP by reasoning forward 
from candidate actions, whether derived proactively or reactively, and whether 
generated by symbolic reasoning or by instinctive stimulus-response associations. 
  Suppose, for example, that the crow not only has the maintenance goal of singing 
whenever it is praised, but also has the achievement goal (for whatever reason) of 
having the cheese. If the crow also has the same beliefs as the fox, then the crow 
would be able to reason forward, pre-actively, to deduce the possible consequences of 
singing: 
 
   I want to sing.  
 
   But if I sing,  
   then the fox will be near the cheese. 
 
   Perhaps the fox will pick up the cheese. 
   Then the fox will have the cheese, 
   and I will not have the cheese. 
 
   Since I want to have the cheese,  
   I will not sing. 



 
 Notice that the crow can not consistently achieve the goal of having the cheese and 
also maintain the goal of singing whenever it is praised. In real life, an agent needs to 
weigh its goals, trading one goal off against another.3  
 Notice too that the outcome of an agent’s actions typically depends also on 
external events, over which the agent may have little or no control. In the story of the 
fox and crow, the outcome of the crow’s singing depends on whether or not the fox 
decides to pick up the cheese.  
 
 
4 Thinking Needs to be Combined with Deciding What to Do 
 
In ALP, pre-active thinking simply checks whether candidate actions satisfy the 
integrity constraints. However, in real life, we also have to choose between actions, 
taking into consideration the relative utilities and probabilities of their possible 
consequences. In Decision Theory, the agent uses these considerations to choose an 
action that has maximum expected utility. 
 
 
4. 1 Combining ALP with Decision Theory  
 
Suppose, for example, that I have the following beliefs: 
 

I get wet if it rains and I do not carry an umbrella. 
I stay dry if I carry an umbrella. 
I stay dry if it doesn’t rain. 
 

Assume also that I am about to leave home, and that as a sub-goal of leaving home I 
have to decide what to take with me, and in particular whether or not to take an 
umbrella. I can control whether to take an umbrella, but I can not control whether it 
will rain. At best I can only judge the probability of rain. 
 Reasoning forward from the assumption that I take an umbrella and then have to 
carry it, I can derive the certain outcome that I will stay dry. However, reasoning 
forward from the assumption that I do not carry an umbrella, I derive the uncertain 
outcome that I will get wet or I will stay dry, depending on whether or not it will rain.  
 In classical logic, that would be the end of the story. But, in Decision Theory, I can 
judge the likelihood that it is going to rain, judge the positive utility of staying dry 
compared with the negative utility of having to carry the umbrella, weigh the utilities 
by their associated probabilities, and then choose an action that has the maximum 
expected utility. 
 For the record, here is a simple, example calculation: 
 
     Utility of getting wet   =  – 8.   
     Utility of staying dry   =     2.   

                                                 
3 Alternatively, if the crow wants to have the cheese in order to eat it, then the crow could 
satisfy both goals by first eating the cheese and then singing. 



    Utility of carrying an umbrella     =  – 3          
    Utility of not carrying an umbrella  =     0    
    Probability of raining       = .1 
    Probability of not raining = .9 
 
Assume  I take an umbrella. 
Then   Probability of staying dry = 1 
    Expected utility = 2 – 3 = - 1 
 
Assume  I do not take an umbrella . 
Then   Probability of staying dry = .9 
    Probability of getting wet =.1 
    Expected utility = .9  ·2 - .1 ·8 = 1.8 - .8  = 1 
 
Decide   I do not take an umbrella! 
 
 Given the same utilities, the probability of rain would have to be greater than .3 
before I would decide to take an umbrella. 
 Because thinking and deciding are separate components of the agent cycle, any 
way of thinking is compatible with any way of deciding. Thus the use of ALP for 
thinking can be combined with Decision Theory or any other way of deciding what to 
do. This combination of thinking and deciding in ALP agents is pictured in figure 5.  
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 A combination of abductive logic programming and Decision Theory has been 
developed by David Poole in his Independent Choice Logic [8]. He shows how the 
logic can be used to represent Bayesian networks, influence diagrams, Markov 
decision processes and the strategic and extensive form of games. 
 Poole focuses on the semantics of ICL, whereas I focus on the logical and 
computational procedures an individual agent might use in practice. One consequence 
of this difference is that he views condition-action rules as policies, and represents 
them by ordinary logic programs, whereas I view them as goals, and represent them as 
integrity constraints. 
 
