
How to be Artificially Intelligent –
Computational Logic and Human Thinking

 (draft)

Robert Kowalski
Department of Computing
Imperial College London

1 June 2009

The goal of this book

This book aims to show that Computational Logic, originally developed for Artificial
Intelligence, can be used ordinary people to improve their own intelligence without
the aid of computers.

Computational Logic has been used in Artificial Intelligence over the past 50 years or
so, in the attempt to develop computers that display human intelligence. The results of
this attempt may have been mixed; and, as some critics would argue, the goal itself
may have been questionable. But despite these reservations, arguably the most
important result of these efforts has gone largely unnoticed: Computational Logic can
be used, not only for Artificial Intelligence, but also for the original purpose of logic,
to improve human thinking, and thereby to improve human behaviour.

Computational Logic is based on Symbolic Logic. But Symbolic Logic has become a
branch of Mathematics and has largely lost touch with its roots in human reasoning.
Computational Logic as used in Artificial Intelligence also employs mathematical
notation, which facilitates its computer implementation but obscures its relevance to
human thinking. For this reason and to reach a wide audience, I have written the main
part of the book informally, without mathematical or symbolic notation. Towards the
end of the book, I intend to discuss how to represent the informal logical language in
symbolic form.

Because human thinking is also the subject of study in many other fields, in addition
to Logic and Artificial Intelligence, I have drawn upon related studies in Cognitive
Psychology, Linguistics, Philosophy, Law, Management Science and English
Composition.

The relationship between Logic and Thinking

Traditional Logic, Symbolic Logic and Computational Logic are all concerned with
formalising the laws of thought. Along with related fields such as Law and Management
Science, they focus on normative theories, which prescribe how people ought to think.
Cognitive Psychology is also concerned with thinking, but it focuses almost exclusively
on descriptive theories, which study how people actually think in practice. For the most
part, the two kinds of theories have been developed in isolation, and bear little
relationship with one another.

However, in recent years, cognitive psychologists have developed Dual Process theories,
which can be understood as combining descriptive and normative theories. Viewed from
the perspective of Dual Process theories, traditional descriptive theories focus on intuitive
thinking, which is associative, automatic, parallel and subconscious. Traditional normative
theories, on the other hand, focus on deliberative thinking, which is rule-based, effortful,
serial and conscious.

Dual Process theories study the relationship between intuitive and deliberative thinking.
Some of these theories argue that intuitive thinking “quickly proposes intuitive answers to
judgement problems as they arise”, whereas deliberative thinking “monitors the quality of

 1

these proposals, which it may endorse, correct, or override”. 1In this book, I will argue that
Computational Logic can serve as a dual process theory, in which intuitive and deliberative
thinking are combined.

But Logic views thinking in linguistic terms, as representing information in the form of
sentences, and manipulating sentences to infer new sentences representing additional
information. Therefore, Logic is concerned both with thinking and with language. I will
argue, accordingly, that not only can Computational Logic help us to improve the way we
think, but it can also help us to improve the way we communicate with other people in
natural languages, like English. Both arguments are linked to the thesis that Computational
Logic can be viewed as an approximation to the language of human thought.

Computational Logic and the Language of Thought

As used in Artificial Intelligence, Computational Logic functions first and foremost as an
intelligent agent’s language of thought. It includes a syntax, which determines the form of
the agent’s thoughts, a semantics, which determines the contents of those thoughts, and an
inference engine, which derives new thoughts as logical consequences of existing thoughts.
In this role, Computational Logic functions as a private language, representing the agent’s
goals and beliefs, and helping the agent to regulate its behaviour. Other private languages
can serve the same purpose, but I will argue that Computational Logic has significant
advantages over the alternatives.

In multi-agent systems in Artificial Intelligence, the private language of an individual agent
also serves the secondary function of representing the meanings of its communications with
other agents. These communications are expressed in a shared public language, which may
differ from the private languages of individual agents. The task of a communicating agent
in such a situation is to translate thoughts from its private language into the public
language, in such a way that the receiving agent can readily translate those public
communications into appropriate thoughts in its own private language.

It would be easy if all agents shared the same private language, and if that private language
were identical to the public language of the community of agents. This can arranged by
design in an artificial multi-agent system, but at best it can only be approximated in a
society of human agents.

The distinction between private and public languages, which is so clear cut in Artificial
Intelligence, has been proposed in the Philosophy of Language to explain the relationship
between human thinking and communication. Many of these proposals, which for
simplicity can be lumped together as Language of Thought (LOT) proposals, maintain that
much human thinking can be understood as taking place in a language of thought. The most
famous proposal along these lines is Fodor’s hypothesis2 that the LOT is a universal
language, which is independent of the Babel of public languages. Other proposals argue
that a person’s LOT is specific to the public language of the person’s social community.

No matter where they stand on the issue of the universality of the LOT, most proposals
seem to agree that the LOT has some kind of logical form. However, for the most part these
proposals are remarkably shy about revealing the details of that logical form.

In this book, I argue that Computational Logic has many of the characteristics needed for a
universal, logical LOT. I will draw the main support for my argument from advances in the
use of Computational Logic in Artificial Intelligence. But I will also draw support from the

1 Daniel Kahneman and Shane Frederick. Representativeness revisited: Attribute substitution in intuitive
judgment. In T. Gilovich, D. Griffin and D. Kahneman (Eds) Heuristics of Intuitive Judgment: Extensions and
Application. New York: Cambridge University Press (2002)

2 Jerry Fodor. The Language of Thought, Harvard University Press, 1975.

 2

relationship between Computational Logic and normative theories of human
communication.

Computational Logic and Human Communication

Much of the time, when we speak or write, we simply express ourselves in public, without
making a conscious effort to communicate effectively. But when it really matters that we
are understood - like when I am writing this book - we try to be as clear, coherent and
convincing as possible. The difference is like the difference between descriptive and
normative theories of thinking; and, as in the case of the two kinds of thinking, the two
kinds of communication are studied in different academic disciplines. Whereas linguistics
is concerned with developing descriptive theories about how people use language in
practice, rhetoric and allied disciplines such as English composition are concerned with
normative theories about how people can use language to communicate effectively.

In this book we want to develop a normative theory of intelligent thinking and behaviour.
But we need to pay attention to descriptive theories, because descriptive theories help us to
understand where we are starting from, whereas normative theories show us where we need
to go.

The descriptive theory of communication that comes closest to a normative theory is
probably the Relevance theory of Sperber and Wilson3. It is based on a more general theory
of cognition, which loosely speaking hypothesizes that, given competing inputs from their
environment, people direct their attention to those inputs that provide them with the most
useful information for the least processing cost. Applied to communication, the theory
hypothesizes that, given a potentially ambiguous communication as input, readers or
listeners translate the input into a logical form that maximises the amount of information it
contains and minimises the computational effort needed to derive it.

Relevance theory is compatible with the hypothesis that Computational Logic, or
something like it, is the logic of the language of thought. Like Computational Logic,
Relevance theory also has both logical and computational components. Moreover, it
provides a link with such normative theories of communication as Joseph Williams’ guides
to English writing style4.

One way to interpret Williams’ guidance is to understand it as including the advice that
writers should express themselves in a form that is as close as possible to the logical form
of the thoughts they want to communicate. In other words, they should say what they mean,
and they should say it in a way that makes it as easy as possible for readers to extract that
meaning. Or to put it still differently, the public expression of our private thoughts should
be as close as possible to the structure of those thoughts.

If our private languages and public language were all the same, we could literally just say
what we think. But even that wouldn’t be good enough; because we would still need to
organise our thoughts coherently, so that one thought is logically connected to another, and
so that our readers or listeners can relate our thoughts to thoughts of their own.

Williams’ guidance for achieving coherence includes the advice of placing old, familiar
ideas at the beginnings of sentences and placing new ideas at their ends. Here is an example
of his advice, which uses an informal version of the syntax of Computational Logic, and
which incidentally shows how Computational Logic can be used to represent an agent’s
goals and beliefs to guide its behaviour:

 You want to have a comfortable income.
 You can have a comfortable income if you have a good job.

3 Dan Sperber, Deidre Wilson. Relevance. 1986 - Blackwell Oxford.
4 Joseph Williams. Style: Toward Clarity and Grace. Chicago: University of Chicago Press (1990,
1995).

 3

http://en.wikipedia.org/wiki/Style:_Toward_Clarity_and_Grace

 You can have a good job if you study hard.
 So you should study hard.

It may not be poetry, but at least it’s clear, coherent and to the point. It’s also pretty close to
what most people think.

What is Computational Logic?

Computational Logic combines the use of logic to represent information with the use of
inference to derive consequences and to perform computations. It includes the classical use
of inference to derive consequences from input observations; for example, to derive the
conclusion that Mary can have a good job from the observation that Mary studies hard
using the belief that in general a person can have a good job if the person studies hard.

It also performs computation by using goal-directed inference, to reduce goals to sub-goals;
for example to “compute” the sub-goal that Bob should try to have a good job from the goal
Bob wants to have a comfortable income using the belief that in general A person can have
a comfortable income if the person has a good job. Goal-directed inference gives
Computational Logic the power of a high-level computer programming language. Indeed,
the programming language, Prolog, which stands for Programming in Logic, exploits this
form of computation mainly for applications in Artificial Intelligence.

Computational Logic, as we investigate it in this book, also includes the use of inference to
help an agent choose between alternative courses of action. For example, having used goal-
directed reasoning to derive two alternative ways, Bob studies hard and Bob robs a bank, of
achieving the higher-level goal Bob has a comfortable income, Computational Logic can be
used to infer the possible consequences of the alternatives before deciding what to do. In
particular, if it derives the consequence that Bob can go to jail if Bob chooses the second
alternative, Bob robs a bank, then it will encourage Bob to choose the first alternative, Bob
studies hard, instead.

What is Artificial Intelligence?

Artificial Intelligence (AI) is the attempt to program computers to behave intelligently, as
judged by human standards. Applications of AI include such problem areas as planning,
natural language understanding, and robotics. The tools of AI include such techniques as
search, symbolic logic, artificial neural networks and reasoning with uncertainty. Many of
these tools have contributed to the development of the Computational Logic we investigate
in this book. However, instead of concerning ourselves with Artificial Intelligence
applications, we will see how the tools of Computational Logic can also be used by
ordinary people to think and behave more intelligently.

I gave a short course based on this book at the The International Center for Computational
Logic (ICCL) 2008 summer school on Computational Logic and Cognitive Science. A
copy of the slides that accompanied the course can be found at:
http://www.computational-logic.org/content/events/iccl-ss-2008/lectures.php?id=24

My colleague, Jacinto Davila, has also used a draft of this book for a course at Universidad
de Los Andes, Venezuela. Here is a link to his Spanish translation of an earlier draft:
http://webdelprofesor.ula.ve/ingenieria/jacinto/kowalski/logica-de-agentes.html

I would be very grateful for any comments on the book. Please send them to me at
rak@doc.ic.ac.uk.

 4

http://www.computational-logic.org/content/events/iccl-ss-2008/lectures.php?id=24
http://webdelprofesor.ula.ve/ingenieria/jacinto/kowalski/logica-de-agentes.html

Contents

Chapter 1 Logic on the underground………………………………………………………...

Chapter 1a The case against logic …………………………………………………………..

Chapter 2 The fox and the crow……………………………………………………………..

Chapter 3 The louse and the mars explorer………………………………………………….

Chapter 4 A logical framework for goal-reduction, condition-action rules and more………

Chapter 5 Thinking = Inference + Search + Inference………………………………………

Chapter 6 The Meaning of Life……………………………………………………………...

Chapter 7 Levels of Consciousness………………………………………………………….

Chapter 8 The Prisoner's Dilemma………………………………………………………….

Chapter 9 The Changing World……………………………………………………………..

Chapter 10 Logic and Objects……………………………………………………………….

Because this draft is incomplete, I have included as appendices four papers, which I intend
to integrate into the final version of the book:

Kowalski, R. “The Logical Way to be Artificially Intelligent”. Proceedings of CLIMA
VI (eds. F. Toni and P. Torroni) Springer Verlag, LNAI, 2006, pp. 1-22.

Kowalski, R. “Computational Logic in an Object-Oriented World” In Reasoning,
Action and Interaction in AI Theories and Systems – Essays Dedicated to Luigia
Carlucci Aiello (eds. O. Stock, M. Schaerf) Springer Verlag, Lecture Notes in
Comp;uter Science, Vol 4155, LNAI, 2006.

Kowalski, R. “Reasoning with Conditionals in Artificial Intelligence” To appear in
The Psychology of Conditionals (ed. M. Oaksford) OUP, 2009.

Kowalski, R., "Legislation as Logic Programs", in Logic Programming in Action (eds.
G. Comyn, N. E. Fuchs, M. J. Ratcliffe), Springer-Verlag, 1992, pp.203-230.

The first paper is a summary of the book, written for a more academic audience. The
second is a later version of chapters 9 and 10. The third discusses some of the relationships
between computational logic and the psychology of human reasoning. The fourth discusses
the relationships between computational logic and legal reasoning. Importantly, the papers
contain references, which are missing from the main text. Unfortunately, there is
considerable overlap between some of the papers and the book, for which I apologise. I
promise to eliminate them in the final version.

 5

http://www.doc.ic.ac.uk/%7Erak/papers/springer%20Aiello%20fest.pdf

Chapter 1. What to do in an emergency

If some form of Computational Logic is the language of human thought, then the best place to find out
about it would seem to be inside our heads. But if we simply look at the structure and activity of our
brains, it would be like looking at the hardware of a computer when we want to learn about its
software. Or it would be like trying to do sociology by studying the movement of atomic particles
instead of studying the interactions between human beings. Better, it might seem, just to use common
sense and rely on introspection.

But introspection is notoriously unreliable. Wishful thinking can trick us into seeing what we want to
see, instead of seeing what is actually there. The behavioural psychologists of the first half of the 20th
century were so suspicious of introspection that they banned it altogether.

Artificial Intelligence offers us an alternative approach, to construct computer programs whose input-
output behaviour simulates the externally visible manifestations of human mental processes. To the
extent that we succeed in the simulation, we can then regard the structure of those computer programs
as analogous to the structure of human mind, and we can regard the activity of those programs as
analogous to the activity of human thinking.

But different programs with different structures and different modes of operation can display similar
behaviour. As we will see later, many of the differences between different programs displaying the
same behaviour can be understood as differences between levels. Some programs are closer to the
lower level of the hardware, and consequently are more efficient; others are closer to the higher level
of the application domain, and consequently are easier to understand. We will explore some of the
relationships between the different levels later in the book, when we explore levels of consciousness
and the meaning of life. But in the meanwhile, we can get an inkling of what is to come by first
looking closer to home.

If human thoughts have the structure of language, then we should be able to get an idea of their
structure by looking at natural languages such as English. Better than that, we can look at English
communication in situations where we do our best to express ourselves as clearly, coherently and
effectively as possible. Moreover, we can be guided in this by the advice we find in books on English
writing style.

For the purpose of revealing the language of thought, the most important advice is undoubtedly the
recommendation that we express ourselves as clearly as possible - making it as easy as we can for the
person we are addressing to translate our communications into thoughts of her own. Everything else
being equal, the form of our communications should be as close as possible to the form of the thoughts
that they aim to convey.

What better place to look than at communications designed to guide people how to behave in
emergencies, in situations where it can be a matter of life or death that the recipient understands the
communication with as little effort as possible.

Imagine, for example, that you are travelling on the London underground and you hear a suspicious
ticking in the rucksack on the back of the person standing next to you. Fortunately, you see a notice
explaining exactly what to do:

 6

Emergencies

Press the alarm signal button
to alert the driver.

The driver will stop
if any part of the train is in a station.

If not, the train will continue to the next station,
where help can more easily be given.

There is a 50 pound penalty
for improper use.

The public notice is designed to be as clear as possible, so that you can translate its English sentences
into thoughts of your own with as little effort as possible. The closer the form of the English sentences
to the form in which you structure your thoughts, the more readily you will be able to understand the
sentences and to make use of the thoughts that they communicate.

The thoughts that the management of the underground wants you to have are designed to make you
behave effectively in an emergency, as well as to prevent from you behaving recklessly when there
isn’t an emergency. They are designed, therefore, not only to be clear, but to be to the point – to tell
you what to do if there is an emergency and what not to do if there isn’t an emergency. But they are
also intended to be coherent, so that you can easily relate the new thoughts that new sentences
communicate to existing thoughts you already have in your head. These existing thoughts include both
thoughts that were already there before you started reading and thoughts that might have been
conveyed by earlier sentences in the text you are reading.

The London Underground Emergency Notice as a program

The purpose of the emergency notice is to regulate the behaviour of passengers on the London
underground. It does so much in the same way that a computer program controls the behaviour of a
computer. In general, much of our human communication can be understood in such computational
terms, as one human attempting to program another, to elicit a desired response.

At first sight, this computational view of human communication may give offence, because it may
suggest that people should be treated as though they were merely machines. That is far from my
intention. I intend only to propose that thinking of people as computing agents can sometimes help us
to communicate with them in more effective and more efficient terms. Our communications will be
more effective, because they will better accomplish our intentions; and they will be more efficient, both
because they will be easier for other people to understand, and because the information they convey
will be easier for other people to use for their own purposes.

Understanding a communication is like the process that a computer performs when it translates (or
compiles) a program written in an external source language into an internal target language that the
computer already understands. When a computer compiles the source program, it needs both to
translate individual sentences of the program into the target language and to place those sentences into
a coherent internal structure expressed as a target program. Compiling a program is efficient when it
can be done with as little processing as necessary. Analogously, understanding an English
communication is efficient when compiling it from its English form into a mental representation can be
done with as little effort as possible.

Using the information in a communication is like executing a target program, after it has been
compiled. When a computer executes a program, it follows the instructions mechanically in a
systematic manner. When a person uses the information in a communication, the person combines that
information with other information that the person already has and uses the information to solve
problems. I will argue that people perform much of this process of using information systematically,
automatically and unconsciously. Like a computer program, the information that people use to solve
problems is efficient if it helps them to solve problems with as little effort as possible.

The computational nature of the emergency notice is most obvious in the first sentence:

Press the alarm signal button
to alert the driver.

This has the form of a goal-reduction procedure:

Reduce the goal of alerting the driver
to the sub-goal of pressing the alarm signal button.

 7

Goal-reduction procedures are a common form of human knowledge representation. They structure our
knowledge in a way that facilitates achieving goals and solving problems. Here the thought
communicated by the sentence is that the goal of alerting the driver can be reduced to the sub-goal of
pressing the alarm signal button.

To understand and make use of the goal-reduction procedure, you need to assimilate it into your
existing goals and beliefs. For example, you might already know that there could be other ways of
altering the driver, such as shouting out loud. You probably know that alerting the driver is one way of
getting help, and that there are other ways of getting help, such as enlisting the assistance of your
follow passengers. You probably recognize that if there is an emergency then you need to deal with it
appropriately, and that getting help is one such way, but that other ways, such as running away or
confronting the emergency head on yourself, might also be worth considering.

Goal-reduction procedures are also a common form of computer knowledge representation, especially
in Artificial Intelligence. Liberally understood, they can serve as the sole construct for writing any
computer program. However, almost all computer languages also use lower-level programming
constructs. Most of these constructs bear little resemblance to human ways of thinking.

But there is one other construct that is even higher-level than goal-reduction, and which may be even
closer to the way humans structure their thoughts. This construct is exemplified by the logical form of
the conditional sentences found in the second and third sentences of the emergency notice.

The Logic of the Second and Third Sentences of the Emergency Notice

Many linguists and philosophers subscribe to some form of Language of Thought Hypothesis (LOTH),
the hypothesis that many of our thoughts have a structure that is similar to the structure of natural
languages such as English. Most of those who subscribe to LOTH also seem to believe that the
language of thought has a logical form. In this book, I will explore the more specific hypothesis that
the language of thought has the logical form of conditional sentences. This hypothesis is supported in
the emergency notice by the English form of the second and third sentences.

The second and third sentences of the emergency notice have the logical form of conditionals, which
are also called implications. Conditionals are sentences of the form:

 if condtions then conclusion
or equivalently conclusion if conditions.

The second sentence is written with its conclusion first; and the third sentence is written the other way
around, with its implicit conditions first.

I have argued that the notice is designed to be as easy to understand as possible, and that as a
consequence its external form should be a good indication of the internal form of its intended meaning.
In particular, the external form of the second and third sentences suggests that their intended meaning
has the logical form of conditionals.

However, whatever the form of the LOT, one thing is certain: Its sentences are unambiguous, in that
they mean what they say. In contrast, English sentences are often ambiguous, because they can have
several different meanings. For example, the English sentence the first passenger attacked the second
passenger with a rucksack has two possible meanings. Either the first passenger carried out the attack
with a rucksack or the second passenger had a rucksack, and the first passenger attacked the second
passenger in some indeterminate way. The difference between the two meanings could make a big
difference in a court of law.

Ambiguity is the enemy of clarity. It creates confusion, because the reader does not immediately know
which of the several possible interpretations of the communication is intended; and it creates extra
effort, because the reader has to explore different interpretations, to find an interpretation that makes
the most sense in the context of the reader’s background goals and beliefs.

 8

You might be surprised, therefore, to discover that the second and third sentences of the notice are
more ambiguous than they appear at first sight. In particular, the second sentence does not explicitly
state what the driver will actually stop doing. It is unlikely, for example, that:

The driver will stop causing the emergency
 if any part of the train is in a station.

Instead, it is more likely that:

 The driver will stop the train in a station
 if any part of the train is in the station.

But even this interpretation does not fully capture the sentence’s intended meaning. Understood in the
context of the first sentence, the second sentence has an additional implicit condition, namely that the
driver has been alerted to an emergency. Therefore, the intended meaning of the second sentence is
actually:

 The driver will stop the train in a station
 if the driver is alerted to an emergency

and any part of the train is in the station.

Without the additional condition, the sentence literally means that the driver will stop the train
whenever the train is in a station, whether or not there is an emergency. If that were the case, the train
would never leave a station once it arrived. To understand the sentence, the reader of the notice needs
both general background knowledge about the way train drivers normally behave and specific
knowledge about the context of the earlier sentences in the notice.

In the spirit of our interpretation of the second sentence, it should now be clear that the intended
meaning of the third sentence is:

The driver will stop the train at the next station
and help can be given there better than between stations

 if the driver is alerted to an emergency
and not any part of the train is in a station.

In natural language, it is common to leave out some conditions, such as any part of the train is in the
station, that are present in the context. In more formal logic, however, the context needs to be spelled
out explicitly. In other words, sentences in formal logic need to stand on their own two feet, without
relying for support on the context around them.

The web of belief

Because individual sentences expressed in purely logical form do not rely on their contexts, collections
of sentences in logical form can be written in any order. In theory, therefore, if this book were written
in purely logical form, I could write it - and you could read it - forwards, backwards, or in any other
order, and it would still have the same meaning. In fact, you could take any text written as a sequence
of sentences in logical form, write the individual sentences on little pieces of paper, throw them up in
the air like a pack of cards, and pick them up in any order. The resulting sequence of sentences would
have the same meaning as the text you started with.

In contrast, much of the work in writing a book like this is in trying to find an order for presenting the
ideas, so they are as clear, coherent, and convincing as possible. No matter whether or not I spell out in
detail all of the contexts of individual sentences, I need to present those sentences in a coherent order,
which relates consecutive sentences both to ideas you already had before you started reading and to
ideas you obtained from reading earlier sentences.

One way to achieve coherence is to follow Williams’s advice of placing old, familiar ideas at the
beginnings of sentences and new ideas at their ends. Sometimes, as a limiting case, if an “old” idea is
particularly salient, because it has just been introduced at the end of the previous sentence, then the old
part of the next sentence can be taken for granted and simply left out. This is what happens in the

 9

emergency notice, both in the transition from the first sentence to the second sentence, where the
condition the driver is alerted to an emergency has been left out, and in the transition from the second
sentence to the third sentence, where any part of the train is in a station has been left out.

If the language of thought is a logic of conditional forms, then the simplest way to achieve coherence
is by linking the beginnings and ends of consecutive sentences by means of the conclusions and
conditions of the thoughts they express, using such obvious patterns as:

 If condition A then conclusion B.
 If condition B then conclusion C.

and

 conclusion C if condition B.
 conclusion B if condition A.

The need for coherence in human communication suggests that the language of thought is not an
unstructured collection of sentences, after all. Rather, it is a linked structure in which sentences are
connected by means of their conclusions and conditions.

Connection graphs5, which link conclusions and conditions of sentences in logical form, have been
developed in Artificial Intelligence to improve the efficiency of automated deduction. The links in
connection graphs pre-compute much of the thinking that might be needed later when the need arises.
Here are two connection graphs, representing some of a person’s goals and beliefs before and after
reading the emergency notice:

5 Robert Kowalski, 1975: A Proof Procedure Using Connection Graphs, JACM, 22(4), 572-595. Also
Chapter 8 in Robert Kowalski, 1979: Logic for Problem Solving, North Holland Elsevier. Online at
http://www.doc.ic.ac.uk/~rak/.

You deal with the emergency appropriately if
 you get help.

You get help if
you alert the driver.

You alert the driver if
you shout for help.

You get help if
you enlist the assistance of your neighbors.

You deal with the emergency appropriately if
you confront the emergency yourself.

You deal with the emergency appropriately if
you run away.

Part of a connection graph of a person’s goals and beliefs before reading the emergency notice.

If there is an emergency then
you need to deal with the emergency appropriately.

 10

If there is an emergency then
you need to deal with the emergency appropriately.

You deal with the emergency appropriately if
 you get help.

You get help if
you alert the driver.

You alert the driver if
you press the alarm signal button.

The driver will stop the train immediately if
the driver is alerted to an emergency and
any part of the train is in a station.

The driver will stop the train at the next station if
the driver is alerted to an emergency and
not any part of the train is in a station.

You alert the driver if
you shout for help.

You get help if
you enlist the assistance of your neighbors.

You deal with the emergency appropriately if
you confront the emergency yourself.

You deal with the emergency appropriately if
you run away.

There is a fifty pound penalty if
you press the alarm signal button and
you do so improperly.

Part of a connection graph of the person’s goals and beliefs after reading the
emergency notice, assuming the person believes everything written in the notice.
New beliefs are enclosed in bold boxes.

Connection graphs are similar to the structure that the philosopher W. V. Quine6 called the web of
belief. He argued that scientific theories, and human beliefs more generally, form a web of inter-related
beliefs, which interact with the world of experience by means of their observational consequences.
Scientific theories stand and fall together as a whole, because any belief, no matter how theoretical,
might be involved in the derivation of an empirically testable observational consequence. Should an
observational consequence of a theory be refuted by experience, consistency can be restored by
revising any belief in the web of beliefs involved in the derivation of the faulty consequence.

Connection graphs are a concrete realization of the web of belief, showing how goals and beliefs are
connected by links between their conditions and conclusions. Although in theory it might be possible
to find a chain of connections between any two beliefs, in practice connections seem to cluster in such

6 Willard V. O. Quine, 1963: Two dogmas of empiricism. In From a logical point of view. Harper &
Row. 20-46.

 11

relatively self-contained domains as those concerned with linguistic, logic-mathematical, musical,
spatial, bodily kinaesthetic, interpersonal, and intrapersonal knowledge, similar to modules in a
computer program and to the different kinds of intelligence in Howard Gardner’s Theory of Multiple
Intelligences.

There is much more to be said about connection graphs and about how they relate to modularity,
multiple intelligences and theories of mind, but this will have to wait until later. In the meanwhile, we
have a more pressing concern: How does the connection graph view of the mind, as a web of
conditionals, relate to goal-reduction procedures? The simple answer is that goal-reduction procedures
are one way of using the connections.

The first sentence of the Emergency Notice as part of a Logic Program

The first sentence of the Notice, written in the form of a goal-reduction procedure, hides its underlying
logical form. In general, goal-reduction procedures of the form:

Reduce goal to sub-goals

hide conditionals of the form:

Goal if sub-goals.

The goal-reduction behaviour of procedures can be obtained from conditionals by backward
reasoning:

To conclude that the goal can be solved,
show that the sub-goals can be solved.

 Thus, the first sentence of the Emergency Notice has the hidden logical form:

You alert the driver,
if you press the alarm signal button.

Viewed in connection graph terms, backward reasoning is one way in which a thinking agent can use
links between conditionals to direct its attention from one thought to another. It directs its attention
from a thought containing a condition that represents a goal to another thought, containing a
conclusion that matches the goal. For example:

you need to deal with the emergency appropriately.

You deal with the emergency appropriately
if you get help.

thought containing a conclusion that matches
the goal and that can be used to reduce the
goal to a sub-goal

thought containing a goal

The use of backward reasoning to turn conditionals into goal-reduction procedures is the basis of logic
programming. Logic programming became popular in Computing for a while in the 1980s, and then
somewhat fell out of favour. One of the goals of this book is to show that logic programming can be
useful, not only for Computing, but also for Human Reasoning.

Backward reasoning contrasts with forward reasoning, which is probably more familiar to most
people. Given a conditional of the form:

 If conditions then conclusion.

 12

and a collection of statements that match the conditions, forward reasoning derives the conclusion as a
logical consequence of the conditions. For example, given the statements:

You alert the driver.
A part of the train is in a station.

forward reasoning uses the conditional:

 The driver will stop the train immediately

 if the driver is alerted to an emergency
and any part of the train is in a station.

to derive the conclusion that the driver will stop the train immediately.

Viewed in connection graph terms, forward reasoning directs attention from the conclusions of
thoughts to a thought whose conditions are linked to those conclusions. For example:

The driver will stop the train immediately
 if the driver is alerted to an emergency
and any part of the train is in a station.

You alert the driver. A part of the train is in a station.

Whether and when to use backward or forward reasoning is one of the main topics of this book.7

The fourth sentence of the Emergency Notice as a constraint

In natural language, the logical form of conditionals is often hidden below the surface, sometimes
appearing on the surface in procedural form, at other times appearing in declarative form. For example,
the last sentence of the Notice is a declarative sentence, which hides its underlying conditional form:

You may get a 50 pound penalty
if you press the alarm signal button improperly.

Backwards reasoning turns this conditional into a goal-reduction procedure:

To get a 50 pound penalty,
press the alarm signal button improperly.

It is very unlikely that a passenger would want to get a 50 pound penalty, and very unlikely, therefore,
the passenger would want to use the conditional as a goal-reduction procedure. It is more likely that
the passenger would use it to reason forward instead, to conclude that using the alarm signal button
improperly would have an undesirable consequence. Thus, the sentence acts a constraint on action
rather than as a motivator of action. This explains why the sentence is written declaratively and not
procedurally.

7 It is normal in formal logic to write conditionals in the forward direction: If conditions then
conclusion. This is why reasoning from conditions to conclusions is called forward reasoning. In fact,
conditionals can be used to reason both forwards and backwards, no matter how they are written.
However, we often write them one way rather than the other when we have one preferred direction of
use in mind.

 13

In fact, only the first sentence of the Emergency Notice is written in procedural form, and only this
first sentence of the Notice functions as a normal program, to evoke the behaviour that is desired of
passengers on the underground. The fourth sentence functions as a constraint, to prevent undesired
behaviour.

The second and third sentences, on the other hand, describe part of a program to be executed by a
different agent, namely by the driver of the train. These two sentences are written declaratively and not
procedurally precisely because they are to be executed by a different agent, and not by the agent
observing the emergency. However, passengers can use the sentences to reason forwards to derive the
likely consequences of pressing the alarm signal button.

Programs with purpose

It is implicit that the purpose8 (or goal) of the Notice is to explain how you can get help from the
driver in an emergency. That is why the third sentence includes a phrase that explains why the driver
does not stop the train immediately when it is not in a station, but waits to stop until the next station:

 where help can more easily be given.

The Notice makes sense because the first sentence, in particular, coheres with the goals and beliefs that
you probably had already before you started reading the Notice. For example, with such sentences as:

 If there is an emergency then

you need to deal with the emergency appropriately.

You deal with the emergency appropriately if
 you get help.

You get help if you alert the driver.

Although I have deliberately written the second and third sentences here conclusion-first, because it is
natural to use them conclusion-first, as a procedures for dealing with emergencies, I have written the
first sentence condition-first, because it is natural to use it condition-first, to respond to emergencies.

Like the other sentences, the first sentence also has the form of a conditional. But its conclusion is
effectively imperative (deal with the emergency appropriately) rather than declarative (you will deal
with the emergency appropriately). We will see later that the first sentence can be written declaratively
if it is regarded as a goal rather than as a belief.

The difference between goals and beliefs is that beliefs describe an agent’s past observations and
future expectations, whereas goals describe future states of the world that the agent actively seeks to
achieve. The distinction between goals and beliefs has been somewhat neglected in symbolic logic, but
is an important feature of the Computational Logic developed in Artificial Intelligence.

Where do we go from here?

This chapter has been intended to give an overall impression of the book as a whole. It shows how the
meanings of English sentences can be viewed in both computational and logical terms; and it shows
how the two views are combined in logic programming, which is a special case of computational logic,
which is the topic of this book.

Traditional logic, on which computational logic is based, has fallen out a fashion in recent years,
challenged by rival models of thinking, such as condition-action rules, connectionist neural networks,
and Bayesian networks. One of the sub-tasks of this book is to argue that many of the features of these
rivals are compatible with Computational Logic.

8 The terms “goal” and “purpose” are interchangeable. Other terms that sometimes have the same
meaning are “motivation”, “reason”, “interest”, “desire”, “objective” “mission”, “target” etc.

 14

Part of the problem with traditional logic is its lack of concern with a number of issues that are
important in human thinking and behaviour. These issues include the need:

 to distinguish between goals and beliefs
 to be open to changes in the world
 to combine thinking about actions with actually performing them
 to combine the use of logic for thinking about actions with the use of probability and utility

for deciding what actions to perform
 to reason by default and with rules and exceptions
 to combine arguments for and against a given conclusion.

We will see how Computational Logic addresses these issues in the following chapters. For the
moment, we can roughly picture the problem we face like this:

 Computational Logic as the thinking
 component of an intelligent agent

 ?

 The world

 15

Chapter 1a. The Case Against Logic

Suppose that in the interest of improving security, the management of the underground introduce a
security check, during which the security officers stick a label with a letter from the alphabet to the
front of every passenger entering the underground. Suppose that the security officers are supposed to
implement the following conditional:

 If a passenger is carrying a rucksack on his or her back,
 then the passenger is wearing a label with the letter A on his or her front.

Imagine that you have the task of checking whether the security officers have properly implemented
the conditional. Which of the following four passengers do you need to check? You can see only Bob
and John’s back and only Mary and Susan’s front:

 Bob, who is carrying a rucksack on his back.
 Mary, who has the label A stuck to her front.
 John, who is not carrying a rucksack on his back.
 Susan, who has the label B stuck to her front.

Unfortunately, I haven’t tried this test before. So I’m not entirely sure what to expect. But if you are
like most ordinary people, and if the task I have asked you to perform is sufficiently similar to other
experiments that many psychologists have devised, then it is likely that your performance will not be
very logical.

You will almost certainly check Bob, to make sure that he has the label A stuck to his front, which is
the obviously correct thing to do; and you will probably not check John, which is also correct.
However, if you are like most ordinary people, you will probably check Mary, even though there is no
need to do so. But worst of all, you will probably fail to check Susan, even though she might be a
terrorist carrying a rucksack on her back.

You might think that the psychologists who devise these experiments would be disappointed in the
evidence that most people are apparently not very logical. But many of them seem to be absolutely
delighted.

The Wason selection task

The first and most famous of these experiments was performed by Peter Wason9 around 1968. It is
cited by Stephen Pinker in his award winning book10, How the Mind Works, as evidence that logic
seems to have little to do with the way the mind really works.

In Wason’s experiment, there are four cards, with letters on one side and numbers on the other. The
cards are lying on a table with only one side of each card showing:

D

3

F

7

9 Peter Wason, (1968) 'Reasoning about a rule', The Quarterly
Journal of Experimental Psychology, 20:3, 273 - 281

10 Stephen Pinker, 1997: How the Mind Works. New York: Norton.

 16

The task is to select those and only those cards that need to be turned over, to determine whether the
following conditional is true:

If there is a D on one side,
then there is a 3 on the other side.

Variations of this experiment have been performed numerous times, mainly with College students. The
surprising result is that only about 10% of the subjects give the logically correct answer.

Almost everyone recognizes, correctly, that the card showing D needs to be turned over, to make sure
there is a 3 on the other side. This is a logically correct application of the inference rule modus ponens,
which is a variety of forward reasoning. Most people also recognise, correctly, that the card showing F
does not need to be turned over.

But many subjects also think, incorrectly, that it is necessary to turn over the card showing 3, to
make sure there is a D on the other side. This is logically incorrect, because the implication does not
claim that conversely:

If there is a 3 on one side,
then there is a D on the other side.

The two implications are the converse of one another, in the same way that the two implications:

If it is raining, then there are clouds in the sky.
If there are clouds in the sky, then it is raining.

are also mutually converse. In fact, (in case it’s not obvious) the first implication is true and the second
implication is false.

However, more disturbingly, only a small percentage of subjects realise that it is necessary to turn over
the card showing 7, to make sure that D is not on the other side. It is necessary to turn over the 7,
because the original implication is logically equivalent to its contrapositive:

If the number on one side is not 3 (e.g. 7),
then the letter on the other side is not D.

Similarly, the second sentence in the pair of sentences:

If it is raining, then there are clouds in the sky.
If there are no clouds in the sky, then it is not raining.

is the contrapositive of the first sentence, and the two sentences are also logically equivalent.

The obvious conclusion, which many psychologists draw, is that people are not logical, and that logic
has relatively little to do with real human reasoning.

A variant of the selection task with meaningful content

Psychologists have shown that people perform far better when the selection task experiment is
performed with a problem that is formally equivalent to the card version of the task but that has
meaningful content. The classic experiment of this kind considers the situation in which people are
drinking in a bar, and the subject is asked to check whether the following conditional holds:

If a person is drinking alcohol in a bar,
then the person is over eighteen.

Again there are four cases to consider, but this time instead of four cards there are four people. We can
see what two of them are drinking, but cannot see how old they are; and we can see how old two of
them are, but not what they are drinking:

 17

Bob, who is drinking beer.
Mary, who is a respected member of the senior citizens’ community.

 John, who is drinking cola.
 Susan, who is an innocent looking child of primary school age.

In contrast with the card version of the selection task, most people solve the bar version correctly,
realising that it is necessary to check Bob to make sure that he is over eighteen, and to check Susan to
make sure that she is not drinking alcohol, but that it is not necessary to check Mary and John.

Cognitive psychologists have proposed a bewildering number of theories to explain why people are so
much better at solving such meaningful versions of the selection task compared with the original card
version. The most generally cited of these theories, due to Leda Cosmides11, is that humans have
evolved a specialized algorithm for detecting cheaters in social contracts. The algorithm has the
general form:

If you accept a benefit,
then you must meet its requirement.

In the bar version of the selection task, the “benefit” is “drinking beer” and the “requirement” is “being
over eighteen”.

Cosmides and her co-workers also argue that humans have evolved other specialized
algorithms for dealing with other kinds of problems, for example an algorithm for avoiding hazards:

If you engage in a hazardous activity,
then you should take the appropriate precaution.

Cheng and Holyoak12, at about the same time, put forward a related theory, that people typically
reason about realistic situations using pragmatic reasoning schemes, involving such notions as
permission, obligation and causation. Chief among these are schemes involving deontic notions
concerned with permission, obligation and prohibition. In English these notions are typically signalled
by the use of such words as “can”, “should”, “need” and “must”. But these explicit linguistic signals
may be omitted if the context makes it obvious that an obligation or prohibition is involved, as in the
way I have formulated of the bar version of the selection task above.

Both Cosmides and Cheng and Holyoak argue that people do not have an in-built, general-purpose
capability for abstract logical reasoning, but that they have instead specialised procedures for dealing
with classes of practical problems that arise naturally in the world around them.

Computational logic and the selection task

I will argue in this book that Computational Logic is compatible with many of the proposals that have
been put forward to explain the way people reason in general, and the way people reason with
variations of the selection task in particular. I will sketch my argument regarding the selection task in
this chapter. However, the argument appeals to characteristics of Computational Logic that will be
investigated in greater detail later in the book. The remainder of this chapter is not necessary for the
rest of the book, and the reader who finds it too hard going or not entirely convincing can safely skip it
for now.

In the case of the selection task, there are two main problems: how to explain illogical performance on
“abstract” or meaningless versions of the task, and how to explain “logical” performance on

11 Leda Cosmides. 1985 Deduction or Darwinian algorithms : an explanation of the "elusive" content
effect on the Wason selection task. Ph.D. thesis. Harvard University.
Leda Cosmides. 1989. The logic of social exchange: has natural selection shaped how humans reason?
Studies with the Wason selection task. Cognition 31, 187 -276.
12 Patricia W. Cheng and Keith J. Holyoak, (1985). Pragmatic reasoning schemas. Cognitive
Psychology, 17, 391-416.

 18

http://www.worldcat.org/search?q=au%3ALeda+Cosmides&qt=hot_author
http://www.worldcat.org/search?q=au%3ALeda+Cosmides&qt=hot_author

meaningful versions. I put “logical” here in quotes, because many psychologists would deny that
“logical” performance has anything to do with logic.

Meaningless versus meaningful problems. Although Computational Logic, like any other tool in
Artificial Intelligence, is often applied to artificial, meaningless, abstract puzzles, its ultimate aim is to
help an agent solve useful problems.

If Computational Logic is to serve a similar function in Human Intelligence, then its purpose must
similarly be to help people deal more effectively with meaningful situations that are relevant to their
own goals and experiences. Many of the experiments with the selection task show that people perform
better with those variations, like the bar version of the task, which have meaningful content, than they
do with those variations, like the card version, which are meaningless.

Like any other human biological or cultural characteristic that has evolved over time, a human form of
Computational Logic might have evolved in response to evolutionary pressures and encouragements.
If evolution can be invoked to explain the emergence of specialised algorithms, it can just as easily be
invoked to explain the emergence of general-purpose logical methods.

Confusion about special-purpose versus general-purpose methods. Many of the theories invoked to
explain human performance on the selection task, like those of Cosmides and Cheng and Holyoak,
reject the notion that people use any form of logic in reasoning, and propose that people use heuristics,
schemes and algorithms instead. There is a similar tradition in Artificial Intelligence of distinguishing
between so-called weak, general-purpose problem-solving methods like logic and search, and strong,
special-purpose methods like heuristics, schemes and algorithms. This distinction is commonly
invoked to argue that logic is too general and too weak to be useful for problem-solving, and that
heuristics, schemes and algorithms are stronger and more useful.

However, this way of formulating the distinction between weak and strong methods fails to recognise
the relationship between them and creates both confusion and a false sense of conflict. The relationship
is hidden inside the formula:

 algorithm = knowledge + reasoning.

which emphasises the more fundamental distinction, not between weak and strong, but between
knowledge (or better goals and beliefs) and reasoning (or problem-solving).

The contrast between weak and strong methods is a false contrast between different categories. The
term strong method applies to algorithms, whereas the term weak method applies both to general-
purpose problem-solving methods, as well as to general-purpose knowledge. The contrast between
weak and strong methods fails to recognise that both knowledge and reasoning can be weak or strong.

Knowledge is weak when it is able to solve any problem in a given domain in general, but when it is
not especially useful for solving any problem in particular. In contrast, strong knowledge is knowledge
that is well-tuned to problems and situations that arise commonly in practice.

Reasoning is weak when it is general-purpose, like backward and forward reasoning, and when it does
not involve very much sophistication. Strong reasoning methods are also general-purpose, but they
involve more sophisticated methods involving such techniques as “intelligent backtracking”, “heuristic
search” and “constraint processing”13.

Algorithms, which combine knowledge and reasoning, therefore, can be weak + weak, weak + strong,
strong + weak, or strong + strong. Strong heuristics, schemes and algorithms can typically be
decomposed into strong + weak, or strong + strong combinations of knowledge and reasoning
methods. In these combinations, it is less important whether reasoning is weak or strong, and more

13 Both weak and strong logic-based problem-solving methods are described in: Robert Kowalski.
Logic for Problem Solving, Elsevier North Holland, 1979. A simple example, given on page 93, is the
contrast between the weak method of solving sub-goals of a problem in a fixed order, and the strong
method, which procrastinates attempting to solve explosive subgoals, which have many candidate
solutions.

 19

important that knowledge is strongly oriented towards frequently occurring problems whose solution
has high utility.

The relationship between knowledge and reasoning has been studied and exploited extensively in logic
programming14, where the relationship can be expressed by the formula:

 algorithm = beliefs expressed as conditionals + backward reasoning.

In this book, we will see how Computational Logic extends logic programming, mainly by employing
other kinds of reasoning, including forward reasoning, and by employing other kinds of knowledge,
including conditional goals. The important point, to draw attention to here, is that the use of strong,
special-purpose heuristics, schemes and algorithms is entirely compatible with the use of general-
purpose, logical reasoning, provided logical reasoning is combined with pragmatically useful goals and
beliefs.

Reasoning with goals and beliefs. So far in the first Chapter of this book, we focused on the use of
logic to represent beliefs, which aim to describe the way things are. However, as we will see later,
arguably a more fundamental use of logic is to represent goals, which prescribe the way things ought
to be. In Computational Logic, an agent uses its goals and beliefs in different ways. In dealing with
observations, it typically uses its goals to generate actions to make its goals true in the light of its
observations, and it uses its beliefs to help it to achieve its goals, assuming that its beliefs are already
true. These two uses of logic require different kinds of reasoning. Beliefs require mainly just backward
and forward reasoning, whereas goals require reasoning that is more like that associated with classical
logic.

Despite the declarative surface form in which I have formulated the bar version of the selection task
above, the content of the task makes it clear that it should be interpreted prescriptively, as a conditional
form of goal:

If a person is drinking alcohol in a bar,
then the person must be over eighteen.

This is because the sentence is obviously intended to prescribe the way people should behave rather
than to describe how they actually behave.

Reasoning with conditionals interpreted as beliefs. In contrast, it is not natural to interpret the card
version of the selection task as a goal, because there is no obvious agent to associate with the goal of
making the conditional true. It is more natural to interpret it as a belief. We will see later in the book
that, in Computational Logic, beliefs are used mainly to reason backwards or forwards, and they
inhibit reasoning with their contrapositives. This might explain why people have trouble reasoning
with contrapositives when conditionals are interpreted as beliefs.

In logic programming, it is also natural to assume that all the beliefs having the same conclusion:

 conclusion if conditions1 ……… conclusion if conditionsn

specify the only conditions under which the conclusion holds. In other words, the conditionals are
interpreted as the biconditional:

 conclusion if and only if conditions1 or ……… or conditionsn

This interpretation of conditionals as biconditionals is sometimes called the closed world assumption
and is used to justify so-called negation as failure, one of the main ways of both formalising and
implementing default reasoning. Default reasoning is an important feature of human reasoning and has
been a major focus of attention in Artificial Intelligence.

14 Robert Kowalski, "Algorithm = Logic + Control", in CACM, Vol. 22, No. 7, 1979, pp. 424-436.
Reprinted in Programming Languages: A Grand Tour, Third Edition, (ed. E. Horwitz), Computer
Science Press, Maryland, 1986, pp. 480-492.

 20

We will return to the topic of default reasoning later. But in the meanwhile, we note that the closed
world assumption might also explain why, when a single conditional:

 conclusion if conditions

 is interpreted as a belief, people often assume that the converse of the conditional holds:

 conclusion if and only if conditions.

Therefore, taking them together, the inhibition of reasoning with contrapositives and the closed world
assumption, these two features of logic programming might explain the two apparent mistakes that
people make with card variants of the selection task. In both cases the mistake is not that people are
not logical, but rather that our judgement of their performance fails to distinguish between the logic of
beliefs and the logic of goals. A similar argument has also been made by Stenning and van
Lambalgen15.

Reasoning with conditionals interpreted as goals. In Computational Logic, goals have several uses. As
we will see in subsequent chapters, their primary use is to represent condition-action rules and more
generally to represent condition-goal rules, such as:

 If there is an emergency then

you need to deal with the emergency appropriately.

But goals also include prohibitions and constraints, as illustrated by the following injunction not to
misuse the alarm signal button:

 Do not use the alarm signal button improperly.

In Computational Logic, it is often useful to represent denials it is not the case that conditions in
conditional form if conditions then false. In particular, it is useful to represent prohibitions as
conditional goals with conclusion false. In this example, the injunction not to misuse the alarm signal
button can be represented as the conditional goal:

 If you misuse the alarm signal button then false.

This representation of prohibitions as conditional goals with conclusion false has the advantage that
the same pattern of reasoning that applies to other kinds of conditional goals also applies to
prohibitions. In general, given a conditional goal of the form:

 If conditions, then conclusions.

 when one of the conditions is triggered by some real or hypothetical observation,
 determine whether the other conditions also hold,

and if they do, derive the conclusions as a goal to be solved.

This form of reasoning is well suited to condition-action rules and condition-goal rules, to derive
appropriate actions and goals, in response to changes in the environment. It is also tailor-made to
monitor observations for violations of prohibitions, when they are represented in conditional form:

 If conditions then false.

 when one of the conditions is triggered by some real or hypothetical observation,
 determine whether the other conditions also hold,
 and if they do, conclude that the prohibition has been violated.

Applied to the bar version of the selection task represented in the form:

15 Stenning and van Lambalgen 2008.

 21

 If a person is drinking alcohol in a bar,
and the person is eighteen or under
then false.

this general pattern of reasoning monitors all and only those observations that match one of its two
conditions, namely observations of people drinking alcohol and of people who are eighteen years old
or younger. This is consistent both with the dictates of classical logic and with the results of
psychological experiments. Moreover, it is supported by the arguments and experiments of Sperber et
al16 showing that the more natural it is for people to interpret the natural language statement of the
conditional:

If conditions then conclusion.

 as a denial:

It is not the case that conditions and not-conclusion

the more readily they solve the selection task in conformance with the rules of classical logic. Here I
have written what should have been a negative condition not conclusion as a condition not-conclusion
intended to be understood positively.

Sperber et al show that logically correct reasoning with the selection task depends in large part upon
the extent to which the negation of the conclusion of the conditional has a natural positive counterpart.
In the bar version of the selection task, the negation it is not the case that the person is over eighteen
has the natural positive counterpart the person is eighteen or under. Similarly, the negation of such
notions as tall, good, and young have natural positive counterparts such as short, bad, and old. In
contrast, there is no natural positive counterpart to such negative notions as a number is not 3, a
person is not a sailor or a book is not 201 pages long.

The reason why it is important whether or not a negative notion has a natural positive counterpart is
that observations are positive and not negative. We directly observe, for example, the positive fact that
a person is a child and therefore is under eighteen years old. Similarly, we directly observe the positive
fact that a card has the number 7 showing on one side, but we need to conclude that it does not have
the number 3 showing.

Indeed, even if it were possible to phrase the card version of the selection task so that it was natural to
interpret the conditional as a denial, it would still be hard to conclude that 3 is not showing if all we
observe is the positive fact that 7 is showing. This is because, given the observation, we could equally
well conclude that the number 1 is not showing, the number 2 is not showing, …. etc. It is only
because we are asked to test a rule referring to the number 3, that we are able to make the mental leap
from “7” to “not 3”. The difficulty of making this leap may be yet another reason why so many people
fail to choose the card showing the number 7 in the card version of the selection task.

In general, the harder a human or artificial agent needs to work to derive a conclusion, the less likely it
is that the agent will be able to so. This may help to explain, not only some of the problems that people
have with certain variants of the selection task, but also some of the differences between the way
people would think if they had unlimited time and energy, and the way they actually think with their
limited resources in practice. In particular, it may help to explain how people may fail to apply logic
themselves, yet still recognize a logically correct solution when they see it.

