
1

In The Journal of Logic Programming, Special Issue: reasoning about action
and change, 31(1-3), Pages 39-58, 1997.

Reconciling the Event Calculus with the Situation Calculus

Robert Kowalski and Fariba Sadri
Department of Computing, Imperial College,
180 Queen's Gate, London SW7 2BZ

Emails: rak@doc.ic.ac.uk fs@doc.ic.ac.uk

Abstract

In this paper, to compare the situation calculus and event calculus we formulate both as

logic programs and prove properties of these by reasoning with their completions

augmented with induction. We thus show that the situation calculus and event calculus

imply one another. Whereas our derivation of the event calculus from the situation

calculus requires the use of induction, our derivation of the situation calculus from the

event calculus does not. We also show that in certain concrete applications, such as the

missing car example, conclusions that seem to require the use of induction in the

situation calculus can be derived without induction in the event calculus. To compare the

two calculi, we need to make a number of small modifications to both. As a by-product of

these modifications, the resulting calculi can be used to reason about both actual and

hypothetical states of affairs, including counterfactual ones. We further show how the

core axioms of both calculi can be extended to deal with domain or state constraints and

certain types of ramifications. We illustrate this by examples from legislation and the

blocks world.

Keywords: temporal reasoning, event calculus, situation calculus, actual and hypothetical

events

1 Introduction

In this paper we revisit our earlier comparison of the situation calculus and event

calculus [11] using a more general approach to the representations of situations, in the

spirit of Van Belleghem, Denecker and De Schreye [20, 21]. The resulting more general

formalisations of both calculi combine the situation calculus ability to represent

hypothetical situations with the event calculus representation of actual events. For

simplicity, we restrict the representation to times which are situations or transitions

between situations, in the spirit of Kakas and Miller [6].

We formulate both calculi as logic programs and reason with their iff-completions,

induction over situations and integrity constraints as approximations to the intended

semantics of those programs. The technique of reasoning about logic programs using iff-

completions and induction was introduced by Clark and Tarnlund [4]. The resulting

2

formalisation of the situation calculus is similar to the formalisation of Pinto and Reiter

[15].

We show that the main result, reported in [11], holds for these more general versions of

the event and situation calculi. The result states that the two calculi logically imply one

another. Our derivation of the event calculus from the situation calculus, however,

requires the use of induction, whereas our derivation of the situation calculus from the

event calculus does not. This indication that the event calculus may be more powerful

than the situation calculus, despite their equivalence, is also supported by our analysis

of the missing car example (in section 7).

We allow events, such as updating deductive databases or passing, amending and

repealing legislation, which initiate and terminate the holding of arbitrary sentences. We

formalise reasoning with such sentences using a proof predicate defined as a metalogic

program. State or domain constraints and certain kinds of ramifications are dealt with

automatically as a by-product of this formulation.

In sections 2, 3 and 4 we present logic programming formulations of the situation and

event calculi and their semantics in terms of iff-completions, integrity constraints and

induction. In section 5, for ease of reference, we list all the axioms and integrity

constraints presented thus far. In section 6 we show that the situation calculus with

induction implies the event calculus, whereas the event calculus without induction

implies the situation calculus. In sections 7 and 8 we show how the calculi can be used

for factual and hypothetical reasoning, including counterfactual reasoning, and how they

can be extended to deal with ramifications. Finally, in section 9 we conclude the work

presented in this paper.

2 The situation calculus

2.1 The axioms

The following two clauses constitute the core of our formulation of the situation calculus

as a logic program. Together they define what sentences P hold in the situation

result(A, S) that is the result of the transition from state S by an action of type A.

holds(P, result(A, S)) ← happens(A, S) ∧ initiates(A, S, P) S1

holds(P, result(A, S)) ← happens(A, S) ∧ holds(P, S) ∧ ¬ terminates(A, S, P) S2

Terms starting in the upper case are variables. Unless otherwise indicated, all variables

are assumed to be universally quantified in front of the formula in which they occur.

The first clause defines what sentences hold because they are initiated by an action. The

second clause, called the frame axiom, defines what sentences hold because they held

before the action and were not terminated by it.