 
4.2 Decision Making Can Often Be Compiled into the Thinking Component of 
the Agent Cycle 
 
The problem with Decision Theory is that it requires an unrealistic amount of 
information about utilities and probabilities and too much computation. Nonetheless, 
Decision Theory represents a normative ideal against which other, more practical 
decision-making methods can be evaluated. 
 In the case of taking or not taking an umbrella, a more practical alternative might 
be to use maintenance goals or condition-action rules instead4: 
 
  If I leave home and it is raining then I take an umbrella. 
  If I leave home and there are dark clouds in the sky then I take an umbrella. 
  If I leave home and the weather forecast predicts rain then I take an umbrella. 
 
 The maintenance goals in this example compile decision-making into the thinking 
component of the agent cycle. In some cases, the compilation might be an exact 
implementation of the Decision Theoretic specification. In other cases, it might only 
be an approximation. 
 Other alternatives to Decision Theory include the use of priorities between 
different actions, goals or condition-action rules, and the use of default reasoning. 
 
 
5 Combining Higher-Level and Lower-Level Thinking 
   
5.1 Higher Levels of Thinking Can Be Compiled into Lower Levels 
 
Abductive logic programs have a computational, as well as a logical, interpretation. 
Goals and beliefs expressed in logical form can be viewed as programs written in a 
high-level programming language. Programs written at this high, logical level are 
executed by backward and forward reasoning. 

                                                 
4 In this representation the decision not to take an umbrella is implicit. It holds if the decision to 
take an umbrella does not hold. 
 
 



 For the sake of efficiency, high-level programs are often compiled into lower-level 
programs and are executed using corresponding lower-level computational 
mechanisms. Usually the higher and lower-level programs are written in distinct 
programming languages. However, they can also be written in the same language.  
 Compiling a high level program into a more efficient, lower level program written 
in the same language is called program transformation. Program transformation 
typically gains efficiency by performing at compile time, once and for all, execution 
steps that would otherwise have to be performed repeatedly, at run time. In the case of 
abductive logic programs, higher-level programs can be transformed into lower-level, 
more efficient programs, by performing reasoning steps in advance, before they are 
needed.  
 This is easy to see in the London underground example. The original high-level 
ALP representation can be compiled/transformed into the equivalent, more efficient 
condition-action rule representation: 
 

If there are flames then I press the alarm signal button.  
If there is smoke then I press the alarm signal button. 
If one person attacks another then I press the alarm signal button.  
If someone becomes seriously ill then I press the alarm signal button.  
If there is an accident then I press the alarm signal button. 

 
 This lower-level program is written in the same higher-level ALP language as the 
original representation, but it now consists of five maintenance goals, rather than one 
maintenance goal and eight beliefs. It is obtained by reasoning in advance, replacing 
the concept of “emergency” by all of the alternative types of emergency, replacing the 
concept of “fire” by the two different ways of recognizing a fire, and reducing “getting 
help” to the action of pressing the alarm signal button. 
 The two representations are computationally equivalent, in the sense that they give 
rise to the same externally observable behaviour. However, the lower-level program is 
more efficient. Not only does it require fewer steps to execute at run time, but it uses 
simpler reasoning techniques, consisting of forward reasoning alone, instead of the 
combination of forward and backward reasoning needed by the higher-level program.  
 The two representations are not logically equivalent. The high-level representation 
logically implies the lower-level representation, but not vice versa. In particular, the 
higher-level representation has an explicit representation of the concepts of there 
being an emergency and of getting help, which are only implicit in the lower-level 
representation. Moreover, the higher-level representation also has an explicit 
representation of the purpose of the agent’s behaviour, namely to get help whenever 
there is an emergency, which is only implicit as an emergent goal in the lower-level 
representation. 
 In computing, higher-level representations (including program specifications) are 
generally developed, before they are compiled/transformed into lower-level 
representations for the sake of efficiency. However, if anything then goes wrong with 
the lower-level representation, it is generally easier to debug and correct the higher-
level representation and to recompile it into the lower-level form, than it is to change 
the lower-level representation itself. 