Natural language versus formal problem solving. This analysis of the selection task supports the view
that the solution of any problem communicated in natural language is a two-stage process. In the first
stage, the recipient of the communication attempts to interpret the natural language description of the
task to determine its intended meaning and to assimilate that meaning into the recipient’s own goals
and beliefs. In the second stage, the recipient attempts to solve the resulting logical form of the
interpretation of the problem. A failure to solve the problem in the eyes of the communicator may be
due, therefore, either to the recipient’s failure to interpret the problem as the comunicator intended, or

16 Sperber, D., Cara, F., & Girotto, V. (1995). Relevance theory explains the selection
task. Cognition, 52, 3-39.

 22

to the recipient’s failure to solve the correctly interpreted problem. As we have seen, both of these
kinds of failure can arise in the selection task.

Sperber et al argue, there is so much variation possible in the first stage of the selection task, that it is
impossible to form any judgement about the correctness of the reasoning processes involved in the
second stage. This view is also supported by the results of experiments performed by Amit Almor and
Steven Sloman17, who showed that, when subjects are asked to recall the problem after they have
solved the task, they report a problem statement that is consistent with their solution instead of with
the original natural language problem statement.

Does Computational Logic explain human performance on the selection task? If the selection task
were presented to an artificially intelligent agent using Computational Logic to guide its thoughts and
behaviour, the agent would need first to decide whether to interpret the conditional as a goal or as a
belief. It would use both the syntax of the natural language statement of the problem and its own
background goals and beliefs, to guide it in the interpretation process.

If the agent interprets the conditional as a belief, then it would reason with the belief using backward
or forward reasoning, but not with contrapositive reasoning. If, in addition, the agent interprets the
conditional as the only conditional relevant to establishing its conclusion, then it would interpret it as a
biconditional. This interpretation of the conditional as a biconditional and the inhibition from using it
for contrapositive reasoning would mirror the way people reason with conditionals of the kind
involved in the card version of the selection task.

However, if the agent interprets the conditional as a goal, then the biconditional interpretation would
not apply. Moreover, if the conditional has a natural interpretation as a prohibition and if the negation
of the conclusion has a natural positive counterpart, then the agent’s internal representation of the
conditional would facilitate monitoring both the condition of the original natural language conditional
and the positive counterpart of the negation of the conclusion. This interpretation of the conditional
would mirror the way people reason with conditionals of the kind involved in the bar version of the
selection task.

To be conclusive, these arguments would need to be tested with many other examples and would need
to be compared with many other theories. But even as the arguments currently stand, they support the
thesis, not only that Computational Logic might explain human performance on the selection task, but
that it might also approximate the logic of the language of human thought more generally.

Other problems with conditionals

In later versions of the book, I intend to explore other relationships between conditionals in natural
language and conditionals in the language of thought. In the meanwhile, a discussion of some of these
relationships can be found in the attached appendix “Reasoning with Conditionals in Artificial
Intelligence”. Here is a preview:

Truncation of conditionals. Several authors18 have observed that conditionals in natural language often
have a truncated form:

if conditions then conclusion

17 Amit Almor and Steven Sloman. Reasoning versus text processing in the Wason selection task:
A non-deontic perspective on perspective effects. Memory & Cognition 2000, 28 (6), 1060-1070.

18 For example: Stenning, K. and van Lambalgen M., (2008) Human reasoning and cognitive
science. MIT Press. Bonnefon, J.-F. and Politzer, G. (2009) Pragmatic Conditionals,
Conditional Pragmatics, and the Pragmatic Component of Conditional Reasoning. To appear
in The Psychology of Conditionals (ed. M. Oaksford) OUP. Kowalski, R. “Reasoning with
Conditionals in Artificial Intelligence” to appear in The Psychology of Conditionals (ed. M.
Oaksford) OUP, to appear 2009.

 23

which, to be interpreted correctly, needs additional conditions to be made explicit:

if conditions and other conditions then conclusion.

For example, each of the following conditionals has at least one missing condition:

 If any part of the train is in a station, then the driver will stop the train in the station.
 If an animal is a bird then the animal can fly.

If she has an essay to write, then she will study late in the library.

We encountered the first conditional in the first chapter, where we saw that it is missing the condition
the driver is alerted to an emergency, which is implicit from the context of the previous sentence.

The second conditional is a conditional representation of the most famous of all examples in Artificial
Intelligence, the sentence all birds fly. Here the missing conditional is something like:

 the animal is a typical bird
or the animal is not an abnormal bird, etc.

The third conditional is part of an experiment used by the psychologist Ruth Byrne19 to support the
argument that people do not reason with inference rules (like forward and backward reasoning) but use
mental models instead. I leave it to the reader to decide which additional condition(s) might be
missing.

Missing conditions may give the impression that a person does not reason logically. We will see some
examples of this shortly. But first, consider an even more difficult problem.

Reversal of conditionals. What do you conclude from the following two premises?

 If an object looks red, then it is red.
 This apple looks red.

Few people would criticise you if you concluded this apple is red. A straight-forward application of
modus ponens or forward reasoning. Indeed, this is a good example of what formal logic is all about:
concentrating on the form of sentences, ignoring their content.

But suppose I now add:

 If an object is illuminated by a red light, then it looks red.

Psychological experiments with similar examples suggest that you would probably suppress the
application of modus ponens, withdrawing your previous conclusion this apple is red. The philosopher
John Pollock20 uses this example to explain such withdrawing of conclusions as a sophisticated form
of argumentation, in which the second conditional supports an argument that defeats the argument
supported by the first conditional.

However, there is another way of looking at the problem: Solving the problem is a two-stage process.
In the first stage, the natural language statement of the problem needs to be translated into a logical
form, using its surface syntax, the context of earlier and later sentences, and the content of any relevant
background goals and beliefs. In the second stage, the resulting logical form needs to be processed
using appropriate content-independent, formal reasoning methods.

In this example, the third sentence adds additional content that is relevant to the interpretation of the
first sentence. In particular, the content of the third sentence suggests that the first sentence is
expressed the wrong way around. Understood in every-day, common-sense terms, it is an object’s
being red or being illuminated by a red light that causes it to look red.

19 Ruth M. J. Byrne, Suppressing valid inferences with conditionals. Cognition 31 (1989), 61–83.
20

 24

The natural way to logically represent the relationship between cause and effect is in the form: if
causes then effects. The third sentence represents causality in this way, but the first sentence
represents it in the opposite, converse way. The natural way to represent the relationship between
being red and looking red is therefore:

 an object looks red if it is red.
 an object looks red if is illuminated by a red light.

Given only the first of these two pairs of beliefs, it is natural to interpret the first conditional as the
biconditional:

 an object looks red if and only if it is red.

Together with the additional premise this apple looks red, the biconditional implies this apple is red.

However, given both pairs of beliefs, it is natural to interpret them together as the revised
biconditional:

 an object looks red if and only if

it is red or it is illuminated by a red light.

Now, together with the premise this apple looks red, the revised biconditional implies this apple is red
or this apple is illuminated by a red light, withdrawing the previous conclusion.

Now for an example that combines truncation of conditionals with the reversal of conditionals.

Problems with rain. Which of the following two conditionals makes more sense?

 If it is raining, then there are clouds in the sky.
If there are clouds in the sky, then it is raining.

Obviously, the first conditional is true and the second is false. So you can be excused for thinking that
there isn’t much of a contest between them – after all, true sentences make more sense than false
sentences. But consider the possibility that the intended meaning of the second sentence is actually:

.
If there are clouds in the sky and the conditions in the clouds are right for rain,
then it is raining.

In other words, the surface structure of the second sentence is a truncated form of its real meaning.
With the added, previously missing, extra condition, the second sentence is now also true. Moreover,
compared with the first sentence, it is expressed in the more natural if causes then effects form.

In fact, in logic programming the first sentence is a logical consequence of the revised second
sentence. This is because, given what most people believe about clouds and rain, the second sentence
expresses the only conditions under which the conclusion holds. So, in logic programming, the second
sentence is interpreted as a biconditional:

 it is raining if and only if
 there are clouds in the sky and the conditions in the clouds are right for rain.

The first sentence is now just part of the other half of the biconditional. So, arguably, the revised
second sentence, with its intended meaning completely filled in, is more meaningful (literally “full of
meaning”) than the first sentence, because the revised second sentence now logically implies the first.

The Byrne suppression task. Now here is the original suppression task, as presented by Ruth Byrne:
Suppose I tell you:

 If she has an essay to write, then she will study late in the library.
 She has an essay to write.

 25

According to the experimental day, approximately 90% of you will draw the formally correct
conclusion that she will study late in the library. If I now say:

 If the library is open, then she will study late in the library.

then about half of you will probably withdraw your previous conclusion, suppressing your previous
application of modus ponens.

How would you explain these results? I don’t want to spoil it for you by giving my own explanation.
You probably know by now what I am likely to say.

 26

Chapter 2 The Fox and the Crow

If the previous chapter or two were a little heavy going, the next few chapters are going to try to make
up for it. In this chapter we retell the story of a proactive fox, who outwits a reactive crow, taking the
fox’s point of view of what it means to be proactive. In the next chapter, we focus on reactive thinking;
and in the chapter after that on putting the two kinds of thinking together.

The fox and the crow are a metaphor for different kinds of people. Some people are proactive, like the
fox in the story. They like to plan ahead, foresee obstacles, and lead an orderly life. Other people are
reactive, like the crow. They like to be open to what is happening around them, take advantage of new
opportunities, and to be spontaneous. Most people are both proactive and reactive, at different times
and to varying degrees.

The fox and the crow

Probably everyone knows the ancient Greek fable, attributed to Aesop, about the fox and the crow. It
starts, harmlessly enough, with the crow sitting in a tree with some cheese in its beak, when along
comes the fox, who wants to have the cheese.

In this version of the story, we consider the fox’s point of view. To model her proactive way of
thinking, we represent her goals and beliefs in logical form:

Goal I have the cheese.

Beliefs The crow has the cheese.

 An animal has an object

if the animal is near the object
and the animal picks up the object.

 I am near the cheese

if the crow has the cheese
and the crow sings.

 The crow sings if I praise the crow.

 27

As you can see, the fox is not only a logician, but also an amateur physicist. In particular, her belief
about being near the cheese if the crow sings combines in a single statement her knowledge about her
location with her knowledge of the laws of gravity. Reasoning informally:

The fox knows that if the crow sings, then the crow will open its beak and the cheese will fall
to the ground under the tree. The fox also knows that, because the fox is under the tree, the
fox will then be near the cheese.
Therefore, the fox knows that she will be near the cheese if the crow sings.

The fox is also an amateur behavioural psychologist. Being a behaviourist, she is interested only in the
crow’s external, input-output behaviour, and not in any internal methods that the crow might use to
generate that behaviour. In particular, although the fox represents her own beliefs about the crow in
logical terms, she does not assume that the crow also uses logic to represent any beliefs about the
world. As far the fox is concerned, the crow’s behaviour might be generated by means of condition-
action rules without logical form. Or his behaviour might be “hardwired” directly into his body,
without even entering into his mind.

Like the fox’s belief about being near the cheese if the crow sings, the fox’s belief about the crow’s
behaviour might be derived from other, separate beliefs – perhaps from more general beliefs about the
way some naive, reactive agents respond to being praised, without thinking about the possible
consequences of their actions.

The fox also has ordinary common sense. It knows that an animal will have an object if it is near the
object and picks it up. It knows this as a general law, which applies universally to any animal and to
any object (although it doesn’t seem to know that the law also applies to robots, unless it views robots
as a species of animal). It also knows enough logic to be able to instantiate the general law and to
apply it to the special case where the fox is the animal and the cheese is the object.

The fox’s beliefs as a Logic Program

The fox’s beliefs have not only logical form, but they also have the more specialised form of a logic
program. As we have already seen, a logic program is a collection of implications of the form:

 Conclusion if Conditions.

Both the conclusion and the conditions are written in declarative form.

The implications are written backwards, conclusion first, to indicate that they can be used to reason
backwards, from conclusions to conditions. As a consequence of backward reasoning, each such
implication behaves as a goal-reduction procedure21:

 To derive the Conclusion, derive the Conditions.

Even “facts”, which record observations, like the belief that the crow has the cheese, can be viewed as
implications that have a conclusion, but no conditions:

Conclusion if nothing.

Such facts also behave as procedures:

To derive the Conclusion, do nothing.

Therefore, the fox’s beliefs can be used as a collection of procedures:

21 Grammatically speaking, the goal of the procedure is expressed in the subjunctive mood and the
sub-goals are expressed in the imperative mood. Implications in logic, on the other hand, are expressed
purely in the declarative mood.

 28

To have an object,
be near the object
and pick up the object.

 To be near the cheese,
 check that the crow has the cheese

and make the crow sing.

 To make the crow sing,

 praise the crow.

To check that the crow has the cheese,
do nothing.

These procedures can be applied, one after the other, to reduce the top-level goal:

 I have the cheese.

to the two action sub-goals:

I praise the crow and I pick up the cheese.

Together, these two actions constitute a plan for achieving the original goal.

Goal-reduction graphs

The fox’s reduction of her original goal to the two action sub-goals can be visualized as a graph, in which
implications of the form:

 Conclusion if Condition1 and Condition2

are represented by sub-graphs of the form:

 Conclusion

 Condition1 Condition2

The graph has the form of an upside-down tree with the top-level goal at the top of the upside-down
tree:

 29

 I have the cheese.

 I am near the cheese.

 I pick up the cheese.

 The crow has the cheese.

 The crow sings.

 Do nothing. I praise the crow.

For the fox to solve the top-level goal, it suffices for her to grow the tree, starting from the top down,
reducing goals to sub-goals, terminating when no further reduction is possible. If all the sub-goals at the
“leaves” of the tree are irreducible action sub-goals, then these actions constitute a plan for solving the top-
level goal.

Backward reasoning

The operation of reducing a goal to sub-goals can also be viewed in logical terms, as reasoning
backwards with an implication, matching the goal with the conclusion of the implication and deriving
the conditions of the implication as sub-goals.

For example, the top-level goal:

 I have the cheese.

matches the conclusion of the general implication:

An animal has an object
if the animal is near the object
and the animal picks up the object.

Backward reasoning derives the two sub-goals:

 I am near the cheese and I pick up the cheese.

by substituting the specific terms “I” and “the cheese” for the more general terms “the animal” and
“the object” respectively.

 30

The second of these two sub-goals is an action, which matches the conclusion of no implication. It can
be solved only by performing it successfully. However, the first sub-goal can be reduced to other sub-
goals by three further steps of backwards reasoning.

The final result of this chain of backward reasoning is a logical proof that the fox has the cheese if she
praises the crow and picks up the cheese. The proof has the same tree-like structure as the goal-
reduction graph we saw before.

In traditional logic, it is more common to present proofs in the forward direction. In this case, a
traditional proof would look more like this:

I praise the crow.
Therefore The crow sings.

 The crow has the cheese.
Therefore I am near the cheese.

 I pick up the cheese.
Therefore I have the cheese.

The end of story?

For a Logic Extremist, this would be the end of the story. For the Extremist, there is no difference
between the fox’s world and the fox’s beliefs about the world, and no difference between the fox’s
plan for getting the cheese and the fox’s actually having it.

However, Common Sense tells us that there is more to life than just thinking – and perhaps even more
to thinking than just logic alone. In addition to thinking, an intelligent agent needs to observe changes
in the world and to perform actions to change the world in return. And there might be other ways of
thinking - ways that do not use Logic and perhaps even ways that do not use any mental representation
of the world at all.

We will come back to the story and address these issues in the next few chapters. But first:

What is the moral of the story?

Presumably Aesop’s fable had a purpose – a lesson that it is not safe to take another agent’s words and
actions at face value, without trying to understand the agent’s underlying goals and intentions. Or,
even more simply, that before you do something you should think about its possible consequences.

The crow in our story responds to the fox’s praise spontaneously - without thinking, you might say. A
more intelligent crow would monitor his intended actions, before they are performed, to determine
whether they might have any unintended and undesirable consequences.

If only the crow knew what the fox knows, the crow would be able to reason as follows:

 I want to sing.
 But if I sing, then the fox will be near the cheese.
 If the fox is near the cheese and picks up the cheese,
 then the fox will have the cheese.
 Perhaps the fox wants to have the cheese and therefore will pick it up.
 But then I will not have the cheese.
 Since I want to have the cheese, I will not sing.

Notice that this line of reasoning uses some of the same beliefs as those used by the fox, but it uses
them forwards rather than backwards. We will investigate this dual use of beliefs for both backward
and forward reasoning in the chapter after next.

 31

In the meanwhile, we note that, although using logic might not always be the most natural way of
thinking, it can sometimes help us (and the crow) to think and behave more effectively.

Summary

The view of computational logic in the mind of an intelligent agent, as seen so far in this chapter, looks
something like this:

 Goals

 Backward reasoning

 Intermediate level sub-goals

 Backward reasoning

 Actions

 ?

 The world

This picture will be elaborated considerably in the following chapters.

 32

Chapter 3. The Louse and the Mars Explorer

Logical Extremism, which views life as all thought and no action, has given Logic a bad
name. It has overshadowed its near relation, Logical Moderation, which recognises that
Logic is only one way of thinking, and that thinking isn’t everything.

The antithesis of Logical Extremism is Extreme Behaviourism, which denies any Life of the
Mind and views Life instead entirely in behavioural terms. Extreme Behaviourism, in turn, is
easily confused with the condition-action rule model of thinking.

Behaviourism
If you were analysing the behaviour of a thermostat, which regulates the temperature of a
room by turning the heat on when it is too cold and turning it off when it is too hot, you
might describe the thermostat’s input-output behaviour in condition-action terms:

 If the current temperature is T degrees
 and the target temperature is T’ degrees
 and T < T’ - 2°
 then the thermostat turns on the heat.

 If the current temperature is T degrees
 and the target temperature is T’ degrees
 and T > T’ + 2°
 then the thermostat turns off the heat.

But you wouldn’t attribute the thermostat’s behaviour to a mind that manipulates such
descriptions to generate its behaviour.

In the same way that you would view the thermostat’s external behaviour without committing
yourself to a view of its internal operation, the behaviourist views agents in general.

Thus, in the story of the fox and the crow, a behaviourist, unable to examine the fox’s
internal, mental state, would view the behaviour of the fox in the same way that we view the
behaviour of the thermostat:

If the fox sees that the crow has cheese, then the fox praises the crow.
If the fox is near the cheese, then the fox picks up the cheese.

The behaviourist’s description of the fox begins and ends with the fox’s externally
observable behaviour. The behaviourist justifies her refusal to attribute any internal, mental
activity to the fox, by the fact that it is impossible to verify such attributions by the scientific
method of observation and experimentation.

According to the behaviourist, the fox is a purely reactive agent, simply responding to changes in the
world around her. If, in the course of reacting to these changes, the fox gets the cheese, then this
result is merely an indirect, emergent effect, rather than one that the fox deliberately brings about by
proactive, goal-oriented reasoning.

The behaviourist also sees no reason to distinguish between the behaviour of a thermostat and the behaviour of a human. The
behaviourist might use an implication:

 If a passenger observes an emergency on the underground,
 then the passenger presses the alarm signal button.

 33

to describe the behaviour of a passenger on the underground. But the use of such an
implication says nothing about how the passenger actually generates that behaviour. As far
as the behavourist is concerned, pressing the alarm signal button whenever there is an
emergency might be only an instinctive reaction, of whose purpose the passenger is entirely
unaware.

Behaviourism is indirectly supported by Darwinism, which holds that organisms evolve by
adapting to their environment, rather than by a goal-oriented process of self-improvement.

Behaviourism also shares with condition-action rules a focus on modelling behaviour as
reactions to changes in the environment. However, whereas behaviourism restricts its
attention to descriptions of behaviour, condition-action rules are used in production systems
to generate behaviour.

Production Systems

Few psychologists subscribe today even to moderate versions of behaviourism. Most adhere
instead to the cognitive science view that intelligent agents engage in some form of thinking
that can usefully be understood as the application of computational procedures to mental
representations of the world.

Paul Thagard states in his book, Mind: Introduction to Cognitive Science, that, among the
various models of thinking investigated in cognitive science, production systems have “the
most psychological applications” (page 51). Steven Pinker in How the Mind Works also uses
production systems as his main example of a computational model of the mind (page 69).

A production system is a collection of condition-action rules incorporated in the
thinking component of an agent’s observation-thought-decision-action cycle.

Condition-action rules (also called production rules) are similar to the behaviourist’s
descriptions of behaviour. However, because they are used by an agent internally to
generate its behaviour, their conclusions are often expressed in the imperative, rather
than in the declarative mood:

If conditions then do actions.

Production systems were invented in the 1930’s by the logician, Emil Post, but were
proposed as a computational model of human intelligence by the Artificial Intelligence
researcher, Alan Newell.

The Production System Cycle
Production systems embed condition-action rules in an observation-thought-decision-
action agent cycle:

To cycle,

 observe the world,
 think,
 decide what actions to perform,
 act,
 cycle again.

 34

Thinking is a form of forward reasoning, initiated by an observation matching one of the
conditions of a condition-action rule. In such a case, the observation is said to trigger the
condition-action rule. As in logic, the remaining conditions of the rule are verified and the
conclusion is derived.

In logic, the conclusion is an inescapable consequence of the conditions. However, in
production systems, it is only a recommendation to perform the actions that are the
conclusion. If only one rule is triggered by the observations, then the recommendation is, in
effect, an unequivocal command. However, if more than one is triggered, then the agent
needs to choose between the different recommendations, to decide which actions to perform.
This decision is called conflict resolution, because the different recommendations may
conflict with one another.

For example:

 If someone attacks me, then attack them back.
 If someone attacks me, then get help.
 If someone attacks me, then try to escape.

Deciding what to do, when there is a conflict between different recommendations, can be
harder than generating the recommendations in the first place. We will come back to this
decision problem later.

Production Systems without any representation of the world
In the simplest case, an agent’s mental state might consist entirely of production rules alone,
without any mental representation of the world. In such a case, the conditions of a rule are
verified simply by matching them against the agent’s current observations. In this case, it can
be said (and has been said) that the world serves as its own representation: If you want to find
out about the world, don’t think about it, just look and see!

Observing the current state of the world is a lot easier than trying to predict it from past
observations and from assumptions about the persistence of past states of affairs. And it is a
lot more reliable, because persistence assumptions can easily go wrong, especially when
there are other agents around, changing the world to suit themselves. It’s too early to consider
this issue further in this chapter, but it is an issue we will return to later when we look more
closely at what’s involved in reasoning about the persistence of states over time.

What it’s like to be a louse

To see what a production system without any representation of the world might be like,
imagine that you are a wood louse and that your entire life’s behaviour can be summed up in
the following three rules:

If it’s clear ahead, then move forward.
 If there’s an obstacle ahead, then turn right.
 If I am tired, then stop.

Because you are such a low form of life, you can sense only the fragment of the world that is
directly in front of you. You can also sense when you are tired. Thus, your body is a part of
the world, external to your mind. Like other external objects, your body generates
observations, such as being tired or being hungry, which have to be attended to by your mind.

 35

It doesn’t matter where the rules come from, whether they evolved through natural selection,
or whether they were presented to you by some Grand Designer. The important thing is, now
that you have them, they govern and regulate your life.

Suppose, for the purpose of illustration, that you experience the following stream of
observations:

 Clear ahead.
 Clear ahead.
 Obstacle ahead.
 Clear ahead and tired.

Matching the observations, in sequence, against the conditions of your rules results in the
following interleaved sequence of observations and actions:

 Observe: Clear ahead.
 Do: Move forward.
 Observe: Clear ahead.
 Do: Move forward.
 Observe: Obstacle ahead.
 Do: Turn right.
 Observe: Clear ahead and tired.

At this point, your current observations trigger two different rules, and their corresponding
actions conflict. You can’t move forward and stop at the same time. Some method of conflict
resolution is needed, to decide what to do.

Many different conflict resolution strategies are possible. But, in this as in many other cases,
the conflict can be resolved simply22 by assign different priorities to the different rules, and
selecting the action generated by the rule with the highest priority. It is obvious that the third
rule should have higher priority than the second. So the appropriate action is:

 Do: Stop.

Once a louse has learned its rules, its internal state is fixed. Observations come and go and
the louse performs the associated actions without needing to record or remember them. The
price for this simplicity is that a louse lives only in the here and now and has no idea of the
great wide world around it. But, for a louse, this is probably a small price to pay for being
able to enjoy the simple life.

Production Systems with Memory
Although the simple life has its attractions, most people prefer more excitement. For this, you
need at least a production system with an internal memory. The memory can be used to store
a historical record of current and past observations.

22 An even simpler approach is to avoid conflict resolution altogether, by changing the rules, adding an
extra condition “and you are not tired” to the first and second rules. A more complicated approach is to
use Decision Theory, to compare the different options and to select the option that has the highest
expected benefit. But, no matter how it is done in this case, the result is likely to be the same – better
to rest when you are tired than to forge ahead no matter what.

 36

Typically, an individual observation has the form of an atomic sentence23, so called because
it contains no proper subpart that is also a sentence. Thus, the logical form of an observation
contains none of the logical connectives, “and”, “or”, “if” and “not”, which turn simpler
sentences into more complex ones. An atomic sentence is also called an atom.

In a production system with memory, a rule is triggered by a current observation that matches
one of the conditions of the rule. Any remaining conditions are then verified by testing them
against records of current, past or future observations, and the actions of the rule are derived
as candidates for execution.

What it’s like to be a Mars Explorer
To imagine what a production system with memory might be like, suppose that your life as a
louse is terminated and you are reincarnated as a robot sent on a mission to look for life on
Mars.

Fortunately, your former life as a louse gives you a good idea how to get started. Moreover,
because you are a robot, you never get tired and never have to rest. However, there are two
new problems you have to deal with: How do you recognise life when you see it, and how do
you avoid going around in circles.

For the first problem, your designers have equipped you with a life recognition module,
which allows you to recognise signs of life, and with a transmitter to inform mission control
of any discoveries. For the second problem, you need a memory to recognise when you have
been to a place before, so that you can avoid going to the same place again.

A production system with memory, which is a refinement of the production system of a
louse, might look something like this:

If the place ahead is clear
and I haven’t gone to the place before,
then go to the place.

If the place ahead is clear
and I have gone to the place before,
then turn right.

 If there’s an obstacle ahead
 and it doesn’t show signs of life,
 then turn right.

 If there’s an obstacle ahead
 and it shows signs of life,
 then report it to mission control
 and turn right.

To recognise whether you have been to a place before, you need to make a map of the terrain.
You can do this, for example, by dividing the terrain into little squares and naming each
square by a co-ordinate, (E, N), where E is the distance of the centre of the square East of the
origin, N is its distance North of the origin, and the origin (0, 0) is the square where you start.

23 This assumes that an agent’s experience of the world can be expressed in linguistic terms. This is
certainly not true of ordinary, natural language, but might, by some stretch of the imagination, apply to
the “Language of Thought”. More about this later.

 37

For this to work, each square should be the same size as the step you take when you move
one step forward. Assuming that you know the co-ordinates of your current location, you can
then use simple arithmetic to compute the co-ordinates of the square ahead of you and the
square to the right of you, and therefore the co-ordinates of your next location.

Every time you go to a square, you record your observation of the square together with its co-
ordinates. Then, to find out whether you have gone to a place before, you just consult your
memory of past observations.

Suppose for example, that you are at the origin, pointed in an Easterly direction. Suppose also
that the following atomic sentences describe part of the world around you:

 Life at (2, 1)
 Clear at (1, 0)
 Clear at (2, 0)
 Obstacle at (3, 0)
 Obstacle at (2, -1)
 Obstacle at (2, 1).

Although there is life in your vicinity, you can’t see it yet. So, when you start, the only thing
you know about the world is that it is clear at (1, 0).

Assume also that, although it is your mission to look for life, you are the only thing that
moves. So this description of the world applies to all states of the world you will encounter
(assuming that, when you occupy a place, it is still considered clear).

With these assumptions, you have no choice. Your behaviour is completely predetermined:

 Observe: Clear at (1, 0)
 Do: Go to (1, 0)
 Record: Gone to (1, 0)

 Observe: Clear at (2, 0)
 Do: Go to (2, 0)
 Record: Gone to (2, 0)

 Observe: Obstacle at (3, 0)
 Do: Turn right

 Observe: Obstacle at (2, -1)
 Do: Turn right

 Observe: Clear at (1, 0)
 Remember: Gone to (1, 0)
 Do: Turn right

 Observe: Obstacle at (2, 1) and Life at (2, 1)
 Do: Report life at (2, 1) to mission control
 Do: Turn right.24

Notice that reporting your discovery of life to mission control is just another action, like
moving forward or turning right. You have no idea that, for your designers, this is the
ultimate goal of your existence.

24 I leave it to the reader to work out what happens next, and I apologise in advance.

 38

Your designers have endowed you with a production system that achieves the goal of
discovering life as an emergent property. Perhaps, for them, this goal is but a sub-goal of
some higher-level goal, such as satisfying their scientific curiosity. But for you, none of these
goals or sub-goals is apparent.

The use of production systems to simulate goal-reduction
Production systems have been used, not only to construct computational models of intelligent
agents, but also to build computer applications, most often in the form of expert systems.
Many of these applications use condition-action rules to simulate goal-reduction explicitly,
instead of relying on emergent properties to achieve higher-level goals implicitly.

For example, the fox’s reduction of the goal of having cheese to the sub-goals of being near
the cheese and picking it up can be simulated by the condition-action rule25:

If I want to have an object
then add to my beliefs that I want to be near the object
and pick up the object.

Here a goal Goal is represented in the system’s memory as a pseudo-belief of the form:

 I want Goal.

The reduction of Goal to Sub-goals is simulated by a condition-action rule with a condition
Goal and actions that are either genuine actions performed externally or pseudo-actions of
the form:

 add to my beliefs that I want Sub-goal

performed internally on the system’s memory.

The main problem with the simulation approach is that it looses the connection between goal-
reduction and the belief that justifies it, in this case with the belief:

 An animal has an object

if the animal is near the object
and the animal picks up the object.

As we have already seen, the connection is that goal-reduction is the same as reasoning
backwards with the belief, which is the main idea of logic programming.

Thagard (page 45) gives a similar example of a condition-action rule, but uses it to illustrate
his claim that “unlike logic, rule-based systems can also easily represent strategic information
about what to do”:

 If you want to go home and you have the bus fare,
 then you can catch a bus.

Forward reasoning with the rule reduces the goal (going home) to a sub-goal
(catching a bus), and simulates backward reasoning with the belief26:

25 The rule can be paraphrased more naturally, although somewhat less precisely, in ordinary English:
If I want to have an object, then I should be near the object and pick it up.

 39

 You go home if you have the bus fare and you catch a bus.

Thus Thagard’s argument against logic can be viewed instead as an argument for
logic programming, because it can “easily represent strategic information about what
to do”.

Indeed, it seems that Thagard’s other arguments for production rules can also be
understood as arguments for logic instead. This is because he confuses production
rules:

 If conditions then do actions.

with logical implications:

 If conditions then conclusions.

An unfortunate confusion

This confusion is perhaps most apparent when Thagard writes (page 47) that “rules can be
used to reason either forward or backward.” But this ability to be used forward or backward
is not a true property of production rules, but rather a characteristic of logical implications.

Because conditions in production rules come first and actions happen later, true production
rules can be used only in the forward direction, when the conditions hold to derive candidate
actions. But because conclusions in logic are always expressed in the declarative mood,
logical implications can be used to reason either forward or backward.

Thus Thagard mistakenly attributes to production rules a property that they don’t have, but
that logical implications do, and then he uses this mistaken attribution to argue that “rules”
are better than logic.

To be fair to Thagard, he is only reporting a generally held confusion. In this case, the rule
that he uses as an example simulates goal-reduction, which is a special case of backwards
reasoning with a belief expressed in logical form. However, in the next chapter, we will see
that true production rules are a special case of forward reasoning with goals expressed in
logical form. We will also see how goal-reduction and production rules can be combined in a
more general framework, which uses logic for both beliefs and goals.

26 In this form it is perhaps more obvious that the procedure will work only if the bus you catch is
going past your home.

 40

Summary

The use of production systems to generate the behaviour of an intelligent agent, as
seen in this chapter, can be pictured like this:

 Observations Actions
 ”Forward reasoning”

 The world

 41

Chapter 4 A Logical Framework for Combining Goal-
reduction, Condition-action Rules and More

What do the passenger on the London underground, the fox, the wood louse, the Mars
explorer and even the heating thermostat have in common? It certainly isn’t the way
they dress, the company they keep, or their table manners. It’s that they all are
engaged in a constant struggle with the changing world - a struggle that sometimes
threatens their existence, and at other times provides them with opportunities to thrive
and prosper.

For logic to be relevant in such a world, it needs first to overcome one main problem
– that traditional logic, as normally understood, is closed to changes in the world. To
be relevant, logic needs to be put in its proper place, in the thinking component of the
agent cycle:

To cycle,
observe the world,

 think,
 decide what actions to perform,
 act,
 cycle again.

At this top-most level, logic shares the same agent cycle as production systems. The
cycle is general enough to accommodate different kinds of thinking, including both
condition-action rules and logical reasoning. Embedded in the agent cycle, logic is
open both to inputs that the agent receives from the world and to outputs that the
agent can use to change the world in return.

We can picture this relationship between the mind of an agent and the world like this:

 42

observe act

The world

think and
decide

In this picture, thinking is a form of symbol processing in which symbols in the mind
represent objects and relationships among objects in the world. The world, on the
other hand, is a semantic structure, which gives meaning to the agent’s thoughts.

The logic of goals and beliefs
Another shortcoming of traditional logic is that it does not pay adequate attention to
the distinction between an agent’s goals and its beliefs. But for an intelligent agent,
the distinction is fundamental.

An agent’s goals represent its view of the world as it would like it to be. They include
actions that the agent can perform immediately. They also include achievement goals,
to attain some desired future state, maintenance goals, to maintain the agent in some
desired relationship with the changing state of the world, and constraints, to prevent
undesirable states. I will argue that condition-action rules can be understood as
maintenance goals, and that goals in general can be expressed naturally in logical
form.

 An agent’s beliefs, on the other hand, represent its view of the world as it really is,
whether the agent likes it or not. They include atomic sentences that record the
agent’s observations. They also include its beliefs about the laws of nature, as well as
definitions and taxonomies that the agent uses to classify and organise its experience.
I will argue that many, perhaps all beliefs can be expressed naturally in logic
programming form.

The story of the fox and crow revisited
The story in Chapter 2 begins when the fox has the goal of having the crow’s cheese.
But where did the goal come from?

Perhaps, like a spoiled child, whenever the fox sees that someone else has something,
then she wants to have it as well. Or perhaps she’s simply looking for her next meal.
In either case, the fox’s goal of having the cheese comes from a higher-level goal –

 43

either the goal of possessing anything she sees anyone else have, or the goal of
having food to eat whenever she becomes hungry.

Thus, the fox’s goal of having the cheese can be viewed as a goal of achieving some
future state of the world, in response to observing a change in the world that triggers
a higher-level goal of maintaining some relationship with the world around her.

Let’s give the fox the benefit of the doubt and assume that she wants to have the
cheese simply because she is hungry, and not because she has a personality defect.
This can be represented, by the higher-level goal:

 If I become hungry, then I need to have food and eat the food.

This goal can be paraphrased in many different ways. For example, in the imperative:

 If I become hungry, then have food and eat the food.

This imperative formulation resembles a condition-action rule, except the conclusion
contains a goal “have food” that is not a simple action.

Alternatively, the goal can be stated in the declarative mood, but with an indication
that it is a goal, rather than a belief:

Goal: If I become hungry, then I have food and I eat the food.

The advantage of expressing the goal as a declarative statement is that it has a logical
form, which can take part in logical reasoning. The fact that it is a goal rather than a
belief means that the agent needs to make it become true.

To show that an implication:

 If conditions then conclusion.

is true, it is necessary to show that whenever the conditions are true, then the
conclusion is true. Whether it is a goal or a belief is irrelevant.

However, to make an implication become true, because it is a goal, not only is it
necessary to make the conclusion come true when the conditions become true, but it
is sufficient. In theory, it would be possible to make the implication true by making
both the conditions and the conclusion true. However, making the conditions true
creates unnecessary work. In practice, therefore, to minimise its work, an agent does
not attempt to make conditions of implicational goals become true unnecessarily.
Either the world makes them true, whether it likes it or not, or the agent makes them
true for some other purpose27.

In an open world, which is always changing, it may not be possible to make an
implication true once and for all. It may be necessary, instead, to maintain its truth

27 It is also possible to make an implication become true by making its conditions become false. In the
case of the fox, she could also satisfy her goal by trying to prevent herself from becoming hungry.

 44

indefinitely, dealing with individual instances of the conditions as they arise, on
separate occasions. On each such occasion, it is necessary to make that instance of the
implication true. The entire process consists of the following three steps:

 forward reasoning, matching a new observation with some condition of the
implication, generating an instance of the implication,

 forward and/or backward reasoning, verifying any remaining conditions of
this instance of the implication,

 deriving the new goal of making the conclusion true.

The new goal is a sub-goal of the higher-level maintenance goal. Typically it is an
achievement goal, to attain some future state of affairs

Let’s see how this derivation of an achievement goal from a maintenance goal works
in this version of the story of the fox and the crow:

Goal: If I become hungry, then I have food and I eat it.

Beliefs: The crow has the cheese.

 An animal has an object

if the animal is near the object
and the animal picks up the object.

 I am near the cheese

if the crow has the cheese
 and the crow sings.

 The crow sings if I praise the crow.

 Cheese is a kind of food,
 Food is a kind of object.

To make the story work, the fox needs to have the taxonomic knowledge that cheese
is a kind of food and that food is a kind of object. This knowledge can be represented
in a number of different ways, and there are even specialised logics for this purpose.
However, for the simple purpose of retelling the story, these details are unimportant.
It suffices to recognise that this knowledge is needed simply to assist with the
reasoning, as we will see below.

To see how the derivation of an achievement goal from a maintenance goal works in
this example, suppose the fox has the goal and beliefs presented above and suddenly
her body tells her that she has just become hungry:

Observe: I become hungry.

Since her body is a part of the world, she becomes aware of her hunger by means of
an observation. The observation triggers the top-level goal, and forward reasoning
derives the sub-goals:

 45

Sub-goals: I have food and I eat the food.

Thus, the real achievement goal is not specifically to have the crow’s cheese, but
more generally to have any kind of food. And this achievement goal is only half the
story. The other half of the story is that the fox also needs to eat the food. Having the
food without eating it is useless.

The derivation of an achievement sub-goal from a higher-level maintenance goal
generalises the derivation of actions from a condition-action rule, because the
achievement sub-goal can include atomic actions. However, in the general case, the
achievement sub-goal might contain sub-goals that need to be reduced to still lower-
level sub-goals. Maintenance goals generalise condition-action rules also because the
derived achievement sub-goals might need to be achieved at some future time and not
simply at the next time moment.

The time factor
Our new version of the story of the fox and crow is still an oversimplification,
because it does not deal adequately with the issue of time. It does not distinguish
between different occurrences of becoming hungry at different times. Nor does it
indicate how much time can elapse between becoming hungry and eating. For that
matter, it does not even indicate that the fox needs to have the food before she can eat
it.

This oversight has been deliberate, because common-sense reasoning about time is
much more complicated than it seems. We will come back to this problem later. In
the meanwhile we will continue to use our simplified representation of the story
without time, both to simplify the example and to focus on how the fox interleaves its
reasoning with its observations and actions in the context of the agent cycle.

Embedding the story in the agent cycle
Let’s retell the story, starting this time at the point where the fox becomes hungry. To
make the story more interesting, we assume that the fox has only enough time to
perform one step of reasoning in a single cycle. We also assume that the fox observes
whether her actions succeed or fail.

The first cycle.
Observation: I become hungry.
Forward reasoning, sub-goals: I have food and I eat the food.
No candidate action.
This is the classic case of an observation triggering a maintenance goal and deriving
an achievement goal.

The second cycle.
No observation.
Backward reasoning, new sub-goals: I am near food and I pick up the food
 and I eat the food.
No candidate action.

 46

The only thinking that the fox can do in this cycle is to reason backwards, to reduce
the sub-goal of having food to the sub-goal of being near the food and picking it up.
This reasoning involves the taxonomic reasoning of matching “food” with “object”.

The third cycle.
Observation: The crow has cheese.
Forward reasoning, new belief: I am near the cheese if the crow sings.
No candidate action.
In this cycle, the fox has the choice of continuing to reason backwards from its
current sub-goals or of reasoning forwards from its new observation. Normally, it is a
good idea to give priority to reasoning with new observations, just in case there is an
emergency that needs to be dealt with immediately or an opportunity that shouldn’t
be missed.

The observation matches one of the conditions of her belief:

 I am near the cheese if the crow has the cheese and the crow sings.

Because the belief is expressed in logical form, it can be used to reason both forward
and backward. Using it to reason forward, as in this case, it gives rise to a new belief.

The fourth cycle.
No observation.
Backward reasoning, new sub-goals: the crow sings and I pick up the cheese
 and I eat the cheese.
No candidate action.
The fox uses the new belief backwards, to reduce the goal of being near food to the sub-
goal of making the crow sing. To do so, she matches “food” with “the cheese”. This has
a side effect of finding out what the food is going to be if the new sub-goal succeeds.

The fifth cycle.
No observation.
Backward reasoning, new sub-goals: I praise the crow and I pick up the cheese
 and I eat the cheese.
Action: I praise the crow.
The fox reduces the goal of making the crow sing to the sub-goal of praising the
crow. She attempts to solve this new sub-goal by successfully performing it as an
action. There are no other actions she can perform at this time, so there is no conflict
resolution to perform.

The sixth cycle.
Observe: I praise the crow.
Forward reasoning, new sub-goals: I pick up the cheese and I eat the cheese.
Action: I pick up the cheese.
The fox observes the result of the action she performed in the previous cycle. The
observation, which confirms the success of her action, solves the first of the three
action sub-goals, leaving the remaining two sub-goals. The next of these two sub-
goals is also an action, and there are no other candidate actions that she can perform
at this time.

 47

 The seventh cycle.
Observe: I do not pick up the cheese.
No thinking.
Action: I pick up the cheese.
The fox observes the result of her action. However, this time, we assume that it fails,
either because the crow has not yet started singing, because the cheese has not yet
reached the ground, or because she is physically inept28. We assume that the fox can
try the same action again29.

The eighth cycle.
Observe: I pick up the cheese.
Forward reasoning, new sub-goals: I eat the cheese.
Action: I eat the cheese.
The fox observes that this time the action was successful. The observation solves the
associated action sub-goal, leaving only the last action sub-goal, which the fox
decides to perform in this cycle:

The ninth cycle.
Observe: I eat the cheese.
The observation solves the last of the action sub-goals. However, the maintenance
goal still remains, to be triggered on other, future occasions.

The general pattern of reasoning in this example, spread out over several cycles and
possibly interleaved with other observations and actions, is this:

Observation: An event happens.
Forward reasoning: The event matches the condition of a
 maintenance goal or of a belief.
Achievement goal: Eventually the conclusion of some maintenance
 goal is derived as an achievement goal.
Backward reasoning: Beliefs are used to reduce the achievement goal
 to actions.
Actions: Action sub-goals are selected for execution.
Observation: The agent observes whether the actions succeed
 or fail.

This pattern is not exceptional. A similar pattern arises in the London underground
example.

28 This complication draws attention to a shortcoming of our formulation of the agent cycle: There is
no explicit check in the cycle to determine whether or not lower-level actions actually achieve their
higher-level goals. The cycle checks whether or not atomic actions succeed, but it does not check
whether their success leads to the success of the higher-level goals they were meant to achieve. If the
beliefs that were used to reduce these goals to sub-goals were guaranteed to be true, then such checks
would be unnecessary. Thus, one way to rectify the shortcoming is to add to the cycle a general
learning, truth-testing component. We need to come back to this later.
29 This assumes that there is an associated time by which the action needs to be performed and that that
time is not yet used up. We will see how this works in greater detail later, when we look more closely
at the representation of time.

 48

The underground revisited
Remember our restatement of the first sentence of the Emergency Notice:

 If there is an emergency then get help.

 You get help if you alert the driver.
 You alert the driver if you press the alarm signal button.

Here the first sentence expresses a maintenance goal. We can rewrite it as a
declarative sentence, indicating that it is a goal rather than a belief. To better capture
the intended meanings of the second and third sentences, we replace the second
person “you” by the third person:

Goal: If there is an emergency then I get help.

Beliefs: A person gets help if the person alerts the driver.

 A person alerts the driver if the person presses the alarm signal button.

To recognise when there is an emergency, we need additional beliefs. For example:

Beliefs: There is an emergency if there is a fire.
 There is an emergency if one person attacks another.
 There is an emergency if someone becomes seriously ill.
 There is an emergency if there is an accident.

We could continue this reduction of abstract, higher-level concepts to more concrete,
lower-level ones, down to any level of detail. For example, in the case of recognising
fire, we might add:

Additional beliefs: There is a fire if there are flames.
 There is a fire if there is smoke.

However, we would soon find it increasingly difficult to define the lower-level
concepts in linguistic terms. Eventually, there must come a point at which there is a
lowest level, which is irreducible and which is the level at which the agent’s sensory
system transforms the sensations it receives from the environment into observations
that can be represented in conceptual terms.

Suppose in this example that the concept of recognising there is smoke is such a
lowest level of concept directly observed in the environment. Suppose, moreover, that
you are traveling on the underground and you observe smoke:

Observation: There is smoke.
Forward reasoning, new belief: There is a fire.
Forward reasoning, new belief: There is an emergency.
Forward reasoning, achievement goal: I get help!
Backward reasoning, sub-goal: I alert the driver!
Backward reasoning, action: I press the alarm signal button!

We can picture this combination of forward and backward reasoning like this:

 49

 observe act

If there is an emergency then get help

There is an emergency get help

There is a fire press the
 alarm signal button

The world

In three steps of forward reasoning, you derive the achievement goal of getting help.
In the first step you recognise that there is a fire, in the second you recognise that
there is an emergency, and in the third you use the maintenance goal to derive the
achievement goal of getting help. Then in two steps of backward reasoning, you
reduce the goal of getting help to the action sub-goal of pressing the alarm signal
button.

The action of pressing the alarm signal button, like the observation of an emergency,
can be reduced to lower-level terms - for example, by first moving your finger to the
button and then pushing the button with your finger. Moving your finger to the button
can also be reduced, in turn, to still lower-level sub-goals, like first moving your arm
to the vicinity of the button and then moving your finger to the button. But
eventually, there has to be a point where your body takes over from your mind and
performs the actions directly on its own.

All of this thinking takes time, during which you may have to record other
observations and perform other actions. Scheduling these so that everything is dealt
with in a timely manner is a task for the decision making component of the agent
cycle. We have kept the examples in this chapter deliberately simple, so that no such
decisions need to be made. However, we will address some of the issues involved in
making decisions in the next chapter.

 50

Summary
The examples in this chapter illustrate how logic can be used in the context of an
agent’s observation-thought-decision-action cycle. Placed in this context, logic is
used for the higher levels of thought - both to reason forwards from observations,
triggering maintenance goals and deriving achievement goals, and to reason
backwards to reduce achievement goals to actions.

Below the logical level, perceptual processes transform raw sensation into observations and
motor processes transform conceptual representations of actions into raw physical activity.

 51

This can be pictured in the following form:

Highest level maintenance goals Achievement goals
 Forward reasoning

 Forward reasoning Backward reasoning

Intermediate level consequences Intermediate level sub-goals

 Forward reasoning Backward reasoning

Observations Actions

 Perceptual processing Motor processing

 The world

We have seen that forward reasoning with implicational goals generalises condition–
action rules, whereas backward reasoning with implicational beliefs generalises goal-
reduction procedures. In the next chapter, we will see how backward reasoning can
be used to search for solutions and how forward reasoning can be used to infer
consequences of solutions. We will also see how this combination of search plus
inference helps to inform the next, decision-making stage in the cycle, so that
different candidate solutions can be compared, and so that better informed decisions
can be made.

 52

Chapter 5 Thinking = Inference + Search + Inference

Jonathan Baron (1994) in his textbook, “Thinking and Deciding” writes on page 4:

 “Thinking about actions, beliefs and personal goals can all be described in terms of a
common framework, which asserts that thinking consists of search and inference. We search
for certain objects and then make inferences from and about the objects we have found.”

Although Baron sees the role of logic as limited to inference, we see logic involved in both
search and inference. The objects that we search for are solutions of goals, and we do so by
using backward reasoning to reduce goals to sub-goals. The inferences we make derive
consequences of candidate solutions by using forward reasoning. Like Baron, we distinguish
between thinking, which generates candidate solutions and derives their consequences, and
deciding, which evaluates solutions and chooses between them.

It seems to be a common view that logic has nothing to do with search. Indeed Paul Thagard
in his introduction to cognitive science (page 45) states: “In logic-based systems the
fundamental operation of thinking is logical deduction, but from the perspective of rule-
based systems the fundamental operation of thinking is search.”

To see how logic is concerned with search, consider the problem of

Going from A to B

We are all familiar with searching for objects in physical space, and with searching how to
go from one place to another:

 To go from A to B,
 if A is directly connected to B then
 go from A to B directly.

 To go from A to B,
 if C is between A and B then
 go from A to C and
 go from C to B.

More generally and expressed as beliefs in logical terms:

 An agent goes from A to B,
 if A is directly connected to B and
 the agent goes from A to B directly.

 An agent goes from A to B,
 if C is between A and B and
 the agent goes from A to C and
 the agent goes from C to B.

The procedures and beliefs apply not only to physical places but also to conceptual places,
like “rags” and “riches”.

 53

The goal-reduction procedures are a special case of the beliefs. They are the special case in
which the beliefs are used to reason backward and “the agent” is the agent who uses them to
reduce goals to sub-goals. However, unlike the procedures, the beliefs can also be used to
reason forward, for example to draw consequences from observations about another agent’s
behaviour.

There can be many ways of choosing a place C, between A and B. For example, you can go
from rags to riches either by getting a paid job or by robbing a bank. Similarly, there can be
many ways of going from A to C and of going from C to B. For example, you can get a paid
job either by going to work directly after finishing school or by getting higher qualifications
first and then going to work after you graduate.

Some of the choices for the intermediate place C might not succeed in solving the other sub-
goals of going from A to C or of going from C to B. For example, although you might be
able to get a paid job directly after leaving school, you might not then be able to go on from
that job to become rich.

In the general case, therefore, to solve the goal of going from A to B, you need to search for
a solution. Instead of searching in material space, you can save some of the work by doing
some of the searching in your mind.

You can use the beliefs, for example if you’re planning your summer holiday, to search for a
plan for getting from A to B, long before you actually start your holiday. You can mentally
explore alternative plans, and even search for a plan that optimises the outcome, seeking to
minimise its costs and maximise its benefits. Moreover, you can interleave your planning
with other things, suspending it when you have other more pressing commitments to attend
to, and resuming it when you have nothing more important to do.

How to get to the French Riviera

If you still need convincing, consider the goal:

Goal: I go from Wimbledon to the French Riviera.

Suppose that I have the following beliefs:

Beliefs: Nice is between Wimbledon and the French Riviera.
 Paris is between Wimbledon and the French Riviera.
 Heathrow is between Wimbledon and the French Riviera.
 Gatwick is between Wimbledon and Nice.
 Clapham Junction is between Wimbledon and Gatwick.

 Wimbledon is directly connected to Clapham Junction.
 Clapham Junction is directly connected to Gatwick.
 Gatwick is directly connected to Nice.
 Nice is directly connected to the French Riviera.

 etc.