3

The definitions of the predicates initiates and terminates are domain-dependant. For

example, the fact that an act of donor X giving object Y to recipient Z initiates the

property of Z possessing Y and terminates the property of X possessing Y can be defined

by the two clauses:

initiates(give(X, Y, Z), S, possess(Z, Y))

terminates(give(X, Y, Z), S, possess(X, Y))

Similarly, in the Yale shooting problem, the fact that if the gun is loaded then an act of

shooting initiates the death of the turkey and terminates its life can be represented by

the conditional clauses:

initiates(shoot, S, dead) ← holds(loaded, S)

terminates(shoot, S, alive) ← holds(loaded, S)

Most formulations of the situation calculus use a single predicate abnormal ([1], for

example) instead of the two predicates initiates and terminates. The frame axiom in this

formulation is often given in the form:

[holds(P, S) ↔ holds(P, result(A, S))] ← ¬abnormal(A, S, P)

In our formulation we can derive an analogous formula

[holds(P, S) ↔ holds(P, result(A, S))] ←

happens(A, S) ∧ ¬initiates(A, S, P) ∧ ¬terminates(A, S, P)

by using the iff-completion of clauses S1 and S2, which we use for reasoning about our

formulation of the situation calculus program. Our use of the iff-completion is discussed

in section 3.

Among those formulations of the situation calculus which employ an abnormality

predicate, many, in effect, interpret abnormal(A, S, P) as “A initiates P in S or A

initiates ¬P in S”. This prevents two explicitly contradictory properties P and ¬P from

holding simultaneously. However, it does not prevent the simultaneous holding of two (or

more) properties P1 , ..., Pn, which are implicitly contradictory, due to the presence of

domain-specific integrity constraints such as

¬ [holds(P1, S) ∧ ... ∧ holds(Pn, S)].

Our formulation does not prevent explicitly or implicitly contradictory properties from

holding simultaneously. We discuss this issue in [17] in the context of the event calculus,

and show how the problem can be dealt with in different ways, depending on whether or

not the given set of event descriptions is complete.

We use the predicates initiates and terminates instead of abnormal because they

facilitate our comparison with the event calculus. Moreover, it can be argued that they

provide a semantically more meaningful formulation of the situation calculus itself,

4

distinguishing between abnormalities due to initiation of sentences and those due to

termination.

2.2 Restricting situations to possible situations

The inclusion of the condition happens(A, S) in S1 and S2 restricts the holding of

properties to situations which are possible. The notion of possible situation can also be

represented explicitly by the type predicate situation, defined as follows:

situation(s0) T1

situation(result(A, S)) ← happens(A, S) ∧ situation(S) T2

The condition happens(A, S) in S1 and S2 could, consequently, be replaced by the

condition situation(result(A, S)), which introduces happens(A, S) indirectly.

The following integrity constraints ensure that any event which happens is a possible

event, in the sense that it happens in a possible situation and all its preconditions

actually or hypothetically hold in that situation:

holds(P, S) ← happens(A, S) ∧ precondition(A, S, P) I1

situation(S) ← happens(A, S) I2

Given I2, the two formulations of the situation calculus, one with happens and the other

with situation, are equivalent.

Integrity constraints, such as I1 and I2, can be thought of as imposing restrictions on

predicates, such as happens, whose definition is unknown or incomplete. We will discuss

the semantics of integrity constraints in the next section.

Whether an event occurrence, happens(a, s), or a property holding, holds(p, s), is actual

or hypothetical can be reduced to determining whether the situation result(a, s) or s,

respectively, is actual or hypothetical. This, in turn, can be done by means of assertions

such as

actual(s0)

.

.

actual(s)

actual(result(a, s))

where at most one sequence of events is asserted as actual. The distinction between actual

and hypothetical situations does not affect the statement or the proof of the main

theorem, presented in section 6. We shall discuss actual and hypothetical events in more

detail in section 7.

As with the domain-specific predicates initiates and terminates, the definition of the

predicate precondition is domain dependent, for example:

5

precondition(give(X, Y, Z), S, possess(X, Y))

In the standard formulations of the situation calculus, such preconditions of actions are

ignored, or else are catered for by including extra conditions in the analogues of clauses

S1 and S2. In fact, our inclusion of the condition happens(A, S) in S1 and S2, together

with the integrity constraint I1, achieves a similar effect to the latter of these two

approaches.

2.3 The initial situation

Before we discuss the semantics of the situation calculus in the next section, we need to

discuss the representation of the initial situation, s0. There are at least two

possibilities. We can define the properties of the initial situation by means of a clause

holds(P, s0) ← initially(P)

together with appropriate clauses defining the predicate initially.