 For example, if something goes wrong with the condition-action rule formulation 
of the London underground rules - if the button doesn’t work, or if the driver doesn’t 
get help - then the rules will fail, but the passenger might not even recognise there is a 
problem. Or, if the environment changes – if new kinds of emergencies arise or if 
better ways of getting help are developed – then it is easier to extend the higher-level 
representation than it is to modify the lower-level rules. 
 In computing, it is common to iterate the compilation of programs into a number 
of increasingly lower-levels, and ultimately into hardware. Historically, however, 
lower-level languages were used before higher-level, more human-oriented languages 
were developed. Because legacy systems originally developed and implemented in 
such lower-level languages are difficult to maintain, it is common to re-implement 
them in modern higher-level languages. This can sometimes be done by an inverse 
process of decompiling lower-level programs into higher-level programs. However, 
because of the undisciplined nature of low-level programming languages, the attempt 
to decompile such programs may only be partially successful. In many cases it may 
only be possible to approximate the lower-level programs by higher-level ones, 
sometimes only guessing at their original purpose. 
 
 
5.2 Combining Deliberative and Intuitive Thinking 
 
The relationship between deliberative and intuitive thinking is analogous to the 
relationship between higher-level and lower-level program execution. 
 The simplest relationship is when, as the result of frequent repetition, deliberative 
thinking migrates to the intuitive level – when, for example, a person learns to use a 
keyboard, play a musical instrument, or drive a car. This is like compiling or 
transforming a high-level program into a lower-level program. After a particular 
combination of high-level, general-purpose procedures has been used many times 
over, the combination is compressed into a computationally equivalent, lower-level 
shortcut. The shortcut is a special-purpose procedure, which achieves the same result 
as the combination of more general procedures, but it does so more efficiently and 
with less awareness of its purpose. 
 Conversely, intuitive thinking and tacit knowledge can sometimes be made explicit 
– for example, when a linguist constructs a formal grammar for a natural language, a 
coach explains how to swing a golf club, or a knowledge engineer develops an expert 
system.  This is like decompiling a low-level representation into a higher-level 
representation. In many cases it can be hard to distinguish whether the low-level 
representation is implemented in hardware or in software, and the resulting higher-
level representation may only be approximate. 
 In computing, higher-level and lower-level programs can operate in tandem, as 
when the lower-level program is used on a routine basis, but the higher-level program 
is used to modify and recompile the lower-level program when it goes wrong or needs 
to be updated. In human thinking, however, intuitive and deliberative thinking are 
often coupled together more closely. Intuitive thinking generates candidate judgments 
and actions rapidly and unconsciously, while deliberative thinking consciously 
monitors the results. This close coupling of deliberative and intuitive thinking is like 



the use of pre-active thinking in ALP agents to monitor candidate actions generated 
reactively by condition-action rules.  
 These relationships between different levels of thinking are pictured, somewhat 
imperfectly, in figure 6. 
 
 

 
        