 54

I might have this information already stored in my memory directly as atomic facts, or I
might be able to derive it from other sources.

Reasoning backwards, I have two alternative ways of trying to solve my goal. I can generate
either the sub-goals:

 Wimbledon is directly connected to the French Riviera and
 I go from Wimbledon to the French Riviera directly.

or the sub-goals:

 C is between Wimbledon to the French Riviera and
 I go from Wimbledon to C and
 I go from C to the French Riviera.

Which of these I generate first, or whether I generate both simultaneously, depends on my
search strategy. Suppose I generate the first one first. Then I have to decide which sub-goal
to work on first, the sub-goal Wimbledon is directly connected to the French Riviera or the
sub-goal I go from Wimbledon to the French Riviera directly.

Suppose I regard the second sub-goal is an atomic action, because I am not interested in
going beyond this level of detail at this time. Then I have to work on the first sub-goal
Wimbledon is directly connected to the French Riviera. Given only the information I have
listed above, this sub-goal has no solution. I must, therefore, abandon or suspend this line of
search or else perform an external action to try to find additional information in case there is
a connection I don’t know about. Suppose I decide to suspend this line of search.

I am left with the other alternative way of trying to solve my top-level goal:

 C is between Wimbledon to the French Riviera and
 I go from Wimbledon to C and
 I go from C to the French Riviera.

Suppose I decide to work on the first of the three sub-goals. (There is no point of working on
either of the other two sub-goals before I have picked an intermediate place C.) Given only
the limited information I have listed above, there are three ways to solve this sub-goal. I have
to decide which way to try first.

And so the search progresses, choosing an alternative, choosing a sub-goal in the alternative,
and deciding whether to perform external actions to get more information, until I find one or
more solutions. In this case, if I decide not to perform any external, information-gathering
actions, the only solution is the plan:

 I go from Wimbledon to Clapham Junction directly.
 I go from Clapham Junction to Gatwick directly.
 I go from Gatwick to Nice directly.
 I go from Nice to the French Riviera directly.

 55

I can derive this plan, searching among alternatives in my mind, either forward from
Wimbledon or backward from the French Riviera, depending on which sub-goals I work on
first. However, in either case, I search by reasoning backwards from goals to sub-goals.

Of course, if I had additional information, I might be able to find additional solutions for my
initial goal. I would then need to choose between the alternatives, to decide which solution to
implement. Because the purpose of thinking in this case is ultimately to help in deciding
what to do, I could use the same criteria that I use to decide between solutions - for example
the criterion of most benefit for least cost – as a search strategy, to explore more promising
before less promising avenues of thought.

Logical Reasoning = Search + Inference

There is another, more interesting sense in which logic combines search and inference – the
sense in which Jonathan Baron characterises thinking in general: “We search for certain
objects and then we make inferences from and about the objects we have found.”

In our logic-based framework, we search for solutions by reasoning backwards from goals.
However, to help in deciding between alternative solutions, we can explore the space of
forward inferences, to find any additional, desirable or undesirable consequences of the
solutions.

To illustrate this sense in which thinking combines search and inference, Baron gives the
example of a student trying to decide what course to take as an elective. First she considers a
course on modern history, which sounds interesting, but involves too much work. Then she
thinks of another modern history course, which is also interesting, but which might not be as
much work. So she tries to find someone who has taken the course before to find out how
much work is actually involved.

Baron’s example is similar to our example of planning to take a holiday on the French
Riviera, but it illustrates the importance of information-gathering actions. It shows that you
can’t expect to have all the information you need to solve a problem already in your internal
memory. You might need to consult external sources as well.

However, the main purpose of the example is to illustrate the use of inference to derive
consequences of candidate solutions, to help in deciding what to do. In Baron’s example, the
inference is simple: If the student takes the first course, then it will involve a lot of work.

Deciding what to do, based on these inferences, is more complex. It involves comparing
different candidate courses for their advantages and disadvantages. Since no single course is
likely to outrank all other courses on all the relevant criteria, hard choices will probably need
to be made, perhaps sacrificing some advantages of a course in order to avoid some of its
disadvantages. To make matters even more complicated, the student will need to base her
estimates of the costs and benefits of the different alternatives on uncertain, perhaps
probabilistic information.

 56

Uncertainty

Uncertainty about future circumstances beyond our control is a feature of most real-life
problem-solving situations. Consider, once more, the problem of going from rags to riches,
and suppose that you are thinking about robbing a bank in order to get rich. Robbing a bank
isn’t an easy option. You would need to think hard, to construct a plan that would be likely to
succeed. You would need to pick a bank, consider whether to go it alone or to organise a
gang, decide whether to do it in broad daylight or after dark, and plan your get-away.

But before constructing a plan in all its detail, you could mentally explore the likely
consequences of robbing a bank, to see if there are any other desirable or undesirable
possible outcomes. Apart from any moral considerations, if you rob a bank, get caught, and
are convicted, then you will end up in jail; and presumably you don’t want to go to jail.

You can control whether or not you try to rob a bank. But you can’t control whether you will
be caught or be convicted. Not only are these possibilities beyond your control, but you can
not even predict their occurrence with any certainty. At best, you can only try to estimate
their probability.

If you judge that the chances of getting caught and being convicted are high, then you should
decide not to rob a bank, because you don’t want to go to jail. There is no need for you to
consider the alternative ways of robbing a bank, because all of the alternatives lead to the
same unwanted conclusion.

The problem of thinking about robbing a bank not only shows the value of inferring
consequences of alternative solutions, but it also shows the need to judge the probability of
circumstances outside our control.

Combining judgements of probability with assessments of the utility of different outcomes
belongs to the domain of Decision Theory. We will come back to these Decision Theoretic
matters later. In the meanwhile, it suffices to note that in many cases, thinking, which
combines searching for options with inferring their consequences, can often be a lot easier
than deciding what to option to choose.

Thinking without Search

The characterisation of thinking as search plus inference is a big advance over some other
theories, in which thinking is viewed as little more than just search. However, it fails to
account for the kind of thinking that is needed to deal with changes in the environment –
especially when those changes necessitate a rapid response, and there isn’t enough time to
search for a solution.

Thinking by searching and inferring consequences is appropriate in many situations, like
when you are planning your summer holidays, choosing an elective course or planning to rob
a bank, when you have plenty of time to search. However, there are other situations, like
when you are in an emergency, when you don’t have time to consider all the alternatives and
when you don’t even have time to finish thinking before you need to act.

 57

Suppose, for example, that you are a Mars Explorer Mark II, equipped with the full
capabilities of logical reasoning. You are physically searching for life on Mars, when a Mars
Annihilator leaps into your path from over the horizon. Fortunately, you have been
forewarned about such emergencies and are equipped with the appropriate maintenance goal:

Goal: If Mars Annihilator in sight,
 then go from where I am back to the space ship.

Observation: Mars Annihilator in sight.
Forward reasoning, achievement goal:
 go from where I am back to the space ship.

In theory, you could sit down and mentally explore the different ways of getting back to the
safety of the space ship, in the same way you would if you were planning your holidays on
the French Riviera. But then in practice, you would probably be finished before you got
started.

What you need to do instead is to think on your feet, using the same knowledge that you use
when planning your summer holidays, but without searching the complete mental space of
alternatives. You have to choose a place C directly connected to your current location and in
the direction of your space ship and go to C directly, before you start thinking about what
you are going to do after that. When you get to C, you need to choose another place C’
directly connected to your new location and also in the direction of the space ship and go
there directly. you continue in this way, thinking about where to go next and going there,
until you reach the space ship if you are lucky or are caught by the Mars Annihilator if you
are not.

Thinking about time

In the general case, to get the right balance between thinking and acting, an agent needs to
think about time – both to think about the time when actions need to be taken and to think
about how much time is available for thinking before needing to act. The topic of thinking
about time is coming up soon.

 58

Thinking = Inference + Search + Inference

We now have a more complete view of the role of logic in the observation-thought-decision-
action cycle:

Highest level maintenance goals Achievement goals consequences
 Forward reasoning

 Forward reasoning Backward reasoning
 searches for solutions

Intermediate level consequences Intermediate sub-goals consequences Decide

 Forward reasoning Backward reasoning

Observations Candidate actions consequences Actions

 Perceptual processing Motor processing

 The world

 59

We can view the top level of the search space as a goal-reduction tree:

Wimbledon
is directly
connected to
the French
Riviera

Go from
Wimbledon
to the
French
Riviera
directly

C is
between
Wimbledon
to the
French
Riviera

Go from
Wimbledon
to C

Go from C
to the
French
Riviera

Go from Wimbledon to the French Riviera

 60

Chapter 6 The Meaning of Life

It’s bad enough to be a Mars explorer and not to know that your purpose in life is to
find life on Mars. But it’s a lot worse to be a wood louse and have nothing more
important to do with your life than to just follow the meaningless rules:

Goals: If it’s clear ahead, then I move forward.
 If there’s an obstacle ahead, then I turn right.
 If I am tired, then I stop.

In fact, it’s even worse than meaningless.

Without food the louse will die, and without children the louse’s genes will
disappear. What is the point of just wandering around if the louse doesn’t bother to eat and
make babies?

Part of the problem is that the louse’s body isn’t giving it the right signals - not making it
hungry when it is running out of energy, and not making it desire a mate when it should be
having children. Its body also needs to be able to recognise food and eat, and to recognise
potential mates and propagate.

So where does the louse go from here? If it got here by natural evolution, then it has nowhere
to go and is on the road to extinction.

But if it owes its life to some Grand Designer, then it can plead with her to start all over
again, this time working from the top-down. The Grand Designer would need to rethink the
louse’s top-level goals, decide how to reduce them to sub-goals, and derive a new, more
effective specification of its input-output behaviour.

Suppose the Grand Designer identifies these as the louse’s top-level goals:

Top-level goals: The louse stays alive for as long as possible and
 the louse has as many children as possible.

Of course, a critic might well ask: What purpose do these goals serve, and why these goals
and not others? Perhaps staying alive is just a sub-goal of having children. And perhaps
having children is just one way of promoting the survival of one’s genes. But eventually the
critic would have to stop. Otherwise he could continue asking such questions forever.

To reduce the louse’s top-level goals to sub-goals, the designer needs to use her beliefs about
the world, including her beliefs about the louse’s bodily capabilities. Moreover, she can build
upon her earlier design, in which the louse moved around aimlessly, and give its movements
a purpose. She could use such beliefs as:

Beliefs:

The louse stays alive for as long as possible,
if whenever it is hungry then it looks for food and when there is food ahead it eats it, and
whenever it is tired then it rests, and
whenever it is threatened with attack then it defends itself.

The louse has as many children as possible,
if whenever it desires a mate then it looks for a mate and

 61

when there is a mate ahead it tries to make babies.

The louse looks for an object,
if whenever it is clear ahead then it moves forward,
and whenever there is an obstacle ahead and it isn’t the object then it turns right
and when the object is ahead then it stops.

The louse defends itself
if it runs away.

Food is an object.
A mate is an object.

If the louse were as intelligent as the designer, then the designer could just hand these beliefs and the top-
level goal directly over to the louse itself. The louse could then reason forwards and backwards, as the
need arises, and would be confident of achieving its goals, provided the designer’s beliefs are actually
true.

But the louse possesses neither the designer’s intellect, nor her gorgeous body and higher education. The
designer, therefore, not only has to identify the louse’s requirements, but she has to derive an input-output
specification, which can be implemented in the louse, using its limited physical and mental capabilities.

One way for the designer to do her job is to do the necessary reasoning for the louse in advance. She can
begin by reasoning backwards from the louse’s top-level goals, to generate the next, lower level of sub-
goals:

Sub-goals:

whenever the louse is hungry then it looks for food and when there is food ahead it eats it, and
whenever the louse is tired then it rests, and
whenever the louse is threatened with attack then it defends itself and
whenever the louse desires a mate then it looks for a mate and when there is a mate ahead
 it tries to make babies.

The English words “whenever” and “when” are different ways of saying “if”, but they carry
an additional, temporal dimension30. It would be a distraction to deal with such temporal
issues here. For that reason, it is useful to reformulate the sub-goals in more conventional
logical terms. At the same time, we can take advantage of the reformulation to eliminate an
ambiguity associated with the scope of the words “and when”:

Sub-goals:

If the louse is hungry then it looks for food, and
If the louse is hungry and there is food ahead then it eats it, and
If the louse is tired then it rests, and
If the louse is threatened with attack then it defends itself, and
If the louse desires a mate then it looks for a mate, and
If the louse desires a mate and there is a mate ahead then it tries to make babies.

Unfortunately, the designer’s work is not yet done. Some of the conclusions of the sub-goals include
other goals (like looking for food, defending itself, and looking for a mate) that need to be reduced to

30 It is interesting that both the temporal and logical interpretations of the ambiguous English word
“then” are meaningful here.

 62

still lower-level sub-goals31. Fortunately, for the designer, this is easy work. It takes just a little
further backward reasoning and some logical simplification32, to derive a specification that a
behaviourist would be proud of:

New Goals:

If the louse is hungry and it is clear ahead
then the louse moves forward.

If the louse is hungry and there is an obstacle ahead and it isn’t food
then the louse turns right.

If the louse is hungry and there is food ahead
then the louse stops and it eats the food.

If the louse is tired
then the louse rests.

If the louse is threatened with attack
then the louse runs away.

If the louse desires a mate and it is clear ahead
then the louse moves forward.

If the louse desires a mate and there is an obstacle ahead and it isn’t a mate
then the louse turns right.

If the louse desires a mate and there is an obstacle ahead and it is a mate
then the louse stops and it tries to make babies.

The new goals specify the louse’s input-output behaviour and can be implemented directly as a
production system without memory. However, the new goals are potentially inconsistent. If the louse
desires a mate and is hungry at the same time, then it may find itself in a situation, for example,
where it has to both stop and eat and also turn right and look for a mate simultaneously. To avoid
such inconsistencies, the louse would need to perform conflict resolution.

But if it’s too much to expect the louse to reason logically, it’s probably also too much to expect the
louse to perform conflict resolution. And it’s certainly far too much to expect it to apply Decision
Theory to weigh the relative advantages of satisfying its hunger compared with those of satisfying its
longing for a mate. The simplest solution is for the designer to make these decisions for the louse, and
to
build them into the specification:

If the louse is hungry and is not threatened with attack and
it is clear ahead
then the louse moves forward.

If the louse is hungry and is not threatened with attack and
there is an obstacle ahead and it isn’t food and it doesn’t desire a mate
then the louse turns right.

31 For simplicity, we assume that running away, resting and trying to make babies are all actions that
the louse can execute directly without reducing them to lower-level sub-goals.
32 The necessary simplification is to replace sentences of the form: “if A, then if B then C”
by sentences “if A and B then C”.

 63

If the louse is hungry and is not threatened with attack and
there is food ahead
then the louse stops and eats the food.

If the louse is tired and is not threatened with attack and
is not hungry and does not desire a mate
then the louse rests.

If the louse is threatened with attack
then the louse runs away.

If the louse desires a mate and is not threatened with attack and
it is clear ahead
then the louse moves forward.

If the louse desires a mate and is not threatened with attack and
is not hungry and there is an obstacle ahead and it isn’t a mate
then the louse turns right.

If the louse desires a mate and is not threatened with attack and
there is a mate ahead
then the louse stops and tries to make babies.

If the louse desires a mate and is hungry and
is not threatened with attack and
there is an obstacle ahead and it isn’t a mate and it isn’t food
then the louse turns right.

The new specification is a collection of input-output associations that give highest
priority to reacting to an attack, lowest priority to resting when tired, and equal
priority to mating and eating. Now the only situation in which a conflict can arise is if
there is a mate and food ahead at the same time. Well, you can’t always worry about
everything.

The mind body problem
In general, a designer’s job ends when she has constructed a declarative description of her
object’s input-output behaviour. How that behaviour is implemented inside the object is not
her concern.

In computer science, this decoupling of an object’s design from its implementation is called
encapsulation. The implementation is encapsulated inside the object. Objects can interact
with other objects, taking only their input-output behaviour into account.

The notion of encapsulation partially vindicates the behaviourist’s point of view. Not only is
it impossible in many cases to determine what goes on inside another object, but for many
purposes it is also unnecessary and even undesirable.

Our louse is no exception. It would be easy, given the input-output specification, to
implement the louse’s behaviour using a primitive production system without memory and
without conflict resolution. But does the louse need to have a mind at all - to represent
concepts such as hunger and food and to derive symbolic representations of its actions? Does

 64

the louse really need to carry around all this mental baggage, when the necessary, instinctive
behaviour can be hardwired, as a collection of input-output associations, directly into the
louse’s body instead33?

Similarly, a designer might specify the design of a thermostat in symbolic terms:

Goals:

If current temperature is T degrees and target temperature is T’ degrees and T < T’ - 2°
then the thermostat turns on the heat.

If current temperature is T degrees and target temperature is T’ degrees and T > T’ + 2°
then the thermostat turns off the heat.

But it doesn’t follow that the thermostat needs to manipulate symbolic expressions to
generate its behaviour. Most people would be perfectly happy if the design were
implemented with a simple mechanical or electronic device.

In the same way that a thermostat’s behaviour can be viewed externally in logical, symbolic
terms, without implying that the thermostat itself manipulates symbolic expressions, our
louse’s behaviour can also be implemented as a collection of instinctive input-output
associations in a body without a mind.

These possibilities can be pictured like this:

33 This argument has been made, among others, by Rodney Brooks at MIT, who has implemented
several generations of mindless, louse-like robots, which display impressively intelligent behaviour.

 65

Highest level Achievement consequences
maintenance goals Forward goals

 reasoning

 Forward Backward
 reasoning reasoning

Intermediate level consequences Intermediate consequences Decide Louse

 sub-goals Designer

 Forward Backward
 reasoning reasoning

 Candidate Actions consequences

Observations Actions

 Forward reasoning

 Louse

 or Input-output associations

 Perceptual Motor
 Processing processing

 The world

 66

People are different
Although much of our human behaviour is instinctive and even mindless, we can sometimes
step back from what we are doing, consciously reflect upon our goals, and to some extent
control our behaviour to better achieve those goals. It is as though we could be both a louse
and a louse designer at the same time.

That, in effect, is the ultimate goal of this book – to investigate how we can use logic to
monitor our behaviour and how we can accomplish our goals more effectively as a result. For
this purpose, we need to investigate the relationship between instinctive and logical thought.
We have seen an example of this relationship in this chapter. But in this example the
instinctive and logical levels were present in different individuals. In the next chapter we will
see how they can be present in the same individual.

 67

Chapter 7 Levels of Consciousness

There is a sense of consciousness that can be understood in both computational and
logical terms. It is the sense in which an agent is conscious when it is aware of what
it is doing and why it is doing it. Whether or not the agent is conscious in this sense,
the external manifestation of its behaviour is the same. However, if the agent is
conscious of what it is doing, then its behaviour is deliberate and controlled. If it is
not conscious, then its behaviour is automatic and instinctive.

The computational interpretation of consciousness as awareness is that, when an
agent is conscious, its behaviour is generated by a high level program, which
manipulates symbols that have meaningful interpretations in the environment.
However, when an agent is not conscious, then its behaviour is generated by a lower
level program or physical device, whose structure is ultimately determined by the
physical characteristics of the agent’s body.

The logical interpretation is that, when an agent is conscious, its behaviour is
generated by reasoning with goals and beliefs. When the agent is not conscious, then
its behaviour is determined by lower-level input-output associations. These
associations can be represented at different levels in turn, including both a logical,
symbolic level and the lower, physical level of the agent’s body.

These two interpretations coincide in computational logic.

Consciousness on the underground
Remember our last version of the London underground example:

Goal: If there is an emergency then I get help.

Beliefs: A person gets help if the person alerts the driver.

 A person alerts the driver if the person presses the alarm signal button.
 There is an emergency if there is a fire.
 There is an emergency if one person attacks another.
 There is an emergency if someone becomes seriously ill.
 There is an emergency if there is an accident.
 There is a fire if there are flames.
 There is a fire if there is smoke.

A passenger can use the goal and the beliefs explicitly, reasoning forward from
observations to recognise when there is an emergency and to derive the goal of
getting help, and then reasoning backward, to get help by pressing the alarm signal
button.

However, the passenger can generate the same behaviour using lower-level input-
output associations or condition-action rules, which can also be represented as goals
in logical form:

Goals: If there are flames then I press the alarm signal button.
 If there is smoke then I press the alarm signal button.
 If one person attacks another then I press the alarm signal button.

 68

 If someone becomes seriously ill then I press the alarm signal button.
 If there is an accident then I press the alarm signal button.

The new goals are more efficient than the original goal and belief. They need only
one step of forward reasoning to associate the appropriate action as output with the
relevant observation as input. In this respect, they are like a program written in a
lower-level language, which is more efficient than a program with the same
functionality written in a higher-level language.

In fact, in this case, the two programs are written in the same logical language.
However, the original program is written at a higher-level, which requires, not only
greater computational resources, but also more sophisticated reasoning power.

In Computing, different levels of language and different levels of representation in
the same language have different advantages and are complementary. Lower-level
representations are more efficient. But higher-level representations are more flexible,
easier to develop, and easier to change.

In this example, the lower-level representation lacks the awareness, which is explicit
in the higher-level representation, of the goal of getting help, which is the purpose of
pressing the alarm signal button. If something goes wrong with the lower-level
representation, for example if the button doesn’t work or the driver doesn’t get help,
then the passenger might not realise there is a problem. Also, if the environment
changes, and newer and better ways of dealing with emergencies are developed, then
it would be harder to modify the lower level representation to adapt to the change.

In Computing, typically, the higher-level representation is developed first, sometimes
not even as a program but as an analysis of the program requirements.34 This higher-
level representation is then transformed, either manually or by means of another
program called a compiler, into a lower-level, more efficiently executable
representation.

The reverse process is also possible. Low-level programs can sometimes be
decompiled into equivalent higher level programs. This is useful if the low-level
program needs to be changed, perhaps because the environment has changed or
because the program has developed a fault. The higher-level representation can then
be modified and recompiled into a new, improved, lower-level form.

However, this reverse process is not always possible. Legacy systems, developed
directly in low-level languages and modified over a period of many years, may not
have enough structure to identify their goals unambiguously and to decompile them
into high-level form. But even then it may be possible to decompile them partially
and approximate them with higher-level programs. This process of rational
reconstruction can help to improve the maintenance of the legacy system, even when
wholesale reimplementation is not possible.

34 As in the wood louse designer example.

 69

Compiling by reasoning in advance
Some of the work of compiling a high-level program into a lower-level form can be
done by performed in advance some of the computation that would otherwise be
performed only when it is needed.

In the underground example, instead of waiting for an emergency to happen, a
compiler can anticipate the need to reduce the conclusion of the top-level
maintenance goal:

Goal: If there is an emergency then I get help.

by performing the necessary backward reasoning in advance. In two such inference
steps, the goal can be transformed into a declarative version of a condition-action
rule:

Goal: If there is an emergency then I press the alarm signal button.

Similarly, the compiler can anticipate the need to recognise there is an emergency by
performing the necessary forward reasoning in advance. In two inference steps,
corresponding to the two ways of recognising there is a fire, the compiler can derive
the new beliefs:

Beliefs: There is an emergency if there are flames.
 There is an emergency if there is smoke.

In five further inference steps, corresponding to the five kinds of emergency, the
compiler can obtain the simple input-output associations we saw before:

Goals: If there are flames then I press the alarm signal button.
 If there is smoke then I press the alarm signal button.
 If one person attacks another then I press the alarm signal button.
 If someone becomes seriously ill then I press the alarm signal button.
 If there is an accident then I press the alarm signal button.

This representation is as low as a representation can go, while still remaining in
logical form. However, it is possible to go lower, if these associations are
implemented by direct physical connections between the relevant parts of the human
sensory and motor systems. This is like implementing software in hardware.

Combining deliberative and intuitive thinking

In Cognitive Psychology, a similar distinction has been made between deliberative
and intuitive thinking. Deliberative thinking, which is self-aware and controlled,
includes logical thinking. Intuitive thinking, which is opaque and automatic, extends
perceptual processing to subconscious levels of thought. Cognitive Psychologists
have proposed dual process models of human thinking in which the two kinds of
thinking interact.

The simplest interaction occurs when deliberative thinking migrates to the intuitive
level over the course of time, as for example when a person learns to use a keyboard,

 70

play a musical instrument or drive a car. This migration from deliberative to intuitive
thinking is like compiling a high level program into a lower-level program – not by
reasoning in advance, but by reasoning after the fact. After a combination of high-
level, general-purpose procedures has been used many times over, the combination is
collapsed into a lower-level shortcut. The shortcut is a specialised procedure, which
achieves the same result as the more general procedures, only more efficiently.

It is sometimes possible to go in the opposite direction, reflecting upon subconscious
knowledge and representing it in conscious, explicit terms – for example when a
linguist tries to construct a formal grammar for a language. Whereas the native
speaker of the language knows the grammar tacitly and subconsciously, the linguist
formulates an explicit grammar for the language. Teachers can teach the resulting
explicit grammar to students. With sufficient practice, the students may eventually
compile the explicit grammar into their own subconscious, and learn to speak the
language more efficiently.

In the same way that many low-level programs can not be completely decompiled,
but can only be approximated by higher-level programs, it seems likely that much of
our subconscious thinking can only be approximated by conscious thought. The
formal grammars of the linguist are an example.

In human thinking, the two levels of thought can operate in tandem. In the
Kahneman-Tversky dual process model, the intuitive, subconscious level “quickly
proposes intuitive answers to judgement problems as they arise”, while the
deliberative, conscious level “monitors the quality of these proposals, which it may
endorse, correct, or override”35. The use of formal grammar to monitor and correct
the instinctive use of natural language is a familiar example.

Logic as the higher-level language of thought

The general view of logic that emerges from these considerations is that logic is the higher
level language of thought, at which thoughts are deliberate, controlled and conscious. At this
higher level, logical reasoning reduces goals to sub-goals, derives consequences of
observations and infers consequences of candidate actions. This reasoning can be performed
only when it is needed, or it can be performed in advance. When it is performed in advance,
it transforms a higher-level representation of goals and beliefs into a more efficient, lower-
level representation. At this lower-level of representation, behaviour is instinctive, automatic
and subconscious. These relationships can be pictured in this way:

35 “Representativeness revisited: Attributive substitution in intuitive judgement”, Daniel Kahneman
and Shane Frederick. In Heuristics of Intuitive Judgement: Extensions and Applications, Cambridge
University Press, 2002.

 71

Highest level Achievement consequences
maintenance goals Forward goals

 reasoning

 Forward Backward
 reasoning reasoning

Intermediate level consequences Intermediate consequences Decide Conscious
 sub-goals

 Forward Backward
 reasoning reasoning

 Candidate Actions consequences

Observations Actions

 Forward reasoning

 Subconscious

 input-output associations

 Perceptual Motor Perceptual Motor
 Processing processing Processing processing

 The world

 72

Chapter 8 The Prisoner’s Dilemma

Suppose, in your desperation to get rich as quickly as possible, you consider the
various alternatives, infer their likely consequences and decide that the best
alternative is to rob the local bank. You recruit your best friend, Keith, well known
for his meticulous attention to detail, to help you plan and carry out the crime. Thanks
to your joint efforts, you succeed in breaking into the bank in the middle of the night,
opening the safe, and making your get-away with a cool million pounds
(approximately 1.65 million dollars at the time of writing) in the boot (trunk) of your
car.

Unfortunately, years of poverty and neglect have left your car in a state of general
disrepair, and you are stopped by the police for driving at night with only one
headlight. In the course of a routine investigation, they discover the suitcase with the
cool million pounds in the boot. You plead ignorance of any wrong doing, but they
arrest you both anyway on the suspicion of robbery.

Without witnesses and without a confession, the police can convict you and your
friend only of the lesser offence of possessing stolen property, which carries a penalty
of one year in jail. However, if one of you turns witness against the other, and the
other does not, then the first will be released free of charge, and the second will take
all of the blame and be sentenced to six years in jail. If both of you turn witness, then
the two of you will share the blame and each be sentenced to three years in jail.

This is an example of the classical Prisoner’s Dilemma. In Game Theory, the problem
of deciding between alternative actions is often represented as a table, in which the
rows and columns represent the actions of the players and the entries represent the
resulting outcomes. In this case, the table looks like this:

 You turn witness. You do not turn witness.

Keith turns witness. You get 3 years in jail.

Keith gets 3 years in jail.

You get 6 years in jail.

Keith gets 0 years in jail.

Keith does not turn witness. You get 0 years in jail.

Keith gets 6 years in jail.

You get 1 year in jail.

Keith gets 1 year in jail.

If the two prisoners are able to consult with one another, then they will soon realise
that the best option for both of them is not to turn witness against the other. To
prevent this, the police separate them before they have a chance to consult. Thus each
prisoner has to decide what to do without knowing what the other prisoner will do.

The Logic of the Prisoner’s Dilemma

The Prisoner’s Dilemma has a natural representation in terms of the prisoners’ goals
and beliefs:

Goal: If I am arrested, then I turn witness or I do not turn witness.

 73

Beliefs: I am arrested.

 A prisoner gets 0 years in jail
 if the prisoner turns witness
 and the other prisoner does not turn witness.

 A prisoner gets 6 years in jail
 if the prisoner does not turn witness
 and the other prisoner turns witness.

 A prisoner gets 3 years in jail
 if the prisoner turns state witness
 and the other prisoner turns witness.

 A prisoner gets 1 year in jail
 if the prisoner does not turn witness
 and the other prisoner does not turn witness.

This assumes, of course, that the prisoners believe what they are told by the police. It
also assumes that both prisoners know that the same deal has been offered to the
other prisoner. However, the analysis at the end of this chapter can easily be modified
to deal with other cases.

The Logic of Games

In general, any two-person game represented as a table can also be represented as
goals and beliefs. For example, the table:

 First player does action A. First player does action B.

Second player does action C. First player gets outcome AC.

Second player gets outcome CA.

First player gets outcome BC.

Second player gets outcome CB.

Second player does action D. First player gets outcome AD.

Second player gets outcome DA.

First player gets outcome BD.

Second player gets outcome DB.

can be represented by goals and beliefs, which in the case of the first player are:

Goal: First player does action A or First player does action B.

Beliefs: First player gets outcome AC

 if First player does action A
 and Second player does action C.

 First player gets outcome BC
 if First player does action B
 and Second player does action C.

 74

 First player gets outcome AD
 if First player does action A
 and Second player does action D.

 First player gets outcome BD
 if First player does action B
 and Second player does action D.

Depending on the circumstances, a player may or may not know the outcomes for the
other player.

Should you carry an umbrella?

Before discussing how to solve the prisoner’s dilemma, it is useful to compare it with
the seemingly unrelated problem of deciding whether or not to take an umbrella when
you leave home in the morning.

We can represent the umbrella problem as a game against nature:

 I take an umbrella. I do not take an umbrella.

It will rain. I stay dry.

I carry the umbrella.

I get wet.

It will not rain. I stay dry.

I carry the umbrella.

I stay dry.

We can represent the agent’s side of the game in terms of the agent’s goals and
beliefs36:

Goal: If I go outside, then I take an umbrella or I do not take an umbrella.

Beliefs: I go outside.

 I carry an umbrella
 if I take the umbrella.

 I stay dry
 if I take the umbrella.

 I stay dry
 if it will not rain.

36 Notice that the representation in terms of beliefs is more informative than the game representation,
because it indicates more precisely than the game representation the conditions upon which the
outcome of an action depends. For example, the representation in terms of beliefs indicates that staying
dry depends only on taking an umbrella and not on whether or not it rains:

 75

 I get wet
 if I do not take an umbrella
 and it will rain.

You can control whether or not you take an umbrella, but you can not control whether
or not it will rain. At best, you can only try to estimate the probability of rain.

This should sound familiar. In chapter 5, when considering whether or not to rob a
bank, I wrote:

 “You can control whether or not you try to rob a bank. But you can’t control whether you
 will be caught or be convicted. Not only are these possibilities beyond your control, but
 you can not even predict their occurrence with any certainty. At best, you can only try to
 estimate their probability.”

It’s the same old story. To decide between different actions, you should infer their
consequences, judge the utility and probability of those consequences, and choose the
action with highest overall expected utility.

Suppose you judge that the benefit of staying dry, if it rains, is significantly greater
than the cost in inconvenience of taking an umbrella, whether or not it rains.37 Then
you should decide to take the umbrella, if you estimate that the probability of rain is
relatively high. But, you should decide not to take the umbrella, if you estimate that
the probability of rain is relatively low.

Applying Decision Theory to Taking an Umbrella

This kind of “thinking”38, which combines judgements of utility with estimates of
probability, is formalised in the field of Decision Theory. According to the norms of
Decision Theory, you should weight the utility of each alternative outcome of an
action by its probability, and then sum all of the alternative weighted utilities to
measure the overall expected utility of the action. You should then choose the action
with highest expected utility39.

In the case of deciding whether or not to take an umbrella, suppose you judge that

 The benefit of staying dry is D.
 The cost of carrying an umbrella is C.
 The cost of getting wet is W.
 The probability that it will rain is P,
 and therefore that it will not rain is (1 – P).

37 In general, assuming we can quantify benefits and costs in the same units, then utility = benefits –
costs.
38 According to Baron’s “Thinking and Deciding”, this is not “thinking” at all, but “deciding” between
different options. It is an interesting question to what extent “deciding” might also involve “thinking”
at a different, perhaps meta-level. More about this later.
39 In mathematical terms, if an action has n alternative outcomes with utilities u1, u2, ..., un with
respective probabilities p1, p2, ..., pn then the expected utility of the action is p1·u1 + p2·u2 + ... + pn·un.

 76

 Then the expected utility of taking the umbrella is
 the benefit of staying dry
 minus the cost of carrying the umbrella
 = D – C.

 The expected utility of not taking the umbrella is
 the benefit of staying dry if it doesn’t rain
 minus the cost of getting wet if it does rain
 = (1 – P) ·D – P·W.

So, for example, if the benefit of staying dry is worth 1 candy bar, the cost of carrying
an umbrella is worth 2 candy bars, and the cost of getting wet is worth 9 candy bars,
then

 D = 1
 C = 2
 W = 9.

 The expected utility of taking the umbrella = – 1.
 The expected utility of not taking the umbrella = (1 – 10P).

Therefore, if the probability of rain is greater than .2, then you should take an
umbrella; and if it is less than .2, then you shouldn’t take an umbrella. If it is exactly
.2, then it makes no difference, measured in candy bars, whether you take an umbrella
or not.

The use of Decision Theory is normative, in the sense that its estimations and
computations are an ideal, which we only approximate in reality. In Real Life, we
tend to compile routine decisions into simpler rules, represented by means of goals
and beliefs. For example:

Goals: If I go outside

 and it looks likely to rain,
 then I take an umbrella.

 If I go outside
 and it looks unlikely to rain,
 then I do not take an umbrella.

Beliefs: It looks likely to rain if there are dark clouds in the sky.
 It looks likely to rain if it is forecast to rain.

 It looks unlikely to rain if there are no clouds in the sky.
 It looks unlikely to rain if it is forecast not to rain.

Solving the Prisoner’s Dilemma

Just as in the case of deciding whether to take an umbrella when you go outside, you
can control your own actions in the Prisoner’s Dilemma, but you can not control the

 77

world around you. In this case you can not control the actions of the other prisoner.
However, you can try to predict them as best as possible.

Suppose you take a Decision Theoretic approach and judge:

 The utility of your getting N years in jail is –N.
 The probability that Keith turns witness is P,
 and therefore that Keith does not turn witness is (1 – P).

 Then the expected utility of your turning witness
 is 3 if Keith turns witness,
 and 0 if he does not
 = –3·P + 0·(1 – P)
 = –3·P.

 The expected utility of your not turning witness
 is –6 if Keith turns witness,
 and –1 if he does not
 = –6·P – 1·(1 – P)
 = –1 – 5·P.

But –3·P > –1 – 5·P, for all values of P. Therefore, no matter what the probability P
that Keith turns witness, you are always better off by turning witness yourself.

Unfortunately, if Keith has the same beliefs, goals and utilities as you, then he will
similarly decide to turn witness against you, and in which case both of you will get a
certain 3 years in jail. You would have been better off if you forgot about Decision
Theory, took a chance, and both of you refused to turn witness against the other, in
which you would have both gotten only 1 year in jail.

But there is a different moral that you could draw from the story – that the fault lies,
not with Decision Theory, but with your own selfish judgement of utility.

Suppose, instead of carrying only about yourself, you care about both yourself and
Keith equally, and you judge:

 The utility of your getting N years in jail and of
 Keith getting M years in jail is – (N + M).

 Then the expected utility of your turning witness
 is –6 if Keith turns witness, and
 is –6 if he does not
 = –6·P – 6·(1 – P)
 = –6.

 The expected utility of your not turning witness
 is –6 if Keith turns witness, and
 is –2 if he does not
 = –6·P – 2·(1 – P)
 = –2 – 4·P.

 78

But –6 ≥ –2 – 4·P, for all values of P. Therefore, no matter what the probability P
that Keith turns witness, there is never any advantage in you turning witness yourself.

Now, if Keith has the same beliefs, goals and utilities as you, then he will similarly
decide not to turn witness against you, in which case both of you will get a certain
one year in jail.

But carrying equally about both yourself and Keith is probably unrealistic. To be
more realistic, suppose instead that you care about Keith only half as much as you do
about yourself:

 The utility of your getting N years in jail and of
 Keith getting M years in jail is – (N + 1/2·M).

 Then the expected utility of your turning witness
 is –4.5 if Keith turns witness, and
 is –3 if he does not
 = –4.5·P – 3·(1 – P)
 = –3 –1.5·P.

 The expected utility of your not turning witness
 is –6 if Keith turns witness, and
 is –1.5 if he does not
 = –6·P – 1.5·(1 – P)
 = –1.5 – 4.5·P.

But = –3 –1.5·P = –1.5 – 4.5·P when P = .5. Therefore, if you judge the probability
of Keith turning witness is less than .5, then you should not turn witness. But if you
judge that the probability is greater than .5, then you should turn witness – tit for tat.

Just as in the case of deciding whether to take an umbrella when you go outside, these
calculations are a normative ideal, which we tend only to approximate in practice. In
Real Life, we tend to compile our decisions into rules of behaviour, represented by
goals and beliefs. For example:

Goals: If I am offered a deal

 and the deal benefits me
 and the deal harms another person more than it benefits me
 and the person is my friend
 then I reject the deal.

 If I am offered a deal
 and the deal benefits me
 and the deal harms another person
 and the person is not my friend
 then I accept the deal.

 79

These rules are not very subtle, but it should be clear that they can be refined, both to
deal with other cases and to distinguish more subtly other characteristics of the deal
under consideration.

Conclusions

There are three conclusions. The first concerns the Prisoner’s Dilemma itself – that it
pays to co-operate with other agents, and not to try only to optimise our own narrow
self-interests. This conclusion is, of course, well known in the literature about the
Prisoner’s Dilemma. What may be less well known is the extent to which the benefits
of co-operation can often be obtained simply by incorporating concern for the well-
being of others in the utility function.

The second conclusion is much more general – that to decide between different
courses of action we need, not only to judge the costs and benefits of our actions, but
also to estimate the probability of circumstances outside control. We have seen this
before, but it needs to be emphasised again, not only because it is so important, but
also because it has been largely ignored in traditional logic. The approach taken in the
chapter shows one way in which logic and probability can usefully be combined.

The third conclusion is more subtle. It is that the computations of Decision Theory
are a normative ideal, which we often approximate in Real Life by using simpler
rules represented by goals and beliefs. This relationship between “higher-level”
Decision Theory and “lower-level” decision rules is like the relationship between
higher-level logical representations and lower-level input-output associations.

As we have seen, we can compile logical representations of goals and beliefs into
input-output associations, and sometimes decompile associations into logical
representations. Moreover, it seems that in human thinking, the two levels of thought
can operate in tandem. The input-output associations efficiently propose candidate
outputs in response to inputs, while reasoning about goals and beliefs monitors the
quality of those responses.

There seems to be a similar relationship between Decision Theory and decision rules.
Rules can be executed efficiently, but Decision Theory gives better quality results. As
in the case of higher and lower level representations, Decision Theory can be used to
monitor the application of rules and propose modifications of the rules when they
need to be changed, either because they are faulty or because the environment itself
has changed. In his book, Thinking and Deciding, Baron discusses similar
relationships between normative, prescriptive and descriptive approaches to decision
making in detail.

 80

Chapter 9 The Changing World

I have argued that the purpose of logic is to help an agent survive and prosper in the
world. Logic serves this task by providing the agent with a means for constructing
symbolic representations of the world and for processing those representations to
reason about the world. We have pictured this relationship between logic and the
world like this:

observe act

The world

Logical
representation
of the world

 agent

However, we have ignored any considerations about the way in which logical
representations are related to the structure of the world. There are two parts to these
considerations: what is the relationship between logic and static states of the world,
and what is the relationship between logic and change. We shall consider these two
issues now.

World structures

The relationship between logic and the world can be seen from two points of view.
Seen from the perspective of the world, sentences of logic represent certain features
of the world. Seen from the perspective of logic, the world gives meaning to
sentences. This second viewpoint is also called “semantics”.

Although a real agent needs to worry only about the real world, it is convenient to
consider other possible worlds, including artificial and imaginary worlds, like the
world in the story of the fox and the crow. Both kinds of world, both real and
possible, can be understood in similar terms, as world structures. A world structure is
just a collection of individuals and relationships among them. Relationships are also
called “facts”.
In traditional logic, “world structures” are usually called “interpretations”, “models”,
or sometimes “possible worlds”. For simplicity, properties of individuals are also
regarded as relationships.

 81

Traditional logic has a very simple semantics, in terms of whether or not sentences
are true or false in a world structure. Sentences that are true are normally more useful
to an agent than sentences that are false.

A world structure generally corresponds to a single, static state of the world. For
example:

In the story of the fox and the crow, the fox, crow, cheese, tree, ground under
the tree, and airspace between the crow and the ground can be regarded as
individuals; and someone having something can be regarded as a relationship
between two individuals. The sentence “The crow has the cheese.” is true in the
world structure at the beginning of the story and false in the world structure at
the end of the story.

An atomic sentence is true in a world structure if the relationship it expresses holds
in the world structure, and otherwise it is false.

The simplest way to represent a world structure in logical terms is to represent it by
the set of all atomic sentences that are true in the structure – in this example we might
represent the world structure at the beginning of the story by the atomic sentences:

 The crow has the cheese.
 The crow is in the tree.
 The tree is above the air.
 The air is above the ground.
 The tree is above the ground.
 The fox is on the ground.

The difference between such atomic sentences and the world structure they represent
is that in a world structure the individuals and the relationships between them have a
kind of external existence that is independent of language. Atomic sentences, on the
other hand, are merely symbolic expressions that stand for such external
relationships. In particular, words and phrases like “the crow”, “the cheese”, “the
tree”, etc. are names of individuals and “has”, “is in”, etc. are names of relations
between individuals.

The attraction of logic as a way of representing the world lies mainly its ability to
represent regularities in world structures by means of non-atomic sentences. For
instance, in the example above:

 One object is above another object
 if the first object is above a third object
 and the third object is above the second.

The truth value of non-atomic sentences is defined in terms of the truth values of
simpler sentences - for example, by means of such “meta-sentences” as:

 A sentence of the form “conclusion if conditions” is true
 if “conditions” is true and “conclusion” is true
 or “conditions” is not true.

 82

 A sentence of the form “everything has property P” is true
 if for every thing T in the world, “T has property P” is true.

Dynamic world structures

World structures in traditional logic are static, in the sense that they represent a single, static state of
the world. One natural way to understand change is to view actions and other events as causing a
change of state from one static world structure to another. For example:

The fox praises The fox praises The crow sings.
 the crow.

The cheese is
in the air.

The crow is

in the tree.

The fox is on
the ground.

It is raining.

 The cheese The fox picks
 stops falling. up the cheese.

The crow has
the cheese.

The crow is
in the tree.

The fox is on
the ground.

It is raining.

The fox has
the cheese.

The crow is
in the tree.

The fox is on
the ground.

It is raining.

The crow has
the cheese.

The crow is
in the tree.

The fox is on
the ground.

It is raining.

The cheese
starts falling.

The crow has
the cheese.

The crow is
in the tree.

The fox is on
the ground.

It is raining.

The cheese is
on the ground.

The crow is
in the tree.

The fox is on
the ground.

It is raining.

This view of change is the basis of the semantics of modal logic. In modal logic,
sentences are given a truth value relative to a static world structure embedded in a
collection of world structures linked by state-transforming events. Syntactic
expressions such as “in the past”, “in the future”, “after”, “since” and “until” are
treated as modal operators, which are logical connectives, like “and”, “or”, “if”,
“not” and “all”. The truth value of sentences containing such modal operators is
defined in terms of the truth values of simpler sentences - for example, by means of
such meta-sentences as:

 A sentence of the form “in the future P” is true at a world structure S
 if there is a world structure S’

 83

 that can be reached from S by a sequence of state-transforming events
 and the sentence “P” is true at S’.

For example, in modal logic, it is possible to express the sentence

 “In the future the crow has the cheese.”

This sentence is true in the world structure at the beginning of the story and false in
the world structure at the end of the story (assuming that the world ends after the fox
picks up the cheese).

One objection to the modal logic approach is that its semantics defined in terms of the
truth of sentences at a world structure in a collection of world structures linked by
state-transforming events is too complicated. One alternative, which addresses this
objection, is to simplify the semantics and increase the expressive power of the
logical language by treating states of the world as individuals. To treat something as
an individual, as though it exists, is to reify it; and the process itself is called
reification.

The advantage of reification is that it makes talking about things a lot easier. The
disadvantage is that it makes some people very upset. It’s alright to talk about
material objects, like the fox, the crow and the cheese, as individuals. But it’s
something else to talk about states of the world and other similarly abstract objects as
though they too were ordinary individuals.

The situation calculus

The situation calculus40, developed by McCarthy and Hayes in Artificial
Intelligence, shares with modal logic the same view of change as transforming one
state of the world into another, but it reifies states as individuals. As a consequence,
world structures are dynamic, because they include state transitions as relationships
between states.

For example, in the situation calculus, in the story of the fox and the crow, there is
only one world structure and it contains, in addition to ordinary individuals,
individuals that are global states. It is possible to express such sentences as:

 “The crow has the cheese in the state at the beginning of the story.”

“The crow has the cheese in the state after the fox picks up the cheese,
after the cheese stops falling,

 after the cheese starts falling,
 after the crow sings,
 after the fox praises the crow,
 after the state at the beginning of the story.”

The first of these two sentences is true and the second is false in the situation calculus
world structure.

40 A situation is just another name for global state.

 84

Reifying states of the world as individuals makes it possible to represent and reason
about the effect of actions on states of affairs. If we also reify “facts”, then this
representation can be formulated as two situation calculus axioms:

 A fact holds in the state of the world after an action,
 if the fact is initiated by the action
 and the action is possible in the state before the action.

 A fact holds in a state of the world after an action,
 if the fact held in the state of the world before the action
 and the action is possible in the state before the action
 and the fact is not terminated by the action.

Our original version of the story of the fox and the crow can be reformulated in
situation calculus terms (simplifying the first axiom by particularising it to this
special case):

 An animal has an object
 in the state of the world after the animal picks up the object

if the animal is near the object
in the state of the world before the animal picks up the object

 I am near the cheese
 in the state of the world after the crow sings

if the crow has the cheese
in the state of the world before the crow sings

 The crow sings
 in the state of the world after I praise the crow.

In theory, an agent, such as the fox, could include such axioms among its beliefs, to
plan its actions, infer their consequences, and infer the consequences of other agents’
actions. In practice, however, the use of the second axiom (called “the frame
axiom”), to reason about facts that are not affected by actions, is computationally
explosive. This problem, called “the frame problem”, is often taken to be an inherent
problem with the use of logic to reason about change.

Arguably, it is not logic that is the source of the problem, but the situation calculus
view of change, which it shares with modal logic and which is too global. Every
action, no matter how isolated, is regarded as changing the entire state of the world.
Even worse than that, to reason about the state of the world after a sequence of
actions, it is necessary to know all the other actions that take place throughout the
entire world in the meanwhile.

Thus to reason about the state of the world after the fox praises the crow, the crow
sings, the cheese falls and the fox picks up the cheese, it is necessary to know and
reason about everything that has happened everywhere else in the world between the
beginning and the end of the story. This kind of thinking is not so difficult in the

 85

imaginary world of the fox and the crow, but it is clearly impossible for a real agent
living in the real world.

An event-oriented approach to change

One alternative is to abandon the view that actions transform global states of the
world and replace it with the view that actions and other events can occur
simultaneously in different parts of the world, independently and without affecting
other parts of the world. In this alternative approach, the focus is on the occurrence of
events and on the effect of events on local states of affairs.

Events include both ordinary actions, which are performed by agents, and other
events, like the cheese landing on the ground, which can be understood
metaphorically as actions that are performed by inanimate objects.

For simplicity, we can assume that events occur instantaneously. For this purpose, an
event that has duration can be decomposed into an instantaneous event that starts it,
followed by a state of continuous change, followed by an instantaneous event that
ends it. Thus the cheese falling to the ground can be decomposed into the
instantaneous event in which the cheese starts to fall, which initiates the state during
which the cheese is actually falling, which is terminated by the instantaneous event in
which the cheese lands.

Events initiate and terminate relationships among individuals. These relationships,
together with the periods for which they hold, can be regarded as local states of
affairs. We can picture such a local state and the events that initiate and terminate it
like this:

event
happens

the event
initiates
a fact

another
event
happens

the fact holds

the other
event
terminates

Time

the fact

In the story of the fox and the crow, we can picture the effect of events on the state of
the cheese like this:

 86

The cheese
is on the
ground.

The fox
has the
cheese.

The crow
has the
cheese.

The cheese
is in the air.

The cheese
stops
falling.

The fox
picks up
the cheese.

The cheese
starts
falling.

A simplified calculus of events

Although we can represent world structures by atomic sentences, logic allows
us to represent them more compactly by means of non-atomic sentences. In
particular, we can derive information about local states of affairs from
information about the occurrence of events, by means of the following event
calculus axiom41:

 A fact holds at a point in time,
 if an event happened earlier
 and the event initiated the fact
 and there is no other event
 that happened after the initiating event and before the time point and
 that terminated the fact.

Because this axiom uses information about the occurrence of events to “calculate”
information about local states of affairs, we call it the “event calculus”.

The event calculus can be used, like the situation calculus, by an agent to plan its
actions, infer their consequences, and infer the consequences of other agents’ actions.
Because it requires only localised knowledge of the affect of events, it is potentially
more practical than the situation calculus.

To apply the event calculus in practice, it needs to be augmented with other axioms
that define initiation, termination and temporal order. In the case of the changing
location of the cheese in the story of the fox and the crow, we need information about
the events that affect that location – for example:

The cheese falls at time 3.
The cheese lands at time 5.
 The fox picks up the cheese at time 8.

 We need to know what local states of affairs such events initiate and terminate:

The falling of an object initiates the fact that the object is in the air.
The landing of an object initiates the fact that the object is on the ground.

41 It is convenient to adopt the convention that a fact holds after the event that initiates it, but at the
time of the event that terminates it.

 87

The picking up of an object by an agent initiates
the fact the agent has the object.

We also need some explanation for the fact that the crow has the cheese at the
beginning of the story. This can be given, for example, by assuming an additional
event, such as:

 The crow picks up the cheese at time 0.

Finally, we need to be able to determine temporal relationships between time points
and events. Because, in this example, we conveniently used numbers to name time
points, we can do this with simple arithmetic. However, because the event calculus
axiom is vague about time, we can use any system for measuring time, as long as we
can then determine when one event occurs before another and when a time point is
after an event. Whether we use numbers, dates and/or clock time is not important.