Alternatively, we may assume, without loss of generality, that nothing holds in the initial

situation s0 and that all properties of the initial situation are actually properties of the

successor of the initial situation, result(creation, s0), where creation is defined by

clauses of the form initiates(creation, s0, P). For our purpose, the second alternative is

more convenient than the first.

Because a creation event can initiate any property and has no preconditions, we need an

integrity constraint

S = s0 ← happens(creation, S) I3

to prevent asserting the occurrence of creation in any situation other than the initial

situation.

3 The semantics of the situation calculus program

Many different semantics have been defined for logic programs. To compare the situation

and event calculi, it is convenient to use the completion semantics [3] augmented with

integrity constraints and induction [4].

Like circumscription [14], the completion semantics augmented with induction seeks to

formalise the intention that a set of axioms (in our case, the if-halves of logic programs)

characterises the smallest set of relations which satisfy the axioms. In the case of a

program consisting of Horn clauses without equality, there is only one such smallest set,

which is the unique minimal Herbrand model of the program [22]. This is the semantics

associated with the program by (virtually) all existing semantics of logic programming.

For such Horn clause programs, the iff-completion is an approximation to the intended

6

meaning, and the iff-completion augmented with axioms of induction is a better

approximation.1

The case of normal programs, like S1 and S2, is more complicated. Not only do

circumscription and logic programming semantics diverge, but the different semantics

for logic programming also diverge. What many of these semantics have in common,

however, is that the iff-completion, augmented with induction, is a safe approximation to

them. It is safe in the sense that any logical consequence of the iff-completion augmented

with induction is a property of the program, in that it is true in all intended models of

the program characterised by these semantics.

3.1 Iff-completion

The construction of the completion of a logic program is well known [3, 13]. Applied to S1

and S2, this construction gives:

holds(P, S2) ↔

∃A1,S1 [[S2= result(A1, S1) ∧ happens(A1, S1) ∧ initiates(A1, S1, P)] ∨

 [S2= result(A1, S1) ∧ happens(A1, S1) ∧ holds(P, S1) ∧

 ¬ terminates(A1, S1, P)]] SC

together with the Clark equality theory (CET), which consists of the unique name axioms

including

[A1=A2 ∧ S1=S2] ← result(A1, S1) = result(A2, S2) CET1

¬ ∃ S [s0 = result(A, S)] CET2

and the usual axioms of equality.

Similarly, we need to complete the definitions of the initiates, terminates, precondition

and situation predicates, but not happens and actual.

3.2 Integrity constraints

Integrity constraints in relational and deductive databases are first order sentences that

express invariant properties of relations whose definitions can be updated. Like iff-

1 It can be argued that the iff-completion together with a first-order axiom schema of

induction approximates the intended minimal Herbrand model in exactly the same sense

that the logical consequences of the Peano axioms of arithmetic approximate the intended

model of arithmetic. This model can be understood, in turn, as the unique minimal

Herbrand model of the Horn clauses which define addition and multiplication.

7

completions and induction, they provide a safe approximation to the intended semantics

of the definitions in the sense that they are meant to be true in all intended models.

Integrity constraints, understood in this way, do not affect the intended meaning of

definitions, but simply help to characterise that meaning in syntactic terms (like the

only-if halves of definitions and induction axioms). Thus integrity constraints can

safely be used as additional premises to prove properties of logic programs.

Integrity constraints can play a useful role both when they describe properties of

predicates whose definition is given, and when they describe properties of predicates

whose definitions are unknown or inaccessible. A good (and instructive) example of the

latter use of integrity constraints is in semantic query optimisation [2], where integrity

constraints describing extensional predicates are used together with definitions of

intensional predicates, to optimise a query before transmitting it to the extensional

database. Integrity constraints can similarly be used to describe properties of abducible

predicates, whose definitions are unknown or incomplete, and which can appear in

answers to queries, in much the same way that extensional predicates appear as the

result of transforming a query by means of semantic query optimisation.

In our formulations of the situation calculus and event calculus, the predicates happens

and actual can be understood as predicates with inaccessible or only partially accessible

definitions2. Integrity constraints, such as I1-I3, are properties of the complete, but

unknown definitions. Consequently these integrity constraints can be used as premises to

prove properties of logic programs such as S1 and S2, augmented with definitions for

happens and actual. So long as in any given application, whenever a complete definition of

these predicates is given, the integrity constraints hold in all intended models of these

definitions, then any properties proved with the aid of the integrity constraints will also

be properties of the definitions themselves.