 
5 Neural Networks 
 
It is a common view in Cognitive Science that intuitive thinking is best modelled by 
sub-symbolic neural networks [13], which employ distributed representations with 
hidden nodes that do not have a symbolic interpretation. However, in their text book, 
Computational Intelligence: A Logical Approach, Poole et al [9] show how to 
represent any feed-forward neural network as a logic program. Forward reasoning 
with the logic program simulates forward execution of the neural network.  
 Poole et al illustrate their representation with the example (figure 7) of a person’s 
decision whether to read an article. The decision is based upon such factors as whether 
the author is known or unknown, the article starts a new thread or is a follow-up 
article, the article is short or long, and the person is at home or at work.  
 The weights on the arcs are obtained by training an initial version of the network 
with a training set of examples. In the logic program, “f” is a sigmoid function that 
coerces the real numbers into the range [0,1]. Similarly, the “strengths” of the inputs 
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lie in the range [0,1], where 0 is associated with the Boolean value false and 1 with 
true. 
 It is generally held that neural networks are unlike logic, in that they can have 
hidden units that can not be interpreted as concepts or propositions. Indeed, Poole et al 
characterize their example as illustrating just that point. However, in my formulation 
of the logic program, to make it more readable, I have given the predicate symbols 
“meaningful” predicate names, interpreting the hidden units in the middle layer of the 
network as summarizing the arguments for and against reading the paper. 
 
Example     Action    Author  Thread     Length   Where read 
  
E1         skip    known  new   long    home 
E2         reads    unknown new   short  work 
E3         skips    unknown follow-up  long  work 
 
Neural network 
 
   inputs     hidden units      output 
 

Fig. 7.  
 
Logic program 
 

I read with strength S3 
if       there is an argument for reading with  strength S1  
and   there is an argument against reading with strength S2  
and   S3 = f(-2.98  + 6.88 S1 –  2.1 S2) 
 
There is an argument for reading with strength S1 
if       known with  strength S4 
and   new with strength S5 
and   short with strength S6 
and   home with strength S7 
and   S1 =  f(– 5.25 + 1.98 S4 + 1.86 S5 + 4.71 S6 – .389 S7) 

 

known 
 
 
new 
                read 
 
short 
 
 
home 



   There is an argument against reading with strength S2 
if        known with  strength S4  
and    new with strength S5 
and    short with strength S6 
and    home with strength S7 
and    S2 =  f(.493 - 1.03 S4 - 1.06 S5 - .749 S6 + .126 S7) 
 

 The logic program is an exact, logical representation of the neural network. 
However, it employs numerical values and functions, which can only be approximated 
by a natural language representation, such as this: 
 
 I read an article 
 if the argument for reading the article is strong 
 and the argument against reading the article is weak. 
 
 There is an argument for reading an article  
 if the article is short. 
 

There is an argument against reading an article 
if the thread is a follow-up and the author is unknown. 

 
 The terms “strong” and “weak” are explicitly vague, whereas the notions of “an 
article being short”, “a thread being new” and “an author being known” are implicitly 
vague. Taking this into account, the representation can be transformed into a simpler 
form, where all vagueness is implicit and where the arguments for and against reading 
an article are also implicit: 

 
 I read an article 
 if the article is short and the thread is new. 
 
 I read an article 
 if the article is short and the thread is a follow-up and the author is known. 

 
 Expressed in this way and treating the sentences as goals rather than as beliefs, the 
problem of deciding whether to read an article is similar to the problem of deciding 
whether to take an umbrella when leaving home. In both cases, the decision depends 
upon the interpretation of implicitly vague concepts, such as an article being short or 
there being dark clouds in the sky.  
 In both cases, moreover, the decision can also be made at a higher-level, by 
analysing the goals and other outcomes that the decision might be expected to achieve. 
In the case of reading an article, is the higher-level goal to gain information? Or is it 
simply to be entertained? If it is to gain information, how likely is it that the article 
will contain the information I am looking for? Is it worth the effort involved? Or 
would it be better to consult an expert instead?  
 In the case of taking an umbrella when I leave home, is the higher-level goal to 
keep my hair and clothing neat and tidy? Or is it to avoid catching a chill and coming 
down with a cold? In the first case, maybe it should just wear a hat and some suitable 



outdoor clothing. In the second case, if I am so fragile, then maybe I should stay home 
or travel by taxi.   
 