Keeping Track of Time

What is important is to keep track of time, to make sure that you do what you need to
do before it is too late. So, if you are hungry, then you need to get food and eat it
before you collapse from lack of strength. If a car is rushing towards you, then you
need to run out of the way before you get run over. If you have a 9:00 appointment at
work, then you need to get out of bed, wash, eat, dress, journey to work, and arrive
before 9:00.

To get everything done in time, you need some kind of internal clock, both to
timestamp externally observed events and to compare the current time with the
deadlines of any internally derived future actions. This creates yet more work for the
agent cycle:

To cycle,
observe the world, record any observations,
together with the time of their observation,
think,
decide what actions to perform, choosing only actions
that have not exceeded their deadline,
act,
cycle again.

Consider, for example, the problem of the fox when she becomes hungry. When her
body signals that she is hungry, she needs to estimate how long she can go without
eating and derive the goals of getting food and eating it before it is too late. One way
for her to do this is to use a maintenance goal, with an explicit representation of time:

 If I am hungry at time Thungry
 and I will collapse at a later time Tcollapse if I don’t eat
 then I have food at a time Tfood
 and I eat the food at the time Tfood
 and Tfood is after Thungry but before Tcollapse.

 88

She also needs to be able to deal with any attack from the local hunt:

 If the hunters attack me at time Tattack
 and they will catch me at a later time Tcatch if I don’t run away
 then I run away from the hunters at a time Trun
 and Trun is after Tattack but before Tcatch.

Suppose, the fox is both hungry and under attack by the hunt at the same time. Then
the fox needs to do a quick mental calculation, to estimate both how much time she
has to find food and how much time she has to run away. She needs to judge the
probability and utilities of the two different actions, and schedule them to maximise
their overall expected utility. If the fox has done her calculations well and is lucky
with the way subsequent events unfold, then she will have enough time both to satisfy
her hunger and to escape from attack. If not, then either she will die of starvation or
she will die from the hunt.

A critic might object, however, that this kind of reasoning is an unrealistic, normative
ideal, which is better suited to a robot than to an intelligent biological being. An
ordinary person, in particular, would simply give higher priority to escaping from
attack than to satisfying its hunger. A person’s maintenance goals would be “rules of
thumb” that might look more like this:

 If I am hungry at time Thungry
 then I have food at a time Tfood
 and I eat the food at the time Tfood
 and Tfood is as soon as possible after Thungry.

 If someone attacks me at time Tattack
 then I run away from the attackers at a time Trun
 and Trun is immediately after Tattack .

Thus assuming that you are a person who is hungry and attacked at the same time,
say time 1 arbitrarily, your goals would look like this:

 I have food at a time Tfood
 I eat the food at the time Tfood
 I run away from the hunters at a time Trun
 and Trun is immediately after time 1 .
 and Tfood is as soon as possible after 1 .

It would then be an easy matter for you to determine not only that Trun should be
before Tfood but that Trun should be the next moment in time.

It would be the same if you were attacked after you became hungry, but before you
have succeeded in obtaining food. You would run away immediately, and resume
looking for food only after (and if) you have escaped from attack.

Rules of thumb give a quick and easy result, which is not always optimal. If you were
running away from attack and you noticed a piece of cheese on the ground, a

 89

normative calculation might determine that you have enough time both to pick up the
cheese and to continue running and escape from attack. But rules of thumb, which are
designed to deal with the most commonly occurring cases, are less likely to recognise
this possibility.

The relationship between normative calculation and rules of thumb is the same as the
relationship between deliberate and intuitive thinking that we discussed in the chapter
about levels of consciousness.

Conclusion

The world is a difficult place, which doesn’t stand still. By the time you’ve thought
about one problem, it throws up another one that is even more urgent. It trips you up
and it keeps you on your toes.

We do our best to get on top of it, by forming mental representations of the world.
But it doesn’t make it easy. It wipes out its past and conceals its future, revealing only
the way it is here and now.

In the struggle to survive and prosper, we use our memory of past observations, to
generate hypothetical beliefs, to explain the past and predict the future. We compare
these predictions with reality and revise our beliefs if necessary. This process of
hypothesis formation and belief revision takes place in addition to the agent cycle, as
times when the world slows down long enough to take stock. It is one of the many
issues that we have yet to discuss in greater detail later in the book.

 90

Chapter 10 Logic and Objects

What is the difference between the fox and the crow, on the one hand, and the
cheese, on the other? Of course, the fox and crow are animate, and the cheese is
inanimate. Animate things include agents, which observe changes in the world and
perform their own changes on the world. Inanimate things are entirely passive.

But if you were an Extreme Behaviourist, you might think differently. You might
think that the fox, the crow, and the cheese are all simply objects, distinguishable
from one another only by their different input-output behaviours:

If the fox sees the crow and the crow has food in its mouth,
then the fox praises the crow.

If the crow is praised by the fox,
then the crow sings.

If the cheese is in the crow’s beak and the crow sings,
then the cheese falls to the ground.

If the cheese is next to the fox,
then the fox picks up the cheese.

Extreme Behaviourism was all the rage in Psychology in the mid-20th century. It has
been the rage in Computing for approximately the past twenty years, in the form of
Object-Orientation.

It’s easy to make fun of yesterday’s Extreme Behaviourists. But it’s not so easy to
dismiss today’s Object-Orientated Computer Scientists and Software Engineers.
Object-Orientation today dominates every aspect of Computing: from modelling the
system environment, through specifying the system requirements, to designing and
implementing the software and hardware.

For a while in the 1980s, it looked as though Computational Logic might come to
occupy the central role in Computing that Object-Orientation occupies today.
Unfortunately for Logic, it was Object-Orientation that won the day.

If we can understand what makes OO so attractive in Computing today, then we
might be able to apply the lessons we learn, to improve the suitability of
Computational Logic, not only for Computing, but for Human Reasoning as well.

Objects as individuals in the changing world

In the object-oriented way of looking at things, the world consists of encapsulated
objects, which interact with one another through their externally manifest input-
output behaviour. There is no difference in this respect between an intelligent agent
and an inanimate object. An agent is just another object embedded in the world.

 91

Object-Orientation turns our earlier picture of the relationship between an agent and
the world:

Representation
of the world

observe act

 agent

object

The world

outside in:

The world

In this picture, objects correspond to individuals in the logic-oriented way of looking
at the world. They are semantic rather than linguistic entities. However, whereas in
traditional logic static relationships among individuals are the primary concern and
dynamic behaviour is only secondary, in object-orientation it is the other way around
- behaviour is primary and static relationships are secondary and relatively
unimportant.

With logic embedded in the thinking component of an intelligent agent, change is
dealt with at both the semantic and linguistic levels. At the semantic level it is dealt
with by the dynamics of the agent’s observation-thought-action cycle. At the
linguistic level it is represented in the agent’s mental language of goals and beliefs,
using for example modal logic, the situation calculus or the event calculus.

With objects, change is dealt with primarily at the semantic level. Objects, both
animate and inanimate, interact with one another by sending and receiving messages.
Receiving a message corresponds to an agent’s observing the current state of the
world. Sending a message corresponds to an agent’s performing an action on the
world.

 92

With objects, changes can occur simultaneously in different parts of the world,
independently and concurrently, without affecting other parts of the world. The event
calculus has a similar view of change. But in the event calculus this view is linguistic
- talking about change, without actually doing it. In object-oriented systems, these
changes actually take place.

Taking account of the dynamic nature of objects, our object-oriented picture of the
world should look more like this:

Time

The world

For example, in the object-oriented version of the story of the fox, crow and cheese,
the various actions and events are messages between objects. The obvious candidates
for sending and receiving these messages are the fox, crow and the cheese:

 93

The crow

The cheese

The fox

The world

Time

The crow
sings.

The fox
praises
the crow.

The cheese
falls.

The cheese
lands.

The fox
picks up
the cheese.

Advocates of object-orientation regard it as a natural way both to view the natural
world and to construct artificial worlds. Systems engineers, in particular, construct
complex systems by combining objects, to achieve some overall goal. Typically, the
component objects, which make up the system, are themselves sub-systems, like
thermostats, printers, computers, cars and airplanes, which are composed in turn of
other, simpler objects.

Encapsulation

An object consists of a local state, which is a collection of current values of
attributes, and a collection of methods, which the object uses to respond to messages
or to compute values of attributes. Both of these are encapsulated within the object,
hidden from other objects.

Encapsulation of an object’s methods is an inherent property of the natural world,
because no object can tell for sure what goes on inside another object. In theory, if
you could get inside another object, you might discover that it is just like you. Every
object - bear, tree, river, mountain or stone - might have a spirit, which is its internal

 94

mental state. Contrariwise, you might discover that no other object, other than
yourself, has any kind of internal state whatsoever.

Encapsulation of methods serves a different function for artificial worlds. It reduces
the complexity of constructing complex systems from component objects, because
the engineer needs to take into account only the external behaviour of the
components. Furthermore, should one of the components of a functioning system
become defective or obsolete, it can be replaced by a new component that has the
same external behaviour, without affecting the overall behaviour of the system.

Object-orientation does not distinguish between an object’s external and internal
state. All values of the attributes of an object are encapsulated inside the object. The
only way to find the value of an attribute is by sending a message to the object asking
for the value and by receiving a message from the object telling what the value is. I
will argue later that this is too extreme.

However, in another respect, object-orientation is less extreme than extreme
behaviourism. When an engineer constructs an object-oriented system, the engineer
needs to get inside the system, both to combine pre-existing component objects and to
create new objects from scratch.

Methods

To create an object, the engineer needs to initialise the values of its attributes and
implement its methods. The values of attributes in this initial state can be given
explicitly at the time of creation or can be derived by means of methods.

The common OO languages used for implementing methods are typically procedural
languages with a syntax inherited from pre-OO programming languages. Unlike
logic, these languages do not have a declarative semantics, because they make no
attempt to represent the world around them.

However, even when methods are implemented in procedural programming
languages, it is natural to express their specifications in logical form. These
specifications have the form of condition-action rules in declarative mood:

 If object receives message of form R
 then object sends message of form S.

For example:

If the fox receives a message that the crow has cheese in its mouth,
then the fox sends a message of praise to the crow.

If the crow receives a message of praise from the fox,
then the crow sends a message of song.

If the cheese receives a message of song from the crow
then the cheese sends a message of falling to the ground.

 95

If the cheese sends a message that it is next to the fox,
then the fox sends a message that she picks up the cheese.

The methods by means of which these specifications are implemented inside an
object can be programmed in different ways. They can also be implemented, as we
will discuss later and as should be obvious to the reader already, by means of goals
and beliefs expressed in logical form.

Classes

Object-orientation prides itself on making it easy for the engineer to create new
objects by instantiating more general classes of objects, inheriting methods associated
with those classes.

For example, an engineer might create a new fox by creating an instance of the
general class of all foxes. The class of foxes as a whole might have general methods
for dealing with such messages as the sight of another animal having food and the
appearance of food within its grasp. It might also have typical values for such
attributes as the colour of its fur and the shape if its tail. The new fox could then
inherit these methods and values of attributes with little or no modification, possibly
with the addition of certain special methods and attributes unique to itself.

Classes are organised in taxonomic hierarchies. So for example, the class of all foxes
might inherit most of its methods and attributes from the class of all animals. The
class of all animals might inherit them, in turn, from the class of all animate beings;
the class of all animate beings might inherit them from the class of all material
objects; and the class of all material objects might inherit them from the class of all
things.

Change of state

Objects and classes have different kinds of existence. Objects are concrete
individuals, which typically exist in time and undergo change of state. Classes are
abstract individuals, which are timeless.

For example, in the story of the fox and the crow, the cheese changes state in
response to local events that take place around it:

The cheese
is on the
ground.

The fox
has the
cheese.

The cheese
is in the air.

The crow
has the
cheese.

The cheese
stops
falling.

The fox
picks up
the cheese.

The cheese
starts
falling.

 96

These changes of state are generated by methods inherited from the general class of
all cheeses, some of which, like the propensity to be in the air after starting to fall, are
inherited in turn from the class of all material things. However, the classes
themselves do not change state in the same way.

OO systems are semantic rather than linguistic entities. As a consequence, objects
need not have any memory of the past. When an object changes state, the change
generally wipes out the previous state and replaces it with the new one.

In contrast, logical representations of change describe changes of state without
actually performing them. Therefore, in addition to recording the current state of an
object, they can record previous states, as well as predict and explore future ones.

Reconciling logic and objects

There is an obvious way to reconcile logic and objects: simply by using logic
to implement the methods associated with objects and classes of objects. A
typical implementation of this logical kind might consist of maintenance goals
and beliefs, which eventually reduce goals to action sub-goals, including
messages to other objects. For example:

Goal: If I receive message of form R
 then solve goal G.

Beliefs: G if conditions.

 …
 G’ if other conditions and I send message of form S.
 etc.

Creating a new object by instantiating a class then becomes a simple matter of
logical instantiation, substituting a concrete term (such as “ I ”) for an abstract
term (such as “any fox”), possibly adding specialised methods and assigning
explicit values for some of the object’s attributes.

Logic, used to implement methods in this way, can enhance the power of
object-oriented systems. Some, intelligent objects can use logic not only to
react to incoming messages and to reduce goals to sub-goals, but also to
represent the world, generate alternative courses of action and derive their
likely consequences. Other, less intelligent objects can also use logic as their
higher-level language of implementation. For purposes of efficiency, these
higher-level implementations can be compiled into lower-levels, including
hardware. Conversely, lower level implementations can sometimes be
decompiled into logical form, to improve and reason about the behaviour of
individual objects and collections of objects.

Combining logic and object-orientation can also enhance our logic-based agent
model. Most importantly, it provides a framework for extending single logic-
based agents to multi-agent systems, by embedding agents in a shared
semantic structure. Different objects in this structure can have different
degrees of intelligence and different degrees of activity.

 97

The OO semantic structure is one in which objects can change state
concurrently in different parts of the world, independently and without
affecting other objects. These changes can take place destructively, without
leaving any record of the past. However, in addition to such real changes
taking place externally in the semantic structure, an intelligent agent can use
logic internally to represent changes, without actually performing them. These
internal representations of change are not destructive in the same way that
external changes destroy earlier states of the world.

To achieve these benefits, we do not need to abandon the distinction made in
logic between world structures and their linguistic representations - nor the
view that world structures consist of individuals, possibly including events,
and of relationships among individuals. On the contrary, we may need to
abandon the extreme version of OO, which insists that all attributes of
individuals are encapsulated and that all interactions are messages.

Consider, for example, yet again the story of the fox and the crow, and in
particular the fox’s observation that the crow has the cheese. In the strict OO
version of the story, the observation is a message sent to the fox by another
object. But what object is it? The obvious candidates are the crow and the
cheese. But clearly the crow object has no goal to achieve in sending such a
message to the fox, and the cheese object has no real goals of any kind. Even if
one of them were responsible for sending the message, why send it only to the
fox? Why not send it to all the other creatures in the area as well?

In our earlier version of the story and in our logic-based agent model more
generally, the fox and the crow, but not the cheese, are both agents, and they
interact with one another, not by sending messages, but by observing the world
and by performing actions on the world. The actions they perform might be
observed by other agents in the area.

It seems to me that object-orientation has little new to contribute to our
understanding of the story, except to remind us that

 it is important to distinguish between the world and any
representations that agents may have of the world;

 that it is useful to understand the world in terms of hierarchies; and
 that the internal methods agents use to interact with the world are

encapsulated, so that they can not be observed directly by other
agents.

OO has another virtue, namely that it shows us how to construct artificial
worlds in which separate objects can change state concurrently and
independently. But this is not relevant in the story of the fox and the crow,
where we are only interested in telling a story, and not in constructing a world.

Object-orientation in moderation

However, comparing logic with OO, it seems that OO goes too far -
encapsulating all relationships among individuals inside objects. Thus, the fact

 98

that the crow has the cheese at the beginning of the story is encapsulated inside
one or both of the crow and the cheese objects, accessible to other objects only
by sending and receiving messages.

The alternative is to embrace a less extreme form of object-orientation, in
which only those individuals that actively change state are regarded as objects,
and only the methods they use to interact with the world are encapsulated.
Relationships among objects and other kinds of individuals are not
encapsulated, but are manifest in the external world.

Objects, in this more moderate form of OO, interact with the world, not only
by sending and receiving messages, but more generally by observing
relationships in the world and by performing actions that change relationships
in the world. Messages can be viewed as speech acts, in which one object
performs a special kind of action whose effects are intended for observation by
another object.

Other individuals, like classes, events, numbers and time points, can partake in
relationships without being coerced into encapsulated objects.

This moderate form of object-orientation is compatible with our logic-based
agent model. It liberalises our notion of agent, to include more primitive kinds
of encapsulated object. It enriches our notion of the agent’s environment, to
include, not only simple individuals and relationships, but individuals that are
objects, which can change state concurrently using encapsulated methods,
which are hidden from the external world.

Semantic networks as a variant of object-orientation

There are several other Computing paradigms that subscribe to similarly
moderate variants of object-orientation. These include semantic networks and
frames, developed as knowledge representation formalisms in Artificial
Intelligence, and the entity-relationship model of databases.

Semantic networks represent the world as a web of relationships among individuals.
For example, the network representing the initial state of the story of the fox and the
crow might like this:

 the crow is in the tree

 has

 the cheese is above

 the fox is on the ground

 99

Here nodes represent individuals, and arcs represent binary relationships, between
pairs of individuals. The representation can be extended to non-binary relationships.

Semantic network representations are object-oriented, in the sense that all the facts
about an individual are located in a single place, namely surrounding the node that
represents the individual. These facts are represented by the arcs connected to that
node and by the other nodes to which those arcs are also connected.

However, in contrast with orthodox object-orientation, relationships are represented
only once, but are connected to all the individuals that participate in the relationship.
Moreover, they are visible to the outside world, and not encapsulated inside objects.

Semantic networks have also been used to represent dynamic information, by reifying
events. For example:

 100

agent

 the crow

 object agent agent agent object

 praise then sing then fall then land then pick up
 agent agent

 the fox

the cheese

Here the semantic network terms “object” and “agent” are only loosely
associated with our notions of object and agent. Here the term “agent” is
analogous to the subject of an English sentence, and the term “object” is
analogous to the object of an English sentence.

Semantic networks have also been used to represent hierarchies of classes. For
example:

 thing

 is a
 material

 is a

 animate

 is a is a

 animal food

 is a is a is a

 fox crow cheese

 is a is a is a

 the fox the crow the cheese

 101

Despite their name, semantic networks are not semantic structures in the same
sense as OO structures, but they are like semantic structures as represented by sets
of atomic sentences in logic. In fact, semantic network connections of the form:

one thing is related to another thing

are simply graphical representations of atomic sentences. Like sentences of logic,
when they are used to represent dynamic information by reifying events, they
represent change without performing it.

On the other hand, semantic networks are like semantic structures in the sense that
they represent only atomic facts, rather than more general regularities. Although
several extensions of semantic networks have been developed to represent
regularities, these extensions are not convincing.42

Nonetheless, semantic networks show that it is possible to use objects to structure
atomic representations of the world and not only to structure the world itself. They
also show that it is possible to subscribe to moderate forms of OO, in which objects
structure our understanding of the world without hiding everything inside themselves.
Frames and entity-relationship databases are similar in this respect.

Object-oriented structuring of sentences

Semantic networks are one way objects can be used to structure the representation of
the world. Objects can also be used to structure more general linguistic
representations.

We noted, already in Chapter 1, that sentences in logic can be written in any order.
However, some sequences of sentences can be much easier to understand than other
sequences. Grouping sentences into sets of sentences about objects is one way to
make sentences easier to understand.

For example, we can group the atomic sentences describing the beginning of the story
of the fox and the crow into the sets of sentences:

 The crow: The crow has the cheese.
 The crow is in the tree.

 The tree: The tree is above the ground.

42 I have contributed to one such extension myself, in Deliyanni, A. and Kowalski, R., "Logic and
Semantic Networks", in CACM, Vol. 22, No. 3, 1979, pp. 184-192.

 102

 The fox: The fox is on the ground.

Of course, we can also group the same sentences by means of other objects:

 The cheese: The crow has the cheese.

 The tree: The crow is in the tree.

 The ground: The tree is above the ground.
 The fox is on the ground.

To find a good organisation, it is necessary to decide which objects are the most
important.

Natural languages, like English, take object-orientation a step further, by employing
grammatical forms in which the beginning of a sentence indicates its topic and the
following part of the sentence expresses a comment about the topic. This form often
coincides with, but is not limited to, the grammatical structuring of sentences into
subjects and predicates.

The two forms of object-orientation – grouping sets of sentences by object and
structuring individual sentences by object – are often combined in practice. Consider,
for example, the pair of English sentences43:

 The prime minister stepped off the plane.
 Journalists immediately surrounded her.

Both sentences are formulated in the active voice, which conforms to the guidelines
for good practice advocated in most manuals of English style.

The two sentences refer to three objects, the prime minister (referred to as “her” in
the second sentence), journalists and the plane. The prime minister is the only object
in common between the two sentences. So, the prime minister is the object that
groups the two sentences together. However, the topic changes from the prime
minister in the first sentence to the journalists in the second.

Now consider the following logically equivalent pair of sentences:

 The prime minister stepped off the plane.
 She was immediately surrounded by journalists.

Here, not only do the two sentences refer to a common object, but they also have the
same topic. However, the second sentence is now expressed in the passive voice.
Despite this fact and despite its going against a naïve interpretation of the guidelines
of good writing style, most people find this second pair sentences easier to
understand. This seems to suggest that people have a strong preference for organising

43 This example is from “Discourse Analysis” by Gillian Brown and George Yule, Cambridge
University Press, 1983, page 130.

 103

their thoughts in object-oriented form, which is stronger than their preference for the
active over the passive voice.

Object-orientation is not the only way of structuring and ordering sentences. In both
of the two pairs of sentences above, the sentences are ordered by the temporal
sequence of events.

Now consider the following sequence of sentences:

 The fox praised the crow.
 The crow sang a song.
 The cheese fell to the ground.
 The fox picked up the cheese.

Here the sentences are grouped by temporal proximity and ordered by temporal
sequence. Individual sentences are structured, not by object, but by agent, as reflected
in the use of the active voice.

It’s important to keep things in perspective. Object-orientation isn’t everything. In the
case of English, it has nothing to do with the content of individual sentences, but it is
one way to group and structure sentences. Compared with logic, OO is like the index
of a book, and logic is like the language in which the book is written.

Conclusions

Compared with logic, the main attraction of OO is that it shows us how to construct
artificial worlds in which individual objects can change state concurrently and
independently from other objects. It facilitates constructing new objects from existing
ones by encapsulating methods, to reduce complexity and to improve maintainability.

However, compared both with logic and with more moderate variants of OO, such as
semantic networks, extreme OO takes encapsulation too far. Instead of hiding
attributes and relationships inside objects, it would be more natural to make them
visible to the outside world. Instead of treating all individuals as encapsulated objects,
objects should be restricted to individuals that interact with the world.

Extreme OO also takes the message passing metaphor too far. Instead of forcing all
interactions between objects and the world to be messages, it would be more natural
for agents and other objects to interact with the world by making observations and
performing actions.

Computational logic can be reconciled with both extreme and moderate forms of OO,
by using it as a higher-level language for implementing methods and for defining
classification hierarchies. Although we have not discussed the possibility in this
chapter, it can also be used by a system designer to show that a collection of objects
achieves some over-all goal.

Semantic networks and natural languages such as English show that OO is not
restricted to modelling semantic structures, but can also be used to structure
representations of the world. The example of English, in particular, shows that, in the

 104

area of linguistic representations, logic and OO have different concerns. Logic is
concerned with representing the world, whereas OO is only concerned with one way
of structuring representations. As we have seen, OO needs to be combined with other
ways of structuring representations, in order to be useful. It would be interesting, for
example, to see how OO might be used to structure the collection of sentences that
make up this chapter.

 105

Appendix 1

The Logical Way to Be Artificially Intelligent

Robert Kowalski
Imperial College London

rak@doc.ic.ac.uk
http://www.doc.ic.ac.uk/~rak/

Abstract. Abductive logic programming (ALP) can be used to model reactive, proactive and
pre-active thinking in intelligent agents. Reactive thinking assimilates observations of changes in the
environment, whereas proactive thinking reduces goals to sub-goals and ultimately to candidate
actions. Pre-active thinking generates logical consequences of candidate actions, to help in deciding
between the alternatives. These different ways of thinking are compatible with any way of deciding
between alternatives, including the use of both decision theory and heuristics.

The different forms of thinking can be performed as they are needed, or they can be
performed in advance, transforming high-level goals and beliefs into lower-level condition-action
rule form, which can be implemented in neural networks. Moreover, the higher-level and lower-
level representations can operate in tandem, as they do in dual-process models of thinking. In dual
process models, intuitive processes form judgements rapidly, sub-consciously and in parallel, while
deliberative processes form and monitor judgements slowly, consciously and serially.

ALP used in this way can not only provide a framework for constructing artificial agents, but
can also be used as a cognitive model of human agents. As a cognitive model, it combines both a
descriptive model of how humans actually think with a normative model of humans can think more
effectively.

1 Introduction

Symbolic logic is one of the main techniques used in Artificial Intelligence, to develop
computer programs that display human intelligence. However, attempts to use
symbolic logic for this purpose have identified a number of shortcomings of
traditional logic and have necessitated the development of various improvements and
extensions. This paper - and the draft book [6] on which it is based - aims to show
that many of these developments can also be used for the original purpose of logic – to
improve the quality of human thinking.
 I have written the book informally, both to reach a wider audience and to
demonstrate that the enhanced logic is in fact relevant and congenial for human
thinking. However, in this paper, I will draw attention to some of the more technical
issues, for the consideration of a more academic audience.
 The logic used in the book is based on an extension of abductive logic
programming (ALP) to logic-based agents [7]. In ALP agents, beliefs are represented
by logic programs and goals are represented by integrity constraints. The agent’s
observations and actions are represented by abducible predicates. Beliefs and goals
have both a declarative interpretation in logical terms, as well as a procedural
interpretation in computational terms.
 ALP agents are both reactive to changes they observe in the environment and
proactive in planning ahead and reducing goals to sub-goals. In this paper I show that
ALP agents can also be pre-active in thinking about the possible consequences of
actions before deciding what to do.
 In conventional ALP, the logical consequences of abductive hypotheses are
checked to determine whether they violate any integrity constraints. However, in ALP
agents, where abductive hypotheses include alternative, candidate actions, the pre-
actively generated consequences of candidate actions are used to decide between the
alternatives. This decision can be made in different ways. One way is to use
conventional Decision Theory, judging the utilities and probabilities of the
consequences of the alternative candidates and choosing an action that maximizes

 106

mailto:rak@doc.ic.ac.uk
http://www.doc.ic.ac.uk/%7Erak/

expected utility. However, other ways of deciding between actions are also compatible
with ALP, including ways that compile decision making into heuristics.
 The combination of reactive, proactive and pre-active thinking is obtained in ALP
agents by combining forward and backward reasoning. This reasoning can be
performed whenever the need arises, or it can be performed once and for all by
reasoning in advance. Reasoning in advance transforms and compiles higher-level
goals and beliefs into lower-level goals, which are similar to condition-action rules,
which implement stimulus-response associations compiled into neural networks.
 In modern computing, it is common to develop programs in a high-level
representation and then to transform or compile them into a lower-level representation
for the sake of efficiency. If it later becomes necessary to correct or enhance the
resulting lower-level program, this is generally done by first modifying the higher-
level representation and then recompiling it into a new lower-level form.
 However, many existing computer systems are legacy systems developed before
the existence of higher-level programming languages. It is often possible to decompile
these lower-level programs into higher-level form, although, because of the
undisciplined nature of lower-level languages, sometimes the relationship is only
approximate.
 The relationship between higher-level and lower-level computer programs is
analogous to the relationship between higher-level and lower-level representations in
ALP agents. It is also similar to the relationship between deliberative and intuitive
thinking in the dual process model of human thinking [10]. In the dual process model,
one system, which is older in evolutionary terms, is responsible for intuitive thinking.
It is associative, automatic, unconscious, parallel, and fast. The other system, which is
distinctively human, is responsible for deliberative thinking. It is rule-based,
controlled, conscious, serial, and slow.
 In computing, high-level and low level representations normally operate
separately, but can be compiled or decompiled from one into the other. In the dual
process model, however, intuitive and deliberative thinking can operate in tandem, as
when the intuitive, subconscious level “quickly proposes intuitive answers to
judgement problems as they arise”, while the deliberative, conscious level “monitors
the quality of these proposals, which it may endorse, correct, or override” [3]. This
interaction between intuitive and deliberative thinking can be mimicked in part by the
use of pre-active thinking in ALP agents, to monitor and evaluate candidate actions
generated by reactive thinking. In ALP agents both the deliberative level and the
intuitive level are represented in logical form.
 These topics are expanded upon in the remainder of the paper. Section 2 outlines
the basic features of the ALP agent model, including reactive, proactive, and pre-
active thinking. Section 3 investigates the relationship between thinking and deciding.
Section 4 discusses the transformation of high-level representations into lower-level,
more efficient form, and the way in which high-level and lower-level representations
interact. Section 5 shows how low-level feed-forward neural networks can be
represented in logical form and can be simulated by forward reasoning. Section 6
discusses some of the implications of this for the notion that logic can serve as a wide-
spectrum language of thought. Section 7 addresses some of the arguments against
logic as a model of human thinking, and section 8 is the conclusion.

2 The Basic ALP Agent Model

 2.1 Putting Logic in its Place in the Agent Cycle

The logic used in the book is based on an extension of abductive logic programming
(ALP) to logic-based agents [7]. The most important feature of the extension is that it
embodies logic in the thinking component of an agent’s observe-think-decide-act
cycle:

 107

To cycle,
observe the world,
think,
decide what actions to perform,
act,
cycle again.

 The agent cycle can be viewed as a generalisation of production systems, in which
thinking is performed by using condition-action rules of the form:

 If conditions then candidate actions.

Condition-action rules look a lot like logical implications, but they do not have the
declarative semantics of implications. Nonetheless, as we will later see, in ALP
agents, condition-action rules are represented by goals expressed in logical form.
 This view of logic in the mind of an agent embodied in the world is pictured in
figure 1. In this picture, the agent uses logic to represent its goals and beliefs, and to
help control its interactions with the world. It transforms its experience into
observations in logical form and uses its goals and beliefs to generate candidate
actions, to satisfy its goals and to maintain itself in a satisfactory relationship with the
changing world.
 The agent’s body, in addition to being a part of the world, transforms both raw
experience into observations and the will to act into physical changes in the world.
This is analogous to the way in which hardware and software are related in a
computer. The hardware transforms stimuli from the environment into inputs and
transforms outputs into physical changes in the environment. The internal processing
of inputs into outputs is performed by the hardware, but is controlled conceptually by
software. In this analogy, the brain and body of an agent are to the mind as hardware
is to software.

observe
act

An agent

perceptual
processing

motor
processing

The world

Fig. 1 The agent cycle.

think decide

 In general, the result of thinking is a set of candidate actions, which are the input
to the decision-making component of the agent cycle. In the same way that Logic is
only one way of thinking, there are many ways of deciding what to do. Decision
theory, which combines judgements about the utility of the outcomes of actions with
judgements about their probability, is one such way of deciding. As we will see in an
example later, it is also possible to compile decision-making directly into lower-level
goals and beliefs. In production systems, decision making is called “conflict
resolution”.

 108

 An agent’s ultimate goal is to maintain itself in a satisfactory relationship with the
surrounding world, and thinking and deciding are only one way of achieving that goal.
An agent can also act to satisfy its goals instinctively, by means of stimulus-response
associations, in a way that might be characterised as acting without thinking.
Instinctive behaviour can be hardwired into an agent’s body, without entering into its
mind. Or it might be learned as the result of repeated performance and feedback.
Instinctive behaviour is a near relation of intuitive thinking in the dual process model.
 The agent cycle, as described above, concerns the real time behaviour of an agent,
and does not address the processes involved in learning new behaviours and updating
old ones. Suffice it to say that learning, belief revision and goal revision are essential
activities for a real agent interacting with the real world. Because of the logical nature
of ALP agents, such techniques as inductive logic programming are especially suitable
to model such activities. They are, however, beyond the scope of this paper.

2.2 ALP Combines Forward and Backward Reasoning

Abductive logic programming [4] comes in many forms and variations, both in terms
of its semantics and in terms of its proof procedures. However, in all of these forms,
abductive logic programs have two components: ordinary logic programs and integrity
constraints. They also have two, corresponding kinds of predicates – ordinary
predicates that are defined by logic programs and abducible predicates that are,
directly or indirectly, constrained by integrity constraints.
 In ALP agents, logic programs are used to represent an agent’s beliefs, and
integrity constraints to represent its goals. The abducible predicates are used to
represent the agent’s observations and actions. The integrity constraints are active, in
the sense that they can generate representations of actions that the agent can perform,
in order to maintain integrity.
 Consider, for example, the goal of getting help in an emergency on the London
underground.

Goal If there is an emergency then I get help.

Beliefs There is an emergency if there is a fire.
 There is an emergency if one person attacks another.
 There is an emergency if someone becomes seriously ill.
 There is an emergency if there is an accident.

 There is a fire if there are flames.44
 There is a fire if there is smoke.

 A person gets help
 if the person alerts the driver.

 A person alerts the driver
 if the person presses the alarm signal button.

 Here, for simplicity, the abducible predicates associated with observations are the
predicates “there are flames”, “there is smoke”, “one person attacks another”,
“someone becomes seriously ill”, and “there is an accident”. The only abducible
predicate associated with candidate actions is “the person presses the alarm signal
button”. All of these abducible predicates are indirectly constrained by the goal of
getting help whenever there is an emergency. All the other predicates, including the

44 These two rules, relating fire, flames and smoke are the converse of the causal rules, which
state that if there is a fire then there are flames and smoke. The causal rules are a higher-level
representation, whereas the rules used here are a lower-level, more efficient representation. The
higher-level, causal representation would need abduction to explain that an observation of
smoke or flames can be caused by fire. In fact, the term “abduction” normally refers to such
generation of hypotheses to explain observations. The lower-level representation used here
replaces abduction by deduction.

 109

higher-level actions of getting help and alerting the driver are ordinary predicates,
defined by the agent’s beliefs.
 The goal itself is a maintenance goal, which an agent can use to derive actions to
maintain itself in a desired relationship with the changes that it observes in its
environment. Maintenance goals can be viewed as a generalization of condition-action
rules.
 Maintenance goals are triggered as a consequence of observations, similarly to the
way in which integrity constraints in a database are triggered as the result of updates.
An agent reasons forwards from its beliefs, to derive consequences of its observations.
Suppose, for example, that I am travelling as a passenger on the underground and that
my body experiences a combination of sensations that my mind interprets as an
observation of smoke. The observation triggers my beliefs, which I use to reason
forward in two steps, to recognize that there is an emergency.
 The conclusion that there is an emergency triggers the maintenance goal, which I
then use to reason forward one more step, to derive the achievement goal of getting
help. The achievement goal triggers other beliefs, which I use to reason backwards in
two steps, to reduce the achievement goal to the action sub-goal of pressing the alarm
signal button. Since there are no other candidate actions in this simple example, I
decide to press the alarm signal button, which my body then transforms into a
combination of motor activities that is intended to accomplish the desired action.
 The fact that pure logic programs are declarative means that they can be used to
reason in many different ways. In the procedural interpretation, they are used only to
reason backwards, as procedures that reduce goals to sub-goals. However, in ALP
they are used to reason both backwards and forwards.
 This combination of forward and backward reasoning, together with the interface
between the agent’s mind and the world, is pictured in figure 2. Arguably, this
treatment of maintenance goals as integrity constraints generalizes condition-action
rules in production systems. Condition-action rules are the special case where no
forward reasoning is needed to trigger the maintenance goal and no backward
reasoning is needed to reduce the achievement goal to actions. Thus maintenance
goals include condition-action rules as a special case, but in general are much higher-
level.
 Vickers [12], in particular, championed the idea that human activity and
organizations should be viewed as maintaining relationships with the changing
environment. He characterized Simon’s view of management and problem solving as
the narrower view of only solving achievement goals. Vickers view-point has been
taken up by in recent years by the soft systems school of management [2].

 110

 If there is an emergency then get help

There is an emergency

Forward
reasoning

Backward
reasoning

Achievement goal get help

press the
alarm signal
button

There is a fire alert the driver

There is smoke

The worldFig. 2.

 Maintenance goal

2.3 ALP Combines Reactive and Proactive Thinking

The combination of forward and backward reasoning enables ALP agents to be both
reactive and proactive. They are reactive when they use forward reasoning to respond
to changes in the environment, and they are proactive when they use backward
reasoning to achieve goals by reducing them to sub-goals. In everyday life, human
agents are both reactive and proactive to varying degrees.
 Consider, as another example, a simplified ALP version of Aesop’s fable of the
fox and the crow. Suppose the fox has the following achievement goal and beliefs:

Goal I have the cheese.

Beliefs The crow has the cheese.

 An animal has an object
 if the animal is near the object
 and the animal picks up the object.

 I am near the cheese
 if the crow has the cheese
 and the crow sings.

 The crow sings if I praise the crow.

 The fox can use its beliefs as a logic program, to reason backwards, to reduce its
goal to the actions of praising the crow and picking up the cheese.45 The fox’s
reduction of its goal to sub-goals is pictured in figure 3.
 In keeping with the view that the primary goals of an agent are all maintenance
goals, the fox’s achievement goal almost certainly derives from a maintenance goal,
such as this:

45 The story is simplified partly because the element of time has been ignored. Obviously, the fox
needs to praise the crow before picking up the cheese.

 111

 If I become hungry, then I have food and I eat it.

 Here the condition of being hungry is triggered by an observation of being hungry,
which the fox receives from its body. Notice that the achievement goal of having the
food is only half of the story. To satisfy the maintenance goal, the fox also needs to
eat the food.

I have the cheese.

I am near the cheese and I pick up the cheese

The crow has the cheese and the crow sings
and I pick up the cheese

The crow sings and I pick up the cheese

I praise the crow and I pick up the cheese

The fox

The world Fig. 3.

 In Aesop’s fable, the fox’s belief about the behaviour of the crow is true. The crow
is a purely reactive agent, which responds to praise as the fox believes. The reactivity
of the crow can be viewed as reasoning forwards in one step from an observation to
derive an achievement goal, which is an action, from a maintenance goal. This is
pictured in figure 4.

 The world

If the fox praises me, then I sing.

The fox praises me. I sing.

Fig. 4.

The crow

 112

 This view of the crow’s behaviour is a logical abstraction of behaviour that might
be hardwired into the crow as a system of lower-level stimulus-response associations.
The relationship between such a logical abstraction and the stimulus-response
associations is, arguably, like the relationship between software and hardware.
 Notice the difference between the sentence

 If the fox praises me, then I sing.

which is a goal for the crow, and the sentence

 The crow sings if I praise the crow.

which is a belief for the fox. Both sentences are implications. However, for the crow,
the implication is used as a goal, to generate its behaviour. But for the fox, the
implication is used as a belief, to describe the crow’s behaviour and to reduce goals to
sub-goals.
 The difference between the two sentences has nothing to do with the order in
which the conclusion and condition of the implication is written, because there is no
semantic difference between writing an implication forwards in the form

 If conditions then conclusion.

and writing it backwards in the form

 Conclusion if conditions.

Semantically both implications have the same declarative meaning. (In the same way
that both inequalities 1 < 2 and 2 > 1 have the same meaning.)
 However, no matter how implications are written, there is an important distinction
between them depending upon whether they are used as goals or as beliefs. When they
are used as beliefs, they represent the world as it actually is. When they are used as
goals, they represent the world as the agent would like it to be. When a goal is an
implication, the agent performs actions to make the implication true. It only needs to
perform these actions to make the conclusion of the implication true when the world
makes the conditions of the implication true. It need not worry about performing
actions when the world makes the conditions of the implication false. The analogous
distinction in deductive databases between implications used as integrity constraints
and implications used as rules was first investigated by Nicolas and Gallaire [].

2.4 ALP Includes Pre-active Thinking

Aesop’s fable shows how a proactive fox outwits a reactive crow. But there is an even
more important moral to the story - namely that an intelligent agent should think
before it acts. Thinking before acting is more than just proactive thinking. It is
thinking about the possible consequences of candidate actions - pre-actively – before
deciding what to do. Pre-active thinking is obtained in ALP by reasoning forward
from candidate actions, whether derived proactively or reactively, and whether
generated by symbolic reasoning or by instinctive stimulus-response associations.
 Suppose, for example, that the crow not only has the maintenance goal of singing
whenever it is praised, but also has the achievement goal (for whatever reason) of
having the cheese. If the crow also has the same beliefs as the fox, then the crow
would be able to reason forward, pre-actively, to deduce the possible consequences of
singing:

 I want to sing.

 But if I sing,
 then the fox will be near the cheese.

 113

 Perhaps the fox will pick up the cheese.
 Then the fox will have the cheese,
 and I will not have the cheese.

 Since I want to have the cheese,
 I will not sing.

 Notice that the crow can not consistently achieve the goal of having the cheese and
also maintain the goal of singing whenever it is praised. In real life, an agent needs to
weigh its goals, trading one goal off against another.46
 Notice too that the outcome of an agent’s actions typically depends also on
external events, over which the agent may have little or no control. In the story of the
fox and crow, the outcome of the crow’s singing depends on whether or not the fox
decides to pick up the cheese.

4 Thinking Needs to be Combined with Deciding What to Do

In ALP, pre-active thinking simply checks whether candidate actions satisfy the
integrity constraints. However, in real life, we also have to choose between actions,
taking into consideration the relative utilities and probabilities of their possible
consequences. In Decision Theory, the agent uses these considerations to choose an
action that has maximum expected utility.

4. 1 Combining ALP with Decision Theory

Suppose, for example, that I have the following beliefs:

I get wet if it rains and I do not carry an umbrella.
I stay dry if I carry an umbrella.
I stay dry if it doesn’t rain.

Assume also that I am about to leave home, and that as a sub-goal of leaving home I
have to decide what to take with me, and in particular whether or not to take an
umbrella. I can control whether to take an umbrella, but I can not control whether it
will rain. At best I can only judge the probability of rain.
 Reasoning forward from the assumption that I take an umbrella and then have to
carry it, I can derive the certain outcome that I will stay dry. However, reasoning
forward from the assumption that I do not carry an umbrella, I derive the uncertain
outcome that I will get wet or I will stay dry, depending on whether or not it will rain.
 In classical logic, that would be the end of the story. But, in Decision Theory, I can
judge the likelihood that it is going to rain, judge the positive utility of staying dry
compared with the negative utility of having to carry the umbrella, weigh the utilities
by their associated probabilities, and then choose an action that has the maximum
expected utility.
 For the record, here is a simple, example calculation:

 Utility of getting wet = – 8.
 Utility of staying dry = 2.
 Utility of carrying an umbrella = – 3
 Utility of not carrying an umbrella = 0
 Probability of raining = .1
 Probability of not raining = .9

Assume I take an umbrella.
Then Probability of staying dry = 1

46 Alternatively, if the crow wants to have the cheese in order to eat it, then the crow could
satisfy both goals by first eating the cheese and then singing.

 114

 Expected utility = 2 – 3 = - 1

Assume I do not take an umbrella .
Then Probability of staying dry = .9
 Probability of getting wet =.1
 Expected utility = .9 ·2 - .1 ·8 = 1.8 - .8 = 1

Decide I do not take an umbrella!

 Given the same utilities, the probability of rain would have to be greater than .3
before I would decide to take an umbrella.
 Because thinking and deciding are separate components of the agent cycle, any
way of thinking is compatible with any way of deciding. Thus the use of ALP for
thinking can be combined with Decision Theory or any other way of deciding what to
do. This combination of thinking and deciding in ALP agents is pictured in figure 5.

 A combination of abductive logic programming and Decision Theory has been
developed by David Poole in his Independent Choice Logic [8]. He shows how the
logic can be used to represent Bayesian networks, influence diagrams, Markov
decision processes and the strategic and extensive form of games.

Pre-active
thinking

Reactive
thinking

Proactive
thinking

Consequences
of alternative
candidate actions

Decide

Maintenance goal
Achievement goal

Observe
Act

Fig. 5. The world

 Poole focuses on the semantics of ICL, whereas I focus on the logical and
computational procedures an individual agent might use in practice. One consequence
of this difference is that he views condition-action rules as policies, and represents
them by ordinary logic programs, whereas I view them as goals, and represent them as
integrity constraints.

4.2 Decision Making Can Often Be Compiled into the Thinking Component of
the Agent Cycle

The problem with Decision Theory is that it requires an unrealistic amount of
information about utilities and probabilities and too much computation. Nonetheless,
Decision Theory represents a normative ideal against which other, more practical
decision-making methods can be evaluated.

 115

 In the case of taking or not taking an umbrella, a more practical alternative might
be to use maintenance goals or condition-action rules instead47:

 If I leave home and it is raining then I take an umbrella.
 If I leave home and there are dark clouds in the sky then I take an umbrella.
 If I leave home and the weather forecast predicts rain then I take an umbrella.

 The maintenance goals in this example compile decision-making into the thinking
component of the agent cycle. In some cases, the compilation might be an exact
implementation of the Decision Theoretic specification. In other cases, it might only
be an approximation.
 Other alternatives to Decision Theory include the use of priorities between
different actions, goals or condition-action rules, and the use of default reasoning.

5 Combining Higher-Level and Lower-Level Thinking

5.1 Higher Levels of Thinking Can Be Compiled into Lower Levels

Abductive logic programs have a computational, as well as a logical, interpretation.
Goals and beliefs expressed in logical form can be viewed as programs written in a
high-level programming language. Programs written at this high, logical level are
executed by backward and forward reasoning.
 For the sake of efficiency, high-level programs are often compiled into lower-level
programs and are executed using corresponding lower-level computational
mechanisms. Usually the higher and lower-level programs are written in distinct
programming languages. However, they can also be written in the same language.
 Compiling a high level program into a more efficient, lower level program written
in the same language is called program transformation. Program transformation
typically gains efficiency by performing at compile time, once and for all, execution
steps that would otherwise have to be performed repeatedly, at run time. In the case of
abductive logic programs, higher-level programs can be transformed into lower-level,
more efficient programs, by performing reasoning steps in advance, before they are
needed.
 This is easy to see in the London underground example. The original high-level
ALP representation can be compiled/transformed into the equivalent, more efficient
condition-action rule representation:

If there are flames then I press the alarm signal button.
If there is smoke then I press the alarm signal button.
If one person attacks another then I press the alarm signal button.
If someone becomes seriously ill then I press the alarm signal button.
If there is an accident then I press the alarm signal button.

 This lower-level program is written in the same higher-level ALP language as the
original representation, but it now consists of five maintenance goals, rather than one
maintenance goal and eight beliefs. It is obtained by reasoning in advance, replacing
the concept of “emergency” by all of the alternative types of emergency, replacing the
concept of “fire” by the two different ways of recognizing a fire, and reducing
“getting help” to the action of pressing the alarm signal button.
 The two representations are computationally equivalent, in the sense that they give
rise to the same externally observable behaviour. However, the lower-level program is
more efficient. Not only does it require fewer steps to execute at run time, but it uses
simpler reasoning techniques, consisting of forward reasoning alone, instead of the
combination of forward and backward reasoning needed by the higher-level program.

47 In this representation the decision not to take an umbrella is implicit. It holds if the decision
to take an umbrella does not hold.

 116

 The two representations are not logically equivalent. The high-level representation
logically implies the lower-level representation, but not vice versa. In particular, the
higher-level representation has an explicit representation of the concepts of there
being an emergency and of getting help, which are only implicit in the lower-level
representation. Moreover, the higher-level representation also has an explicit
representation of the purpose of the agent’s behaviour, namely to get help whenever
there is an emergency, which is only implicit as an emergent goal in the lower-level
representation.
 In computing, higher-level representations (including program specifications) are
generally developed, before they are compiled/transformed into lower-level
representations for the sake of efficiency. However, if anything then goes wrong with
the lower-level representation, it is generally easier to debug and correct the higher-
level representation and to recompile it into the lower-level form, than it is to change
the lower-level representation itself.
 For example, if something goes wrong with the condition-action rule formulation
of the London underground rules - if the button doesn’t work, or if the driver doesn’t
get help - then the rules will fail, but the passenger might not even recognise there is a
problem. Or, if the environment changes – if new kinds of emergencies arise or if
better ways of getting help are developed – then it is easier to extend the higher-level
representation than it is to modify the lower-level rules.
 In computing, it is common to iterate the compilation of programs into a number
of increasingly lower-levels, and ultimately into hardware. Historically, however,
lower-level languages were used before higher-level, more human-oriented languages
were developed. Because legacy systems originally developed and implemented in
such lower-level languages are difficult to maintain, it is common to re-implement
them in modern higher-level languages. This can sometimes be done by an inverse
process of decompiling lower-level programs into higher-level programs. However,
because of the undisciplined nature of low-level programming languages, the attempt
to decompile such programs may only be partially successful. In many cases it may
only be possible to approximate the lower-level programs by higher-level ones,
sometimes only guessing at their original purpose.

5.2 Combining Deliberative and Intuitive Thinking

The relationship between deliberative and intuitive thinking is analogous to the
relationship between higher-level and lower-level program execution.
 The simplest relationship is when, as the result of frequent repetition, deliberative
thinking migrates to the intuitive level – when, for example, a person learns to use a
keyboard, play a musical instrument, or drive a car. This is like compiling or
transforming a high-level program into a lower-level program. After a particular
combination of high-level, general-purpose procedures has been used many times
over, the combination is compressed into a computationally equivalent, lower-level
shortcut. The shortcut is a special-purpose procedure, which achieves the same result
as the combination of more general procedures, but it does so more efficiently and
with less awareness of its purpose.
 Conversely, intuitive thinking and tacit knowledge can sometimes be made explicit
– for example, when a linguist constructs a formal grammar for a natural language, a
coach explains how to swing a golf club, or a knowledge engineer develops an expert
system. This is like decompiling a low-level representation into a higher-level
representation. In many cases it can be hard to distinguish whether the low-level
representation is implemented in hardware or in software, and the resulting higher-
level representation may only be approximate.
 In computing, higher-level and lower-level programs can operate in tandem, as
when the lower-level program is used on a routine basis, but the higher-level program
is used to modify and recompile the lower-level program when it goes wrong or needs
to be updated. In human thinking, however, intuitive and deliberative thinking are
often coupled together more closely. Intuitive thinking generates candidate judgments
and actions rapidly and unconsciously, while deliberative thinking consciously
monitors the results. This close coupling of deliberative and intuitive thinking is like

 117

the use of pre-active thinking in ALP agents to monitor candidate actions generated
reactively by condition-action rules.
 These relationships between different levels of thinking are pictured, somewhat
imperfectly, in figure 6.

Pre-active
thinking

Reactive
thinking

Proactive
thinking

Decide

Maintenance goal
Achievement goal

Observe

Act

Fig. 6. The world

condition-action rules or
stimulus-response
associations

conscious

sub-conscious

5 Neural Networks

It is a common view in Cognitive Science that intuitive thinking is best modelled by
sub-symbolic neural networks [13], which employ distributed representations with
hidden nodes that do not have a symbolic interpretation. However, in their text book,
Computational Intelligence: A Logical Approach, Poole et al [9] show how to
represent any feed-forward neural network as a logic program. Forward reasoning
with the logic program simulates forward execution of the neural network.
 Poole et al illustrate their representation with the example (figure 7) of a person’s
decision whether to read an article. The decision is based upon such factors as whether
the author is known or unknown, the article starts a new thread or is a follow-up
article, the article is short or long, and the person is at home or at work.
 The weights on the arcs are obtained by training an initial version of the network
with a training set of examples. In the logic program, “f” is a sigmoid function that
coerces the real numbers into the range [0,1]. Similarly, the “strengths” of the inputs
lie in the range [0,1], where 0 is associated with the Boolean value false and 1 with
true.
 It is generally held that neural networks are unlike logic, in that they can have
hidden units that can not be interpreted as concepts or propositions. Indeed, Poole et al
characterize their example as illustrating just that point. However, in my formulation
of the logic program, to make it more readable, I have given the predicate symbols
“meaningful” predicate names, interpreting the hidden units in the middle layer of the
network as summarizing the arguments for and against reading the paper.