3.3 Temporal ordering

One of the limitations of most formulations of the situation calculus is that situations

need to be named explicitly in terms of a sequence of actions following the initial state.

As a result, it is virtually impossible to represent narratives with incomplete

information. This limitation can be overcome by relating situations to one another by

means of an ordering relation. Such ordering relations have been defined for the situation

calculus by Shanahan [19] and Pinto and Reiter [15].

For our purposes, it is convenient to introduce a term, trans(A, S), representing the

transition from situation S to result(A, S) caused by an event of type A. This allows the

occurrence of any number of alternative events immediately following a given situation,

giving rise to branching timelines.

2 In section 7, we will consider the case where happens(A, S) is interpreted as "A is

possible in S", in which case happens can be defined in such a way that I1-I3 are

properties of the definition.

8

In the following definitions, the auxiliary predicate << represents the immediate

succession of time points, and < represents its transitive closure:

S << trans(A, S) ← situation(result(A, S))

trans(A, S) << result(A, S) ← situation(result(A, S))

T1 < T2 ← T1 << T2

T1 < T2 ← T 1 < T ∧ T << T2

As is the case with all definitions, these definitions need to be completed. We name these

completions LESS.

We also need the following unique name axioms in the Clark equality theory:

¬∃ A, S [result(A, S) = trans(A, S)] CET3

¬∃ A, S [s0 = trans(A, S)] CET4

[A1=A2 ∧ S1=S2] ← trans(A1, S1) = trans(A2, S2) CET5

3.4 Induction

Induction can be defined either over all time points or over all situations. The latter is

more convenient for our purposes.

∀S [Φ(S) ← situation(S)] ←

 Φ(s0) ∧ ∀ A,S [Φ(result(A, S)) ← Φ(S) ∧ situation(result(A, S))] IND

where Φ is a metavariable standing for any first-order formula (as in Peano arithmetic).

Given the completed definitions of <<, <, and situation, the unique name axioms, and IND,

we can show the following properties of the predicate < . We need (a), (b), (c), and (f) in

the proof of the main theorem in section 6, and we use (j) in the missing car example in

section 7.

a) ¬ ∃ S [S< s0]

b) ∀S1,S2,S3 [S1< S3 ← S1< S2 ∧ S2< S3]

c) ∀S1,S2 [¬S2 ≤ S1 ← S1< S2]

d) ∀S,A ¬ ∃ S1 [S< S1 ∧ S1< result(A, S) ∧ situation(S1)]

e) ∀S ¬S< S

f) ∀S,A ¬ ∃ T [trans(A, S)< T ∧ T< result(A, S)]

g) ∀S,A ¬ ∃ T [S< T ∧ T< trans(A, S)]

h) ∀S1,S2 [situation(S1) ← S1<S2 ∧ ¬ ∃ A,S (S1=trans(A, S))]

i) ∀S1,S2 [situation(S2) ← S1<S2 ∧ ¬ ∃ A,S (S2=trans(A, S))]

j) ∀S1,S2,A [happens(A, S1) ← trans(A, S1)<S2]

4 The simplified event calculus

9

The original version of the event calculus [12] allowed concurrent and partially ordered

events as well as the persistence of properties both backwards and forwards over time. It

also catered for properties holding both during time periods and at time points.

To compare the event calculus with the situation calculus we shall consider a special case

of the former that is analogous to the restrictions of the latter. We can obtain this special

case by removing all consideration of backward persistence of properties and pre-

processing away all reference to time periods. We do the latter by replacing all

conditions referring to properties holding for time periods by their definition in terms

of events happening at time points. Such a special case was introduced in ([10], [5], [18]).

In [17] we showed that this special case, in completion form augmented with integrity

constraints, has much of the power of the original event calculus, and even overcomes

some of its deficiencies.

The special case of the event calculus has at its core a single axiom:

holds(P, T2) ← happens(E1, T1) ∧ initiates(E1, P) ∧ T1< T2 ∧

 ¬ ∃ E*,T*[happens(E*, T*) ∧ terminates(E*, P) ∧ T1< T*∧ T*< T2]

which expresses that a property holds at a time point if it was initiated by an event

which happened at an earlier time point and no intervening event happened to terminate

the property.