 
6 Logic as wide-spectrum language of thought 
 
The neural network example suggests that logic can represent a wide spectrum of 
levels of thought, ranging from subconscious thought at the neural network level to 
conscious thought in natural language. At the neural network level, logic programs can 
represent connections among vague concepts that hold with varying degrees of 
strength. Although these degrees might have precise values at the neurological level, 
they are not accessible to higher-levels of consciousness and can only be 
approximated in natural language. 
 A number of authors have investigated the relationship between neural networks 
and logic programs. One of the earliest of these investigations, by Holldobler and 
Kalinke [15], studied the problem of translating normal logic programs into neural 
networks. More recently, Stenning and van Lambalgen [16] have argued that the 
implementation of logic programs by neural networks shows that logic can model 
intuitive thinking in the dual process model. D’Avila Garcez, Broda and Gabbay [14], 
on the other hand, studied the problem of extracting higher-level, “meaningful” logic 
programs from neural networks. Taken together with the direct translation of neural 
networks into correspondingly low-level logic programs of Poole et al [9], these 
studies suggest that logic can model different levels of thought, from neural networks 
to natural language. 
 The relationship between logic and natural language is normally viewed from the 
linguistic perspective, by studying the problem of extracting logical meaning from 
natural language. But it can also be viewed from the knowledge representation 
perspective, by comparing the logical form of an agent’s thoughts with the 
communication of those thoughts to another agent in natural language. 
 Although logical representations are normally presented in symbolic, mathematical 
form, they can also be expressed in a stylized form of natural language, as in this 
paper. Both of these forms are unambiguous and context-independent. Thus, to the 
extent that some form of logic is adequate for knowledge representation, this provides 
evidence that human agents might think in a mental language that is a logical form of 
natural language. 
 In contrast with the thoughts we have in our mind, our natural language 
communication of those thoughts is generally more ambiguous and context-sensitive 
than we intend. This suggests that our thoughts may be more logical than their natural 
language expression might suggest. Even natural language communications that seem 
to be in explicit logical form can be more ambiguous than they seem on the surface. 
 As Stenning and van Lambalgen [16] argue, natural language communications 
need to be interpreted to determine their intended logical form, even when those 
communications are already expressed in logical form. They argue that the gap 
between the surface logical structure of sentences and the deeper logical structure of 
their intended meanings helps to explain and refute certain psychological experiments 
that suggest that people are not logical. They show, moreover, that human 
performance in these experiments is compatible with the thesis that people apply 



logical reasoning to the intended meanings of sentences rather than to their surface 
form. In fact, in their main example, they show, not only that the intended meanings of 
sentences can be expressed in logical form, but that they have logic programming 
form, and that the minimal model semantics of logic programs gives a better analysis 
of human performance in these experiments than the classical semantics of traditional 
logic. 
 This difference between the surface structure of natural language and its 
underlying logical form is illustrated also by the second sentence of the London 
underground Emergency Notice: 
 
  If there is an emergency then you press the alarm signal button. 
  The driver will stop if any part of the train is in a station. 
 
 The second sentence has an explicitly logical form, due to its use of the logical 
connective “if” and the quantifier “any”. However, taken literally, the sentence doesn’t 
express what its authors probably had in mind:  
 
  The driver will stop the train if someone presses the alarm signal button  
  and any part of the train is in a station. 
 
 It is likely that most people interpret the second sentence of the Notice as it is 
intended, rather than as it is expressed. This suggests that people are more logical than 
many psychologists are inclined to believe. 
 
 
7 Thinking = Logic + Control 
 
The view that logic can serve as a wide-spectrum language of thought is in marked 
contrast with conventional views of logic in cognitive science. Paul Thagard [11], for 
example, in his introductory textbook, “Mind: Introduction to Cognitive Science” 
(page 45) writes: 
 

“In logic-based systems the fundamental operation of thinking is logical 
deduction, but from the perspective of rule-based systems the fundamental 
operation of thinking is search.”  
 

 Here he uses the term “rule-based system” to refer to condition-action rule 
production systems. He then goes on to say that among the various models of thinking 
investigated in cognitive science, rule-based systems have “the most psychological 
applications” (page 51). 
 Jonathan Baron [1] in his textbook, “Thinking and Deciding” writes, page 4: 

 
“Thinking about actions, beliefs and personal goals can all be described in 
terms of a common framework, which asserts that thinking consists of search 
and inference. We search for certain objects and then make inferences from 
and about the objects we have found.” 