 118

Example Action Author Thread Length Where read

E1 skip known new long home
E2 reads unknown new short work
E3 skips unknown follow-up long work

Neural network

 inputs hidden units output

known

new
 read

short

home

Fig. 7.

Logic program

I read with strength S3
if there is an argument for reading with strength S1
and there is an argument against reading with strength S2
and S3 = f(-2.98 + 6.88 S1 – 2.1 S2)

There is an argument for reading with strength S1
if known with strength S4
and new with strength S5
and short with strength S6
and home with strength S7
and S1 = f(– 5.25 + 1.98 S4 + 1.86 S5 + 4.71 S6 – .389 S7)

 There is an argument against reading with strength S2

if known with strength S4
and new with strength S5
and short with strength S6
and home with strength S7
and S2 = f(.493 - 1.03 S4 - 1.06 S5 - .749 S6 + .126 S7)

 The logic program is an exact, logical representation of the neural network.
However, it employs numerical values and functions, which can only be approximated
by a natural language representation, such as this:

 I read an article
 if the argument for reading the article is strong
 and the argument against reading the article is weak.

 There is an argument for reading an article
 if the article is short.

There is an argument against reading an article
if the thread is a follow-up and the author is unknown.

 119

 The terms “strong” and “weak” are explicitly vague, whereas the notions of “an
article being short”, “a thread being new” and “an author being known” are implicitly
vague. Taking this into account, the representation can be transformed into a simpler
form, where all vagueness is implicit and where the arguments for and against reading
an article are also implicit:

 I read an article
 if the article is short and the thread is new.

 I read an article
 if the article is short and the thread is a follow-up and the author is known.

 Expressed in this way and treating the sentences as goals rather than as beliefs, the
problem of deciding whether to read an article is similar to the problem of deciding
whether to take an umbrella when leaving home. In both cases, the decision depends
upon the interpretation of implicitly vague concepts, such as an article being short or
there being dark clouds in the sky.
 In both cases, moreover, the decision can also be made at a higher-level, by
analysing the goals and other outcomes that the decision might be expected to achieve.
In the case of reading an article, is the higher-level goal to gain information? Or is it
simply to be entertained? If it is to gain information, how likely is it that the article
will contain the information I am looking for? Is it worth the effort involved? Or
would it be better to consult an expert instead?
 In the case of taking an umbrella when I leave home, is the higher-level goal to
keep my hair and clothing neat and tidy? Or is it to avoid catching a chill and coming
down with a cold? In the first case, maybe it should just wear a hat and some suitable
outdoor clothing. In the second case, if I am so fragile, then maybe I should stay home
or travel by taxi.

6 Logic as wide-spectrum language of thought

The neural network example suggests that logic can represent a wide spectrum of
levels of thought, ranging from subconscious thought at the neural network level to
conscious thought in natural language. At the neural network level, logic programs
can represent connections among vague concepts that hold with varying degrees of
strength. Although these degrees might have precise values at the neurological level,
they are not accessible to higher-levels of consciousness and can only be
approximated in natural language.
 A number of authors have investigated the relationship between neural networks
and logic programs. One of the earliest of these investigations, by Holldobler and
Kalinke [15], studied the problem of translating normal logic programs into neural
networks. More recently, Stenning and van Lambalgen [16] have argued that the
implementation of logic programs by neural networks shows that logic can model
intuitive thinking in the dual process model. D’Avila Garcez, Broda and Gabbay [14],
on the other hand, studied the problem of extracting higher-level, “meaningful” logic
programs from neural networks. Taken together with the direct translation of neural
networks into correspondingly low-level logic programs of Poole et al [9], these
studies suggest that logic can model different levels of thought, from neural networks
to natural language.
 The relationship between logic and natural language is normally viewed from the
linguistic perspective, by studying the problem of extracting logical meaning from
natural language. But it can also be viewed from the knowledge representation
perspective, by comparing the logical form of an agent’s thoughts with the
communication of those thoughts to another agent in natural language.
 Although logical representations are normally presented in symbolic, mathematical
form, they can also be expressed in a stylized form of natural language, as in this
paper. Both of these forms are unambiguous and context-independent. Thus, to the
extent that some form of logic is adequate for knowledge representation, this provides

 120

evidence that human agents might think in a mental language that is a logical form of
natural language.
 In contrast with the thoughts we have in our mind, our natural language
communication of those thoughts is generally more ambiguous and context-sensitive
than we intend. This suggests that our thoughts may be more logical than their natural
language expression might suggest. Even natural language communications that seem
to be in explicit logical form can be more ambiguous than they seem on the surface.
 As Stenning and van Lambalgen [16] argue, natural language communications
need to be interpreted to determine their intended logical form, even when those
communications are already expressed in logical form. They argue that the gap
between the surface logical structure of sentences and the deeper logical structure of
their intended meanings helps to explain and refute certain psychological experiments
that suggest that people are not logical. They show, moreover, that human
performance in these experiments is compatible with the thesis that people apply
logical reasoning to the intended meanings of sentences rather than to their surface
form. In fact, in their main example, they show, not only that the intended meanings
of sentences can be expressed in logical form, but that they have logic programming
form, and that the minimal model semantics of logic programs gives a better analysis
of human performance in these experiments than the classical semantics of traditional
logic.
 This difference between the surface structure of natural language and its
underlying logical form is illustrated also by the second sentence of the London
underground Emergency Notice:

 If there is an emergency then you press the alarm signal button.
 The driver will stop if any part of the train is in a station.

 The second sentence has an explicitly logical form, due to its use of the logical
connective “if” and the quantifier “any”. However, taken literally, the sentence
doesn’t express what its authors probably had in mind:

 The driver will stop the train if someone presses the alarm signal button
 and any part of the train is in a station.

 It is likely that most people interpret the second sentence of the Notice as it is
intended, rather than as it is expressed. This suggests that people are more logical than
many psychologists are inclined to believe.

7 Thinking = Logic + Control

The view that logic can serve as a wide-spectrum language of thought is in marked
contrast with conventional views of logic in cognitive science. Paul Thagard [11], for
example, in his introductory textbook, “Mind: Introduction to Cognitive Science”
(page 45) writes:

“In logic-based systems the fundamental operation of thinking is logical
deduction, but from the perspective of rule-based systems the fundamental
operation of thinking is search.”

 Here he uses the term “rule-based system” to refer to condition-action rule
production systems. He then goes on to say that among the various models of thinking
investigated in cognitive science, rule-based systems have “the most psychological
applications” (page 51).
 Jonathan Baron [1] in his textbook, “Thinking and Deciding” writes, page 4:

“Thinking about actions, beliefs and personal goals can all be described in
terms of a common framework, which asserts that thinking consists of search
and inference. We search for certain objects and then make inferences from
and about the objects we have found.”

 121

 Baron associates logic with making inferences, but not with performing search. He
also distinguishes thinking from deciding, but restricts the application of logic to the
pre-active, inference-making component of thinking.
 Both Thagard and Baron fail to recognize that, to be used in practice, logic needs
to be controlled. This could be put in the form of a pseudo-equation48:

 Thinking = Logic + Control.

 Here the term “Logic” refers to goals and beliefs expressed in logical form and
“Control” refers to the manner in which the inference rules of logic are applied.
Control includes the use of forward and backward reasoning. In the case of backwards
reasoning, it includes strategies for selecting sub-goals, as well as strategies for
searching for alternative ways of solving goals and sub-goals. It also includes the
application of inference rules in sequence or in parallel.
 Frawley [13] argues that the analysis of algorithms into logic plus control also
applies to mental algorithms and helps to explain different kinds of language
disorders. He argues that Specific Language Impairment, for example, can be
understood as a defect of the logic component of mental algorithms for natural
language, whereas Williams syndrome and Turner syndrome can be understood as
defects of the control component.
 In fairness to Thagard and Baron, it has to be acknowledged that they are simply
reporting generally held views of logic, which do not take into account some of the
more recent developments of logic in Artificial Intelligence. Moreover, both, in their
different ways, draw attention to characteristics of thinking that are missing both from
traditional logic and from the simple pro-active model of thinking associated with
logic programming. Thagard draws attention to the importance of reactive thinking
with condition-action rules, and Baron to the importance of pre-active thinking by
inference after search.

8 Conclusions

There isn’t space in this paper to discuss all of the arguments that have been made
against logic. Instead, I have considered only some of the most important alternatives
that have been advocated – production systems, decision theory, and neural networks,
in particular.
 In the case of production systems, I have argued that condition-action rules are
subsumed by maintenance goals in logical form. They are the special case of
maintenance goals in which no forward reasoning is necessary to process
observations, and no backward reasoning is necessary to reduce goals to sub-goals.
 In the case of decision theory, I have argued that forward reasoning can be used
pre-actively to derive possible consequences of candidate actions, and can be
combined with any way of deciding between the alternatives. One such possibility is
to use decision theory directly to choose a candidate action having maximum expected
utility. Another is to compile such decisions into heuristic maintenance goals that
approximate the decision-theoretic normative ideal.
 In the case of neural networks, I have considered how the low-level logic-
programming representation of feed-forward networks, given by Poole et al, might be
approximated by higher-level logical representations. I have also suggested that such
lower-level and higher-level logical representations might interact in a manner similar
to the way in which intuitive and deliberative thinking interact in the dual process
model. The lower-level representation proposes intuitive answers to problems as they
arise, and the higher-level representation monitors and modifies the proposals as time
allows.
 I have restricted my attention in this paper to the way in which logic can be used to
help control the routine, real-time behaviour of an intelligent agent. Except for
program transformation, in which a higher-level representation is compiled into a
more efficient, lower-level form, I have not considered the wider issues of learning

48 In the same sense that Algorithm = Logic + Control [5].

 122

and of revising goals and beliefs. Fortunately, there has been much work in this area,
including the work on inductive logic programming, which is relevant to this issue.
 Again for lack of space, I have not been able to discuss a number of extensions of
logic that have been developed in Artificial Intelligence and that are important for
human thinking. Among the most important of these is the treatment of default
reasoning and its interpretation in terms of argumentation. Also, I do not want to give
the impression that all of the problems have been solved. In particular, the treatment
of vague concepts and their approximations is an important issue that needs further
attention.
 Despite the limitations of this paper, I hope that it will suggest, not only that logic
deserves greater attention in Cognitive Science, but that it can be applied more
effectively by ordinary people in everyday life.

Acknowledgements

Many thanks to the anonymous reviewers and to Ken Satoh for their helpful
comments on an earlier draft of this paper.

References

1. Baron, J.: Thinking and Deciding (second edition). Cambridge University Press(1994)

2. Checkland, P.: Soft Systems Methodology: a thirty year retrospective. John Wiley Chichester
(1999)

3. Kahneman, D., Shane F.: Representativeness revisited: Attributive substitution in intuitive

judgement. In: Heuristics of Intuitive Judgement: Extensions and Applications, Cambridge
University Press (2002)

4. Kakas, T., Kowalski, R., Toni, F.: The Role of Logic Programming in Abduction. In: Gabbay,

D., Hogger, C.J., Robinson, J.A. (eds.): Handbook of Logic in Artificial Intelligence and
Programming 5. Oxford University Press (1998) 235-324

5. Kowalski, R.: Logic for Problem Solving. North Holland Elsevier (1979)

6. Kowalski, R.: How to be artificially intelligent. http://www.doc.ic.ac.uk/~rak/ (2002-2006)

7. Kowalski, R., Sadri, F.: From Logic Programming towards Multi-agent Systems. Annals of
Mathematics and Artificial Intelligence. Vol. 25 (1999) 391-419

8. Poole, D.L.: The independent choice logic for modeling multiple agents under
 uncertainty. Artificial Intelligence. Vol. 94 (1997) 7-56

9. Poole, D.L., Mackworth, A.K., Goebel, R.: Computational intelligence: a logical
 approach. Oxford University Press (1998)

10. Smith, E.R., DeCoster, J.: Dual-Process Models in Social and Cognitive
 Psychology: Conceptual Integration and Links to Underlying Memory Systems. Personality
and Social Psychology Review. Vol. 4 (2000) 108-131

11. Thagard, P.: Mind: Introduction to Cognitive Science. MIT Press (1996)

12. Vickers, G.: The Art of Judgement. Chapman and Hall, London (1965)

13. Frawley, W.: Control and Cross-Domain Mental Computation: Evidence from
 Language Breakdown. Computational Intelligence, 18(1), (2002) 1-28

 123

http://www.doc.ic.ac.uk/%7Erak/

14. d’Avila Garcez, A.S., Broda, K., Gabbay, D.M.: Symbolic knowledge extraction from trained
neural networks: A sound approach. Artificial Intelligence 125 (2001) 155–207

15. Holldobler, S. Kalinke, Y. : Toward a new massively parallel computational model for logic
programming. In Proceedings of the Workshop on Combining Symbolic and Connectionist
Processing, ECAI 94, (1994) 68-77

16. Stenning, K., van Lambalgen, M.: Semantic interpretation as computation in non-monotonic
logic. Cognitive Science (2006)

17. Nicolas, J.M., Gallaire, H.: Database: Theory vs. interpretation. In Gallaire, H.,
 Minker, J. (eds.): Logic and Databases. Plenum, New York (1978)

 124

Appendix 2

Computational Logic in an Object-Oriented World

Robert Kowalski

Imperial College London
rak@doc.ic.ac.uk

Abstract Logic and object-orientation (OO) are competing ways of looking at the world. Both
view the world in terms of individuals. But logic focuses on the relationships between individuals,
and OO focuses on the use of hierarchical classes of individuals to structure information and
procedures. In this paper, I investigate the similarities and differences between OO and abductive
logic programming multi-agent systems (ALP systems) and argue that ALP systems can combine
the advantages of logic with the main benefits of OO.
In ALP systems, relationships between individuals are contained in a shared semantic structure
and agents interact both with one another and with the environment by performing observations
and actions. In OO systems, on the other hand, relationships are associated with objects and are
represented by attribute-value pairs. Interaction between objects is performed by sending and
receiving messages.
I argue that logic can be reconciled with OO by combining the hierarchical, modular structuring of
information and procedures by means of objects/agents, with a shared semantic structure, to store
relationships among objects/individuals, accessed by observations and actions instead of by
message passing.

 Keywords: object-orientation, ALP systems, multi-agent systems, logic programming, Linda

1 Introduction

There was a time in the 1980s when it seemed that Computational Logic (CL) might become the
dominant paradigm in Computing. By combining the declarative semantics of logic with the
computational interpretation of its proof procedures, it could be applied to virtually all areas of
Computing, including program specification, programming, databases, and knowledge representation
in Artificial Intelligence.

But today it is Object-Orientation (OO), not Logic, that dominates every aspect of Computing –
from modelling the system environment, through specifying system requirements, to designing and
implementing the software and hardware. Like CL, OO owes much of its attraction, not only to its
computational properties, but also to its way of thinking about the world. If these attractions have real
substance, then they potentially undermine not only CL’s place inside Computing, but also its way of
modelling and reasoning about the world outside Computing.

The aim of this paper is to try to understand what makes OO so attractive and to determine whether
these attractions can be reconciled with CL, both in Computing and in the wider world. I will argue
that logic-based multi-agent systems can combine the advantages of CL with the main benefits of OO.

I will illustrate my argument by using abductive logic programming (ALP) multi-agent systems [1].
However, most of the argument applies to more general logic-based multi-agent systems, and even to
heterogeneous systems that use different programming languages, provided their external interfaces
can be viewed in logical terms.

ALP multi-agent systems (ALP systems, in short) are semantic structures, consisting of individuals
and relationships, as in the conventional semantics of classical logic. However, in ALP systems, these
structures can change state, in the same way that the real world changes state, destructively, without
remembering its past. Some individuals in the structure are agents, which interact with the world, by

 125

observing the world and by performing actions on the world. Other individuals passively undergo
changes performed by agents, and still other individuals, like numbers, are immutable and timeless.

ALP agents, which are individuals in the ALP semantic structure, also have an internal, syntactic
structure, consisting of goals and beliefs, which they use to interact with the world. Their beliefs are
represented by logic programs, and their goals are represented by integrity constraints. Their
observations and actions are represented by abducible (undefined) predicates.

I argue that such logic-based multi-agent systems share many of the attractions of OO systems. In
particular, they share with objects the view that the world consists of individuals, some of which
(objects or agents) interact with other individuals and change the state of the world. However, whereas
in OO systems relationships among individuals are associated with objects and are represented as
attribute-value pairs, in ALP systems relationships belong to the semantic structure of the world.

Both agents in ALP systems and objects in OO systems encapsulate their methods for interacting
with the world, hiding their implementation details from other agents and objects. Both agents and
objects can inherit their methods from more general classes of agents or objects. Whereas objects use
methods implemented in conventional, imperative programming languages, ALP agents use methods
implemented by means of goals and beliefs in logical form. The methods used by ALP agents have
both a procedural behaviour, as well as a declarative semantics. In the declarative semantics, the goals
and beliefs of an agent have a truth value in the semantic structure that is the ALP system as a whole.
Normally, beliefs that are true and goals that can be made true are more useful to an agent than ones
that are false49.

Both ALP systems and OO systems share a local notion of change, in which changes can take place
in different parts of the world locally, concurrently and independently. This local notion of change
contrasts with the global notion that is prevalent in most logical treatments, including the possible
world semantics of modal logic and the situation calculus. The global notion of change is useful for
theoretical purposes, but the local notion is more useful both as a model of the real world and as a
model for constructing artificial worlds.

ALP agent systems differ from OO systems in one other important respect: Whereas objects interact
by sending and receiving messages, agents interact by observing and performing actions on the shared
semantic structure. This semantic structure acts as a shared environment, similar to the blackboard in a
blackboard system [8] and to the tuple-space in a Linda programming environment [2]. In the same
way that Linda processes can be implemented in different and heterogeneous programming languages,
the methods used by ALP agents can also be implemented in other programming languages, provided
their externally observed behaviour can be viewed in logical terms.

In the remainder of the paper, I will first introduce ALP systems in greater detail and then
distinguish between the semantic and syntactic views of OO systems. I will then compare OO systems
and ALP systems by investigating how each kind of system can be simulated by the other. The
directness of these simulations is the basis for the comparison of the two approaches. The simulations
are informal and should be viewed more as illustrations than as outlines of formal theorems.

49 A false belief can be more useful than a true belief, if the truth is too complicated to use in practice.

 126

2 The Logical Way of Looking at the World

The logical view

Sentences

The world

True or false

= syntax

= semantics

• The world gives meaning to sentences.
• Individuals are named by terms.
• Relations are named by predicate symbols.
• Sentences of logic correspond to

declarative sentences of natural language.

Figure 1. The relationship between syntax and semantics.

In logic there is a clear distinction between syntax and semantics. Syntax is concerned with the

grammatical form of sentences and with the inference rules that derive conclusion sentences from
assumption sentences. Semantics is concerned with the individuals and relationships that give
sentences their meaning. The relationship between syntax and semantics is pictured roughly in figure
1.

The distinction between atomic sentences and the semantic relationships to which they refer is
normally formalised by defining an interpretation function, which interprets constant symbols as
naming individuals and predicate symbols as naming relations. However, it is often convenient to blur
the distinction by restricting attention to Herbrand interpretations, in which the semantic structure is
identified with the set of all atomic sentences that are true in the structure. However, the use of
Herbrand interpretations can sometimes lead to confusion, as in the case where a set of atomic
sentences can be considered both semantically as a Herbrand interpretation and syntactically as a set of
sentences. Sometimes, to avoid confusion, atomic sentences understood as semantically as
relationships are also called facts.

For notational convenience, we shall restrict our attention to Herbrand interpretations in the
remainder of the paper. However, note that, even viewing Herbrand interpretations as syntactic
representations, there is an important sense in which they differ from other syntactic representations.
Other syntactic representations can employ quantifiers and logical connectives, which generalize,
abstract and compress many atomic sentences into a smaller number of sentences, from which other
sentences, including the atomic sentences, can be derived.

2.1 ALP Agents

Traditional logic is often accused by its critics of being too concerned with static states of affairs and
of being closed to changes in the world. The first of these criticisms has been addressed in various
ways, either by making the semantics more dynamic, as in the possible worlds semantics of modal
logic, or by making the syntax more expressive by reifying situations or events, as in the situation or
event calculus.

The second of these criticisms has been addressed by embedding logic in the thinking component of
the observation-thought-decision-action cycle of an intelligent agent, for example as in ALP agents,
pictured in figure 2.

 127

Figure 2. Logic as the thinking component of an intelligent agent

Representation
of the world

= sentences expressing
 goals and beliefs

act observe

The world

In ALP agents, beliefs are represented by logic programs and goals are represented by integrity
constraints. Integrity constraints are used to represent a variety of kinds of goals, including
maintenance goals, prohibitions, and condition-action rules. Abducible predicates, which are not
defined by logic programs, but are restricted by the integrity constraints, are used to represent
observations and actions.

ALP agents implement reactive behaviour, initiated by the agent’s observations, using forward
reasoning to trigger maintenance goals and to derive achievement goals. They also implement
proactive behaviour, initiated by achievement goals, using backward reasoning to reduce goals to sub-
goals and to derive action sub-goals. In addition to reactive and proactive thinking, ALP agents can
also perform pre-active thinking [20], using forward reasoning to simulate candidate actions, to derive
their likely consequences, to help in choosing between them.

2.2 An ALP Agent on the London Underground

Passengers on the London underground have a variety of goals – getting to work, getting back home,
going out shopping or visiting the tourist attractions. In addition, most, law-biding passengers are also
concerned about safety. This concern can be represented by goals in logical form, which might include
the (simplified) goal:

 If there is an emergency then I get help.

To recognize when there is an emergency and to find a way to get help, a passenger can use beliefs50
in logic programming form:

I get help if I alert the driver.
I alert the driver if I press the alarm signal button.

There is an emergency if there is a fire.
There is an emergency if one person attacks another.
There is an emergency if someone becomes seriously ill.
There is an emergency if there is an accident.

The beliefs about getting help are declarative sentences, which may be true or false about the effect of
actions on the state of the world. The beliefs about emergencies are also declarative sentences, but they
are simply true by definition, because the concept of emergency is an abstraction without a direct
interpretation in concrete experience.

50 For simplicity, this representation of goal and beliefs ignores the element of time.

 128

In ALP, beliefs can be used to reason forwards or backwards. Forward reasoning is useful for
deriving consequences of observations and candidate actions. Backward reasoning is useful for
reducing goals to sub-goals. A combination of forward and backward reasoning in the London
underground example is illustrated in figure 3.

The mental activity of an ALP agent is encapsulated in the agent, hidden from an observer, who can
see only the agent’s input-output behaviour. In the case of the London underground passenger, this
behaviour has the logical form:

 If there is a fire, then the passenger presses the alarm signal button.

As far as the observer is concerned, this externally visible, logical form of the passenger’s

behaviour could be implemented in any other mental representation or programming language.

If there is an emergency then get help

get help
There is an emergency

alert the driver
There is a fire

observe act

The world

Figure 3. ALP combines forward and backward reasoning

press the
alarm signal
button

2.3 ALP Agent Systems

Similarly to the way that agents interact with other individuals in real life, ALP agents interact with
other individuals embedded in a shared environment. This environment is a semantic structure
consisting of individuals and relationships. Some of the individuals in the environment are agents of
change, while others undergo changes only passively. To a first approximation, we can think of an
ALP environment as a relational database, which changes destructively as the result of agents’ actions.

The environment that ALP agents share is a dynamic structure, in which relationships come and go
as the result of actions, which occur locally, concurrently and independently of other actions. Because
this environment is a semantic structure, relationships can appear and disappear destructively, without
the environment having to remember the past. In the London underground example, the observations
and actions of the passenger, train driver and fire department agents are illustrated in figure 4. Instead
of standing apart and, as it were, above the world, as pictured in figures 1-3, the agents are embodied
within it. Their actions change the shared environment by adding and deleting facts (or relationships):

 The passenger’s action of pressing the alarm signal button
 deletes the fact that the alarm is off and
 adds the fact that the alarm is on.

 The driver’s action of calling the fire department
 adds the fact that the fire department has been called.

 The fire department’s action of putting out the fire
 deletes the fact that there is a fire in the train.

 129

Call fire
department.

Press the
alarm
signal
button.

fire
department

passenger

driver

Figure 4. An ALP system.

Alarm has
gone off.

Put out
the fire.

There is
a fire.

Fire
reported

The World

The driver’s action of calling the fire department can be viewed as sending the

fire department a message, in the form of a fact that is stored in the shared
environment. The fire department observes the message and, if it chooses, may
delete it from the environment. Other agents may be able to observe the message,
as long as it remains in the environment, provided they can access that part of the
environment.

Notice that, just as in the case of a single agent, an observer can see only the
agents’ external behaviour. In this case also, that behaviour has a logical form:

 If there is a fire, then the passenger presses the alarm signal button.
 If the alarm has gone off, then the driver calls the fire department.
 If a fire is reported, then the fire department puts out the fire.

These implications can be combined with sentences describing the effect of the agents’ actions on

the world:

 If a person presses the alarm signal button, then the alarm goes off.
 If a person calls the fire department, then a fire is reported.

to derive the input-output behaviour of the combined system as a whole:

 If there is a fire, then the fire department puts out the fire.

3 Object-Oriented Systems

Despite the dominant position of OO in Computing, there seems to be no clear definition or consensus
about its fundamental concepts. One recent attempt to do so [21] identifies inheritance, object, class,
encapsulation, method, message passing, polymorphism, and abstraction, in that order, as its most
frequently cited features. However, the relative importance of these concepts and their precise meaning
differs significantly from one OO language to another. This makes comparison with logic very
difficult and prone to error. Therefore, the claims and comparisons made in this paper need to be
judged and qualified accordingly.

Nonetheless, viewed in terms of the concepts identified in [21], the argument of this paper can be
simply stated as claiming that all of these concepts are either already a feature of ALP systems (and
other, similar logic-based multi-agent systems) or can readily be incorporated in them, with the
exception of message-passing.

OO shares with logic the view that the world consists of individuals, some of which (objects or
agents) interact with other individuals and change the state of the world. In OO, objects interact with
one another by sending and receiving messages, using encapsulated methods, which are hidden from

 130

external observers, and which are acquired from more general classes of objects, organised in
hierarchies.

Whereas ALP agents use goals and beliefs to regulate their behaviour, objects use methods that are
typically implemented by means of imperative programming language constructs. An object-oriented
system corresponding to the multi-agent system of figure 4 is pictured in figure 5.

Call fire
department.

Press the
alarm
signal

fire
department

passenger

 driver

Figure 5. An object-oriented system

alarm
signal
button

Alarm is on.

 fire

There is
a fire.

Put out
the fire.

Both ALP systems and OO systems can be viewed as semantic structures, in which the world is
composed of individuals that interact with one another and change state. However, there are important
differences between them:

1. The treatment of individuals. In ALP systems, a distinction is made between agents, which are

active, and other individuals, which are passive. In OO systems, both kinds of individuals are
treated as objects.

2. The treatment of attributes and relationships. In the semantic structures of logic, individuals have
externally observable attributes and relationships with other individuals. Attributes are treated
technically as a special case of relationships.

In OO systems, relationships between objects are treated as attributes of objects. Either one of
the objects in a relationship has to be treated as its “owner”, or the relationship needs to be
represented redundantly among several “owners”.

3. The way of interacting with the world. ALP agents interact with the world by observing the current
state of the world and by performing actions to change it. A relationship between several
individuals can be accessed in a single observation; and a single action can change the states of
several relationships.
 Objects in OO systems, on the other hand, interact with one another directly by sending and
receiving messages. But the concept of “message” is not defined. In many - perhaps most - cases,
messages are used to request help from other objects in solving sub-goals. In other cases, messages
are used to send information (including solutions of sub-goals) from one object to another. But in
the general case, in many OO languages, messages can be used for any arbitrary purpose.

3.1 Object-oriented Systems as Syntactic Structures

The relationship between logic and objects can be viewed in both semantic and syntactic terms.
However, it is the syntactic structuring of information and methods into encapsulated hierarchies of
classes of objects that is perhaps the most important reason for the practical success of OO in
Computing.

In ALP systems, information and methods are syntactically formulated by means of goals and
beliefs in logical form. In OO systems, methods are typically implemented in an imperative language.
In both cases, internal processing is encapsulated, hidden from other agents or objects, and performed
by manipulating sentences in a formal language.

 131

In logic, there is a well understood relationship between syntax and semantics, in which declarative
sentences are either true or false. In ALP agents, declarative sentences representing an agent’s goals
and beliefs are similarly true or false in the semantic structure in which the agent is embedded.

In OO systems, where methods are implemented in imperative languages, there is no obvious
relationship between the syntax of an object’s methods and the semantic structure of the OO system as
a whole. In part, this is because purely imperative languages do not have a simple truth-theoretic
semantics; and, in part, because messages do not have a well defined intuitive interpretation.

3.2 Natural Language and Object-orientation

We can better understand the nature of OO and logical syntax by comparing them both with natural
language. Comparing logic with natural language, an important difference is that sets of sentences in
logic are unstructured and can be written in any order, without affecting their meaning. But in natural
language, the way in which sentences are grouped together and the order in which they are presented
affects both their meaning and their intelligibility.

In contrast with logic, but like natural language, OO is also concerned with the structuring of
sentences. It structures sentences by associating them with the objects that the sentences are about.
Natural languages, like English, employ a similar form of object-orientation by using grammatical
structures in which the beginning of a sentence indicates a topic and the rest of the sentence is a
comment about the topic. This kind of structure often coincides with, but is not limited to, the
grammatical structuring of sentences into subjects51 and predicates.

Consider, for example, the pair of English sentences [3, p. 130]:

 The prime minister stepped off the plane.
 Journalists immediately surrounded her.

Both sentences are formulated in the active voice, which conforms to the guidelines for good writing
style advocated in most manuals of English.

The two sentences refer to three individuals/objects, the prime minister (referred to as “her” in the
second sentence), journalists and the plane. The prime minister is the only object in common between
the two sentences. So, the prime minister is the object that groups the two sentences together.
However, the topic changes from the prime minister in the first sentence to the journalists in the
second.

Now consider the following logically equivalent pair of sentences:

 The prime minister stepped off the plane.
 She was immediately surrounded by journalists.

Here the two sentences have the same topic, which is the individual/object they have in common.
However, the second sentence is now expressed in the passive voice.

Despite the fact that using the passive voice goes against the standard guidelines of good writing
style, most people find the second pair sentences easier to understand. This can be interpreted as
suggesting that people have a strong preference for organising their thoughts in object-oriented form,
which is even stronger than their preference for the active over the passive voice.

However, OO is not the only way of structuring sentences. Both linguists and proponents of good
writing style have discovered a more general way, which includes OO as a special case. As Joseph
Williams [4] argues:

 Whenever possible, express at the beginning of a sentence ideas already stated, referred to, implied,

safely assumed, familiar, predictable, less important, readily accessible.

 Express at the end of a sentence the least predictable. The newest, the most important, the most

significant information, the information you almost certainly want to emphasize.

This more general way of structuring sentences also includes the use of logical form to make sets of

sentences easier to understand. For example:

51 In this analogy between objects and topics, objects are more like the grammatical subjects of
sentences than they are like the grammatical objects of sentences.

 132

 A if B. or D.
 B if C. If D then C.
 C if D. If C then B.
 D. If B then A.

3.3 Classes in Object-Oriented Systems Correspond to Sorts in Logic

Perhaps the most important practical feature of OO systems is the way in which objects acquire their
methods from more general classes of objects. For example, an individual passenger on the
underground can obtain its methods for dealing with fires from the more general class of all humans,
and still other methods from the class of all animals.

Thus, classes can be organised in taxonomic hierarchies. Objects acquire their methods from the
classes of which they are instances. Similarly sub-classes can inherit their methods from super-classes
higher in the hierarchy, possibly adding methods of their own.

However, classes and class hierarchies are neither unique nor original features of OO systems.
Classes correspond to types or sorts in many-sorted logics, and hierarchies of classes correspond to
hierarchies of sorts in order-sorted logics.

Sorts and hierarchies of sorts can be (and have been) incorporated into logic programming in many
different ways. Perhaps the simplest and most obvious way is by employing explicit sort predicates,
such as Passenger(X) or Human(X), in the conditions of clauses, together with clauses defining sort
hierarchies and instances, such as:

 Human(X) if Passenger(X)
 Passenger(john).

However, even unsorted logic programs already have a weak, implicit hierarchical sort structure in

the structure of terms. A term f(X), where f is a function symbol, can be regarded as having sort f().
The term f(g(X)), which has sort f(g()) is a sub-sort of f(), and the term f(g(a)), where a is a constant
symbol is an instance of sort f(g()). Two terms that differ only in the names of variables, such as
f(g(X)) and f(g(Y)) have the same sort. Simple variables, such as X and Y, have the universal sort.
Both explicitly and implicitly sorted logic programs enjoy the benefits of inheritance52.

Although sorts and inheritance are already features of many systems of logic, OO goes further by
grouping sentences into classes. Sentences that are about several classes, such as the methods for
humans dealing with fire, have to be associated either with only one of the classes or they have to be
associated with several classes redundantly.53

3.4 Object-Oriented Logic Programming

We can better understand the relationship between OO systems and ALP systems if we see what is
needed to transform one kind of system into the other. First, we will show how, under certain
restrictions, logic programs can be transformed into OO systems. Later, we will show how to extend
this transformation to ALP systems, and then we will show how to transform OO systems into ALP
systems. In each of these cases, the OO system is an idealized system, corresponding to no specific
OO language in particular. Thus the claims made about these transformations need to be qualified by
this limitation.

52 Inheritance can be inhibited by the use of abnormality predicates. For example, the clauses Fly(X) if
Bird(X) and not Abnormal(X), Bird(X) if Penguin(X), Walk(X) if Penguin(X), Swim(X) if
Penguin(X), Abnormal(X) if Penguin(X) prevent penguins from inheriting the property of flying from
the more general class of all birds.

53 The problem of choosing a class or class hierarchy to contain a given sentence is similar to the
problem of choosing a folder to store a file. Search engines like Google make it possible to store
information in one structure but to access it without reference to the place it is stored. It also makes it
possible to store information in an unstructured way, without any penalty in accessing it. Email clients
offer similar, but more limited facilities to order emails by such different attributes as sender, date,
subject, size, etc., without needing to duplicate them.

 133

OO grouping of sentences into classes can be applied to any language that has an explicit or implicit
class structure, including sentences written in formal logic. However, as we have just observed, an
arbitrary sentence can be about many different individuals or classes, making it hard to choose a single
individual or class to associate with the sentence.

But it is easier to choose a class/sort for clauses in logic programs that define input-output
predicates. For such programs, it can be natural to nominate one of the input arguments of the
conclusion of a clause (or, more precisely, the sort of that argument) to serve as the “owner” of the
clause. The different instances of the nominated input argument behave as sub-classes and objects,
which use the clause as a method to reduce goals to sub-goals.

Whereas arbitrary messages in OO systems may not have a well-defined intuitive interpretation,
messages in OO systems that implement input-output logic programs either send requests to solve
goals and sub-goals or send back solutions. An object responds to a message requesting the solution of
a goal by using a clause to reduce the goal to sub-goals. The object sends messages, in turn, requesting
the solution of the sub-goals, to the objects that are the owners of the sub-goals. When an object solves
a goal or sub-goal, it sends the solution back to the object that requested the solution.

More formally, let a logic program contain the clause:

 P0(o0 , t01 , … , t0m0) if P1(o1 , t11 , … , t1m1) and … and Pn(on , tn1 , … , tnmn)

where, without loss of generality, the sort of the first argument of each predicate is selected as the
owner of the clause. We also call that argument the “owner argument”. Assume also that each such
owner argument oi is an input argument in the sense that at the time the predicate is invoked, as a goal
or sub-goal for solution, the argument oi is instantiated to some object (variable-free term).

Assume for simplicity that the sub-goals in the body of the clause are executed, Prolog-fashion, in
the order in which they are written. Then the use of the clause to solve a goal of the form P0(o’0 , t’01 ,
… , t’0m0), where o’0 is a fully instantiated instance of o0 , is simulated by some sender object o sending
the goal in a message to the receiver object o’0 and by the receiver object:

0. matching the goal with the head of the clause,
 obtaining some most general unifying substitution θ0

1. sending a message to object o1 θ0 to solve the sub-goal

 P1(o1 , t11 , … , t1m1) θ0

 receiving a message back from o1 θ0 reporting that the sub-goal
 P1(o1 , t11 , … , t1m1) θ0 has been solved with substitution θ1

……
n. sending a message to object on θ0θ1… θn-1 to solve the goal

 Pn(on , tn1 , … , tnmn) θ0θ1… θn-1

receiving a message back from on θ0θ1… θn-1 that the goal
 Pn(on , tn1 , … , tnmn) θ0θ1… θn-1 has been solved with substitution θn

n+1. sending a message back to the sender object o that the goal

 P0(o0, t01 , … , t0m0) θ0 has been solved with substitution θ0θ1… θn-1 θn.

Notice that objects oi and oj need not be distinct. The special case of an object sending a message to

itself can be short circuited by the object simply solving the sub-goal locally itself.
If n=0, then the clause represents a relationship between the owner object and other individuals. The

relationship is represented only once, associated with the owner object. All such relationships, like all
other clauses, are encapsulated and can be accessed by other objects only by sending and receiving
messages.

For example, the atomic clauses:

 Father(john, bill)
 Father(john, jill)
 Mother(mary, bill)
 Mother(mary, jill)

would be encapsulated within the john and mary objects. The goal Father(john, X) sent to the object
john would receive two messages X=bill and X=jill in return.

 134

It would not be possible with this simple implementation to find out who are the parents of bill or
jill. This problem can be solved by redundantly nominating more than one argument to serve as the
owner of a clause.

Notice that methods can be public or private. Public methods are ones that are known by other
objects, which those objects can invoke by sending messages. Private methods are ones that are used
only internally.

3.5 Polymorphism

The mapping from input-output logic programs to OO systems illustrates polymorphism. In the
context of OO systems, polymorphism is the property that the “same” message can be sent to and be
dealt with by objects belonging to different classes; i.e. except for the class of the recipient, everything
else about the message is the same:

 P(o , t1 , … , tm) and P(o’, t1 , … , tm).

Thus objects from different classes can respond to the same message using different methods.
Like classes and class hierarchies, polymorphism is neither a unique nor an original feature of OO

systems. In the context of logic, polymorphism corresponds to the fact that the same predicate can
apply to different sorts of individuals.

3.6 Aspects as Integrity Constraints in Abductive Logic Programming

The mapping from logic programs to OO systems highlights a number of features of logic
programming that are not so easily addressed in OO systems. I have already mentioned the problem of
appropriately representing relationships, as well as the problem about representing more general logic
programs that do not have input-output form. However, a problem that has attracted much attention in
software engineering, and which is addressed in ALP, is how to represent cross-cutting concerns,
which are behaviours that span many parts of a program, but which can not naturally be encapsulated
in a single class.

Integrity constraints in ALP have this same character. For example, the concern:

 If a person enters a danger zone,
 then the person is properly equipped to deal with the danger.

cuts across all parts of a program where there is a sub-goal in which a person needs to enter a danger
zone (such as a fireman entering a fire). In ALP, this concern can be expressed as a single integrity
constraint, but in normal LP it needs to scattered throughout the program, by adding to any clause that
contains a condition of the form:

 a person enters a danger zone

an additional condition:

 the person is properly equipped to deal with the danger.

In software engineering the problem of dealing with such cross-cutting concerns is the focus of

aspect-oriented programming (AOP) [5]. AOP seeks to encapsulate such concerns through the
introduction of a programming construct called an aspect. An aspect alters the behavior of a program
by applying additional behavior at a number of similar, but different points in the execution of the
program.

Integrity constraints in ALP give a declarative interpretation to aspects. ALP provides the
possibility of executing such integrity constraints as part of the process of pre-active thinking [20], to
monitor actions before they are chosen for execution. This is like using integrity constraints to monitor
updates in a database, except that the updates are candidates to be performed by the program itself.

It is also possible to transform logic programs with integrity constraints into ordinary logic
programs without integrity constraints [6,7]. This is similar to the way in which aspects are
implemented in AOP. However, whereas in AOP the programmer needs to specify the “join points”

 135

http://en.wikipedia.org/wiki/Aspect_%28computer_science%29

where the aspects are to be applied, in logic programming the transformations of [6, 7] can be
performed automatically by matching the conditions of integrity constraints with conditions of
program clauses.

4 The Relationship between OO systems and ALP Systems

The mapping from input-output logic programs to OO systems can be extended to more general ALP
agent systems, and a converse mapping is also possible. These mappings exploit the correspondence
between agents and objects, in which both are viewed semantically as individuals, mutually embedded
with other individuals in a common, dynamically changing world. Both agents and objects process
their interactions with the world, by manipulating sentences in a formal language, encapsulated, and
hidden from other individuals.

The biggest difference between logic and objects, and therefore between ALP agents and objects, is
their different views of semantic structure. For logic, the world is a relational structure, consisting of
individuals and relationships that change over time. Such changes can be modeled by using the
possible world semantics of modal logic or by treating situations or events as individuals, but they can
also be modeled by using destructive assignment.

With destructive assignment, the world exists only in its current state. Agents perform actions,
which initiate new relationships (by adding them) and terminate old relationships (by deleting them),
without the world remembering its past. The agents themselves and their relationships with other
individuals are a part of this dynamically and destructively changing world.

ALP agents, as well as undergoing destructive changes, can also represent changes internally among
their beliefs. Using such syntactic representations of change, they can represent, not only the current
state of the world, but also past states and possible future states. We will return to this use of logic to
represent change later in the paper.

Whereas logic distinguishes between changes that take place in the semantic structure of the world
and changes that are represented syntactically in an agent’s beliefs, objects do not. In OO systems, all
changes of state are associated with objects. It makes it easy for objects to deal with changes of values
of attributes, but more difficult for them to deal with changes of relationships.

 The different ways in which logic and objects view the world are reflected in the different ways in
which they interact with the world. In OO systems, because the state of the world is distributed among
objects as attribute-value pairs, the only way an object can access the current state is by accessing the
attribute-value pairs of objects. The only way an object can change the current state is by changing the
attribute-value pairs of objects. In some OO languages these operations are carried out by sending and
receiving messages. In other OO languages they are performed directly.

ALP agents, on the other hand, interact by observing and acting on the external world. These
interactions typically involve observing and changing relationships among arbitrarily many
individuals, not only attributes of individual objects. This way of interacting with the world is similar
to the way that processes use the Linda tuple-space as a shared environment and to the way that
experts use the blackboard in a blackboard expert system.

4.1 Transformation of ALP systems into OO systems

Agents. Our earlier transformation of input-output logic programs into OO systems implicitly treats
the owners of clauses as agents. In this transformation, the owner of a clause/belief is selected from
among the input arguments of the conclusion of the clause. However, in ALP systems, goals and
beliefs are already associated with the agents that are their owners. In transforming ALP systems into
OO systems, therefore, it is a simple matter just to treat agents as objects and to treat their goals and
beliefs as the objects’ methods. In some cases, this transformation of agents into objects coincides with
the transformation of input-output logic programs into OO systems. However, in many other cases, it
is more general.

The ALP semantic structure. An agent’s beliefs include its beliefs about relationships between
individuals, expressed as unconditional clauses. The individuals included in these relationships need
not explicitly include the agent itself, as in the case of a passenger’s belief that there is a fire in a train.
These beliefs can be used as methods to respond to requests for information from other agents/objects.

In addition to these syntactic representations of relationships as beliefs, an ALP system as a whole
is a semantic structure of relationships between individuals. This semantic structure can also be

 136

transformed into objects and their associated attribute-values, similarly to the way in which we earlier
associated input-output clauses with owner objects and classes.

However, to obtain the full effect of ALP systems, we need to let each of the individuals oi in a
semantic relationship P(o1 , …, on) (expressed as an atomic fact) be an object, and to associate the
relationship redundantly with each of the objects oi as one of its attribute-values. The problem of
representing such relationships redundantly has been recognized as one of the problems of OO, and
representing relationships as aspects in AOP [9] has been suggested as one way of solving the
problem.

Notice that an object corresponding to an agent can contain two representations of the same
relationship, one as an attribute-value representation of a semantic relationship, and the other as a very
simple method representing a belief. When the two representations give the same result, the belief is
true. When they give different results, the belief is false.

Actions. Actions and observations need to be transformed into sending and receiving messages. An
action performed by an agent A that initiates relationships

 P1(o11 , …, o1l1)
 ……..
 Pn(on1 , …, onln)

and terminates relationships

 Q1(p11 , …, p1k1)
 ……..
 Qm(pm1 , …, pmkn)

is transformed into a message sent by object A to each object oij to add Pi(oi1 , …, oil1) to its attribute-
values together with a message sent by A to each object pij to delete Qi(pi1 , …, pik1) from its attribute-
values.

Observations. The transformation of observations into messages is more difficult. Part of the
problem has to do with whether observations are active (intentional), as when an agent looks out the
window to check the weather, or whether they are passive (unintentional), as when an agent is startled
by a loud noise. The other part of the problem is to transform an observation of a relationship between
several objects into a message sent by only one of the objects as the messenger of the relationship. To
avoid excessive complications, we shall assume that this problem of selecting a single messenger can
be done somehow, if necessary by restricting the types of observations that can be dealt with.

An active observation by agent A of a relationship P(o1 , o2 , …, on) is transformed into a message
sent by object A to one of the objects oj, say o1 for simplicity, requesting the solution of a goal P(o1 ,
o2’ , …, on’) and receiving back a message from o1 with a solution θ, where P(o1 , o2 , …, on) = P(o1 ,
o2’ , …, on’) θ.54

A passive observation of the relationship can be modeled simply by some object oj sending a
message to A of the relationship P(o1 , o2 , …, on).

The objects that result from this transformation do not exhibit the benefits of structuring objects into
taxonomic hierarchies. This can be remedied by organising ALP agent systems into class hierarchies,
similar to sort hierarchies in order-sorted logics. The use of such hierarchies extracts common goals
and beliefs of individual agents and associates them with more general classes of agents. Translating
such extended ALP agent systems into OO systems is entirely straight-forward.

4.2 Transformation of OO systems into ALP systems

The semantic structure. Given the current state of an OO system, the corresponding semantic
structure of the ALP system is the set of all current object-attribute-values, represented as binary
relationships, attribute(object, value), or alternatively as ternary relationships, say as
relationship(object, attribute, value).

54 In most OO languages this can be done more directly, without explicitly sending and receiving
messages. This more direct access to an object’s attribute-values can be regarded as analogous to an
agent’s observations and actions.

 137

Agents. We distinguish between passive objects that merely store the current values of their
attributes and active objects that both store their current values and also use methods to interact with
the world. Both kinds of objects are treated as individuals in the ALP semantic structure. But active
objects are also treated as agents.

Messages. The treatment of messages is dealt with case by case:
Case 1. A passive object sends a message to another object. By the definition of passive object, this

can only be a message informing the recipient of one of the passive object’s attribute-values. The only
kind of recipient that can make use of such a message is an active object. So, in this case, the message
is an observation of the attribute-value by the recipient. The observation is active (from the recipient’s
viewpoint) if the message is a response to a previous message from the recipient requesting the
sender’s attribute-value. Otherwise it is passive.

Case 2. An active object sends a message to another object requesting one of the recipient’s
attribute-values. This is simply the first half of an active observation of that attribute-value. The
second half of the observation is a message from the recipient sending a reply. If the recipient does not
reply, then the observation fails.

Case 3. An active object sends a message to another object changing one of the recipient’s
attribute-values. The message is simply an action performed on the semantic structure.

Case 4. An active object sends any other kind of message to another active object. The message is a
combination of an action by the sender and an observation by the recipient. The action, like all actions,
is performed on the semantic structure. In this case the action adds a ternary relationship between the
sender, the recipient and the content of the message to the semantic structure. The observation, like all
observations, syntactically records the semantic relationship as a belief in the recipient’s internal state.
The observation then becomes available for internal processing, using forward and backward
reasoning with goals and beliefs to achieve the effect of methods. The recipient may optionally
perform an action that deletes the ternary relationship from the semantic structure.

Methods. Finally, we need to implement methods by means of goals and beliefs (or equivalently, for
ALP agents, by integrity constraints and logic programs). Recall that, in our analysis, only active
objects (or agents) employ methods, and these are used only to respond to messages that are
transformed into observations. Other messages, which simply request or change the values of an
object’s attributes, are transformed into operations on the semantic structure.

We need a sufficiently high-level characterization of such methods, so they can be logically
reconstructed. For this reason, we assume that methods can be specified in the following input-output
form:

 If observation and (zero or more) conditions,
 then (zero or more) actions.

This is similar to event-condition-action rules in active databases [10] and can be implemented

directly as integrity constraints in logical form. However, such specifications can also be implemented
at a higher level, by means of more abstract integrity constraints (with more abstract conditions and
higher-level conclusions), together with logic programs. At this higher level, an agent implements an
active object’s method by

 recording the receipt of the message as an observation;
 possibly using the record of the observation to derive additional beliefs;
 possibly using the record of the observation or the derived additional beliefs to trigger an integrity

constraint of the form:

 if conditions, then conclusion

 verifying any remaining conditions of the integrity constraint and then,
 reducing the derived conclusion of the constraint, treated as a goal, to sub-goals, including actions.

Beliefs, in the form of logic programs, can be used to reason forwards from the observation and
backwards both from any remaining conditions of the integrity constraint and from the conclusion of
the integrity constraint. In addition to any actions the agent might need to perform as part of the
specification of the method, the agent might also send requests to other agents for help in solving sub-
goals, in the manner of the object-oriented logic programs of section 3.

All messages that do not request or change attribute-values are treated by the recipient uniformly as
observations. If the message is a request to solve a goal, then the recipient records the request as an

 138

observation and then determines whether or not to try to solve the goal, using an integrity constraint
such as:

 If an agent asks me to solve a goal,
 and I am able and willing to solve the goal for the agent,
 then I try to solve the goal and I inform the agent of the result.

The recipient might use other integrity constraints to deal with the case that the recipient is unable or
unwilling to solve the goal.

Similarly, if the message is a communication of information, then the recipient records the
communication as an observation and then determines whether or not to add the information to its
beliefs. For example:

 If an agent gives me information,
 and I trust the agent,
 and the information is consistent with my beliefs,
 then I add the information to my beliefs.

The input-output specification of OO methods that we have assumed is quite general and hopefully

covers most sensible kinds of methods. As we have seen, the specification has a direct implementation
in terms of abductive logic programming. However, as we have also noted earlier, other
implementations in other computer languages are also possible, as long as they respect the logical
specification.

Classes. Methods associated with classes of objects and inherited by their instances can similarly be
associated with sorts of ALP agents. This can be done in any one of the various ways mentioned
earlier in the paper. As remarked then, this requires an extension of ALP agents, so that goals and
beliefs can be associated with sorts of agents and acquired by individual agents. There is an interesting
research issue here: whether sentences about several sorts of individuals can be represented only once,
or whether they need to be associated, possibly redundantly, with owner classes/sorts.