The condition T1< T2 has the effect of ensuring that properties hold only after their

initiating event happens. The inequality T*< T2 ensures that properties, including

preconditions of events, hold at the time they are terminated by some event.

We further restrict our version of the event calculus to the special case where the <

relation on time points is identified with the < relation on situations and transactions. In

this case we can replace the condition T1 < T* by the inequality T1 < T*, using the

assumptions that two different events do not occur at the same time (expressed by CET5),

and that no event initiates and terminates the same property. Also event tokens are

unnecessary because individual events can be identified by their action or event types

and the situations in which they cause a transition. We may, therefore, instantiate the

event calculus axiom by means of a particular representation for events, representing

event tokens E by pairs (A, S) consisting of an action or event type A and a situation S.

This reformulates the event calculus predicates in the situation calculus vocabulary, as

follows:

Replace happens(E,T) by happens((A, S), trans(A, S))

where trans(A, S) is the time T between S and result(A, S) when E occurs.

For simplicity we abbreviate this to

happens(A, S).

Replace initiates(E, P) by initiates(A, S, P).

10

Replace terminates(E, P) by terminates(A, S, P).

Finally, we restrict the holding of properties to situations. The resulting completion of

the event calculus axiom has the iff-form:

holds(P, S2) ↔

situation (S2) ∧

∃A1,S1 { happens(A1, S1) ∧ initiates(A1, S1, P) ∧ trans(A1, S1) < S2 ∧

 ¬ ∃A*,S* [happens(A*, S*) ∧ terminates(A*, S*, P) ∧

 trans(A1, S1) < trans(A*, S*)∧ trans(A*, S*) < S2] } EC

Like our version of the situation calculus, this formulation of the simplified event

calculus can be used for reasoning with both actual and hypothetical situations and

events.

Our formulations of the situation calculus and of the simplified event calculus differ

only in the core axioms SC and EC. The remaining axioms, IND, LESS, CET, constraints I1-

I3 and the completion of the type definition T1 and T2, are common to both calculi.

5 Summary of all axioms and integrity constraints

The situation calculus core axiom:

SC holds(P, S2) ↔

∃A1,S1 [[S2= result(A1, S1) ∧ happens(A1, S1) ∧ initiates(A1, S1, P)] ∨

 [S2= result(A1, S1) ∧ happens(A1, S1) ∧ holds(P, S1) ∧

 ¬ terminates(A1, S1, P)]]

The event calculus core axiom:

EC holds(P, S2) ↔

situation (S2) ∧

∃A1,S1 { happens(A1, S1) ∧ initiates(A1, S1, P) ∧ trans(A1, S1) < S2 ∧

 ¬∃A*,S* [happens(A*, S*) ∧ terminates(A*, S*, P) ∧

 trans(A1, S1) < trans(A*, S*) ∧ trans(A*, S*) < S2] }

The situation type definition (i.e. the completion of definition T1 and T2):

TYPE situations(S) ↔

S=s0 ∨

∃A1,S1 [S=result(A1, S1) ∧ happens(A1, S1) ∧ situation(S1)]

The definitions of << and < :

LESS T1 << T2 ↔

∃A1,S1 { [T2=trans(A1, T1) ∧ situation(result(A1 , T1)] ∨

11

 [T1=trans(A1, S1) ∧ T2=result(A1, S1) ∧ situation(result(A1, S1))] }

T1 < T2 ↔

T1 << T2 ∨ ∃ T [T1 < T ∧ T << T2]

The integrity constraints:

I1 holds(P, S) ← happens(A, S) ∧ precondition(A, S, P)

I2 situation(S) ← happens(A, S)

I3 S = s0 ← happens(creation, S)

The axiom schema of induction:

IND ∀S [Φ(S) ← situation(S)] ←

 Φ(s0) ∧ ∀ A,S [Φ(result(A, S)) ← Φ(S) ∧ situation(result(A, S))]

The Clark unique name axioms

CET1 [A1=A2 ∧ S1=S2] ← result(A1, S1) = result(A2, S2)

CET2 ¬ ∃ S [s0 = result(A, S)]

CET3 ¬∃ A, S [result(A, S) = trans(A, S)]

CET4 ¬∃ A, S [s0 = trans(A, S)]

CET5 [A1=A2 ∧ S1=S2] ← trans(A1, S1) = trans(A2, S2)

6 The relationship between the two calculi

The relationship between our formulations of the situation and event calculi can now be

stated as follows.