 



 Baron associates logic with making inferences, but not with performing search. He 
also distinguishes thinking from deciding, but restricts the application of logic to the 
pre-active, inference-making component of thinking. 
 Both Thagard and Baron fail to recognize that, to be used in practice, logic needs 
to be controlled. This could be put in the form of a pseudo-equation5: 
 

 Thinking = Logic + Control. 
 
 Here the term “Logic” refers to goals and beliefs expressed in logical form and 
“Control” refers to the manner in which the inference rules of logic are applied. 
Control includes the use of forward and backward reasoning. In the case of backwards 
reasoning, it includes strategies for selecting sub-goals, as well as strategies for 
searching for alternative ways of solving goals and sub-goals. It also includes the 
application of inference rules in sequence or in parallel. 
 Frawley [13] argues that the analysis of algorithms into logic plus control also 
applies to mental algorithms and helps to explain different kinds of language 
disorders. He argues that Specific Language Impairment, for example, can be 
understood as a defect of the logic component of mental algorithms for natural 
language, whereas Williams syndrome and Turner syndrome can be understood as 
defects of the control component. 
 In fairness to Thagard and Baron, it has to be acknowledged that they are simply 
reporting generally held views of logic, which do not take into account some of the 
more recent developments of logic in Artificial Intelligence. Moreover, both, in their 
different ways, draw attention to characteristics of thinking that are missing both from 
traditional logic and from the simple pro-active model of thinking associated with 
logic programming. Thagard draws attention to the importance of reactive thinking 
with condition-action rules, and Baron to the importance of pre-active thinking by 
inference after search.  

8 Conclusions 
 
There isn’t space in this paper to discuss all of the arguments that have been made 
against logic. Instead, I have considered only some of the most important alternatives 
that have been advocated – production systems, decision theory, and neural networks, 
in particular. 
 In the case of production systems, I have argued that condition-action rules are 
subsumed by maintenance goals in logical form. They are the special case of 
maintenance goals in which no forward reasoning is necessary to process 
observations, and no backward reasoning is necessary to reduce goals to sub-goals. 
 In the case of decision theory, I have argued that forward reasoning can be used 
pre-actively to derive possible consequences of candidate actions, and can be 
combined with any way of deciding between the alternatives. One such possibility is 
to use decision theory directly to choose a candidate action having maximum expected 

                                                 
5 In the same sense that Algorithm = Logic + Control [5]. 



utility. Another is to compile such decisions into heuristic maintenance goals that 
approximate the decision-theoretic normative ideal. 
 In the case of neural networks, I have considered how the low-level logic-
programming representation of feed-forward networks, given by Poole et al, might be 
approximated by higher-level logical representations. I have also suggested that such 
lower-level and higher-level logical representations might interact in a manner similar 
to the way in which intuitive and deliberative thinking interact in the dual process 
model. The lower-level representation proposes intuitive answers to problems as they 
arise, and the higher-level representation monitors and modifies the proposals as time 
allows. 
 I have restricted my attention in this paper to the way in which logic can be used to 
help control the routine, real-time behaviour of an intelligent agent. Except for 
program transformation, in which a higher-level representation is compiled into a 
more efficient, lower-level form, I have not considered the wider issues of learning 
and of revising goals and beliefs. Fortunately, there has been much work in this area, 
including the work on inductive logic programming, which is relevant to this issue. 
 Again for lack of space, I have not been able to discuss a number of extensions of 
logic that have been developed in Artificial Intelligence and that are important for 
human thinking. Among the most important of these is the treatment of default 
reasoning and its interpretation in terms of argumentation. Also, I do not want to give 
the impression that all of the problems have been solved. In particular, the treatment 
of vague concepts and their approximations is an important issue that needs further 
attention. 
 Despite the limitations of this paper, I hope that it will suggest, not only that logic 
deserves greater attention in Cognitive Science, but that it can be applied more 
effectively by ordinary people in everyday life. 
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