5 Local versus Global Change

One of the attractions of object-orientation is that it views change in local, rather than global terms. In
OO the state of the world is distributed among objects as the current values of their attributes. Change
of state is localized to objects and can take place in different objects both concurrently and
independently.

Traditional logic, in contrast, typically views change in global terms, as in the possible-worlds
semantics of modal logic and the situation calculus. Modal logic, for example, deals with change by
extending the static semantics of classical model theory to include multiple (possible) worlds related
by a temporal, next-state accessibility relation. Semantically, a change of state due to one or more
concurrent actions or events, is viewed as transforming one global possible world into another global
possible world. Syntactically, change is represented by using modal operators, including operators that
deal with actions and events as parameters, as in dynamic modal logic.

The situation calculus [11] similarly views change as transforming one global possible world (or
situation) into another. Semantically, it does so by reifying situations, turning situations into
individuals and turning the next-state accessibility relation into a normal relation between individuals.
Syntactically, it represents change by using variable-free terms to name concrete situations and
function symbols to transform situations into successor situations.

It was, in part, dissatisfaction with the global nature of the possible-worlds semantics that led
Barwise and Perry to develop the situation semantics [12]. Their situations (which are different from
situations in the situation calculus) are semantic structures, like possible-world semantic structures, but
are partial, rather than global.

It was a similar dissatisfaction with the global nature of the situation calculus that led us to develop
the event calculus [13]. Like situations in the situation calculus, events, including actions are reified
and represented syntactically. The effect of actions/events on the state of relationships is represented
by an axiom of persistence in logic programming form:

 A relationship holds at a time T2

 if an event happens at a time T1 before T2

 139

 and the event initiates the relationship

 and there is no other event
 that happens at a time after T1 and before T2 and

 that terminates the relationship.

Like change of state in OO, change in the event calculus is also localised, but to relationships rather

than to objects. Also as in OO, changes of state can take place concurrently and independently in
different and unrelated parts of the world. Each agent can use its own local clock, time-stamping
observations as they occur and determining when to perform actions, by comparing the time that
actions need to be performed with the current time on its local clock.

The event calculus is a syntactic representation, which an agent can use to reason about change. It
can be used to represent, not only current relationships, but also past and future relationships, both
explicitly by atomic facts and implicitly as a consequence of the axiom of persistence. However, the
event calculus does not force an agent to derive current relationships using the persistence axiom, if
the agent can observe those relationships directly, more efficiently and more reliably instead.

The event calculus is not a semantics of change. However, in theory, if events are reified, then the
use of the event calculus to reason about change should commit an agent to a semantic structure in
which events are individuals. But this is the case only if all symbols in an agent’s goals and beliefs
need to be interpreted directly in the semantic structure in which the agent is embedded. If some
symbols can be regarded as defined symbols, for example, then they need not be so interpreted.
Alternatively, in the same way that in physics it is possible to hypothesize and reason with the aid of
theoretical particles, which can not be observed directly, it may also be possible in the event calculus
to represent and reason about events without their being observable and without their corresponding to
individuals in the world of experience.

In any case, the event calculus is compatible with a semantic structure in which changes in
relationships are performed destructively, by deleting (terminating) old relationships and adding
(initiating) new relationships. These destructive changes in the semantic structure are the ones that
actually take place in the world, as opposed to the representation of events and the derivations of their
consequences using the axiom of persistence, which might take place only in the mind of the agent.

6 Related Work

There is a vast literature dealing with the problem of reconciling and combining logic programming
and object-orientation, most of which was published in the 1980s, when the two paradigms were still
contending to occupy the central role in Computing that OO occupies today. Most of this early
literature is summarized in McCabe’s [14].

Perhaps the most prominent approach among the early attempts to reconcile logic programming and
objects was the concurrent object-oriented logic programming approach exemplified by [15]. In this
approach, an object is implemented as a process that calls itself recursively and communicates with
other objects by instantiating shared variables. Objects can have internal state in the form of unshared
arguments that are overwritten in recursive calls. Although this approach was inspired by logic
programming it ran into a number of semantic problems, mainly associated with the use of committed
choice. The problem of committed choice is avoided in ALP systems by incorporating it in the
decision making component of individual agents.

In McCabe’s language, L&O [14], a program consists of a labelled collection of logic programs.
Each labelled logic program is like a set of beliefs belonging to the object or agent that is the label.
However, in L&O, objects/agents interact by sending messages to other agents, asking for their help in
solving sub-goals. This is like the object-oriented logic programs of section 3.4. It is also similar to the
way multi-agent systems are simulated in GALATEA [22].

ALP systems differ from L&O, therefore, primarily in their use of a shared environment instead of
messages. This use of a shared environment is similar to the use of tuple-spaces in Linda [2]. In this
respect, therefore, ALP systems are closest to the various systems [16-18] that use a Linda-like
environment to coordinate parallel execution of multiple logic programs. ALP systems can be viewed,
therefore, as providing a logical framework in which the shared environment in such systems can be
understood as a dynamic semantic structure.

A different solution to the problem of reconciling logic and objects is the language LO [19], which
is a declarative logic programming language using linear logic. The language is faithful to the
semantics of linear logic, which however is quite different from the model-theoretic semantics of
traditional logic. Communication between objects in LO is similar to that in Linda.

 140

7 Conclusions

In this paper, I have explored some of the relationships between OO systems and ALP systems, and
have argued that ALP systems can combine the semantic and syntactic features of logic with the
syntactic structuring and dynamic, local behaviour of objects. I have investigated a number of
transformations, which show how OO systems and ALP systems can be transformed into one another.
These transformations are relatively straight-forward, and they suggest ways in which the two kinds of
system are related. Among other applications, the transformations can be used to embed one kind of
system into the other, for example along the lines of [22], and therefore to gain the benefits of both
kinds of systems.

However, the transformations also highlight a number of important differences, including problems
with the treatment of relations and multi-owner methods in OO systems in particular. On the other
hand, they also identify a number of issues that need further attention in ALP systems, including the
need to clarify the distinction between active and passive observations, to organise agents into more
general agent hierarchies, and possibly to structure the shared semantic environment, to take account
of the fact that different agents can more easily access some parts of the environment than other parts.
In addition, it would be useful to make the relationships between OO systems and ALP systems
explored in this paper more precise and to prove them more formally.

As a by-product of exploring the relationships between logic and objects, the transformations also
suggest a relationship between logic and Linda. On the one hand, they suggest that Linda systems can
be understood in logical terms, in which tuple-spaces are viewed as semantic structures and processes
are viewed as agents interacting in this shared semantic environment. On the other hand, they also
suggest that ALP systems can be generalised into Linda-like systems in which different processes can
be implemented in different languages, provided that the external, logical specification of the
processes is unaffected by their implementation.

Acknowledgements I am grateful to Ken Satoh at NII in Tokyo, for valuable discussions and for
providing a congenial environment to carry out much of the work on this paper. I would also like to
thank Jim Cunningham, Jacinto Davila and Maarten van Emden for valuable comments on an earlier
draft of this paper.

It is my pleasure to dedicate this paper to Gigina Aiello, for her inspiration in the early stages of this
work, when we first started thinking about logic-based multi-agent systems in the Compulog Project in
the late 1980s and early 1990s.

References

1. Kowalski, R., Sadri, F.: From Logic Programming towards Multi-agent Systems. Annals of Mathematics and

Artificial Intelligence. (25) (1999) 391- 419
2 Gelernter, D.: Generative Communication in Linda, ACM Transactions on Programming Languages, (7)1

(1985) 80-112
3. Brown, G. Yule, G.: Discourse Analysis. Cambridge University Press (1983)
4. Williams, J.: Style: Towards Clarity and Grace. Chicago University Press (1990)
5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin, J.: Aspect-Oriented

Programming. Proceedings of the European Conference on Object-Oriented Programming, vol.1241, (1997)
220–242

6. Kowalski, R., Sadri, F.: Logic Programming with Exceptions. New Generation Computing, (9)3,4 (1991) 387-
400

7. Toni, F., Kowalski, R.: Reduction of Abductive Logic Programs to Normal Logic Programs. Proceedings
International Conference on Logic Programming, MIT Press (1995) 367-381

8. Engelmore, R.S., Morgan, A. (eds.): Blackboard Systems. Addison-Wesley (1988)
9. Pearce, D.J., Noble, J.: Relationship Aspects. Proceedings of the ACM conference on Aspect-Oriented

Software Development (AOSD'06). (2006) 75-86
10. Paton, N.W., Diaz, O.: Active Database Systems. ACM Computing Surveys 31(1) (1999)
11. McCarthy, J., Hayes, P.: Some Philosophical Problems from the Standpoint of AI. Machine Intelligence.

Edinburgh University Press (1969)
12. Barwise, J., Perry, J.: Situations and Attitudes. MIT-Bradford Press, Cambridge (1983)
13. Kowalski, R., Sergot, M.: A Logic-based Calculus of Events. New Generation Computing. (4)1 (1986) 67-95
14. McCabe, F.G.: Logic and Objects. Prentice-Hall, Inc. Upper Saddle River, NJ (1992)
15. Shapiro, E., Takeuchi, A.: Object-Oriented Programming in Concurrent Prolog, New Generation Computing

1(2) (1983) 5-48
16. Andreoli, J.M., Hankin, ., Le Métayer, D. (eds.): Coordination Programming: Mechanisms, Models and

Semantics - Imperial College Press, London (1996)

 141

http://citeseer.ist.psu.edu/kiczales97aspectoriented.html
http://citeseer.ist.psu.edu/kiczales97aspectoriented.html

17. Brogi, A., Ciancarini, P.: The Concurrent Language, Shared Prolog. ACM Transactions on Programming
Languages and Systems, 13(1) (1991) 99–123

18. De Bosschere, K., Tarau, P.: Blackboard-Based Extensions in Prolog. Software - Practice and Experience
26(1) (1996) 49-69

19. Andreoli, J.-M., Pareschi, R.: Linear Objects: Logical Processes with Built-In Inheritance. New Generation
Computing, 9 (1991) 445-473

20. Kowalski, R.: How to be Artificially Intelligent. In Toni, F., Torroni, P. (eds.): Computational Logic in Multi-
Agent Systems. LNAI 3900, Springer-Verlag (2006) 1-22

21. Armstrong, D.J.: The Quarks of Object-Oriented Development. Communications of the ACM 49 (2) (2006)
123-128

22. Davila,J., Gomez, E., Laffaille, K., Tucci, K., Uzcategui, M.: Multi-Agent Distributed Simulations with
GALATEA. In Boukerche, A., Turner, T., Roberts, D., Theodoropoulos, G. (eds): IEEE Proceedings of
Distributed Simulation and Real-Time Applications. IEEE Computer Society (2005) 165-170

 142

Appendix 3

Reasoning with Conditionals in Artificial Intelligence

Robert Kowalski
Department of Computing
Imperial College London

January 2008

1 Introduction

Conditionals of one kind or another are the dominant form of knowledge representation in
Artificial Intelligence. However, despite the fact that they play a key role in such different
formalisms as production systems and logic programming, there has been little effort made to
study the relationships between these different kinds of conditionals. In this paper I present a
framework that attempts to unify the two kinds of conditionals and discuss its potential
application to the modelling of human reasoning.

Among the symbolic approaches developed in Artificial Intelligence, production systems
have had the most application to the modelling of human thinking. Production systems
became prominent in the late 1960s as a technology for implementing expert systems in
Artificial Intelligence, and then in the 1970s as a cognitive architecture in Cognitive
Psychology. However, although they have been used extensively to study human skills, they
seem to have had little impact on studies of human reasoning. This lack of interaction
between cognitive architectures based on production systems and studies of human reasoning
is especially surprising because both emphasise the central role of conditionals.

Conditionals in production systems (called production rules) have the form if conditions then
actions and look like logical implications. Indeed, some authors, such as Russell and Norvig
(2003), take the view that production rules are just logical implications used to reason
forward to derive candidate actions from conditions (modus ponens). However, other authors,
such as Thagard (2005) deny any relationship between logic and production rules at all.

In some characterisations of production rules, they are described as expressing procedural
knowledge about what to do when. In this paper, I will argue that production rules can be
given a logical semantics, and this semantics can help to clarify their relevance for modelling
human reasoning.

Conditionals are also a distinctive feature of logic programming, which has been used
widely, also since the 1970s, both to implement practical applications and to formalise
knowledge representation in Artificial Intelligence. Conditionals in logic programming have
both a logical interpretation as conditionals of the form conclusion if conditions and an
interpretation as procedures that reduce the goal of establishing the conclusion to the sub-
goals of establishing the conditions. Goal-reduction is a form of backward reasoning.
Although forward reasoning has been studied extensively in psychology, backward reasoning
seems to have received little attention in studies of human reasoning.

Instead, studies of reasoning in Psychology emphasize the use of classical negation, including
its use in such classically valid inferences as modus tollens and in such classical fallacies as

 143

denial of the antecedent. In contrast, classical negation has had relatively few applications in
Artificial Intelligence, where negation as failure and the closed world assumption (not P
holds if and only if P does not hold) have been more widely used in practice.

Studies of reasoning in Psychology treat affirmation of the consequent as a fallacy. In
Artificial Intelligence, however, it is treated as abductive inference. Both abduction and
negation as failure are forms of non-monotonic reasoning.

In this paper, I will outline an abductive logic programming (ALP) approach that aims to
reconcile production rules and logic within a unifying agent-based framework. In this
framework, logic programs are conditionals used to represent an agent’s beliefs, and have a
descriptive character. Production rules are conditionals in logical form, used to represent the
agent’s goals, and have deontic force. Abduction is used both to represent hypotheses that
explain the agent’s observations and actions that might achieve the agent’s goals. Abductive
hypotheses can have associated probabilities.

The ALP agent framework embeds goals and beliefs in an observation-thought-decision-
action cycle, similar to the production system cycle, and similar to other agent cycles
developed in Artificial Intelligence. In the ALP agent framework, the thinking component of
the cycle is a combination of forwards reasoning, as in production systems, and backwards
reasoning, as in logic programming. Negation is represented both by means of negation as
failure and by means of integrity constraints.

Because this book is directed primarily towards a psychological audience and because my
own expertise lies in Artificial Intelligence, I will focus on the potential contribution of
Artificial Intelligence to studies of human reasoning. However, I anticipate that there is much
to be gained from applying results about human reasoning to Artificial Intelligence. In
particular, it seems likely that results about the psychology of reasoning with negation can
suggest useful directions in which to extend AI reasoning techniques.

The remainder of the paper has four main parts, dealing with production systems, logic
programs, the relationship between production systems and logic programs, and the ALP
agent model. In addition, there is a section on integrity constraints, to help motivate the
interpretation in ALP of stimulus-response production rules as a species of integrity
constraint, and a section on the agent language AgentSpeak, which can be regarded as an
extension of production systems in which actions are generalised to plans of action.

The semantics and proof procedures of logic programming and ALP are based on classical
logic, but are sufficiently different to be a potential source of difficulty for some readers. For
this reason, I have put details about the minimal model semantics in an appendix. I have also
included an appendix about the interpretation of natural language conditionals in logic
programming terms, because it interrupts the main flow of the paper.

Before settling down to the main part of the paper, I first present a motivating example,
discuss the Wason selection task, and present some historical background.

2 A motivating example

Consider the following real world example of a sign posted in carriages on the London
underground:

Emergencies:
Press the alarm signal button to alert the driver.
The driver will stop if any part of the train is in a station.

 144

If not, the train will continue to the next station, where help can more easily be given.
There is a 50 pound penalty for improper use.

The sign is intended to be read and for its contents to be assimilated by passengers traveling
on the underground. For this purpose, a passenger needs to translate the English text from
natural language into a mental representation. In AI, such mental representations include
logic, logic programs, production rules and other procedural representations. Here is the main
part of a translation of the London underground sign into the ALP agent representation that I
will describe later in the paper:

You alert the driver that there is an emergency
if you are on the underground and there is an emergency
and you press the alarm signal button.

The driver will stop the train immediately if you press the
alarm signal button and any part of the train is in a station.

The driver will stop the train (and help can more easily be
given) at the next station if you press the alarm signal button
and not any part of the train is in a station.

You will be liable to a 50 pound penalty
if you press the alarm signal button improperly.

The first sentence of the translation shows how procedures are represented in logic
programming form as conditionals that are used backwards to reduce goals that match the
conclusion of the conditional to sub-goals that correspond to the conditions. The first, second
and third sentences show that the conditional form of natural language sentences should not
to be taken literally, but may need to include extra conditions (such as you press the alarm
signal button) and extra qualifications (such as the driver will stop the train) implicit in the
context. The fourth sentence shows that the meaning of a natural language sentence may be a
conditional whether or not the surface structure of the sentence contains an explicit mark of a
conditional.

However, the translation of the sign does not represent its full import, which depends upon
the reader’s additional background goals and beliefs. These might include such goals and
beliefs as55:

If there is an emergency then you get help.
You get help if you are on the underground and you alert the driver.

I will argue later that the first sentence is a maintenance goal, which is a special case of an
integrity constraint of the kind used to maintain integrity in active database systems.
Maintenance goals are similar to plans in the intelligent agent programming language
AgentSpeak. I will also argue that they generalize production rules in production systems.

In the ALP agent framework, goals and beliefs are embedded in an observation-thought-
decision-action cycle. Given an observation of an emergency, the maintenance goal would be
used to reason forward, to derive the achievement goal of getting help. The logic program
would be used to reason backward, to reduce the goal of getting help to the action sub-goal of

55 These two sentences also help to explain the significance of the phrase where help can more easily
be given. The passenger’s background knowledge may also contain other ways of getting help.
Arguably, the phrase is intended to help the passenger to evaluate alternative candidate actions, in
deciding what to.

 145

pressing the alarm signal button. Assuming that there are no other candidate actions to
consider, the agent would commit to the action and attempt to solve it by executing it in the
environment.

3 The Selection Task

I will not attempt to analyse the Wason selection task and its variants (Wason, 1968) in
detail, but will outline instead how the ALP agent framework addresses some of the problems
that have been observed with human performance in psychological experiments.

Consider the following simplified abstraction of the selection task presented to a subject in
natural language:

 Given some incomplete information/observations,
 what conclusions can be derived using the conditional if P then Q?

The task is given with a concrete instance of the conditional, such as if there is a vowel on
one side of a card then there is an even number on the other side and if a person is drinking
alcohol in a bar then the person is over eighteen years old. To solve the task, the subject first
needs to translate the conditional into a mental representation. The subject then needs to use
the mental representation of the conditional, possibly together with other background goals
and beliefs, to derive conclusions from the observations. I will argue that most of the reasons
for the variation in subjects’ performance on the selection task can be demonstrated using the
ALP agent model with this simplified formulation of the task.

In the ALP agent model, the subject needs first to decide whether the English language
conditional should be understood as a belief or as a goal. If it is understood as a belief, then it
is represented as a clause in a logic program. If it is understood as a goal, then it is
represented as an integrity constraint, to monitor updates. These two alternatives,
understanding the conditional as a belief or as a goal, correspond roughly to the descriptive
and deontic interpretations of the conditional respectively. In concrete instances of the task,
the syntactic form of the conditional, its semantic content, and the way in which the task is
formulated can all influence the interpretation.

Suppose the subject interprets the conditional as a belief, which is then represented as a logic
programming clause:

 Q if P

Assuming that there are no other clauses, including background clauses, that have the same
conclusion Q, the clause is then interpreted as the only way of concluding Q. In the
completion semantics (Clark, 1978) of logic programming, this can be expressed explicitly in
the form:

 Q if and only if P

The equivalence here is asymmetric in the sense that the formula on the right hand side is
taken to be the definition of the predicate on the left hand side of the equivalence, and not the
other way around.

In the ALP agent model described in this paper, given an observation O, the agent can reason
both forwards from O, to derive consequences of the observation, and backwards from O, to
derive explanations of the observation. In the selection task, therefore, forward reasoning can
be used to derive Q from an observation of P, and backward reasoning can be used to derive

 146

P as an explanation of an observation of Q. These are the classic responses to Wason’s
original card version of the selection task.

The modus tollens derivation of not P from not Q is also possible, but more difficult, because
it is first necessary to derive not Q from some initial positive observation Q’. This is because,
in general, an agent’s observations are represented only by atomic sentences. Negations of
atomic sentences need to be derived from positive observations. In card versions of the
selection task, for example, the conclusion that a card does not have a vowel on one of its
sides needs to be derived by a chain of reasoning, say from an observation that it has the
letter B on that side, to the conclusion that it has a consonant on that side, to the conclusion
that it does not have a vowel on that side. As Sperber, Cara, and Girotto (1995) argue, the
longer the derivation, and the greater the number of irrelevant, alternative derivations, the
less likely it is that a subject will be able to perform the derivation.

In the ALP agent model, the relationship between positive and negative concepts, needed to
derive a negative conclusion from a positive observation, is expressed in the form of integrity
constraints, such as:

 if mortal and immortal then false i.e. not(mortal and immortal)
 if odd and even then false i.e. not(odd and even)
 if vowel and consonant then false i.e. not(vowel and consonant)
 if adult and minor then false i.e. not(adult and minor)
 etc.

and more generally as:

 if Q’ and Q then false i.e. not(Q’ and Q)

where Q’ is the positive observation or some generalization of the observation (such as the
card has a consonant on the face) and if Q then false is an alternative syntax for the negation
not Q.

In the ALP agent model, given a concrete observation that leads by a chain of forward
reasoning to the conclusion Q’, a further step of forward reasoning with the integrity
constraint is needed to derive not Q. Backward reasoning with the conditional (replacing Q
by its definition P) then derives not P.

Thus in card versions of the Wason selection task, when the conditional is interpreted as a
belief, the derivations of P from Q and of Q from P are straight-forward, the derivation of not
P from some contrary positive observation that implies not Q is difficult, but possible. But
the derivation of not Q from not P is not possible at all, because of the asymmetry of the
equivalence Q if and only if P.

Suppose instead that the subject interprets the conditional as a goal. In the ALP agent model,
this is represented by an integrity constraint of the form:

 if P then Q.

Such integrity constraints are used to reason forwards, like production rules, in this case to
derive Q from P. They are not used backwards to derive P from Q, which is consistent with
experimental data for deontic versions of the selection task.

As in the case where the conditional is interpreted as a belief, negative premises, such as not
P and not Q, need to be derived by forward reasoning from positive atomic observations,
using integrity constraints of such form as:

 147

 if Q’ and Q then false
 if P’ and P then false

and the same considerations of computational complexity apply.

Assuming that the positive observations imply both Q’ and P’ and that both:

 if Q then false
 if P then false

have been derived, then the only further inference that is possible is:

From if P then Q
and if Q then false
derive if P then false
i.e. not P.

However, this inference step, which is both easy and natural for human subjects, is not
possible in some existing ALP proof procedures. I will argue later that this is because these
proof procedures implement the wrong semantics for integrity constraints. The semantics
needed to justify this inference step is the consistency view of integrity constraint
satisfaction. I will discuss this problem and its solution again in section 10.2. In the
meanwhile, it is interesting to note that the selection task seems to suggest a direction for
solving technical problems associated with proof procedures developed for practical
applications in AI.

4 A personal view of the history of logic in AI

To put the issues dealt with in this paper into context, it may be helpful to consider their
historical background.

4.1 Heuristic versus formal approaches

It is widely agreed that the most important work concerning logic in the early days of AI was
the Logic Theorist (Newell et al, 1957), which managed to prove 38 of the first 52 theorems
in Chapter 2 of Principia Mathematica. The Logic Theorist pioneered the heuristic approach,
employing three inference rules, “backward reasoning”, “forward chaining” and “backward
chaining”, without traditional logical concerns about semantics and completeness. In contrast
with formal theorem-proving techniques, these heuristic inference rules behaved naturally
and efficiently.

Logic Theorist led to GPS, a general problem solver, not directly associated with logic, and
later to production systems. Production rules in production systems resembled conditionals in
traditional logic, but did not suffer from the inscrutability and inefficiencies associated with
formal theorem-proving.

In the meanwhile, McCarthy (1958) advocated a formal approach, developing the Advice
Taker, using formal logic for knowledge representation and using theorem-proving for
problem-solving. In the Advice-Taker approach, the theorem-prover was a “black box”, and
there was no attempt to relate the behaviour of the theorem-prover to common sense
techniques of human problem-solving. The theorem-proving approach led to the development
of question-answering systems, using complete and correct theorem-provers, based on
mathematical logic.

 148

Resolution (Robinson, 1965) was developed within the formal logic tradition, with mainly
mathematical applications in mind. Its great virtue was its simplicity and uniformity,
compressing the rules and logical axioms of symbolic logic into a single inference rule. It
could not be easily understood in human-oriented terms, but was presented as a machine-
oriented logic. Its early versions were very inefficient, partly because the resolution rule did
not have an intuitive interpretation.

Towards the end of the 60s, there were two main trends among symbolic approaches to AI:
the heuristic (sometimes called “scruffy” or “strong”) approach, mainly associated with
production systems, which behaved in human-intelligible terms, uninhibited by mathematical
concerns about semantics, but emphasizing the importance of domain-specific knowledge;
and the formal (“neat” or “weak”) approach, exemplified by resolution-based systems,
emphasizing domain-independent, general-purpose problem-solving. Production systems
were beginning to have applications in expert systems, and resolution was beginning to have
applications in mathematics and question-answering.

4.2 Procedural representations of knowledge and logic programming

In the meanwhile, critics of the formal approach, based mainly at MIT, began to advocate
procedural representations of knowledge, as superior to declarative, logic-based
representations. This led to the development of the knowledge representation and problem-
solving languages Planner and micro-Planner. Winograd’s PhD thesis (1971), using micro-
Planner to implement a natural language dialogue for a simple blocks world, was a major
milestone of this approach. Research in automated theorem-proving, mainly based on
resolution, went into sharp decline.

The battlefield between the logic-based and procedural approaches moved briefly to
Edinburgh during the summer of 1970 at one of the Machine Intelligence Workshops
organized by Donald Michie (van Emden, 2006). At the workshop, Pappert and Sussman
from MIT gave talks vigorously attacking the use logic in AI, but did not present a paper for
the proceedings. This created turmoil among researchers in Edinburgh working in resolution
theorem-proving. However, I was not convinced that the procedural approach was so
different from the SL-resolution system I had been developing with Donald Kuehner (1971).

During the next couple of years, I tried to reimplement Winograd’s system in resolution logic
and collaborated on this with Alain Colmerauer in Marseille. This led to the procedural
interpretation of Horn clauses (Kowalski 1973/1974) and to Colmerauer’s development of
the programming language Prolog. I also investigated other interpretations of resolution logic
in problem solving terms (Kowalski 1974/1979), exploiting in particular the fact that all
sentences in resolution logic can be expressed in conditional form.

However, at the time, I was not aware of the significance of production systems, and I did not
understand their relationship with logic and logic programming. Nor did I appreciate that
logic programming would become associated with general-purpose problem-solving, and that
this would be misunderstood as meaning that logic programming was suitable only for
representing “weak” general-purpose knowledge. I will come back to this problem later in the
paper.

4.3 Non-monotonic reasoning, abduction, and argumentation

In the mid-1970s, Marvin Minsky (1974) launched another attack against logic from MIT,
proposing frames as a representation of stereotypes. In contrast with formal logic, frames
focussed on the representation of default knowledge, without the need to specify exceptions

 149

strictly and precisely. This time the logic community in AI fought back with the development
of various non-monotonic logics, including circumscription (McCarthy, 1980), default logic
(Reiter, 1980), modal non-monotonic logic (McDermott and Doyle, 1980), autoepistemic
logic (Moore, 1985) and negation as failure in logic programming (Clark, 1978).

(Poole et al, 1987) argued that default reasoning can be understood as a form of abductive
reasoning. Building upon their results, Eshghi and I (1989) showed that negation as failure in
logic programming can also be understood in abductive terms. More recently, Dung and his
collaborators (Bondarenko et al 1997 ; Dung et al, 2006) have shown that most non-
monotonic logics can be interpreted in terms of arguments and counter-arguments supported
by abductive hypotheses. Moreover, Poole (1993, 1997) has shown that Baysian networks
can be understood as abductive logic programs with assumptions that have associated
probabilities.

4.4 Intelligent agents

Starting in the late 1980s and early 1990s, researchers working in the formal logic tradition
began to embed logic-based representations and problem-solving systems in intelligent agent
frameworks. The intelligent agent approach was given momentum by the textbook of Russell
and Norvig (2003), whose first edition was published in 1995. In their book, Russell and
Norvig credit Newell, Laird and Rosenblum (Newell, 1990; Laird et al., 1987) with
developing SOAR as the “best-known example of a complete agent architecture in AI”.

However, SOAR was based on production systems and did not have a logical basis. Among
the earliest attempts to develop formal, logic-based agent architectures were those of Rao and
Georgeff (1991) and Shoham (1991), both of which were formulated in BDI (Belief, Desire,
Intention) terms (Bratman, Israel, and Pollack,1988) . Although their formal specifications
were partly formulated in modal logics, their implementations were in procedural languages
that looked like extensions of production systems. The ALP agent model (Kowalski and
Sadri,1999; Kowalski 2001, 2006) was developed to reconcile the use of logic for agent
specification with its use for implementation. Instead of using modalities to distinguish
between beliefs and desires, it uses an extension of the database distinction between data and
integrity constraints, treating beliefs like data and desires (or goals) like integrity constraints.

5 Production systems

Production systems were originally developed by the logician Emil Post as a mathematical
model of computation, and later championed by Alan Newell as a model of human problem
solving (Newell, 1973; Anderson and Bower, 1973). Production systems restrict knowledge
representation to a combination of facts, which are atomic sentences, and condition-action
rules, which have the syntax of conditionals, but arguably do not have a logical semantics.
They also restrict reasoning to a kind of modus ponens, called forward chaining.

A typical production system (Simon, 1999) involves a “declarative” memory consisting of
atomic sentences, and a collection of procedures, which are condition-action rules of the
form:

 If conditions C, then actions A.

Condition-action rules are also called production rules, just plain rules, or if-then rules. The
most typical use of production rules is to implement stimulus-response associations. For
example:

 If it is raining and you have an umbrella, then cover yourself with the umbrella.

 150

 If you have an essay to write, then study late in the library.

The action part of a rule is often expressed as a command, or sometimes as a
recommendation, to perform an action.

Production rules are executed by means of a cycle, which reads an input fact, uses forward
chaining (from conditions to actions) to match the fact with one of the conditions of a
production rule, verifies the remaining conditions of the rule, and then derives the actions of
the rule as candidates to be executed. If more than one rule is “triggered” in this way, then
conflict-resolution is performed to decide which actions should be executed. Inputs and
actions can be internal operations or can come from and be performed upon an external
environment.

Conflict resolution can be performed in many ways, depending upon the particular
production system language. At one extreme, actions can be chosen purely at random. Or
they can be determined by the order in which the rules are written, so that the first rule to be
triggered is executed first. At the opposite extreme, actions can be chosen by means of a full
scale decision-theoretic analysis, analysing the expected outcomes of actions, evaluating their
utility and probability, and selecting one or more actions with highest expected utility.

Compared with classical logic, which has both a declarative, model-theoretic semantics and
diverse proof procedures, production systems arguably have no declarative semantics at all.
Production rules look like logical implications, without the semantics of implications.
Moreover, forward chaining looks like modus ponens, but it is not truth-preserving, because
there is no notion of what it means for a condition-action rule to be true.

The similarity of production rules to implications is a major source of confusion. Some
authors (Thagard, 2005) maintain that production systems enable backward reasoning, from
actions that are goals to conditions that are sub-goals. MYCIN (Shortliffe, 1976), for
example, one of the earliest expert systems, used backward reasoning for medical diagnosis.
MYCIN was and still is described as a production system, but is better understood as using
an informal kind of logic.

When production rules are used to implement stimulus-response associations, they normally
achieve unstated goals implicitly. Such implicit goals and the resulting goal-oriented
behaviour are said to be emergent. For example, the emergent goal of covering yourself with
an umbrella if it is raining is to stay dry. And the emergent goal of studying late in the library
if you have an essay to write is to complete the essay, which is a sub-goal of completing the
course, which is a sub-goal of getting a degree, which is a sub-goal of the top-level goal of
becoming a success in life.

In contrast with systems that explicitly reduce goals to sub-goals, systems that implement
stimulus-response associations are an attractive model of evolutionary theory. Their ultimate
goal, which is to enable an agent to survive and prosper in competition with other agents, is
emergent, rather than explicit.

Although the natural use of production systems is to implement stimulus-response
associations, they are also used to simulate backward reasoning, not by executing production
rules backwards, but by treating goals as facts and by forward chaining with rules of the
form:

 If goal G and conditions C then add H as a sub-goal.

Indeed, in ACT-R (Anderson and Bower, 1973), this is the typical form of production rules
used to simulate human problem solving in such tasks as the Tower of Hanoi.

 151

Thagard (2005) also draws attention to this use of production rules and claims that such rules
cannot be represented in logical form. He gives the following example of such a rule:

 If you want to go home for the weekend, and you have the bus fare,
 then you can catch a bus.

Here the “action” you can catch a bus is a recommendation. The action can also be expressed
as a command:

 If you want to go home for the weekend, and you have the bus fare,
 then catch a bus.

The use of the imperative voice to express actions motivates the terminology “conflict
resolution” to describe the process of reconciling conflicting commands.

The differences between production systems and logic programming are of two kinds. There
are technical differences, such as the fact that production rules are executed in the forward
direction, the fact that conclusions of production rules are actions or recommendations for
actions, and the fact that production rules are embedded in a cycle in which conflict
resolution is performed to choose between candidate actions. And there are cultural
differences, reflecting a more casual attitude to issues of correctness and completeness, as
well as a greater emphasis on “strong”, domain-specific knowledge in contrast to “weak”
general-purpose problem-solving methods.

The technical differences are significant and need to be treated seriously. In the ALP agent
model, in particular, we take account of forward chaining by using logic programs and
integrity constraints to reason forwards; we take account of the imperative nature of
production rules by treating them as goals rather than as beliefs; and we take account of the
production system cycle by generalising it to an agent cycle, in which thinking involves the
use of both goals and beliefs.

However, the cultural differences are not technically significant and are based upon a failure
to distinguish between knowledge representation and problem-solving. Knowledge can be
weak or strong, depending on whether it is general knowledge that applies to a wide class of
problems in a given domain, like axioms of a mathematical theory, or whether it is
specialised knowledge that is tuned to typical problems that arise in the domain, like
theorems of a mathematical theory.

However, some strong knowledge may not be derivable from general-purpose knowledge in
the way that theorems are derivable from axioms. Strong knowledge might be more like a
mathematical conjecture or a rule of thumb, which is incomplete and only approximately
correct. Strong knowledge can exist in domains, such as expert systems, where there exists
no weak knowledge that can serve as a general axiomatisation.

Logic is normally associated with weak knowledge, like mathematical axioms; and
production systems are associated with strong knowledge, as in expert systems. But there is
no reason, other than a cultural one, why logic can not also be used to represent strong
knowledge, as in the case of mathematical theorems or conjectures.

In contrast with knowledge, which can be weak or strong, problem-solving methods are
generally weak and general-purpose. Even production systems, with their focus on strong
knowledge, employ a weak and general-purpose problem-solving method, in their use of
forward chaining. Logic programs similarly employ a weak and general-purpose method,
namely backward reasoning.

 152

6 Logic programming

6.1 A short introduction to logic programming

Logic programming has three main classes of application: as a general-purpose programming
language, a database language, and a knowledge representation language in AI. As a
programming language, it can represent and compute any computable function. As a database
language, it generalises relational databases, to include general clauses in addition to facts.
And as a knowledge representation language it is a non-monotonic logic, which can be used
for default reasoning. Its most well-know implementation is the programming language
Prolog, which combines pure logic programming with a number of impure features.

In addition to the use of logic programming as a normative model of problem solving
(Kowalski, 1974/79), Stenning and van Lambalgen (2004, 2005, 2008) have begun to
investigate its use as a descriptive model of human reasoning.

Logic programs (also called normal logic programs) are sets of conditionals of the form:

 If B1 and … and Bn then H

where the conclusion H is an atomic formula and the conditions Bi are literals, which are
either atomic formulas or the negations of atomic formulas. All variables are implicitly
universally quantified in front of the conditional. Conditionals in logic programs are also
called clauses. Horn clauses 56 are the special case where all of the conditions are atomic
formulae. Facts are the special case where n = 0 (there are no conditions) and there are no
variables. Sometimes clauses that are not facts are also called rules, inviting confusion with
production rules.

Goals (or queries) are conjunctions of literals, syntactically just like the conditions of
clauses. However, all variables are implicitly existentially quantified, and the intention of the
goal is to find an instantiation of the variables that makes the goal hold.

For example, the three sentences:

 If you have the bus fare and you catch a bus
 and not something goes wrong with the bus journey,
 then you will go home for the weekend.

 If you have the bus fare and you catch a bus,
 then you will go home for the weekend.

 You have the bus fare.

are a clause, a Horn clause and a fact respectively. Notice that the second sentence can be
regarded as an imprecise version of the first sentence. Notice too that the first two clauses
both express “strong” domain-specific knowledge, rather than the kind of weak knowledge
that would be necessary for general-purpose planning.

The sentence you will go home for the weekend is a simple, atomic goal.

56 Horn clauses are named after the logician Alfred Horn, who studied some of their model-theoretic
properties.

 153

Backward reasoning (from conclusions to conditions) treats conditionals as goal-reduction
procedures:

 to show/solve H, show/solve B1 and … and Bn.

For example, backward reasoning turns the conditionals:

 If you study late in the library then you will complete the essay.
 If you have the bus fare and you catch a bus,
 then you will go home for the weekend.

into the procedures:

 To complete the essay, study late in the library.
 To go home for the weekend, check that you have the bus fare, and catch a bus.

Because conditionals in normal logic programming are used only backwards, they are
normally written backwards:

 H if B1 and … and Bn.

so that backward reasoning is equivalent to “forward chaining” in the direction in which the
conditional is written. The Prolog syntax for clauses:

 H :- B1 ,… , Bn.

is deliberately ambiguous, so that clauses can be read either declaratively as conditionals
written backwards or procedurally as goal-reduction procedures executed forwards.

Whereas positive, atomic goals and sub-goals are solved by backward reasoning, negative
goals and sub-goals of the form not G, where G is an atomic sentence, are solved by negation
as failure: not G succeeds if and only if backward reasoning with the sub-goal G does not
succeed.

Negation as failure makes logic programming a non-monotonic logic. For example, given
only the clauses:

 An object is red if the object looks red and not the object is illuminated by a red light.
 The apple looks red.

then the consequence:

 The apple is red.

follows as a goal, because there is no clause whose conclusion matches the sub-goal the
apple is illuminated by a red light and therefore the two conditions for the only clause that
can be used in solving the goal both hold. However, given the additional clause the apple is
illuminated by a red light, the sub-goal now succeeds and the top-level goal now fails, non-
monotonically withdrawing the consequence The apple is red. However, the consequence not
the apple is red now succeeds instead.

Goals and conditions of clauses can be generalised from conjunctions of literals to arbitrary
formulae of first-order logic. The simplest way to do so is to use auxiliary predicates and
clauses (Lloyd and Topor, 1984). For example, the goal:

 154

 Show that for all exams,
 if the exam is a final exam, then you can study for the exam in the library.

can be transformed into the normal logic programming form:

 Show that not the library is useless.
 the library is useless if the exam is a final exam and
 not you can study for the exam in the library.

This is similar to the transformation57 noted by Sperber, Cara, and Girotto (1995) needed to
obtain classically correct reasoning with conditionals in variants of the Wason Selection
Task. It is important to note that the transformation applies only when the conditional is
interpreted as a goal, and not when it is interpreted as a clause.

The computational advantage of the transformation is that it reduces the problem of
determining whether an arbitrary sentence of first-order logic holds with respect to a given
logic program to the two simple inference rules of backward reasoning and negation as
failure alone.

6.2 Strong versus weak methods in logic programming

In practice, expert logic programmers use both the declarative reading of clauses as
conditionals, so that programs correctly achieve their goals, and the procedural reading, so
that programs behave efficiently. However, it seems that few programmers achieve this level
of expertise. Many programmers focus primarily on the declarative reading and are
disappointed when their programs fail to run efficiently. Other programmers focus instead on
the procedural reading and loose the benefits of the declarative reading.

Part of the problem is purely technical, because many declarative programs, like the clause:

 Mary likes a person if the person likes Mary

reduce goals to similar sub-goals repeatedly without termination. This problem can be solved
at least in part by employing more sophisticated (“stronger”), but still general-purpose
problem-solvers that never try to solve similar sub-goals more than once (Sagonas et al,
1994).

However, part of the problem is also psychological and cultural, because many programmers
use logic only to specify problem domains, and not to represent useful knowledge for
efficient problem-solving in those domains.

The planning problem in AI is a typical example. In classical planning, the problem is
specified by describing both an initial state and a goal state, and by specifying the
preconditions and postconditions of atomic actions. To solve the problem, it is then necessary
to find a sequence of atomic actions that transforms the initial state into the goal state. This is
sometimes called planning from first principles, or by brute force. In many domains it is
computationally explosive.

57 The use of the auxiliary predicate is merely a technical device, which is useful for maintaining the
simple syntax of goals and clauses. However, it is also possible to employ a more natural syntax in
which the conditional is written directly in the form of a denial: Show that not there is an exam, such
that (the exam is a final exam and not you can study for the exam in the library).

 155

The alternative is to use a collection of precompiled plan schemata that apply to a wide class
of commonly occurring problems in the given domain. These plan schemata typically reduce
a top-level goal to high-level actions, rather than to atomic actions, in a hierarchy of
reductions from higher-level to lower-level actions. This is sometimes called planning from
second principles, and it can be very efficient, although it may not be as complete as planning
from first principles.

Algorithms and their specifications are another example. For instance, the top-level
specification of the problem of sorting a list can be expressed as:

 list L’ is a sorted version of list L if L’ is a permutation of L and L’ is ordered.

No “weak” general-purpose problem-solving method can execute this specification
efficiently.
The Prolog implementation of backward reasoning, in particular, treats the specification as a
procedure:

 To sort list L obtaining list L’, generate permutations L’ of L,
 until you find a permuation L’ that is ordered.

However, there exist a great variety of efficient sorting algorithms, which can also be
expressed in logic programming form. For example, the top-level of the recursive part of
quicksort:

 To quicksort a list L into L’, split L into two smaller lists L1 & L2 and
 quicksort L1 into L’1 and quicksort L2 into L’2 and shuffle L1 & L2 together into L’.

I leave the Horn clause representation of the procedure to the reader. Suffice it to say that
quicksort is a sufficiently “strong” problem-solving method that it behaves efficiently even
when executed by a weak problem-solving method, such as backward reasoning. Stronger,
but still general-purpose methods, such as parallelism, can improve efficiency even more.

6.3 Two kinds of semantics

There are two main kinds of semantics for logic programs, with two main ways of
understanding what it means for a goal to hold. Both of these semantics interpret the clauses
of a program as the only clauses that can be used to establish the conclusions of clauses. This
is also known as the closed world assumption (Reiter, 1978).

In the minimal model semantics, a logic program defines a set of minimal models, and a goal
holds if it is true in one or more of these models. The minimal model semantics comes in a
credulous version, in which a goal holds if it is true in some minimal model; and a sceptical
version, in which a goal holds if it is true in all minimal models.

The notion of minimal model is very simple in the case of Horn clause programs, because
every Horn clause program has a unique minimal model, in which an atomic sentence is true
if and only if it is true in all models. However, it is more complicated for normal logic
programs with negative conditions. For this reason, a more detailed discussion of the minimal
model semantics is given in the appendix.

The main (and arguably simpler) alternative to the minimal model semantics is the
completion semantics, in which clauses are understood elliptically as the if-halves of
definitions in if-and-only-if form (Clark, 1978). If a predicate does not occur as the
conclusion of a clause, then it is deemed to be false. This interpretation is called the predicate

 156

(or Clark) completion. A goal holds in the completion semantics if it is a theorem, logically
entailed by the completion of the logic program.

Consider, for example, the logic program:

 you get help if you press the alarm signal button.
 you get help if you shout loudly.

The completion58 of the program is:

you get help if and only if you press the alarm signal button or you shout loudly.
you press the alarm signal button if and only if false.
 (i.e. not you press the alarm signal button.)
you shout loudly if and only if false. (i.e. not you shout loudly.)

which logically entails the conclusion: not you get help.

Negation as finite failure is sound with respect to the completion semantics:

 not G is logically entailed by the completion
 if G fails finitely.

It is also complete in many cases.

The completion and minimal model semantics have different notions of what it means for a
goal, which in both cases can be any formula of first-order logic, to hold with respect to a
given logic program. In both semantics, the same proof procedures of backward reasoning
and negation as failure can be used. However, in the minimal model semantics, negation as
failure includes possibly infinite failure, whereas in the completion semantics, negation as
failure is finite.

Given a program and goal, in most cases these two semantics give the same results. In many
cases, these results differ from those sanctioned by classical logic, but are similar to those
observed in psychological studies of human reasoning. However, as we have seen at the
beginning of the paper, the selection task presents a challenge, which we will discuss again in
section 10.2.

6.4 Two kinds of proof procedures

The standard proof procedure for logic programming, used in Prolog for example, generates a
search tree, whose nodes are labelled by goals. The root of the tree is labelled by the initial
goal. Given any node in the tree, labelled by a goal, say:

 B & B1 &... & Bn

backward reasoning proceeds by first selecting a sub-goal for solution, say B for simplicity.

If there is more than one sub-goal that can be selected, then, as with conflict-resolution in
production systems, a decision needs to be made, selecting only one. Any selection strategy
can be used. Prolog selects sub-goals in the order in which they are written. However, more
intelligent, but still “weak”, problem-solving strategies, such as choosing the most

58 The use of if and only if here does not make the two sides of the “equivalence” symmetric. The left-
hand side is a predicate defined by the formula on the right-hand side.

 157

constrained sub-goal first (the one that has fewest candidate solutions), can also be used
(Kowalski, 1974/79).

If the selected sub-goal B is a positive, atomic goal, then backward reasoning continues by
looking for a clause whose conclusion matches B. In the propositional case, if B is identical to
the conclusion of a clause B if B’1 &... & B’m then backward reasoning replaces the selected
sub-goal by the conditions of the clause, obtaining a child of the node labelled by the new
goal:

 B’1 &... & B’m & B1 &... & Bn

In the more general case, the selected sub-goal needs to be unified with the conclusion of a
clause, and the unifying substitution is applied to the new goal. A node has as many children
as there are such clauses whose conclusion matches the selected sub-goal.

If the selected sub-goal B is the negation not B’ of an atomic formula B’ containing no
variables, then negation as failure is applied, generating a subsidiary search tree with the
same program, but with the initial goal B’. The selected sub-goal not B’ succeeds if and only
if the subsidiary search tree contains no solution, and the only child of the node is labelled by
the new goal:

 B1 &... & Bn

A solution is a finite branch of the search tree that starts from the initial node and ends with a
node labelled by the empty conjunction of sub-goals (where n = 0). Because of infinite
branches, the proof procedure is semi-decidable.

Given a program and an initial goal, the search tree is generated and explored, to find a
solution. Prolog uses a depth-first search strategy, exploring branches in the order in which
clauses are written. Depth-first search is risky, because it can get lost down an infinite
branch, when there are solutions lying around on alternative finite branches. However, when
it works, it works very efficiently. But other search strategies, such as breadth-first, best-first
and parallel search strategies, which are guaranteed to find a solution if one exists, are also
possible.

If a search tree is too big, no search strategy can search it efficiently. Sometimes the problem
is inherently difficult, and there is no alternative but to search the space as patiently as
possible. But in many domains, as we have seen, the problem can be reformulated, using
“stronger” knowledge, which results in a smaller, more manageable search tree.

The alternative to generating a search tree is to reason explicitly with the program
completion, representing the current state of the search by a single formula, which
corresponds to the expanding frontier of the search tree. Reasoning with the completion was
introduced as a proof procedure for abductive logic programming by (Console et al, 1991)
and extended by (Fung and Kowalski, 1997).

Backward reasoning is performed by replacing predicates with their definitions, resulting in a
logically equivalent formula. For example:

Goal: you get help and you study late in the library

Program: you get help if and only if
 you press the alarm signal button or you shout loudly.

New goal: [you press the alarm signal button and you study late in the library] or

 158

 [you shout loudly and you study late in the library].

Reasoning with the completion represents the current state of the search to solve a goal as a
disjunction of conjunctions of literals, say:

 (A & A1 &...& A) or (B & B1 &... & Bβ) or...or (C & C1 & ... & Cν).

Each disjunct corresponds to the goal at the end of an unextended branch in a search tree. The
entire disjunction corresponds to the set of all goals at the current frontier of the search tree.
The initial goal is represented by an initial disjunction with only one disjunct. Replacing an
atom by its definition, called unfolding, corresponds to replacing a node at the tip of a branch
by all of its children.

In the propositional case, unfolding a selected positive goal atom, say B, replaces it with its
definition:

 B if and only if D1 or...or Dn

and distributes conjunction over disjunction, so that the new state of the search is represented
by a new, logically equivalent formula of the form:

(A & A1 &...& A) or (D1 & B1 &... & Bβ) or…or (Dn & B1 &... & Bβ) or...or (C & C1 & ... & Cν).

In the special case where the definition has the form:

 B if and only if true

then the new formula is simplified to:

 (A & A1 &...& A) or (B1 &... & Bβ) or...or (C & C1 & ... & Cν).

In the special case where the definition has the form:

 B if and only if false

then the new formula is simplified to:

 (A & A1 &...& A) or ...or (C & C1 & ... & Cν).

In the propositional case, the initial goal succeeds if and only if the formula true is derived by
means of a finite number of such equivalence-preserving inference steps. The goal fails
finitely if and only if the formula false is derived59.

If the selected atom is a negative literal, say not B’, then a subsidiary derivation is initiated
with the initial goal B’ (viewed as a disjunction with only one disjunct, which is a conjunct
with only one conjunct). If the new initial goal fails finitely, then the selected atom is
replaced by true and the new formula is simplified to:

 (A & A1 &...& A) or (B1 &... & Bβ) or...or (C & C1 & ... & Cν).

59 In the general case, the process of matching goals with conclusions of definitions introduces
equalities, which represent the instantiations of variables need to solve those goals. The initial goal
succeeds if and only if a consistent set of equalities is derived.

 159

If the initial goal succeeds, then the selected atom is replaced by false and the new formula is
simplified to:

 (A & A1 &...& A) or ...or (C & C1 & ... & Cν).

For example, consider the problem of determining whether the consequence:

 The apple is red.

follows from the program:

 An object is red if the object looks red and not the object is illuminated by a red light.
 The apple looks red.

In the completion semantics this can be represented in the form60:

Goal1: The apple is red.
Program: An object is red if and only if
 the object looks red and not the object is illuminated by a red light.
 The apple looks red if and only if true
 The apple is illuminated by a red light if and only if false

Using the completion, it is possible to derive the following sequence of formulae:

Goal2: The apple looks red and not the apple is illuminated by a red light.
Goal3: not the apple is illuminated by a red light.

 Subsidiary goal1: the apple is illuminated by a red light.
 Subsidiary goal2: false

Goal4: true

The example shows that reasoning with the if-halves of clauses and generating a search tree
simulates reasoning explicitly with the completion. Indeed, reasoning informally it can be
hard to tell the two proof procedures apart.

7 The relationship between logic programs and production rules.

Viewing logic programs and production rules informally, it can also be hard to tell them
apart, because in many cases they generate the same goal-reduction behaviour. Indeed,
Simon (1999) includes Prolog, along with ACT-R, “among the production systems widely
used in cognitive simulation”. Stenning and van Lambalgen (2004, 2005, 2008) also observe
that forward chaining with production rules of the form:

 If goal G and conditions C then add H as a sub-goal.

behaves the same as backward reasoning with clauses of the form:

 G if C and H.