Theorem: i) COMM, EC |= SC

ii) COMM, SC, IND |= EC

where SC and EC are the iff-forms of the situation calculus and event calculus core

axioms respectively, IND is the axiom schema of induction and COMM consists of I2, LESS,

TYPE and the properties (a), (b), (c) and (f) common to the two calculi.

Proof:

i) Given COMM, EC is equivalent to

holds(P, S2) ↔ (event1) ∨ (event2)

where (event1) has the form

 ∃ A1,S1

12

{ situation(S2) ∧ happens(A1, S1) ∧ initiates(A1, S1, P) ∧ S2=result(A1, S1) ∧

¬ ∃ A*,S* [happens(A*, S*) ∧ terminates(A*, S*, P) ∧

trans(A1, S1)< trans(A*, S*) ∧ trans(A*, S*)< S2] }

and (event2) has the form

∃ A1,S1,T

{ situation(S2) ∧ happens(A1, S1) ∧ initiates(A1, S1, P) ∧ trans(A1, S1)< T ∧ T<<S2 ∧

 ¬ ∃ A*,S* [happens(A*, S*) ∧ terminates(A*, S*, P) ∧

trans(A1, S1)< trans(A*, S*) ∧ trans(A*, S*)< S2] }

This equivalence can be shown by replacing the condition trans(A1, S1)< S2 in EC by its

definition in LESS and distributing disjunction over conjunction.

On the other hand, SC is equivalent to

holds(P, S2) ↔ (sit1) ∨ (sit2)

where (sit1) has the form

∃ A,S [S2 = result(A, S) ∧ happens(A, S) ∧ initiates(A, S, P)]

and (sit2) has the form

∃ A,S [S2 = result(A, S) ∧ happens(A, S) ∧ holds(P, S) ∧ ¬ terminates(A, S, P)]

It is not difficult to show that (event1) and (sit1) are equivalent in the theory COMM

using lemma (f), stating that there is no time T between trans(A1, S1) and result(A1, S1),

and the assumption I2, that events happen only in situations.

Also, using LESS and TYPE, (event2) is equivalent to

∃ A1,S1,A,S,T

{ S2=result(A, S) ∧ happens(A, S) ∧ situation(S) ∧

 happens(A1, S1) ∧ initiates(A1, S1, P) ∧ trans(A1, S1)<T ∧ T<<result(A, S) ∧

¬ terminates(A, S, P) ∧

¬∃A*,S* [happens(A*, S*) ∧ terminates(A*, S*, P) ∧

 trans(A1, S1)< trans(A*, S*) ∧ trans(A*, S*)< S] }

But this is equivalent in turn to (sit2) using the following instance EC* of EC

holds(P, S) ↔

situation(S) ∧

{ ∃ A1,S1{ happens(A1, S1) ∧ initiates(A1, S1, P) ∧ trans(A1, S1)< S ∧

 ¬∃ A*,S*[happens(A*, S*) ∧ terminates(A*, S*, P) ∧

13

 trans(A1, S1)<trans(A*, S*) ∧ trans(A*, S*)< S] }}

and the fact that given situation(result(A, S))

∃T [trans(A1, S1)<T ∧ T<<result(A, S)] ≡ trans(A1, S1) < S

by LESS.

ii) The proof of this part of the theorem is identical to that of part (i), up to the point of

using EC* to show that (event2) is equivalent (in COMM) to (sit2). For part (ii) we use

induction with EC* as the induction hypothesis and with EC as the theorem to be proved.

This together with the assumption SC proves the induction conclusion EC. To complete the

proof, we need to prove the base case of the induction, i.e. to show that EC holds when

S2=s0. But EC in this case is equivalent to

¬ ∃ P [holds(P, s0)]

which states that nothing holds in the initial state. This is an immediate consequence of

SC.

So by induction we have shown

∀ S2 { [holds(P, S2) ↔ conditions of EC] ← situation(S2) }

Since under SC and I2 both the conditions of EC and the head, holds(P, S2), imply

situation(S2), this condition can be removed from above, and thus we prove EC.

 Q.E.D.

7 Actual and hypothetical situations

7.1 Distinguishing between actual and hypothetical situations

Whereas the event calculus was originally intended for representing and reasoning about

actual events, the situation calculus was designed for reasoning about hypothetical events

and situations. Our inclusion of the conditions happens(A1, S1) in SC and EC is intended

to unify the treatment of hypothetical and actual events.

In the case of the standard versions of the event calculus, in which all events are actual,

the integrity constraints I1-I3 restrict actual events to those which are possible. In the

case of the standard formulations of the situation calculus, however, in which all events

are hypothetical, the same integrity constraints are properties of the definition of what it

means for an event of type A to be possible in a situation S. The definition can be given as

follows:

happens(A, S) ↔

 { ∀ P [holds(P, S) ← precondition(A, S, P)] ∧ situation(S) ∧ [S=s0 ← A=creation] }

14

We employ the integrity constraints, I1-I3, because they capture the common ground

shared by actual and hypothetical events. Notice that I1-I3 are the only-if half of the

definition.

To represent an actual event, in both calculi, we simply assert that the event has

happened and that the resulting situation is actual. To represent a hypothetical event, we

also assert that the event has happened (either because it is given as input or because it

is assumed by abduction), but say nothing about whether or not the resulting situation is

actual.

To ensure that at most one sequence of events is actual, we need to ensure that the

following integrity constraints are properties of any definition of actual:

actual(S) ← actual(result(A, S))

A1=A2 ← actual(result(A1, S)) ∧ actual(result(A2, S))

7.2 Reasoning with multiple timelines

The following example, based on an example in [20], shows how information about an event

on one timeline can be used to derive information about an event on another timeline. The

example is neutral with respect to whether any of the two timelines is actual.

Here is an informal description of the problem. The event of creation happens in the

initial state and initiates a gun being loaded and an individual being alive. Then an event

of spinning the chamber of the gun happens. We then consider two alternative scenarios.

In the first, an event of waiting happens, and in the second an event of shooting. The

problem is to show that after the shooting the individual is not alive if after the waiting

the gun would have remained loaded.

Such reasoning is possible in the standard formulations of the situation calculus. Here we

show that it is also possible in our formulation of the event calculus. We formalise the

problem as follows.

Suppose we are given

holds(loaded, result(wait, result(spin, result(creation, s0)))) (1)

where the if-halves of the definitions of initiates and terminates include the following

assertions.

initiates(creation, s0, loaded) (2)

initiates(creation, s0, alive) (3)

terminates(shoot, S, alive) ← holds(loaded, S) (4)

Assume, moreover, that it is a property of the complete definitions that

15

¬ ∃ S initiates(shoot, S, alive) (5)

¬ ∃ S initiates(wait, S, loaded) (6)

¬ ∃ S initiates(spin, S, loaded) (7)

We make no other assumptions about the definitions of initiates and terminates.

From assumption (1), stating that the gun would be loaded after waiting, using the only-if

half of EC, (6) and (7), we can derive

¬ terminates(spin, result(creation, s0), loaded)

Now, using the if-half of EC, we can conclude

holds(loaded, result(spin, result(creation, s0)))

Therefore, by (4)

terminates(shoot, result(spin, result(creation, s0)), alive)

Finally, using (5) and the contrapositive of the only-if half of EC we conclude

¬holds(alive, result(shoot, result(spin, result(creation, s0))))

Moreover, using (1), EC and TYPE, we can show

situation(result(shoot, result(spin, result(creation, s0)))).

There are two relatively minor differences between this example and the treatment of the

example in [20]. First, we use the situation structure of the situation calculus, whereas

[20] uses more general time points, in the spirit of the original simplified event calculus.

Second, we use properties (2)-(7) of the completion of initiates and terminates, whereas

[20] uses the iff-completion of the definitions explicitly.

7.3 The missing car example

This problem [7] illustrates the theorem of section 6. The problem can be solved in both

calculi. However, its solution requires induction in the situation calculus but not in the

event calculus.

The scenario is that a car is parked in a car park initially, but it is not there later. The

problem is to explain the absence of the car from the car park.

Formally, we know that

∃S' [¬holds(in, S') ∧ trans(park, s0) < S' ∧ situation(S')] (1)

16

Furthermore, we assume that the following assertions are included in the definitions of

initiates and terminates.

initiates(park, S, in) (2)

terminates(steal, S, in) (3)

terminates(tow, S, in) (4)

Assume, moreover, that it is a property of the complete definitions that

terminates(A, S, in) → A=steal ∨ A=tow (5)

We would like to conclude that at some time after the car was parked and before S' it was

stolen or towed away.