60 This is not the real completion, which makes the stronger closed world assumption that nothing is
illuminated by a red light. In fact, it would be more appropriate to represent the predicate is
illuminated by a red light by an abducible predicate, to which the closed world assumption does not
apply. The form of the completion used in this example has been chosen as a compromise, to simplify
the example.

 160

The production rule and the clause both behave as the same goal-reduction procedure:

 To achieve G, show C, and achieve H as sub-goal.

The production rule can be understood as representing the procedure subjectively (or
intentionally), in terms of the causal effect of the goal G on an agent’s state of mind. The
clause, on the other hand, views it objectively (or extensionally), in terms of causal effects in
the agent’s environment. However, in both cases, the direction of the conditional is from
conditions that are causes to conclusions that are effects. This switching of the direction of
the conditional is related to the switching associated with evidential conditionals, epistemic
and inferencial conditionals as noted by Pearl (1988), Dancygier (1998) and Politzer and
Bonnefon (2006). In Appendix B, I argue that the completion semantics helps to explain the
switching and truncation of conditionals observed in many psychological studies, as
discussed by Politzer and Bonnefon (2006)

Thagard’s example of the production rule:

 If you want to go home for the weekend, and you have the bus fare,
 then you can catch a bus.

can be understood as a subjective representation of the goal-reduction procedure:

 To go home, check that you have the bus fare, and catch a bus.

which can be represented objectively by the logic programming clause:

 you will go home for the weekend if
 you have the bus fare and you catch a bus.

Notice that the causal relationship in both formulations of the procedure has as an implicit
associated degree of uncertainty. In the case of the production rule, the uncertainty is
associated with whether or not the agent’s conflict resolution strategy will chose the action of
the rule if other rules with other incompatible actions are triggered at the same time.

In the case of the clause, the uncertainty is associated with whether or not other implicit and
unstated conditions also hold. This implicit condition can be stated explicitly using negation
as failure:

 you will go home for the weekend if
 you have the bus fare and you catch a bus and
 not something goes wrong with the bus journey.

The formulation without this extra condition can be regarded as an approximation to the fully
specified clause. It is an approximation, not only because it is missing the condition, but also
because it is not sufficient to take any old bus to get home, but it is necessary to take a bus
that is on a route that goes home.

This representation with an extra condition, using negation as failure, does not attempt to
quantify or even to qualify the associated degree of uncertainty. However, as we will see
later, in abductive logic programming (ALP) it can be quantified by using instead an
abducible predicate, say the bus journey is successful, and by associating a probability with
the abducible predicate. For example:

 161

 you will go home for the weekend if
 you have the bus fare and you catch a bus and
 the bus journey is successful.

 the bus journey is successful (with probability .95).
 something goes wrong with the bus journey (with probability .05).

In the meanwhile, it is worth noting that the ALP formulation provides a link with Bayesian
networks (Pearl, 1988). David Poole (1993, 1997) has shown, in general, that assigning a
probability p to a conditional A if B is equivalent to assigning the same probability p to an
abducible predicate, say normal, in the clause A if B and normal. In particular, he has
shown that abductive logic programs with such probabilistic abducible predicates have the
expressive power of discreet Bayesian networks. A similar result, but with a focus on using
statistical learning techniques to induce logic programs from examples, has also been
obtained by Taisuke Satoh (1995). In recent years this has given rise to a booming research
area combining probability, learning and logic programming (De Raedt and Kersting, 2003).

The relationship between logic programs that are used to reason backwards and production
rules that are used to represent goal-reduction procedures does not solve the problem of the
relationship between logic programs and production systems in general. In particular, it does
not address the problem of understanding the relationship when production rules are used
instead to represent stimulus-response associations. For example, it is unnatural to interpret
the condition-action rule:

 If it is raining and you have an umbrella, then cover yourself with the umbrella.

as a goal-reduction procedure, to solve the goal of covering yourself with an umbrella by
getting an umbrella when it rains.

I will argue that stimulus-response production rules are better understood as maintenance
goals, which are integrity constraints in abductive logic programming.

8 Integrity constraints

In conventional databases, integrity constraints are used passively to prevent prohibited
updates. But in abductive logic programming, they are like integrity constraints in active
databases, where they both prevent prohibited updates and perform corrective actions to
ensure that integrity is maintained. Production rules, used as stimulus-response associations,
can be understood as integrity constraints of this kind.

Thus the condition-action rule for covering oneself when it rains can be understood as an
active integrity constraint:

 If it is raining and you have an umbrella, then you cover yourself with the umbrella.

This is identical in syntax to the condition-action rule, except that the action part is not
expressed as a command or recommendation, but as a statement in declarative form. Unlike
the original condition-action rule, the integrity constraint has the syntax of a logical
implication.

In fact, integrity constraints are just a particular species of goal; and, like other kinds of
goals, they can be sentences of first-order logic. They also have the same semantics as goals
in logic programs (Godfrey et al, 1998). This includes both the credulous and sceptical
versions of the minimal model semantics, in which integrity constraints are sentences that are

 162

true in minimal models of a logic program. It also includes the completion semantics, in
which they are sentences logically entailed by the if-and-only-if completion of the program.

However, it is also natural to understand the semantics of integrity constraints in consistency
terms: An integrity constraint holds if and only if it is consistent with respect to the program.
The consistency view comes in two flavours: In the minimal model semantics, the
consistency view is equivalent to the credulous semantics: An integrity constraint is
consistent with respect to the minimal model semantics of a logic program if and only if it is
true in some minimal model of the program. In the completion semantics, an integrity
constraint is satisfied if and only if it is consistent with the completion of the program relative
to classical model theory. We will see later in section 10.2 that the consistency view of
constraint satisfaction seems to be necessary in the selection task.

The difference between integrity constraints and conventional goals is partly terminological
and partly pragmatic. In problem-solving, a conventional goal is typically an achievement
goal, which is a one-off problem to be solved, including the problem of achieving some
desired state of the world. In contrast, a typical integrity constraint is a maintenance goal that
persists over all states of the world. In the context of intelligent agents, the term goal
generally includes both maintenance goals and achievement goals.

Maintenance goals typically have the form of conditionals and can be hard to distinguish
from clauses61. The distinction between clauses and maintenance goals can be better
understood by viewing them in terms of the data base distinction between data and integrity
constraints (Nicolas and Gallaire, 1978).

In conventional relational databases, data is defined by relationships, which can be viewed in
logical terms as facts (variable-free atomic sentences). For example:

 The bus leaves at time 9:00.
 The bus leaves at time 10:00. etc.

However, in deductive databases, relationships can also be defined by more general clauses.
For example:

 The bus leaves at time X:00 if X is an integer and 9 ≤ X ≤ 18.

Given appropriate definitions for the predicates in its conditions, the clause replaces the 10
separate facts that would be needed in a conventional relational database.

Compare this clause with the conditional:

 If the bus leaves at time X:00,
 then for some integer Y, the bus arrives at its destination at time X:Y & 20 ≤ Y ≤ 30.

The existential quantifier in the conclusion of the sentence means that the sentence cannot be
used to define data, but can only be used to constrain it. In a passive database, it would be
used to reject any update that records an arrival time earlier than 20 minutes or later than 30
minutes after departure. However, in an active database, it could attempt to make its
conclusion true and self-update the database with a record of the arrival, generating an
appropriate value for Y .

61 In this respect, they resemble the conditionals in the selection task, which can be interpreted
descriptively or deontically.

 163

Obviously, the capability to make such an update lies outside the powers of even an active
database. However, it is a feature of many intelligent agent systems, such as Agent0
(Shoham, 1991). Whereas actions in production systems can be executed as soon as all of
their conditions are satisfied, actions in Agent0 have associated times, and they can be
executed when their associated times equal the actual time.

An intelligent agent might use integrity constraints to maintain the integrity of its
“knowledge base”, in much the same way that an active database system uses integrity
constraints to maintain the integrity of its data. However, whereas backward reasoning is
adequate for solving achievement goals, maintaining integrity is more naturally performed by
combining backward and forward reasoning (Kowalski, Sadri and Soper, 1987):

Integrity checking is triggered by an observation that updates the agent’s
knowledge base. Forward reasoning is used to match the observation either with a
condition of an integrity constraint I or with a condition of a clause C. It proceeds
by using backward reasoning to verify any remaining conditions of the integrity
constraint I or clause C; and then, if these condtions are satisfied, it derives the
conclusion. If the derived conclusion is the conclusion of an integrity constraint I,
then the conclusion is a new goal, typically an achievement goal. However, if it is
the conclusion of a clause C, then it is treated as a derived update and processed by
further forward reasoning.

An achievement goal can be solved by backward reasoning, as in normal logic programming.
But, instead of failing if a sub-goal cannot be reduced to further sub-goals, if the sub-goal is
an action, then an attempt can be made to make it true by executing it successfully62. The
result of the attempt is added as a new update to the knowledge base.

This informal description of forward and backward reasoning with clauses and forward
reasoning with integrity constraints is compatible with different semantics and can be
formalised both in terms of search trees and in terms of reasoning with the completion. In
both cases, it gives a logical semantics to production rules of the stimulus-response variety
and it facilitates combining them with logic programs. It also facilitates the modelling of
agents that combine the ability to plan pro-actively with the ability to behave reactively.

9 Intelligent Agents and AgentSpeak

The ability to combine planning for a future state of the world with reacting to the present
state is a characteristic of both human and artificial agents. In the next section, we will see
how these abilities are combined in ALP agents. ALP agents can be viewed in BDI (Belief,
Desire, Intention) (Bratman, Israel, and Pollack, 1988) terms, as agents whose beliefs are
represented by clauses, whose desires (or goals) are represented by integrity constraints, and
whose intentions are collections of actions to be performed in the future.

Arguably, the most influential of the BDI agent models is that of Rao and Georgeff (1991),
its successor dMARS (d'Inverno, 1998), and their abstraction and simplification AgentSpeak
(Rao, 1996). Although the earliest of these systems were specified in multi-modal logics,
their procedural implementations bore little resemblance to their logical specifications.
AgentSpeak abandoned the attempt to relate the modal logic specifications with their
procedural implementations, observing instead that “…one can view agent programs as
multi-threaded interruptible logic programming clauses”

62 If the abducible sub-goal is an observable predicate, then the agent can actively attempt to observe
whether it is true or false. Active observations turn the simplified formulation of the selection task
discussed at the beginning of the paper into one that more closely resembles standard formulations, in
which the subject is asked to perform an action.

 164

However, this view of AgentSpeak in logic programming terms is restricted to the procedural
interpretation of clauses. In fact, procedures in AgentSpeak are much closer to production
rules than they are to clauses in logic programming. Like production systems, AgentSpeak
programs have both a declarative and a procedural component. The declarative component
contains both belief literals (atoms and negations of atoms) and goal atoms, whereas the
procedural component consists of plans, which are an extension of production rules. Plans
are embedded in a cycle similar to the production system cycle, and have the syntactic form:

 Event E: conditions C  goals G and actions A.

Here the event E can be the addition or the deletion of a belief or the addition of a goal. Like
production rules, plans are executed in the direction in which they are written, by a kind of
forward chaining. Production systems are the special case where the set of goals G is empty.

Here are some typical AgentSpeak plans:

+!quench_thirst: have_glass 
 !have_soft_drink;
 fill_glass, drink.

+!have_soft_drink: soft_drink_in_fridge 
 open_fridge;
 get_soft_drink.

+rock_seen(R): not battery_low 
 ?location(R,L);
 !move_to(L);
 pick_up(R).

 + there is a fire: true  +there is an emergency.

Observations and actions do not have associated times, and the declarative memory provides
only a snapshot of the current state of the world. To compensate for this lack of a temporal
representation, the prefixes +,-, !, and ? are used to stand for add, delete, achieve, and test
respectively.

Notice that the first two plans are goal-reduction rules, the third plan is a stimulus-response
rule, and the fourth plan behaves like a logical implication used to reason forwards.

Like rules in production systems, plans in AgentSpeak do not have a declarative reading.
However, in the special case where the triggering event E is the addition of a goal, and the
plan has the form:

 Goal E: conditions C  goals G and actions A.

the plan can be reformulated as a corresponding logic programming clause:

 E’ if C’ and G’ and A’and temporal constraints.

where the prefixed predicates of AgentSpeak are replaced by predicates with explicit
associated times. The corresponding clause is identical in behaviour to the plan, but also has

 165

a declarative reading. Using an (overly) simple, explicit representation of time63, the clauses
corresponding to the first two plans illustrated above are:

 quench_thirst at time T5 if have_glass at time T1 and
 have_soft_drink at time T2 and
 fill_glass at time T3 and drink at time T4 and T1 T2 T3 T4 T5.

 have_soft_drink at time T4 if soft_drink_in_fridge at time T1 and
 open_fridge at time T2 and
 get_soft_drink at time T3 and T1 T2 T3 T4.

As in the case of stimulus-response production rules, plans in which the triggering event is
the addition or deletion of a belief can be represented by means of an integrity constraint. For
example, the integrity constraint corresponding to the third plan above is:

If rock_seen(R) at time T and not battery_low at time T and location(R,L) at time T
then move_to(L) at time T +1 and pick_up(R) at time T+2.

In addition to goal-reduction rules and stimulus-response associations, there is a third kind of
production rule and AgentSpeak plan, illustrated by the fourth plan above, in which the event
E is an observation and the goals and actions are simply the addition of beliefs. The fourth
plan corresponds to a logic programming clause:

 there is an emergency if there is a fire.

that is used to reason forwards in abductive logic programming, rather than backwards in
normal logic programming, as we shall see again below.

10 Abductive logic programming (ALP)

Abductive logic programming (Kakas et al, 1998) extends normal logic programming by
combining closed predicates that are defined in the conclusions of clauses with abducible
(open or undefined) predicates that occur in the conditions, but not in the conclusions of
clauses. Abducible predicates are instead constrained, directly or indirectly, by integrity
constraints.

10.1 A brief introduction to ALP

In general, given a logic program P and integrity constraints I, the abductive task is given by
a problem G, which is either an achievement goal or an observation to be explained. The task
is solved by finding a set Δ of atomic sentences in the abducible predicates, such that:

 Both I and G hold with respect to the extended, normal logic program P∪ Δ.

Δ is called an abductive explanation of G.

This characterisation of abductive logic programming is compatible with different
semantics64 defining what it means for a goal or integrity constraint to hold with respect to a
normal logic program. It is compatible, in particular, with the minimal model semantics, the

63 Notice that the explicit representation of time draws attention to implicit assumptions of persistence,
for example the assumption that have_glass at time T1 persists until time T5 .
64 Sometimes the set Δ is allowed to contain the negations of atomic sentences in the abducible
predicates, in which case there is an additional requirement that Δ be consistent.

 166

completion semantics and the consistency view of constraint satisfaction. It is also
compatible with different proof procedures, including both search tree proof procedures and
proof procedures that reason explicitly with the completion.

Consider the following abductive logic program (with a much simplified representation of
time), in which the integrity constraint is a denial:

Program: Grass is wet if it rained.
 Grass is wet if the sprinkler was on.

Abducible predicates: it rained, the sprinkler was on, the sun was shining.

Integrity constraint: not (it rained and the sun was shining) or equivalently
 if it rained and the sun was shining then false.

Observation: Grass is wet.

In abductive logic programming, reasoning backwards from the observation (treated as a
goal), it is possible to derive two alternative explanations of the observation:

 it rained
 or the sprinkler was on.

Depending on the proof procedure, the two explanations are derived either on different
branches of a search tree or as a single formula with an explicit disjunction.

Suppose that we are now given the additional observation:

Observation: the sun was shining.

Backward reasoning with the new observation is not possible. But, depending on the proof
procedure, as we will see in the next section, the new observation and the integrity constraint
reject the hypothesis it rained, leaving the sprinkler was on as the only acceptable
explanation of the observation that the Grass is wet.

10.2 Proof procedures for ALP

The standard proof procedure for ALP augments the search tree proof procedure for normal
logic programming in two ways. First, it includes all integrity constraints in the initial goal,
expressed in the form of denials. Second it accumulates abductive hypotheses as they are
needed to solve the initial goal, and it adds these to the program as the search to find a
solution continues.

For example, the initial goal, at the root of the search tree, needed to explain the observation
that the Grass is wet in the previous section, would be expressed in the form65:

 Grass is wet and not (it rained and the sun was shining)

Selecting the first sub-goal Grass is wet, backward reasoning generates two alternative
branches in the search tree, with two children of the root node:

65 Strictly speaking, the denial should be formulated as a negative literal, by introducing an auxiliary
predicate, but this is just a technical requirement, which can be avoided by slightly complicating the
syntax of conditions of clauses, as in this example.

 167

 it rained and not (it rained and the sun was shining)
 the sprinkler was on and not (it rained and the sun was shining)

On each branch, the proof procedure solves the abducible sub-goal by adding it to the set of
hypotheses Δ:

 not (it rained and the sun was shining) Δ = {it rained}
 not (it rained and the sun was shining) Δ = {the sprinkler was on}

On both branches, negation as failure is applied to the remaining negative sub-goal,
generating subsidiary search trees with new initial goals, and with the program augmented by
the hypotheses generated so far:

 it rained and the sun was shining Δ = {it rained}
 it rained and the sun was shining Δ = {the sprinkler was on}

Given no additional information, both subsidiary search trees fail to contain a solution (in
both cases the sun was shining fails). So the negative goals on the two branches of the
original search tree succeed, resulting in two alternative solutions of the initial goal:

 Δ = {it rained} Δ = {the sprinkler was on}

However, given the additional observation the sun was shining added to the program, the first
subsidiary search tree, with the goal it rained and the sun was shining, now contains a
solution, because both sub-goals now succeed, and the corresponding negative goal now
fails, leaving only the one solution to the initial goal:

 Δ = {the sprinkler was on}

Although the search tree proof procedure can be extended to include forward reasoning with
clauses and integrity constraints, it is easier to incorporate forward reasoning into completion
proof procedures instead. There are different proof procedures that use the completion
explicitly.
For example, the proof procedure of Console et al (1991) represents integrity constraints as
denials and uses the consistency view of constraint satisfaction, whereas the IFF proof
procedure of Fung and Kowalski (1997) and the SLP proof procedure of Kowalski, R., Toni,
F. and Wetzel, G. (1998) represents integrity constraints as implications. The IFF and SLP
proof procedures differ mainly in their view of constraint satisfaction. IFF uses the theorem-
hood view, and SLP uses the consistency view.

Given the problem of explaining the observation that the Grass is wet, the IFF and SLP proof
procedures behave identically. The initial goal and program are expressed in the form:

Goal1: Grass is wet and (if it rained and the sun was shining then false)
Program: Grass is wet if and only if it rained or the sprinkler was on.

Unfolding the first sub-goal, replacing it by its definition and distributing conjunction over
disjunction, we obtain the equivalent new goal:

Goal2: [it rained and (if it rained and the sun was shining then false)] or
 [the sprinkler was on and (if it rained and the sun was shining then false)]

Forward reasoning within the first disjunct of the new goal adds the conclusion if the sun was shining
then false to the disjunct:

 168

Goal3: [it rained and (if it rained and the sun was shining then false) and
 (if the sun was shining then false)] or
 [the sprinkler was on and (if it rained and the sun was shining then false)]

The proof procedure now terminates, because there are no further inferences that can be performed. It
is a property of the IFF and SLP proof procedures that both of the hypotheses it rained and the
sprinkler was on entail the observation, and the integrity constraint is both entailed and is consistent
with the completion of the program extended with the completion of the hypotheses.

If the new observation the sun was shining is now added to both disjuncts of the current state of the
goal, we obtain:

Goal4: [it rained and (if it rained and the sun was shining then false) and
 (if the sun was shining then false) and the sun was shining] or
 [the sprinkler was on and (if it rained and the sun was shining then false) and
 the sun was shining]

Forward reasoning with the new observation in both disjuncts, adds false to the first disjunct
and if it rained then false to the second disjunct. Simplifying the first disjunct to false leaves
only the second disjunct in the form:

Goal5: [the sprinkler was on and (if it rained and the sun was shining then false) and
 the sun was shining and (if it rained then false)]

The proof procedure terminates again. This time, the hypothesis that the sprinkler was on is
now the only hypothesis that entails the observation and satisfies the integrity constraint. In
this example, the same proof procedure implements both the theorem-hood and the
consistency views of constraint satisfaction.

However, this inference can be added naturally and with little extra work, by extending the
forward reasoning procedure with a refutation complete resolution method, such as SL-
resolution (Kowalski and Kuehner, 1971). SL resolution generalises the SLD proof procedure
(Kowalski, 1973/1974), on which the search tree proof procedure for Horn clauses is based.

The IFF proof procedure is sound and, with certain modest restrictions on the form of clauses
and integrity constraints, complete with respect to the completion of the program in the
Kunen (1987) three-valued semantics. The extension of the proof procedure to implement the
consistency view of integrity satisfaction can not be complete, because consistency is not
semi-decidable. However, this is not an argument against the consistency view - any more
than the fact that there is no proof procedure for proving all truths of arithmetic is not an
argument against the notion of truth in arithmetic. (See, in particular, the Horn clause
program for arithmetic in Appendix A.)

The IFF and SLP completion proof procedures, with or without the extension to implement
the consistency view of constraint satisfaction, differ from the search tree proof procedure
mainly in their incorporation of forward reasoning to reason with integrity constraints. The
informal proof procedure, which extends IFF and SLP by incorporating the integrity
checking method of Kowalski, Sadri and Soper (1987) to include forward reasoning with
clauses, is necessary to obtain the full effect of forward chaining with production rules.

11 ALP agents

 169

The notion of ALP agent, in which abductive logic programming is embedded as the thinking
component of an observation-thought-decision-action cycle, was introduced in (Kowalski,
1995) and was developed further in (Kowalski and Sadri, 1999; Kowalski 2001, 2006). It is
also the basis of the KGP (Knowledge, Goals and Plans) agent model of (Kakas el al, 2004).
The ALP proof procedure of (Kowalski and Sadri, 1999) is the IFF proof procedure, whereas
the informal proof procedure described in this paper and in (Kowalski 2001, 2006) extends
IFF by incorporating forward reasoning with clauses. The proof procedure of KGP extends
IFF with constraint handling procedures.

The observation-thought-decision-action cycle of an ALP agent is similar to the production
system and AgentSpeak cycles. The agent’s beliefs are represented by clauses. Achievement
and maintenance goals, as well as prohibitions, are represented by integrity constraints.
Observations (or hypotheses that explain observations) and actions are represented by
abducible predicates.

In the ALP agent cycle, reasoning can be interrupted, as in AgentSpeak, both by incoming
observations and by outgoing actions. An incoming observation, for example, might trigger
an integrity constraint and derive an action that needs to be performed immediately,
interrupting the derivation of plans and the execution of actions that need to be performed
only later in the future.

Consider the English sentences in the following example:

 If you have an essay to write, then you study late in the library.
 If there is an emergency, then you get help.
 If you press the alarm signal button, then you get help.
 If there is a fire, then there is an emergency.

The four sentences all have conditional form. Moreover, the second and third sentences have
the same conclusion you get help. However, despite their similar syntax, the first two
sentences would function as maintenance goals and would be represented by integrity
constraints in the ALP agent model. The last two sentences would function as beliefs and
would be represented by clauses. The predicates “there is a fire” and “you press the alarm
signal button” are abducible predicates, representing possible observations and actions
respectively. The predicate you study late in the library would be defined by other clauses.

To be precise, all of the predicates would need to include associated times. These times
would reflect the fact that getting help in an emergency is more urgent than studying late in
the library.

Given an update recording an observation that you have an essay to write, forward reasoning
with the first sentence would derive the achievement goal you study late in the library and set
in train a process of backward reasoning and action execution to solve the achievement goal.

A second update recording an observation that there is a fire would interrupt this process and
initiate a chain of forward reasoning to determine the consequences of the new update.
Forward reasoning with the fourth sentence derives the consequence there is an emergency.
Forward reasoning with the second sentence derives the new achievement goal you get help.
Backward reasoning with the third sentence reduces this goal to the abducible sub-goal, you
press the alarm signal button. Because the sub-goal is an action abducible, it can be solved
only by making it true, executing it successfully in the environment. Because the action is
urgent, it interrupts the process of studying late in the library, which can be returned to later.

 170

In production systems and AgentSpeak, all four sentences would be represented uniformly as
production rules or plans, and they would all be executed by forward chaining. Different uses
of a belief would be represented by different rules or plans. For example, in AgentSpeak, the
four sentences above would be represented by such plans as:

 + you have an essay to write: true  !you study late in the library
 +there is an emergency: true  !get help.
 +!get help: true  press the alarm signal button.
 + ?there is a fire: there is an emergency  true.
 + there is a fire: true  +there is an emergency.
 +! there is an emergency: true  ! there is a fire.

Because AgentSpeak plans do not have a uniform logical reading, they can not easily be used
to represent weak domain-general knowledge, as is possible in logic programming. On the
one hand, this is a limitation, but on the other hand it probably encourages programmers to
write more efficient domain-specific problem-solving methods.

12 Decision-making in ALP agents – another role for probability

The ALP agent observation-thought-decision-action cycle includes a decision-making
component to choose between alternatives courses of action, including alternative ways of
solving the same goal. Different alternatives may solve an initial goal with different degrees
of utility, as well as have other desirable or undesirable consequences as side effects.

This decision-making process is further complicated by the uncertainty of the consequences
of an agent’s candidate actions, due to the uncertain behaviour of other agents and the
uncertainty of the environment. Thus the problem of deciding between different courses of
actions requires consideration of both utility and uncertainty. According to the ideals of
classical decision theory, a rational agent should choose a course of actions that optimises
overall expected utility, including the utility of any side effects, and taking into account any
associated uncertainties.

Decision theory is a normative ideal, which requires a large body of knowledge and huge
computational resources. As a consequence, it is often more practical for an agent to employ
heuristic strategies that approximate the normative ideal. One of the simplest of these
strategies is to use a fixed priority ordering of goals and beliefs, to give preference to one set
of actions over another.

Consider, for example, the following two ways of going home for the weekend:

 you will go home for the weekend if you have the bus fare and you catch a bus home.
 you will go home for the weekend if you have a car and you drive the car home.

Both alternatives can be used to solve the goal of going home, but with different utilities and
probabilities. Taking into account the state of the car and the reliability of the bus service, it may be
possible to associate explicit probabilities with the two clauses. For example:

 you will go home for the weekend if you have the bus fare and you catch a bus home.

(with probability .95)

 you will go home for the weekend if you have a car and you drive home.
 (with probability .80)

 171

However, as Poole (1993, 1997) has shown, the same effect can be achieved by associating
probabilities with abducible predicates:

 you will go home for the weekend if you have the bus fare and you catch a bus home

and the bus journey is successful.
 you will go home for the weekend if you have a car and you drive the car home
 and the car journey is successful.
 the bus journey is successful. (with probability .95)
 the car journey is successful. (with probability .80)

To do a full-scale decision-theoretic analysis, in addition to determining the probabilities, it
would also be necessary to determine the degree to which the alternatives accomplish their
intended goal, as well as to the quantify the costs and benefits of other possible
consequences66. For example, driving the car may be more comfortable than taking the bus,
and the bus schedule may be inconvenient. But taking the bus may cost less money, and, by
contributing to the reduction of global carbon emissions, help to save the planet.

You could do a PhD calculating the probabilities and utilities and on combining them to find
the optimal solution. But, the result might be equivalent to just giving preference to the use of
one alternative over the other. This could be done, for example, just using normal logic
programming clauses, Prolog-fashion in a fixed order. For example, in the order:

 you will go home for the weekend if you have the bus fare
 and you catch a bus home
 and not something goes wrong with the bus journey.

 you will go home for the weekend if you have a car
 and you drive home
 and not something goes wrong with the car journey.

13 Conclusions

I have argued that the two main kinds of conditionals used in AI, namely production rules
and logic programming clauses, can be combined naturally in the ALP agent model and can
simulate human performance on a number of reasoning tasks. Because production systems
have been used widely as a cognitive architecture, but have not been much used to model
human reasoning, there are grounds for believing that the ALP agent model may have value
as a general cognitive architecture.

Psychological studies of human reasoning are a test and a challenge for agent models
developed in Artificial Intelligence. I have argued that, although the ALP agent model
performs well on some of these tests, the basic model needs to be extended, to include
forward reasoning with clauses and to implement the consistency semantics of integrity
constraints. I believe that these extensions, and possibly others that might be needed to
simulate human reasoning in other psychological experiments, also suggest improvements of
the ALP agent model, which can be used for computer applications in AI.

66 In classical Decision Theory, the possible outcomes of candidate actions are given in advance. The
extension of the IFF proof procedure to include forward reasoning with clauses makes it possible to
derive consequences of candidate actions to help in deciding between them (Kowalski, 2006), using
clauses of the form effect if cause. The same clauses can also be used backwards to generate plans to
achieve desired effects by reducing them to possible causes.

 172

Acknowledgements

Many thanks to Fariba Sadri, Michiel van Lambalgen and Keith Stenning for helpful
discussions, and to Keith Clark, Luis Pereira, Keith Stenning and Guy Politzer for useful
comments on an earlier draft of this paper. Thanks too to Mike Oaksford for the invitation to
contribute to this volume.

References

Anderson, J. and Bower, G. (1973). Human Associative Memory. Washington, D.C.:
Winston.

Bondarenko, A., Dung, P. M., Kowalski, R., and Toni, F. (1997) An Abstract
Argumentation-theoretic Approach to Default Reasoning. Journal of Artificial Intelligence 93
(1-2), 1997, 63-101.

Bonnefon, J.-F. and Politzer, G. (2007) Pragmatic Conditionals, Conditional Pragmatics, and
the Pragmatic Component of Conditional Reasoning. This volume.

M. E. Bratman, D. J. Israel, and M. E. Pollack (1988) Plans and resource-bounded practical
reasoning, Computational Intelligence, vol. 4, 349–355.

Clark, K.L. (1978) Negation by failure. In Gallaire, H. and Minker, J. [eds], Logic and
Databases, Plenum Press, 293-322.

Colmerauer, A., Kanoui, H., Pasero, R. and Roussel, P. (1973) Un systeme de communication
homme-machine en Francais. Research report, Groupe d’Intelligence Artificielle, Universite
d’Aix-Marseille II, Luminy.

Console, L., Theseider Dupre, D. and Torasso, P. (1991) On the relationship between
abduction and deduction. Journal of Logic and Computation. 1(5) 661-690

Dancygier, B. (1998) Conditionals and Prediction. Time, Knowledge, and Causation in
Conditional Constructions. Cambridge: Cambridge University Press.

De Raedt, L. and Kersting, K. (2003) Probabilistic Logic Learning. In: SIGKDD
Explorations 5/1 31-48.

Dung, P. M., Kowalski, R., and Toni, F. (2006) Dialectic proof procedures for assumption-
based, admissible argumentation. Journal of Artificial Intelligence 170(2), 2006,114-159.

van Emden, M. (2006) The Early Days of Logic Programming: A Personal Perspective
The Association of Logic Programming Newsletter, Vol. 19 n. 3, August 2006.
http://www.cs.kuleuven.ac.be/~dtai/projects/ALP/newsletter/aug06/

van Emden, M. and Kowalski, R. (1976) The Semantics of Predicate Logic as a
Programming Language JACM , Vol. 23, No. 4, 733-742.

Eshghi, K. and Kowalski, R. (1989) Abduction Compared with Negation by Failure. In Sixth
International Conference on Logic Programming, (eds. G. Levi and M. Martelli) MIT
Press, 234-254.

d'Inverno, Luck, M., M., Georgeff, M. P., Kinny, D., and Wooldridge, M. (1998) A Formal
Specification of dMARS. In: Intelligent Agents IV: Proceedings of the Fourth International

 173

http://www.cs.kuleuven.ac.be/%7Edtai/projects/ALP/newsletter/aug06/
http://www.doc.ic.ac.uk/%7Erak/papers/kowalski-van_emden.pdf
http://www.doc.ic.ac.uk/%7Erak/papers/kowalski-van_emden.pdf

Workshop on Agent Theories, Architectures and Languages. Lecture Notes in Artificial
Intelligence, 1365. Springer-Verlag, 155-176.

Fung, T.H. and Kowalski, R. (1997) The IFF Proof Procedure for Abductive Logic
Programming. Journal of Logic Programming.

Gelfond, M. and Lifschitz, V. (1990) Logic programs with classical negation. Proceedings of
the Seventh International Conference on Logic Programming, MIT Press, 579-597.

Godfrey, P., Grant, J., Gryz, J. and Minker, J. (1998) Integrity constraints: semantics and
applications. In Logics for databases and information systems. Kluwer, Norwell, MA, USA.
265 – 306.

Kakas, A., Kowalski, R., Toni, F. (1998) The Role of Logic Programming in Abduction. In:
Gabbay, D., Hogger, C.J., Robinson, J.A. (eds.): Handbook of Logic in Artificial Intelligence
and Programming 5. Oxford University Press 235-324.

Kakas, A., Mancarella, P., Sadri, S., Stathis, K. and Toni, F. (2004) The KGP model of
agency,
ECAI04, General European Conference on Artificial Intelligence, Valencia, Spain, 33-37.

Kowalski, R. and Kuehner, D. (1971) Linear Resolution with Selection Function. Artificial
Intelligence, Vol. 2, 227-60. Reprinted in Anthology of Automated Theorem-Proving Papers,
Vol. 2, Springer-Verlag, 1983, 542-577.

Kowalski, R., (1973) Predicate Logic as Programming Language. Memo 70, Department of
Artificial Intelligence, Edinburgh University. Also in Proceedings IFIP Congress,
Stockholm, North Holland Publishing Co., 1974, 569-574. Reprinted In Computers for
Artificial Intelligence Applications, (eds. Wah, B. and Li, G.-J.), IEEE Computer Society
Press, Los Angeles, 1986, 68-73.

Kowalski, R. (1974) Logic for Problem Solving. DCL Memo 75, Department of Artificial
Intelligence, U. of Edinburgh. Expanded edition published by North Holland Elsevier 1979.
Also at http://www.doc.ic.ac.uk/~rak/.

Kowalski, R. (1995) Using metalogic to reconcile reactive with rational agents.
In: Meta-Logics and Logic Programming (K. Apt and F. Turini, eds.), MIT Press

Kowalski, R. (2001) Artificial intelligence and the natural world. Cognitive Processing, 4,
547-573.

Kowalski, R. (2006) The Logical Way to be Artificially Intelligent. Proceedings of CLIMA
VI (eds. F. Toni and P. Torroni) Springer Verlag, LNAI, 1-22.

Kowalski, R. and Sergot, M. (1986) A Logic-based Calculus of Events. In New Generation
Computing, Vol. 4, No.1, 67-95. Also in The Language of Time: A Reader (eds. Inderjeet
Mani, J. Pustejovsky, and R. Gaizauskas) Oxford University Press. 2005.

Kowalski, R., Sadri, F. and Soper, P. (1987) Integrity Checking in Deductive Databases.
In: Proceedings of VLDB, Morgan Kaufmann, Los Altos, Ca. 61-69.

Kowalski, R., Sadri, F. (1999) From Logic Programming towards Multi-agent Systems.
Annals of Mathematics and Artificial Intelligence. Vol. 25 391-419.

 174

http://www.doc.ic.ac.uk/%7Eft/PAPERS/ecai04-KGP.pdf
http://www.doc.ic.ac.uk/%7Eft/PAPERS/ecai04-KGP.pdf
http://www.doc.ic.ac.uk/%7Erak/papers/sl.pdf
http://www.doc.ic.ac.uk/%7Erak/

Kowalski, R., Toni, F. and Wetzel, G. (1998) Executing Suspended Logic Programs.
Fundamenta Informatica 34 (3), 1-22.

Kunen, K. (1987) Negation in logic programming. Journal of Logic Programming 4:4 289 -
308

Laird, J.E., Newell, A. and Rosenblum, P. S. (1987) SOAR: an architecture for general
intelligence. Artificial Intelligence, 33:1, 1 – 64.

Lloyd, J W, Topor, R W (1984) Making PROLOG more expressive. Journal of Logic
Programming. Vol. 1, no. 3, 225-240.

McCarthy, J. (1958) Programs with common sense, Symposium on Mechanization of Thought
Processes. National Physical Laboratory, Teddington, England.

McCarthy, J. (1980) Circumscription - A form of non-monotonic reasoning. Artificial
Intelligence, 13:27-39.

McDermott, D. and Doyle, (1980) Nonmonotonic logic I," Artificial Intelligence, 13:41-72.

Minsky, M. (1974) A Framework for Representing Knowledge. Technical Report: AIM-306,

Massachusetts Institute of Technology, Cambridge, MA.

Moore, R. C. (1985). Semantical considerations on nonmonotonic logic. Artificial
Intelligence, 25:75-94.

Newell, A., Shaw, J. C., and Simon, H.A. (1957) Empirical explorations of the logic theory
machine. Proc. Western Joint Comp. Conf, 218-239.

Newell, A. (1973). Production Systems: Models of Control Structure. In W. Chase (ed):
Visual Information Processing 463-526 New York: Academic Press 463-526.

Newell, A. (1990). Unified theories of cognition. Harvard University Press Cambridge, MA,
USA.

Nicolas, J.M., Gallaire, H. (1978) Database: Theory vs. interpretation. In Gallaire, H.,
Minker, J. (eds.): Logic and Databases. Plenum, New York.

Pearl, J. 1988: Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: Morgan
Kaufmann.

Politzer G. and Bonnefon J-F. (2006) Two varieties of conditionals and two kinds of
defeaters help reveal two fundamental types of reasoning. Mind and Language,21, 484-503.

Politzer G. and Bonnefon J-F. (this volume)

Poole, D., Goebel, R. and Aleliunas R. (1987) Theorist: a logical reasoning system for
defaults and diagnosis. In N. Cercone and G. McCalla (Eds.) The Knowledge Frontier:
Essays in the Representation of Knowledge, Springer Verlag, New York, 1987, 331-352.

Poole, D. (1993) Probabilistic Horn abduction and Bayesian networks. Artificial
Intelligence, 64(1) 81–129.

 175

http://www-formal.stanford.edu/jmc/mcc59.ps
http://en.wikipedia.org/wiki/National_Physical_Laboratory%2C_UK
http://en.wikipedia.org/wiki/Teddington

Poole, D. (1997) The independent choice logic for modeling multiple agents under
uncertainty. Artificial Intelligence. Vol. 94 7-56.

Rao, A. S., & Georgeff, M. P. (1991). Modeling rational agents with a BDI-architecture.
Second International Conference on Principles of Knowledge Representation and Reasoning.
473-484.

Rao, A.S. (1996) Agents Breaking Away, Lecture Notes in Artificial Intelligence, Volume
1038, (eds Walter Van de Velde and John W. Perrame) Springer Verlag, Amsterdam,
Netherlands.

Reiter, R. (1978) On closed world data bases. In H. Gallaire and J. Minker, editors: Logic and
Data Bases, Plenum, New York. 119-140.

Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13:81-132.

Robinson, J. A. (1965) A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1) 23 – 41.

Russell, S.J. & Norvig, P. (2003) Artificial Intelligence: A Modern Approach (2nd ed.),
Upper Saddle River, NJ: Prentice Hall.

Sagonas, K., Swift, T. & Warren, D. (1994) XSB as an efficient deductive database engine.
In ACM SIGMOD, ACM SIGMOD Record archive
Volume 23 , Issue 2 442 - 453

Sato, T. (1995) A statistical learning method for logic programs with distribution semantics
In Proceedings of the 12th International Conference on Logic Programming. MIT Press.
715-729.

Shoham, Y. (1991) AGENT0: A Simple Agent Language and Its Interpreter. In Proceedings
of the Ninth National Conference on Artificial Intelligence (AAAI-91), AAAI Press/MIT
Press, Anaheim, California, USA, 704-709.

Shortliffe, E. (1976) Computer-based Medical Consultations: MYCIN. North Holland
Elsevier.

Simon, H. (1999) Production Systems. In Wilson, R. and Keil, F. (eds.): The MIT
Encyclopedia of the Cognitive Sciences. The MIT Press. 676-677.

Sperber, D., Cara, F., & Girotto, V. (1995). Relevance theory explains the selection task.
Cognition, 52, 3-39.

Stenning, K. & van Lambalgen, M. (2004) A little logic goes a long way: basing experiment
on semantic theory in the cognitive science of conditional reasoning. Cognitive Science, 28:4,
481-529.

Stenning, K. & van Lambalgen, M. (2005) Semantic interpretation as computation in
nonmonotonic logic: the real meaning of the suppression task. Cognitive Science, 29(6), 919–
96

Stenning, K. and van Lambalgen M., (2008) Human reasoning and cognitive science. MIT
Press. (in press).

 176

Thagard, P. (2005) Mind: Introduction to Cognitive Science. Second Edition. MIT Press.

Wason, P. C. (1964). Reasoning. In Foss, B. (Ed.), New Horizons in Psychology.
Harmondsworth: Penguin Books

Wason, P. C. (1968) 'Reasoning about a rule', The Quarterly
Journal of Experimental Psychology, 20:3, 273 - 281

Winograd, T. (1971) Procedures as a Representation for Data in a Computer Program for
Understanding Natural Language MIT AI Technical Report 235, February 1971. Also
published as a full issue of the journal Cognitive Psychology Vol. 3 No 1, 1972, and as a
book, Understanding Natural Language (Academic Press, 1972).

 177

Appendix A The minimal model semantics of logic programming

A.1 Horn clause programs

The minimal model semantics is consistent with the declarative reading of clauses as
implications in classical logic. However, in programming and database contexts and with
Horn clause programs P, the semantics is also much simpler than in classical logic. In such
cases, because clauses always have positive conclusions, it is natural to regard the set of
clauses P as defining the set of positive, atomic sentences A that are logically implied by P.

This relationship between P and an atomic sentence A can be understood purely in terms of
classical, logical consequence:

 A is true in every model of P.

However, sets of Horn clauses P have the special property (van Emden and Kowalski, 1976)
that there exists a unique minimal model M of P such that:

 For every atomic sentence A,
 A is true in every model of P if and only if A is true in M.

This minimal model M can be represented syntactically as the set of all atomic sentences A
that are true in M. The model M is minimal in the sense that it is the smallest set of atomic
sentences that is a model of P.

For example, the Horn clauses, which define addition and multiplication for the natural
numbers:

 X + 0 = X
 X + (Y + 1) = (Z + 1) if X + Y = Z
 X · 1 = X
 X · (Y + 1) = (X · Z) if X · Y = Z

have a unique minimal model, which is the standard model of arithmetic. In contrast, the
completion of the Horn clause program is equivalent to the Peano axioms of arithmetic,
without the axioms of induction.

The minimal model can be constructed in the limit, simply by repeatedly applying modus
ponens and universal instantiation in all possible ways to all the clauses in P. This model
construction property can also be interpreted as the completeness property of forward
reasoning for atomic consequences. Backward reasoning, in the form of SLD-resolution
(Kowalski, 1973/1974), which is equivalent to the search tree proof procedure, is also sound
and complete for atomic consequences of Horn clauses.

A.2 The minimal model semantics of negation

The simplest case is that of a Horn clause program P and the negation not G of a positive
atomic sentence G. According to the minimal model semantics:

 not G holds if and only if not G is true in the minimal model M of P.

More generally, for any sentence G, including any sentence of first-order logic:

 G holds if and only if G is true in M.

 178

Backward reasoning and negation as infinite failure are sound and complete inference rules
for this semantics. In other words:

 G succeeds if and only if G is true in M.

This property depends upon the rewriting of first-order formulae into goals that are
conjunctions of literals augmented with auxiliary clauses, as mentioned in section 6.1.

The minimal model semantics can be extended in a number of different ways to the more
general case of normal logic programs P, which contain negative literals in the conditions of
clauses. One of the simplest and most natural of these extensions interprets not G literally as
G does not hold and expands P with a set Δ of true sentences of the form not G. The phrase
does not hold can be treated as a positive auto-epistemic predicate, so that the expansion P∪
Δ can be treated as a Horn clause program, which has a unique minimal model M:

 M is a model of P if all the sentences in Δ are true in M.67

It is common to restrict auto-epistemic expansions Δ to ones that are total or maximal.68 For
simplicity, in this paper, I refer to this semantics and its variants simply and collectively as
the minimal model semantics of negation as failure.

A program with negation as failure can have several such minimal models. According to the
credulous version of this semantics,

 a goal holds if and only if it is true in some minimal model.

According to the sceptical version of the same semantics,

 a goal holds if and only if it is true in all minimal models.

In both cases, the goal can be any sentence of first-order logic, and backward reasoning and
negation as infinite failure can be used determine whether or not a goal holds.

The auto-epistemic interpretation of negation as failure can be formulated in abductive logic
programming terms by treating ground literals not G as abducible atomic sentences, and by
letting the set of integrity constraints be all sentences of the form if G and not G then false.
This gives an abductive interpretation to negation as failure (Eshghi and Kowalski, 1989).

67 In other words, there is no not G in Δ such that G belongs to M.
68 If  consists of all such true sentences, then the resulting model is called a stable model (Gelfond
and Lifschitz, 1990). A program can have many or no stable models. For example, the program {p if
not q, q if not p} has two stable models {p, not q} and {q, not p}, but the program {p if not p} has no
stable models. However, if we drop the requirement that  consists of all such true sentences, then the
program {p if not p} has the semantics in which  is just the empty set.

 179

Appendix B Conditionals in natural language

Part of the problem with understanding natural language conditionals is the problem of
translating them into logical form. We saw an example of this in the motivating example at
the beginning of the paper. However, the completion semantics suggests that there can be an
added difficulty with choosing between different logical forms, corresponding to the two
directions of the completion of a definition.

B.1 Switching the direction of conditionals

The completion semantics shows that it can be difficult to decide the direction for a
conditional. Consider, for example, the two clauses:

 A if B.
 A if C.

whose completion is

 A if and only if B or C.

The only-if-half of the completion is implicit in the original set of two clauses. But it is also
possible to write the two clauses in the switched form, in which the only-if half is explicit and
the if-half is implicit:

 B or C if A.

The disjunction in the conclusion of the switched form can be eliminated by using negative
conditions, yielding the switched clauses:

 B if A and not C.
 C if A and not B.

For example, the two clauses for getting help in section 6.3 can be transformed into any of
the following switched forms:

you have pressed the alarm signal button or you shouted loudly if you get help
you have pressed the alarm signal button if you get help and you have not shouted loudly
you shouted loudly if you get help and you have not pressed the alarm signal button

The completion semantics, therefore, justifies four ways of representing the same conditional
relationship: the if-form, the if-and-only-if form, the only-if form and the only-if form with
negative conditions. Both the first and the fourth representation can be represented as logic
programming clauses, and it can be difficult for a programmer to know which representation
to use.

In applications such as fault diagnosis in AI, different kinds of representation are common.
The first representation is common because it models causality in the form effect if cause. But
this representation requires the use of abduction to explain observations. The fourth
representation, which models causality in the switched form cause if effect and not other-
causes, is also common because it requires only the use of deduction.

B.2 Truncated conditionals

 180

Bonnefon and Politzer (2007) observe that many conditionals in natural language have a
truncated form A  Φ that, to be understood fully, needs to be put into a wider context of
the form:

 (A & A1 &...& A) or (B & B1 &... & Bβ) or...or (C & C1 & ... & Cν)  Φ

In this wider context, there may be both additional, unstated conditions (A1 &... & A) and
additional, unstated, alternative ways (B & B1 &...& Bβ) or...or (C & C1 & ... & Cν) of
establishing the conclusion Φ.

But, as we have seen, this wider context is exactly a logic program, which can also be
expressed in the completion form:

 (A & A1 &...& A) or (B & B1 &... & Bβ) or...or (C & C1 & ... & Cν))  Φ

The completion suggests the alternative possibility that a conditional might, instead, be a
truncated form of the switched, only-if half Φ  A of the wider context. I will come back to
this possibility in B.3.

But, first, consider the following example of a simple truncated conditional, in logic
programming form:

 X flies if X is a bird

The wider context is a more precise statement that includes extra conditions and alternative
ways of flying. In most AI knowledge representation languages, it is common to express the
conditional more precisely (although not as completely as in Bonnefon and Politzer’s wider
context) by lumping all of the extra conditions into a single condition, which is assumed to
hold by default. For example:

 X flies if X is a bird and not X is unable to fly

Here the predicate X is unable to fly can be defined by other clauses, such as:

 X is unable to fly if X is crippled
 X is unable to fly if X has not left its nest etc.

which is equivalent to specifying other conditions for the clause. The minimal model and
completion semantics both incorporate the closed world assumption that, unless there is
evidence that a bird is unable to fly, then the bird is assumed to fly by default.

In general, the full alternative:

 (A & A1 &...& A)  Φ

which spells out all the missing conditions of a truncated conditional A  Φ can be
expressed in logic programming style with a default condition, which can be defined
separately. For example in the form:

 Φ if A & not exceptional
 exceptional if not A1 ….
 exceptional if not A

 181

Typically, the condition A of a truncated conditional A  Φ is the most significant of the
conditions A & A1 &...& A , and the truncated conditional can be regarded as an
approximation of the full alternative (A & A1 &...& A)  Φ.

The precise form, say A & not exceptional  Φ, of a truncated conditional can be viewed as
a solution of the qualification problem: How to suitably qualify a conclusion to adequately
account for all its conditions, without specifying them all in advance and in detail. This
precise form of the truncated conditional has the advantage that the conclusion can be
qualified precisely from the outset by means of a single default condition, and exceptions to
that condition can be spelled out separately in successively more precise formulations. The
qualification problem is one aspect of the notorious frame problem in Artificial Intelligence,
which has a similar solution.69

B.3 Truncated and switched conditionals

In B.1, I argued that the completion semantics explains why it may be difficult to determine
the right direction for a conditional. This difficulty is compounded when a conditional is a
truncated conditional A  Φ, which is part of a wider context

(A & A1 &...& A) or (B & B1 &... & Bβ) or...or (C & C1 & ... & Cν)  Φ

because the converse of the truncated conditional Φ  A is itself a truncation of the switched
form:

Φ  (A & A1 &...& A) or (B & B1 &... & Bβ) or...or (C & C1 & ... & Cν)

Understanding these two different ways in which a natural language conditional relates to its
wider context can help to explain how people reason with conditionals. Consider the
following example from (Politzer and Bonnefon, 2006).

Given the two sentences:

 If an object looks red, then it is red.
 This object looks red.

it is natural to draw the conclusion:

 This object is red.

However, given the additional sentence:

 If an object is illuminated by red light, then it looks red.

it is natural to withdraw the conclusion. But it is not natural to combine the two conditionals
and draw the obviously false conclusion:

 If an object is illuminated by red light, then it is red.

69 For example, in the event calculus (Kowalski and Sergot, 1986), the fact that a property is assumed
to hold from the time it is initiated until there is reason to believe that it has been terminated is
expressed in the form:
 P holds at time T2 if an event E initiates P at time T1 and T1 < T2
 and not (an event E’ terminates P at time T and T1 < T < T2)

 182

This way of reasoning can be explained if the two conditionals both refer to the same wider
context, but the first one is switched. In logic programming, this wider context can be
expressed in the clausal form:

 An object looks red if it is red and not abnormal.
 An object looks red if it is illuminated by a red light and not abnormal’.

In this analysis, the first inference that this object is red is explained by interpreting the first
clause as the only clause that can be used in establishing that an object looks red and
interpreting the first conditional as the switched, only-if half of the completion of the clause.

The withdrawal of the inference is explained by interpreting the new conditional as indicating
that there is an additional alternative way of establishing that an object looks red, as
represented by the second clause of the logic program. The only-if half of the two clause
program no longer implies the withdrawn inference.

The failure to draw the obviously false conclusion is explained by the fact that in the wider
context, the meaning of the two conditionals is actually the two clauses, which express
alternative ways of establishing the same conclusion, and which do not combine to imply the
false conclusion.

In summary, the example illustrates that a pair of natural language conditionals whose
surface structure has the form:

 Φ  A
 B  Φ

Might actually have a very different deep structure, say:

 (A & not abnormal) or (B & not abnormal’)  Φ

or in clausal form:

 Φ if A & not abnormal
 Φ if B & not abnormal’

 183

Appendix 4

Legislation as Logic Programs*

Robert A. Kowalski

Department of Computing
Imperial College of Science, Technology and Medicine

London SW7 2BZ, UK

January 1991
Revised June 1992

Abstract. The linguistic style in which legislation is normally written has many
similarities with the language of logic programming. However, examples of legal
language taken from the British Nationality Act 1981, the University of Michigan
lease termination clause, and the London Underground emergency notice suggest
several ways in which the basic model of logic programming could usefully be
extended. These extensions include the introduction of types, relative clauses, both
ordinary negation and negation by failure, integrity constraints, metalevel reasoning
and procedural notation.

In addition to the resemblance between legislation and programs, the law has other
important similarities with computing. It needs for example to validate legislation
against social and political specifications, and it needs to organise, develop, maintain
and reuse large and complex bodies of legal codes and procedures. Such parallels
between computing and law suggest that it might be possible to transfer useful results
and techniques in both directions between these different fields. One possibility
explored in this paper is that the linguistic structures of an appropriately extended
logic programming language might indicate ways in which the language of legislation
itself could be made simpler and clearer.

1 Introduction

The characteristic feature of the language of legislation is that it uses natural language
to express general rules, in order to regulate human affairs. To be effective for this
purpose, it needs to be more precise than ordinary language and, as much as possible,
it needs to be understood by different people in the same way. In this respect
legislation can be viewed as programs expressed in human language to be executed
by humans rather than by computers.

Thus the language of legislation might also serve as a model for computing,
suggesting ways in which programming languages might be made more like human
languages, while still remaining machine executable. In this paper I shall focus on a
comparison between the language of legislation and the language of logic
programming. I shall argue that, although logic programming fares well in this

* ______________________________
Copyright © 1992, Robert Kowalski.

 184

comparison, it needs to be improved by incorporating such extensions as types,
relative clauses, both ordinary negation and negation by failure, integrity constraints,
metalevel reasoning, and procedural notation. I shall also argue that in some cases
legislation itself can be improved by re-expressing it in a style more closely
resembling such an extended logic programming form.

I shall investigate three examples. The first consists of several sections from the
British Nationality Act 1981; the second is the University of Michigan lease
termination clause; and the third is the London underground emergency notice. The
first example was investigated earlier by the author and his colleagues [24] as an
illustration of the use of logic programming for representing legislation. The second
was investigated by Allen and Saxon [1] as an example of the use of logic to
eliminate ambiguities in the formulation of a legal contract. The third was identified
by the author [13] as an example of a public notice which is meant not only to be
precise but also to be as clear as possible to ordinary people.

In our earlier investigation of the British Nationality Act 1981 [10] we emphasized
both the prospects of using logic programming to build legal applications as well as
the problems of attempting to use logic programming for knowledge representation.
In this paper I am concerned only with the second of these matters, but more
specifically with investigating linguistic similarities and differences between logic
programming and legislation, and more generally with exploring other parallels
between computing and the law.

2 The British Nationality Act 1981

The following four examples from the British Nationality Act illustrate some of the
complexity and precision of legal language. They also illustrate the treatment of
time, default reasoning, negative conclusions and reasoning about belief.

2.1 Acquisition by Birth

The first subsection of the British Nationality Act deals with the case of acquisition
of citizenship by virtue of birth in the United Kingdom after commencement (1
January 1983, the date on which the Act took affect).

1.-(1) A person born in the United Kingdom after commencement shall be a
British citizen if at the time of the birth his father or mother is -

 (a) a British citizen; or
 (b) settled in the United Kingdom.

The English of this clause is already close to logic programming form, even to the
extent of expressing the conclusion before (most of) the conditions. Using infix
notation for predicates and upper case letters for variables, 1.1 can be paraphrased in
logic programming form by:

 X acquires british citizenship by section 1.1
 if X is born in the uk at T
 and T is after commencement
 and Y is parent if X

 185

 and Y is a british citizen at T or
 Y is settled in the uk at T

This has the propositional form

 A if [B and C and D and [E or F]]

which is equivalent to two rules

 A if B and C and D and E
 A if B and C and D and F

in normal logic programming form.

In this paper I shall use the term logic program to refer to any set of sentences which
are equivalent to a set of universally quantified implications in the normal logic
programming form

 A if B1 and ... and Bn

where A is an atomic formula, Bi for 0 < i < n is an atomic formula or the negation of
an atomic formula, and all variables, e.g. X1, ..., Xm occurring in the implication are
assumed to be universally quantified, i.e.

 for all X1, ..., Xm [A if B1 and ... and Bn].

The logic programming representation of 1.1 can be made more like the English,
while remaining formal, by introducing types and various forms of syntactic sugar.
For example:

 a person who is born in the uk at a time
 which is after commencement
 acquires british citizenship by section 1.1
 if a parent of the person is a british citizen at the time,
 or a parent of the person is settled in the uk at the time.

Here "person" and "time" are type identifiers; "a person" is the first occurrence of a
variable of type "person"; "a time" is the first occurrence of a variable of type "time";
"the person" and "the time" stand for later occurrences of the same variables. The
relative pronouns "who" and "which" also stand for additional occurrences of the
variables they follow. "who" stands for an occurrence of type "person", whereas
"which" stands for an occurrence of any type of variable. Relative clauses in
expressions of the form

 ... V which P ***

for example, are syntactic sugar for

 ... V *** if V P

 186

where "V" is a variable, and "P" is a predicate which applies to "V".
Similarly an expression of the form

 ... a R of T P ***

is syntactic sugar for

 ... V P *** if V R of T

where "R of" is a binary predicate, "T" is a term, and "V" is any variable not
occurring elsewhere in the sentence.

Notice that the two transformations described above need to be combined with the
simplication of formulae of the form

 (A if B) if C

to the form

 A if B and C

This kind of typing and syntactic sugar can be defined more precisely and can be
extended to deal with several variables of the same type, pronouns, and more flexible
kinds of relative clauses. In this way English can serve as a model to improve the
naturalness of logic programming without sacrificing its precision.

I shall argue elsewhere in this paper that, conversely, the use of conclusion-
conditions form, which characterises the syntax of logic programming, can
sometimes improve the clarity of natural languages such as English.

2.2 Representation of Time

In the representation of 1.1 time has been represented by an explicit parameter of type
"time". The expression

 ... after ***

is interpreted as short-hand for

 ... at a time which is after ***
i.e.

 ... at T if T is after ***.

This explicit representation of time contrasts with modal representations, where
temporal relationships are represented by modal operators, and time itself is implicit
rather than explicit.

 187

As mentioned for example in [11], to reason about time, an explicit axiom of
persistence can be formulated to express that

 a property holds at a time which is after another time
 if an event occurs at the other time
 and the event initiates the property
 and it is not the case that
 another event occurs at yet another time
 which is between the time and the other time
 and the other event terminates the property.

 "a person acquires british citizenship by section 1.1" initiates
 "the person is a british citizen".

Perhaps this is an example where symbolic notation with explicit representation of
variables might be easier for some people to follow. Here "a time", "another time",
and "yet another time" introduce different variables of the same type "time". Notice
that the English suggests that the variables refer to distinct individuals, whereas the
usual logical convention is that different variables of the same type can refer to the
same individual. This is one of several discrepancies which would need to be
attended to in a more systematic study of the correspondence between logic and a
precise style of English.

Notice also in the two axioms above how events and properties are treated
metalogically as names of sentences.

2.3 Abandoned Children and Default Reasoning

The second subsection of the British Nationality Act is conceptually one of the most
complex sentences of the Act.

 1.-(2) A new-born infant who, after commencement, is found
 abandoned in the United Kingdom shall, unless the contrary is shown,

be deemed for the purposes of subsection (1)-
 (a) to have been born in the United Kingdom after commencement; and
 (b) to have been born to a parent who at the time of the birth

was a British citizen or settled in the United Kingdom.

Under the procedural interpretation of logic programs, conclusions of sentences are
interpreted as goals and conditions as subgoals. According to this interpretation, the
conclusion of a sentence identifies its purpose. Thus we can interpret the phrase "the
purposes of subsection (1)" as a metalevel reference to the logical conclusion of 1.1,
namely to acquire British citizenship. Moreover the object level phrases 1.2.a and
1.2.b are exactly the logical conditions of 1.1. Thus we can regard the entire sentence
1.2 as a mixed object level and metalevel sentence which expresses that

 the conditions of 1.1 shall be assumed to hold for a person
 if the person is found newborn abandoned in the uk
 at a time which is after commencement.
 and the contrary of the conditions of 1.1 are not shown

 188

This can be reformulated at the object level alone by replacing the metalevel
descriptions by their object level counterparts:

a person who is found newborn abandoned in the uk at a time
 which is after commencement
 acquires british citizenship by section 1.2
 if it is not shown that it is not the case that
 the person is born in the uk at a time
 which is after commencement
 and either it is not shown that it is not the case that
 a parent of the person is a british citizen at the time of birth
 or it is not shown that it is not the case that
 a parent of the person is settled in the uk at the time of birth

This seems to be a case where the mixed object-level meta-level expression may be
easier to understand than the purely object level representation.

Conditions of the form

 it is not shown that it is not the case that P

in the object level sentence above, can be interpreted as combining negation as failure
"not" and ordinary negation "¬", i.e.

 not ¬ P.

Thus, for another example, the statements

 A bird flies if it is not shown that it is not the case that the bird flies.
 It is not the case that an ostrich flies.

can be formalised by

 a bird flies if not ¬ the bird flies
 ¬ an ostrich flies

Just such an extension of logic programming to include both negation by failure and
ordinary negation has been investigated by Gelfond and Lifschitz [8] and by
Kowalski and Sadri [14].

Negation by failure is a form of default reasoning and is non-monotonic. Thus a
person who acquires citizenship by 1.2 might non-monotonically have citizenship
withdrawn in the light of new information. It is unlikely, however, that parliament
intended that citizenship be withdrawn in this way. Both such an intention and the
opposite intention can be catered for by introducing an extra layer of time concerned
with the time for which beliefs are held in addition to the historical time for which
properties hold true in the world. A logic programming approach to such a joint
representation of belief time and historical time has been developed by Sripada [25].

 189

It is important to emphasize that when formalising legislation as (extended) logic
programs we do not attempt to define concepts which occur in conditions of the
legislation but are not defined in the legislation itself. Thus, for example, we do not
attempt to define the concept "new born infant" which occurs in the conditions of 1.2.
This means, as a consequence, that a formalisation of the British Nationality Act has
only limited applicability by itself. To be used in a particular case it would need to
be supplemented, if not by a set of definitions of such vague terms, at least by a set of
facts or assumptions which express judgements about whether or not such terms
apply to the case in hand.

2.4 Deprivation of Citizenship and Negative Conclusions

Except for its occurrence in conditions of the form

 not ¬ P

ordinary negation ¬ seems to be needed only in the conclusions of rules. In such
cases, a negative conclusion typically expresses an exception to a general rule, as in
the example

 It is not the case that an ostrich flies.

which expresses an exception to the general rule that all birds fly.

Exceptions, expressed by sentences with negative conclusions, are common in
legislation [12]. The provisions for depriving British citizens of their citizenship
exemplify this use of negation:

40.-(1) Subject to the provisions of this section, the Secretary of State may by
order deprive any British citizen to whom this subsection applies of his British
citizenship if the Secretary of State is satisfied that the registration or certificate of
naturalisation by virtue of which he is such a citizen was obtained by means of
fraud, false representation or the concealment of any material fact.

 40.-(5) The Secretary of State -
 (a) shall not deprive a person of British citizenship under this section

unless he is satisfied that it is not conducive to the public good that
that person should continue to be a British citizen; ...

40.1 has the logical form

P if Q

whereas 40.5 has the form

 ¬ P if not R

If both conditions Q and not R hold, then by ordinary logic it would be possible to

deduce a contradiction

 190

 P and ¬ P.

But this is not the intention of the legislation, which is rather that the exception
should override the rule, or equivalently that the rule should be understood as having
an extra, implicit condition.

 P if Q and not ¬P.

In fact, the metalevel phrase "subject to the provisions of this section" at the
beginning of 40.1 can be regarded as a caution that the meaning of 40.1 cannot be
understood in isolation of the rest of the section as a whole.

The extension of logic programming to allow negative conclusions, for the purpose of
representing exceptions, has been investigated by Kowalski and Sadri [14]. They
also show that such extended logic programs can be transformed into normal logic
programs. In particular a rule with a single exception

 P if Q
 ¬ P if not R

can be transformed into the simpler rule

 P if Q and R.

Both representations can be useful for different purposes. A representation in terms
of rules and exceptions is often easier to develop and to maintain. However, the
simpler representation as normal logic programs is usually clearer and easier to
understand. The first representation, accordingly, might be preferred by a draftsman,
who codifies the law; the second might be preferred by an administrator who
executes the law.

In this discussion of the provisions for deprivation of citizenship we have considered
only the propositional structure of the English sentences. We have not considered the
meaning of such conditions as

 "he is satisfied that it is not conducive
 to the public good that that person
 should continue to be a British citizen".

This is partly because it would be very difficult to do so; but also because we have
restricted our attention to representing formally only what is defined explicitly in the
legislation itself. Nonetheless, reasoning about reasoning can, at least to some extent,
be formalised by metalogic or by logics of knowledge and belief.

2.5 Naturalisation and the Representation of Belief

Like the provisions for deprivation of citizenship, the provisions for naturalisation
contain conditions concerning the Secretary of State's beliefs. In addition, however,

 191

they also contain rules governing the subject matter of those beliefs. This leads us to
consider whether we can establish a logical connection between the two.

Section 6.1 contains the main provision for naturalisation:

 6.-(1) If, on an application for naturalisation as a British
 citizen made by a person of full age and capacity, the Secretary
 of State is satisfied that the applicant fulfills the requirements of
 Schedule 1 for naturalisation as such a citizen under this sub-
 section, he may, if he thinks fit, grant to him a certificate of
 naturalisation as such a citizen.

At the propositional level this is equivalent to a sentence in conclusion-conditions
form:

 the secretary of state may grant a certificate of
 naturalisation to a person by section 6.1
 if the person applies for naturalisation
 and the person is of full age and capacity
 and the secretary of state is satisfied that
 the person fulfills the requirements of
 schedule 1 for naturalisation by 6.1
 and the secretary of state thinks fit
 to grant the person a certificate of naturalisation.

The last two conditions vest considerable powers of discretion in the Secretary of
State. The last condition is totally inscrutable and can only be given as part of the
input for a given case. But the meaning of the penultimate condition ought at least to
be constrained by the meaning of Schedule 1. This schedule is quite long, and it is
convenient therefore to summarise its contents:

 a person fulfills the requirements of
 schedule 1 for naturalisation by 6.1
 if either the person fulfills residency
 requirements specified in subparagraph 1.1.2
 or the person fulfills crown service
 requirements specified in subparagraph 1.1.3
 and the person is of good character
 and the person has sufficient knowledge of
 english, welsh, or scottish gaelic
 and either the person intends to reside in the uk
 in the event of being granted naturalisation
 or the person intends to enter or continue in crown service
 in the event of being granted naturalisation.

To understand the connection between 6.1 and Schedule 1, it is necessary to
understand the connection between meeting the requirements for naturalisation
specified in Schedule 1 and satisfying the Secretary of State that those requirements
are met. Fortunately, this can be done, at least in part, by regarding satisfaction as a
kind of belief. The appropriate rules of belief can be formalised in both modal logic

 192

and metalogic. The following formalisation in metalogic has the form of a
metainterpreter.

 a person is satisfied that P
 if the person is satisfied that P Q
 and the person is satisfied that Q

 a person is satisfied that P  Q
 if the person is satisfied that P
 and the person is satisfied that Q

 a person is satisfied that P v Q
 if the person is satisfied that P
 or the person is satisfied that Q

Here "", "", and "v" are infix function symbols naming implication, conjunction,
and disjunction respectively.

We may safely assume that

 the secretary of state is satisfied that P
 if P is a representation of the meaning
 of a provision of the british nationality act 1981

Thus the Secretary of State is satisfied in particular that the implication which
represents the meaning of Schedule 1 holds. This assumption and the
metainterpreters above are all we need to establish a logical connection between 6.1
and Schedule 1. This connection can be made more explicit, however, if we
transform the metainterpreter using the technique of partial evaluation [7, 26]:

 the secretary of state is satisfied that a person fulfills
 the requirements for naturalisation by 6.1
 if either the secretary of state is satisfied that
 the person fulfills residency requirements specified in paragraph 1.1.2
 or the secretary of state is satisfied that
 the person fulfills crown service requirements specified in paragraph 1.1.3
 and the secretary of state is satisfied that the person is of good character
 and the secretary of state is satisfied that

the person has sufficient knowledge of english, welsh, or Scottish gaelic
 and either the secretary of state is satisfied that
 the person intends to reside in the uk in
 the event of being granted naturalisation
 or the secretary of state is satisfied that
 the person intends to enter or continue in
 crown service in the event of being granted naturalisation.

The result is an explicit, though somewhat tedious, statement of what it means to
satisfy the Secretary of State concerning the requirements for naturalisation. Clearly
the statement could be made a little less tedious if we used a pronoun, "he" or "she"
for all references to the Secretary of State after the first.

 193

The language of the British Nationality Act 1981 is for the most part extraordinarily
precise. It is also very complex. Most of this complexity is inherent in the meaning
of the Act. However, some of the complexity can be reduced by the explicit use of
conclusion-conditions form and by the use of meaning-preserving transformations of
the kind illustrated in the last two examples.

By comparison with ordinary language and even with legal language in general, the
Act is also surprisingly unambiguous. However, as we have already seen, it does
contain vague terms and undefined concepts. Such vagueness is often confused with
ambiguity. Although, like genuine ambiguity, vagueness causes problems of
interpretation, it is also useful, because it allows the law to evolve and adapt to
changing circumstances.

Genuine ambiguity, on the other hand, generally serves no useful purpose.
Moreover, whereas logic can easily accommodate vagueness, it cannot tolerate
ambiguity.

The University of Michigan lease termination clause, presented in the next section,
was originally investigated by Allen and Saxon [1] to illustrate the use of
propositional logic to formulate a precise interpretation of an ambiguous legal text. I
shall argue that the use of logic programming conclusion-conditions form has the
further advantage of rendering many of the possible interpretations logically
implausible.

3 The University of Michigan Lease Termination Clause

The clause consists of a single, long sentence which has the underlying, logically
ambiguous form

 A if A1 and A2 or A3 or A4 or A5 or A6 or A7
 unless B1 or B2 or B3 or B4 or B5 in which cases B.

Different ways of introducing parentheses produce different interpretations. Some of
these are logically equivalent because of the associativity of "or", for example. After
accounting for these equivalences, Allen and Saxon identify approximately 80
questions that might need to be asked in order to distinguish between the different
parenthesizations. As a result of this analysis they identify one intended
interpretation which has the form

 ((A if (A1 and(A2 or A3)) or A4 or A5 or A6 or A7)
 if not (B1 or B2 or B3 or B4 or B5)) and
 (if (B1 or B2 or B3 or B4 or B5) then B)

where "unless" has been translated as "if not". It is interesting that this interpretation
has a logic programming form.

The logic programming representation can be simplified if, as Allen and Saxon
maintain, conditions B1-B5 are the only ones under which conclusion B holds. In

 194

that case the conditions not(B1 or B2 or B3 or B4 or B5) can be replaced by not B.
Thus the intended interpretation can be represented by the simplified, normal logic
program:

 A if A1 and A2 and not B
 A if A1 and A3 and not B
 A if A4 and not B
 A if A5 and not B
 A if A6 and not B
 A if A7 and not B
 B if B1
 B if B2
 B if B3
 B if B4
 B if B5

This logical analysis of the propositional structure of the sentence should be
compared with the English text of the sentence:

 "The University may terminate this lease when the Lessee, having made
application and executed this lease in advance of enrollment, is not eligible to enroll
or fails to enroll in the University or leaves the University at any time prior to the
expiration of this lease, or for violation of any provisions of this lease, or for
violation of any University regulation relative to Resident Halls, or for health
reasons, by providing the student with written notice of this termination 30 days
prior to the effective time of termination; unless life, limb, or property would be
jeapordized, the Lessee engages in the sales or purchase of controlled substances in
violation of federal, state or local law, or the Lessee is no longer enrolled as a
student, or the Lessee engages in the use or possession of firearms, explosives,
inflammable liquids, fireworks, or other dangerous weapons within the building, or
turns in a false alarm, in which cases a maximum of 24 hours notice would be
sufficient".

Notice how the conclusion A of the first half of the sentence is split into two parts by
the insertion of the conditions A1-A7. Notice also that the language of the sentence
is so complicated and so confused that the drafters mistakenly wrote "maximum of 24
hours" when they must have meant "minimum of 24 hours".

In fact I have slightly misrepresented Allen and Saxon's analysis of the sentence. In
addition to identifying the intended placement of parentheses, they analyse for each
of the three occurrences of "if" in the apparent meaning of the sentence whether or
not "if and only if" is really intended. They conclude that in the first two cases (of
the words "when" and "unless") it is not intended, whereas, in the third case (of the
words "in which cases") it is. Thus their real analysis of the intended interpretation
has the form

 ((A if (A1 and (A2 or A3)) or A4 or A5 or A6 or A7)
 if not (B1 or B2 or B3 or B4 or B5)) and
 (if (B1 or B2 or B3 or B4 or B5) then B) and
 (if not (B1 or B2 or B3 or B4 or B5) then not B).

 195

In contrast, with this change of representation using ordinary logic, the logic
programming representation is not affected by this change of interpretation. In the
logic program there is no difference between the representation of "if" and the
representation of "if and only if". The difference between the two interpretations
depends upon whether or not the "closed world assumption" [6] is applied. The
closed world assumption for a predicate P is the assumption that all the implications

 P if Q1
 P if Q2
 :
 P if Qn

with conclusion P in a program represent all the conditions under which conclusion P
holds. It is this assumption that justifies the negation as failure rule:

 not P holds if P fails to hold, i.e.
 not P holds if all ways of trying to show P result in failure.

Thus, in the example of the lease termination clause, in the case of the word "when",
the interpretation "if and only if" is not intended because there are other situations
referred to elsewhere in the lease under which the University may terminate the lease
with 30 days written notice. But in the case of the words "in which case", the
interpretation "if and only if" is intended because there are no other cases under
which the University may terminate the lease with 24 hours notice. In the case of the
word "unless", the question is not relevant because in the context in which it occurs
the closed world assumption is not applicable.

Allen and Saxon argue that the logical representation of the lease termination clause
does not express what the drafters must have actually intended. After all the
ambiguities have been resolved, the English text expresses that for the University to
be able to terminate the lease with 30 days written notice, not only must one of the
conditions

 (A1 and (A2 or A3)) or A4 or A5 or A6 or A7

hold but none of the conditions

 B1 or B2 or B3 or B4 or B5,

under which it may terminate the lease with 24 hours notice, may hold. But these
extra negative conditions play no useful role. They serve only to make the
conditions under which conclusion holds exclusive of the conditions under which
conclusion B holds.

The simpler rules

 A if ((A1 and (A2 or A3) or A4 or A5 or A6 or A7)
 B if (B1 or B2 or B3 or B4 or B5)

 196

are more flexible. Compared with the original rules they give the university the extra
option of giving students 30 days notice in cases where they would otherwise be
forced to give 24 hour notice.

Using indentation, and the expressions "both ... and", and "either ... or" in place of
parentheses, this new interpretation can be written in a form which arguably has both
the precision and simplicity of logic programming and the naturalness of English:

 The university may terminate this lease by providing the lessee with written notice of
the termination 30 days prior to the effective time of termination
 if both the lessee has applied for and executed

this lease in advance of enrollment
 and either the lessee is not eligible to enroll
 or the lessee fails to enroll
 or the lessee leaves the university at any
 time prior to the expiration of this lease
 or the lessee violates any provisions of this lease
 or the lessee violates any university regulations
 relative to residence halls
 or there are health reasons for terminating this lease.

 The university may terminate this lease by providing the lessee with notice of
 the termination a minimum of 24 hours prior to the effective time of termination
 if life, limb or property would be jeopardized by
 continuation of the lease
 or the lessee engages in the sale or purchase of
 controlled substances in violation of federal, state or local law
 or the lessee is no longer enrolled as a student
 or the lessee engages in the use or possession of
 firearms, explosives, inflammable liquids,
 fireworks, or other dangerous weapons within the building
 or the lessee turns in a false fire alarm.

The University of Michigan lease termination clause is not a good illustration of our
thesis that legal language can be a good guide for improving computer languages. If
anything, it seems to suggest the converse, that some computer languages might be a
useful guide for improving the language of the law.

In fact, few legal documents are written to the standards of precision found in the acts
of parliament; and hardly any legal documents at all are written not only to be precise
but also to be clear and easy to understand. However, public notices, which are
meant to be understood by ordinary people, are for the most part an important
exception to this rule. The London underground emergency notice is a good example
of such an exception.

4 The London Underground Emergency Notice

The notice has many characteristics of a logic program, but with some interesting
differences:

 197

 EMERGENCIES

 Press the alarm signal button
 to alert the driver.

 The driver will stop immediately
 if any part of the train is in a station.

 If not, the train will continue to the next station,
 where help can more easily be given.

 There is a £50 penalty
 for improper use.

From a knowledge representation point of view, the first sentence is probably the
most interesting. Expressed in a procedural style, it shows that a procedural form of
expression can sometimes be more appropriate than an "equivalent" statement in
declarative style:

 You alert the driver
 if You press the alarm signal button.

Notice, however, that the procedural form can be regarded as a compiled version of
the procedural interpretation of the declarative form. Like most compiled
representations of knowledge, it requires less work on the part of the recipient to put
the knowledge into effect.

This example and others like it suggest that logic programming could be made more
like natural language if it allowed both declarative and procedural syntax. Under the
procedural interpretation of logic programming, both the declarative syntax

 A if B and C

and the procedural syntax

 to do A do B and do C

would be equivalent. In fact both styles of expression would have the same
declarative meaning

 A if B and C

and the same procedural meaning

 to do A do B and do C.

A procedural syntax for logic programs would not, however, include arbitrary
imperative programming language constructs. It would not, for example, without
further extension, include such purely imperative statements as

 198

 press the alarm signal button.

All imperative statements in a logic programming language would have to be
imbedded in a procedure, which contains an expression of its purpose. I shall discuss
the possible extension of logic programs to include purposeless procedures, viewed
as integrity constraints, in sections 5.1 and 5.2.

To simplify the discussion of the emergency notice, I have ignored and, for the most
part, will continue to ignore the temporal relationships between the different actions
and situations referred to in the notice. We should note however, that to be accurate
the title of the notice should be incorporated into the conclusion of the sentence:

 press the alarm signal button,
 to alert the driver to an emergency.

The second sentence of the notice is explicitly expressed in a logic programming
form. However, even allowing for the fact that the phrase

 the driver will stop immediately

is shorthand for

 the driver will stop the train immediately,

the sentence fails to express its intended meaning, because it is missing an entire
condition. The meaning of the sentence can be made explicit, by supplying the
missing condition from the conclusion of the previous sentence:

 the driver will stop the train immediately
 if You alert the driver to an emergency
 and any part of the train is in a station.

Certainly this precise expression of the meaning of the sentence is more cumbersome
that the English. However, it is hard to see how the logic programming
representation could be simplified so that it more closely resembles the English,
without loosing its precision.

The third sentence begins with an allusion to the explicitly stated condition of the
previous sentence. Ignoring for the moment, the comment at the end, the sentence
with all its conditions made fully explicit has the logical form:

 the train will continue to the next station
 if You alert the driver to an emergency
 and not any part of the train is in a station.

But this alone cannot be all that it is intended by the English, because the train will
generally continue to the next station whether or not the driver is alerted to an
emergency. Surely, what is meant is that the train will stop at the next station and
that help will be given there. This is part of the meaning of the phrase

 199

 where help can more easily be given.

Moreover, presumably help will be given at a station whether it is the next station or
not. Thus we can obtain a better approximation to the intended meaning of the third
sentence with the two sentences:

 the train will stop at the next station
 if You alert the driver to an emergency
 and not any part of the train is in a station.

 help will be given in an emergency
 if You alert the driver to the emergency
 and the train is stopped in a station.

This second sentence of the revised formulation of the sentence captures part of the
meaning of the comment at the end of the sentence. Presumably the rest of its
meaning could be expressed by the meta statement that this procedure for getting help
is better than the alternative procedure of stopping the train when it is not in a station.

The last sentence of the notice has a simple formulation in conclusion-conditions
form:

 there is a £50 penalty
 if You use the alarm signal button improperly.

This contrasts with a purely imperative statement, which expresses a prohibition
without expressing a purpose:

 do not use the alarm signal button improperly.

In contrast with the purely imperative statement of prohibition, the procedural
interpretation of the English sentence contains a clear expression of purpose:

 if You want a £50 penalty,
 then press the alarm signal button improperly!

Notice, by the way, how different the procedural syntax of a sentence can be from its
declarative meaning. The English procedural sentence

 if You want A, then do B

actually has the underlying declarative meaning

 A if B.

Although the English of the London underground notice can be improved, it is
undoubtably clear and easy to understand. I believe its clarity is due to at least three
characteristics

 • the explicit use of conclusion-conditions form

 200

 • the appropriate use of procedural form, and
 • the use of ellipsis to avoid unnecessarily stating the
 obvious.

The first two characteristics can usefully be applied to the design and improvement of
computer languages today. The third characteristic is harder to achieve, although
some progress along these lines might be possible in the future.

5 Other Computing Paradigms

The preceding examples illustrate some of the typical characteristics of legal
language and its relationship to logic programming form. It is also possible,
however, to find indications of other computing paradigms.

5.1 Condition-Action Production Rules

Condition-action rules were developed by Newell and Simon [19] as a model of
human psychology and have been used to implement expert systems [27]. They can
also be found in the language of public notices. For example, the following notice is
displayed in the carriages of the London underground

 Please give up this seat
 if an elderly or handicapped person needs it

This is a distinct improvement over the earlier, ambiguous, and potentially disturbing
notice

 please give up this seat
 to an elderly or handicapped person.

But even with the explicit use of the word "if", the sentence falls short of logic
programming form, because the apparent conclusion

 please give up this seat

is imperative rather than declarative. Moreover the sentence does not express a
purpose.

The condition-action form in which the rule is expressed can be converted into logic
programming form by making the purpose, e.g.

 to do a good deed

explicit rather than implicit. The resulting statement can be expressed procedurally

 to do a good deed
 give up this seat
 if an elderly or handicapped person needs it

or declaratively

 201

 You do a good deed
 if You give up Your seat to a person
 who needs Your seat and
 who is elderly or handicapped.

The claim that every command has an explicit or implicit purpose is an important
theory in legal philosophy. The use of logic programming form, which forces
purposes to be made explicit, is in the spirit of this theory. Associating explicit
purposes with commands makes it possible to reason about the relative merits of
conflicting commands and even to reason whether a command is appropriate in a
given context.

Nonetheless, natural language does allow the expression of commands without
purpose, and there even seems to be a logic programming analogue of this in the form
of integrity constraints.

5.3 Integrity Constraints

For many years the London underground displayed the following notice above the
automatic doors of its carriages

 Obstructing the doors causes
 delay and can be dangerous.

In other words

 there will be a delay
 if You obstruct the doors.

 there can be danger
 if You obstruct the doors.

As long as delay and danger are regarded as undesirable, a thinking person will
conclude that obstructing the doors is undesirable too.

But the London underground authorities have recently changed the wording of the
notice on some of its trains. The new sign reads

 Do not obstruct the doors.

A sad reflection of our changing times. Either delay and danger are no longer
regarded as undesirable, or the public cannot be relied upon to reason about the
consequences of its behaviour.

But for a logic programmer the new notice is worrying, not only because it indicates
the possibly deteriorating state of British underground society, but also because it
represents a move away from a logic programming style of communication to a more
imperative style. But on closer consideration, the change of wording is reminiscent

 202

of recent efforts to extend logic programming by the inclusion of integrity
constraints.

This extension is motivated by database applications of logic programming. For
these applications, a number of studies [5, 17, 21, 22] have investigated the nature of
integrity constraints in logic programming and the development of efficient integrity
checking methods. In all of these approaches integrity constraints are viewed as
properties which a database or program must satisfy as it changes over the course of
time. To the extent that the contents of a database describe states of affairs in the
world, commands, which impose obligations or prohibitions on states of the world,
can be interpreted as integrity constraints on states of the database.

An integrity constraint can be expressed in the form of any sentence of first-order
logic including a denial. Thus the command

 do not obstruct the doors

might be represented by a denial

 not You obstruct the doors

which expresses an integrity constraint on descriptions of events which take place in
the world.

Similarly the condition-action rule

 please give up this seat
 if an elderly or handicapped person needs it

might be interpreted as an integrity constraint which has the form of an implication

 You give up a seat to a person
 if You are sitting in the seat
 and the person needs Your seat
 and the person is elderly or handicapped.

Thus, given a database that records events that take place in the world, the integrity of
the database will be violated if the database records that a person is sitting in a seat
which an elderly or handicapped person needs and the database does not contain a
record of that person giving up the seat to the elderly or handicapped person. It is
another problem, if integrity has been violated, to decide how integrity should be
restored. Perhaps this is where "purpose" or "sanctions" might play a useful role.

Thus commands without purpose seem to be compatible with logic programs
extended by the inclusion of integrity constraints. Moreover, there is even a
transformation between integrity constraints and logic program rules, which is
analogous to a transformation between commands without purpose and procedures
with purpose:

 203

Given an integrity constraint expressed as a first-order sentence C, introduce a new
predicate S and convert the constraint to the rule

 S if not C

together with the new constraint

 notS.

The new predicate S can be interpreted as a "sanction" which applies if the original
constraint is violated. This transformation has been used in the literature on integrity
constraints in deductive databases to convert arbitrary first-order integrity constraints
into denial form.

The analogy between this transformation and the legal doctrine of sanctions suggest
the possibility of adapting legal techniques for dealing with violations of commands
to the problem of restoring integrity in deductive databases. This is an intriguing
possibility that merits closer investigation.

5.3 Object-Oriented Programming

The paradigm of object-oriented programming has become increasingly important in
computing in recent years. It is interesting to investigate, therefore, to what extent it
has analogues in natural language and in legislative language more particularly.

We have already seen some characteristics of object-orientation in English when we
saw the use of common nouns such as "person", "time" and "lessee" as a kind of
object-oriented typing of variables. Other manifestations of object-orientation seem
to be more difficult to find in the actual language of legislation, but easier to find both
in descriptions of individual cases and in the organisation of law as a whole.

In natural language descriptions, it is common to group sentences together around a
single topic placed at the beginning of each of the sentences. Such topics help to
organise communication similar to the way in which objects can be used to organise
knowledge in computing.

Compare, for example, the pair of sentences

 The Prime Minister stepped out of the plane.
 Journalists immediately surrounded her.

with the pair

 The Prime Minister stepped out of the plane
 She was immediately surrounded by journalists.

Psycho-linguists have found that the second pair of sentences is easier to understand
than the first, despite the fact that the second pair uses the passive rather than the
active voice. The two sentences in the more comprehensible pair have the same
topic, whereas the two sentences in the other pair have different topics. Such

 204

examples suggest that organising knowledge around objects makes the knowledge
more coherent and easier for humans to understand.

In the domain of law, it is common to organise the different areas of law into
hierarchies, which are similar to hierarchies of objects. Thus a country might have
one statute governing criminal law in general, another statute covering behaviour in
public places, and yet another dealing with behaviour in public buildings. Assault
and battery, for example, might be prohibited everywhere, whether in public places or
not. Going about naked, however, might be prohibited only in public places, but be
allowed in the privacy of one's own home. Smoking, on the other hand, might be
prohibited only in public buildings but be allowed everywhere else.

Thus natural language seems to support two notions of objects: objects in the small,
which are used like types and topics to organise descriptions of individuals; and
objects in the large, which are used in hierarchies to organise whole areas of
knowledge. From this point of view, logic programming and object-orientation
correspond to different aspects of natural language and are complementary.

However, the notion of object in computing has other characteristics, such as change
of state, which do not have such obvious counterparts in natural language. These
characteristics seem to be more closely associated with simulating the behaviour of
objects in the world than with describing their behaviour.

There have been several attempts to apply object-orientation to legal reasoning.
Some of these, like Gordon's Oblog [9], are based on a view of objects as types and
topics, which is entirely compatible both with logic programming and with the
representation of natural language meanings. Others, like the treatment of patent law
by Nitta et al [20] are based on the use of objects to simulate behaviour.

The use of objects for simulation in the patent law example is especially interesting
because of the way in which patent procedures, obligations and prohibitions are used
to generate and filter changing states of the simulation of a patent application. It
seems possible that, if the changing states of the simulation are viewed as database
states, then the obligations and prohibitions expressed in the patent law might be
viewed as integrity constraints. This possibility would establish an interesting link
between imperative statements in object-oriented programming and integrity
constraints in deductive databases and logic programming.

No matter what the outcome of a more detailed investigation of these possibilities,
there can be little doubt that legislation provides a rich domain outside computing
science itself within which relationships between different computing paradigms can
be studied. These studies need not be confined to programming languages alone, but
could usefully be extended to many other aspects of computing.

6 Other Relationships Between Computing and Law

To the extent that we can truly regard legislation as programs to be executed by
people, we can also expect to find analogues in the law of such other computing
matters as program specification and software management.

 205

6.1 An Analogy Between Specifications and Policies

In the same way that programs are written to meet specifications, laws are drafted to
achieve policies, which are social or political objectives. The purpose of the British
Nationality Act 1981, for example, was "to make fresh provisions about citizenship
and nationality, and to amend the Immigration Act 1971 as regards the right of abode
in the United Kingdom", and in particular to restrict immigration to the United
Kingdom by residents of the former British colonies. The purposes of the University
of Michigan lease termination clause presumably include such goals as discouraging
unsociable behaviour in the halls of residence, restricting residency to legitimate
students, and not causing undue hardship for individuals who are obliged to terminate
their residence. The rules for dealing with London Underground emergencies, on the
other hand, are designed to facilitate the provision of help as effectively and quickly
as possible in the case of genuine emergencies and to avoid inconvenience and
unnecessary trouble in the case of false alarms.

Program specifications have many characteristics in common with the policies of
legal documents. In the same way, for example, that the primary obligation of a
program might be to meet its specification, the primary duty of a legal document
should be to achieve its social and political objectives. In both cases, moreover,
specifications and policies are often ill-defined, inconsistent, or the result of
compromise between conflicting demands.

The formal methods developed in computing to verify that programs meet their
specifications are much more advanced than any corresponding methods developed
for the law. A pilot study of the possibility of adapting formal methods of logic-
based software verification to the problem of verifying social security regulations has
been made by Bench-Capon [2].

Thus the transfer of techniques for program verification is one area in which the field
of law might be able to benefit from its similarities with computing. In other areas,
such as software management, the benefits might apply more equally to both fields.

6.2 An Analogy Between Software Maintenance and Maintenance of the Law

In the same way that programs need to be modified to meet changing specifications,
legislation needs to be modified to meet changing social and political needs. But
programs are both difficult to construct and difficult to change. So much so in fact,
that programs are often still in use long after they have outlived their specifications.

The situation is not much better in the law, where legislation often lags far behind
social and political changes. Obsolete and incorrect legislation is enforced simply for
the sake of "law and order".

But the drafters of legislation have developed some ingenious devices for adapting,
modifying and revising old legislation. The liberal use of vague and undefined terms
such as "good character", "life, limb or property would be jeopardized" and

 206

"improper use" greatly contribute to the flexibility of legislation and to its ability to
adapt to change. Such use of vague terms is reminiscent of the use of data abstraction
and encapsulation in computer programming, which allow the lower levels of a
program to change, while leaving the higher levels intact.

Much legislation is explicitly concerned with the repeal or amendment of earlier
legislation. The British Nationality Act 1981, for example, repeals the British
Nationality Acts 1948 to 1965 and amends the Immigration Act 1971. Amendments
in particular are typically expressed by metalevel statements which describe how an
old piece of text should be edited to create a new text. Metalevel statements are also
used to create a new provision from a similar provision in the same act.

Section 6.2 of the British Nationality Act 1981, for example, makes special provision
for naturalisation of people who are married to British citizens. The requirements are
similar to those for people who apply under section 6.1, but include shorter residency
requirements, omit the requirement of having sufficient knowledge of English,
Welsh, or Scottish Gaelic, and include

 "the requirement specified in paragraph 1(1)(b)".

This metalevel reference to 1(1)(b) is in fact a reference to the requirement

 "that he is of good character".

This particular use of metalanguage is rather unusual in that the English expression of
the metalinguistic form is actually longer than the equivalent object level expression.
Usually the metalinguistic formulation is more concise than the object level
formulation.

Thus the source code of legislation often mixes object level statements about the
domain of discourse with metalevel statements about the text of other legislation or
other provisions in the same legislation. The principle objective of using such
metalevel statements in preference to equivalent object level statements is to make
explicit the relationship between different but similar texts.

The language of legislation also employs remarkable techniques for reusing previous
legislation. In the British Nationality Act 1981, for example, it states that one of the
conditions for being a British citizen by descent under the 1981 Act is to be a person
who

 under any provision of the British Nationality Acts 1948 to 1965,
 was deemed for the purposes of the proviso to section 5(1) of the 1948 Act to

be a citizen of the United Kingdom and Colonies by descent only,
 or would have been so deemed if male.

The last phrase is an example of a counterfactual condition. A metalogical
interpretation of such counterfactuals has been proposed by Bench-Capon [3]. It is
possible to imagine how metaprogramming might be used to implement such
counterfactual reuse of software in a logic programming environment.

 207

6.3 The Relationship Between Case-Based and Rule-Based Reasoning

In artificial intelligence a contrast is sometimes made between case-based and rule-
based reasoning, and a conflict is often held to exist between these two kinds of
reasoning [23]. People, it is argued, reason by means of analogies between different
cases rather than by means of the deductive application of rules.

The distinction between these two kinds of reasoning also lies at the heart of law. To
some extent it is even reflected among the distinguishing features of the two main
western legal traditions. Common law systems, such as those in England and the
United States, place greater emphasis on reasoning by means of cases. Civil law
systems, such as those on the continent of Europe, place greater emphasis on
reasoning by means of codified rules. In fact, in both systems of law the two kinds of
reasoning interact and complement one another.

In rule-based legislation, for example, case-based reasoning plays a fundamental role
in determining the meaning of vague concepts. Previous cases of a concept serve as
precedents for new cases.

On the other hand, in case-based legal argumentation, the justification for a decision
in a precedent setting case is often expressed in general terms and appeals to general
principles. Moreover, authorative restatements of case law effectively reformulate
the precedents set in individual cases into general, rule-based form, even though such
case-based rules do not have the same binding force as rules in legislation. Indeed it
can be argued that there is a natural evolution in the law from reasoning by means of
cases to reasoning by means of rules.

7. Conclusion

The similarities between computing and the law seem to cover all areas of computing
software. Moreover, the linguistic style in which legislation is drafted combines in
one language the expressive power of computer languages for such diverse areas as
programming, program specification, database description and query, integrity
constraints, and knowledge representation in artificial intelligence. This linguistic
style might be a good guide therefore to how these different areas of computing
might be unified in the future.

The similarities between computing and law go beyond those of linguistic style.
They extend also to the problems that the two fields share of developing, maintaining
and reusing large and complex bodies of linguistic texts. Here too, it may be possible
to transfer useful techniques between the two fields.

In this paper I have concentrated on similarities between logic programming and
legislation. I have indicated several ways in which the language of legislation
suggests that the basic model of logic programming can usefully be extended, to
include types, relative clauses, both ordinary negation and negation by failure,
integrity constraints, metalevel reasoning, and procedural notation. I believe that
with the aid of such extensions logic programming can provide the foundations for a
future, single computer language that will be suitable for all areas of computing in the
same way that natural language is suitable for all areas of law.

 208

Acknowledgement

This work was supported initially by the Science and Engineering Research Council
and more recently by the ESPRIT Basic Research Action, "Computational Logic". I
am especially indebted to my colleagues, Trevor Bench-Capon, Fariba Sadri and
Marek Sergot, whose work on legislation and logic programming has provided much
of the background for this paper.

References

[1] Allen, L. E., and Saxon, C.S. [1984] "Computer Aided Normalizing and
Unpacking: Some Interesting Machine-Processable Transformation of Legal Rules",
Computing Power and Legal Reasoning (C. Walter, ed.) West Publishing Company,
pp. 495-572.

[2] Bench-Capon, T.J.M. [1987]: "Support for policy makers: formulating legislation
with the aid of logical models", Proc. of the First International Conference on AI and
Law, ACM Press, pp. 181-189.

[3] Bench-Capon, T. [1989] "Representing Counterfactual Conditionals".
Proceedings of Artificial Intelligence and the Simulation of Behaviour (A. Cohn, Ed.)
Pitman Publishing Co.

[4] Bowen, K. A. and Kowalski, R. A. [1982]: "Amalgamating Language and
Metalanguage in Logic Programming", in Logic Programming (Clark, K.L. and
Tärnlund, S.-Å., editors), Academic Press, pp. 153-173.

[5] Bry, F., Decker, H., and Manthey, R. [1988] "A uniform approach to constraint
satisfaction and constraint satisfiability in deductive databases", Proceedings of
Extending Database Technology, pp. 488-505.

[6] Clark, K. L. [1978]: "negation by failure", in "Logic and databases", Gallaire, H.
and Minker, J. [eds], Plenum Press, pp. 293-322.

[7] Gallagher, J. [1986] "Transforming Logic Programs by Specializing Interpreters",
Proc. of 7th European Conference on Artificial Intelligence, pp. 109-122.

[8] Gelfond, M. and Lifschitz, V. [1990]: "Logic programs with classical negation",
Proceedings of the Seventh International Conference on Logic Programming, MIT
Press, pp. 579-597.

[9] Gordon, T. F. [1987] "Oblog-2 a Hybrid Knowledge Representation System for
Defeasible Reasoning" Proc. First International Conference on Artificial Intelligence
and Law. ACM Press, pp. 231-239.

[10] H.M.S.O. [1981]: "British Nationality Act 1981", Her Majesty's Stationery
Office, London.

 209

[11] Kowalski, R. A. and Sergot, M. J. [1986]: "A logic-based calculus of events",
New Generation Computing, Vol. 4, No. 1, pp. 67-95.

[12] Kowalski, R. A. [1989]: "The treatment of negation in logic programs for
representing legislation", Proceedings of the Second International Conference on
Artificial Intelligence and Law, pp. 11-15.

[13] Kowalski [1990] "English as a Logic Programming Language", New
Generation Computing, Volume 8, pp. 91-93.

[14] Kowalski, R. A. and Sadri, F. [1990], "Logic programs with exceptions",
Proceedings of the Seventh International Conference on Logic Programming, MIT
Press, pp. 598-613.

[15] Kowalski, R. A., Sergot, M. J. [1990]: "The use of logical models in legal
problem solving", Ratio Juris, Vol. 3, No. 2, pp. 201-218.

[16] Lloyd, J. W. and Topor, R. W. [1984]: "Making Prolog more expressive",
Journal of Logic Programming, Vol. 3, No. 1, pp. 225-240.

[17] Lloyd, J. W. and Topor, R. W. [1985] "A Basis for Deductive Database
Systems", J. Logic Programming, Volume 2, Number 2, pp. 93-109.

[18] Mitchell, T. M., Keller, R. M. and Kedar-Cabelli [1986] "Explanation-based
Generalization: A Unifying View" Machine Learning, Volume 1, pp. 47-80.

[19] Newell, A. and Simon, H. A. [1972] "Human problem solving", Prentice-Hall.

[20] Nitta, K., Nagao, J., and Mizutori, T., [1988] "A Knowledge Representation
and Inference System for Procedural Law", New Generation Computing, pp. 319-
359.

[21] Reiter, R. [1990]: "On asking what a database knows", Proc. Symposium on
Computational Logic, Springer-Verlag.

[22] Sadri, F. and Kowalski, R. A. [1987]: "A theorem proving approach to
database integrity", In Foundations of deductive databases and logic programming (J.
Minker, editor), Morgan Kaufmann, pp. 313-362.

[23] Schank, R. C. [1983] "The current state of AI: One man's opinion", AI
Magazine, Volume 4, No. 1, pp. 1-8.

[24] Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond, P. and
Cory, H. T. [1986]: " The British Nationality Act as a logic program", CACM, Vol.
29, No. 5, pp. 370-386.

[25] Sripada, S. M. [1991] "Temporal Reasoning in Deductive Databases".
Department of Computing, Imperial College, London.

 210

[26] Takeuchi, A. and Furukawa, K. [1986] "Partial evaluation of PROLOG
programs and its application to metaprogramming", Proc. of IFIP 86, North-Holland,
pp. 415-420.

[27] Waterman, D. A. and Hayes-Roth [1978] "Pattern-directed Inference Systems",
Academic Press, New York.

 211

 212

Global References

Wason, P. C. (1968) 'Reasoning about a rule', The Quarterly
Journal of Experimental Psychology, 20:3, 273 - 281
To link to this article: DOI: 10.1080/14640746808400161

	Chapter 1. What to do in an emergency
	The fourth sentence of the Emergency Notice as a constraint
	Programs with purpose
	Where do we go from here?
	Chapter 1a. The Case Against Logic
	Chapter 2 The Fox and the Crow
	An animal has an object
	Backward reasoning
	An animal has an object
	Summary
	Chapter 3. The Louse and the Mars Explorer
	Behaviourism
	Production Systems
	The Production System Cycle
	Production Systems without any representation of the world
	What it’s like to be a louse
	Production Systems with Memory
	What it’s like to be a Mars Explorer
	The use of production systems to simulate goal-reduction
	An animal has an object

	An unfortunate confusion
	Chapter 4 A Logical Framework for Combining Goal-reduction, Condition-action Rules and More

	The logic of goals and beliefs
	The story of the fox and crow revisited
	The time factor
	Embedding the story in the agent cycle
	The underground revisited
	Summary
	Chapter 5 Thinking = Inference + Search + Inference

	Going from A to B
	How to get to the French Riviera
	Logical Reasoning = Search + Inference
	Uncertainty
	Thinking without Search
	Thinking about time
	Thinking = Inference + Search + Inference
	Chapter 6 The Meaning of Life

	The mind body problem
	People are different
	Chapter 7 Levels of Consciousness
	Consciousness on the underground
	Compiling by reasoning in advance
	Combining deliberative and intuitive thinking
	Logic as the higher-level language of thought
	Chapter 9 The Changing World
	World structures
	Dynamic world structures
	The situation calculus
	An event-oriented approach to change
	A simplified calculus of events
	Keeping Track of Time
	Conclusion
	Chapter 10 Logic and Objects
	Objects as individuals in the changing world
	Encapsulation
	Methods
	Classes
	Change of state
	Reconciling logic and objects
	Object-orientation in moderation
	Semantic networks as a variant of object-orientation
	Despite their name, semantic networks are not semantic structures in the same sense as OO structures, but they are like semantic structures as represented by sets of atomic sentences in logic. In fact, semantic network connections of the form:
	Object-oriented structuring of sentences
	Conclusions
	8 Conclusions