From assumption (1), using the contrapositive of the if-half of EC, lemma (j) of subsection

3.4 and (2) we can derive

∃A*,S*,S' [happens(A*, S*) ∧ terminates(A*, S*, in) ∧

 trans(park, s0) < trans(A*, S*) ∧ trans(A*,S*) < S' ∧ situation(S')]

Using property (5) of terminates, we get the expected result, i.e.

∃A*,S*,S' { happens(A*, S*) ∧ [A*=steal ∨ A*=tow] ∧

 trans(park, s0) < trans(A*, S*) ∧ trans(A*,S*) < S' ∧ situation(S') }

The derivation in the situation calculus is more complicated and requires the use of

induction. Using (1), SC, TYPE and LESS we can derive

∃A,S,S'{ S'= result(A, S) ∧ happens(A, S) ∧ situation(S) ∧ trans(park, s0) < S' ∧

 ¬ initiates(A, S, in) ∧ [¬ holds(in, S) ∨ terminates(A, S, in)] }

Using property (5) of terminates, and distributing some of the disjunction over the

conjunction, we get

∃A,S,S'{ [S'=result(A, S) ∧ happens(A, S) ∧ trans(park, s0) < S' ∧ [A=steal ∨ A=tow]] ∨ Rest }

The disjunct Rest represents an unbounded number of further answers, which can be

obtained in a similar manner. It is easy to see that, to obtain the single, more general

conclusion of the event calculus, it is necessary to use induction.

8 Ramifications

8.1 Extending SC and EC

The predicate holds(P, S) can be understood as a metapredicate which expresses that the

sentence named P holds explicitly (i.e. as an axiom) in the situation named S. A situation

17

can be thought of either as a time point or as the set of all sentences, namely the theory,

that holds at a given time point. Under this latter interpretation, holds(P, S) is a special

case of the predicate demo(S, P) used to represent the proof predicate in

metaprogramming (e.g. [8]).

In the general case P in holds(P, S) can name an arbitrary sentence. Such generality is

necessary, for example, in applications to the formalisation of deductive database

updates, the passing, amendment and repeal of legislation, and belief revision in

intelligent agents. In practice, and for all the examples in this paper, it suffices for P to

name a sentence in logic programming form. Standard formulations of the situation

calculus either do not use a metapredicate at all or, if they do, limit themselves to cases

where P names an atomic sentence or, at most, the negation of an atomic sentence.

The use of the metapredicate holds(P, S) already caters for the possibility that P might

name an arbitrary sentence. The core situation calculus and event calculus axioms apply,

without change, to this more general case. However, without additional axioms they do not

completely characterise the set of all sentences that hold at any given time. They

characterise, instead, only those sentences which hold explicitly (as axioms) at that time.

To define the set of all sentences which hold explicitly or implicitly we need additional

axioms such as:

demo(S, P) ← holds(P, S) D1

demo(S, P) ← demo(S, P← Q) ∧ demo(S, Q) D2

demo(S, P∧Q) ← demo(S, P) ∧ demo(S, Q) D3

demo(S, ¬P) ← ¬ demo(S, P) D4

demo(S, P) ← demo(S, ∀ X P) D5

Here the metapredicate demo(S, P) expresses that the sentence named P can be

demonstrated from the object level theory at situation S.

Clauses D2 and D3 constitute the familiar "vanilla meta-interpreter" which defines the

proof predicate for propositional Horn clause theories. D4 can be understood as defining

object level negation , ¬P, as failure to prove P. Clause D5 can be regarded as relating the

so-called ground and non-ground representations of variables as discussed in [9].

D1-D5 exemplify the use of logic programming as a metalanguage to define its own proof

predicate. Other clauses could be added to the definition to extend the object language

beyond the logic programming case. D4, which interprets object level negation as negation

as failure, could be replaced by clauses which define negation differently. For

simplicity, and for the purposes of this paper, we can assume that the completion of D1-

D5 is the definition of the demo predicate.

Although the core situation calculus and core event calculus axioms require no

modification to deal with the initiation and termination of arbitrary sentences, the

integrity constraint I1 needs to be generalised:

demo(S, P) ← happens(A, S) ∧ precondition(A, S, P)

18

to take into account the fact that preconditions of events might be ramifications of other

events. Similarly, some domain-specific assertions of the initiates and terminates

predicates may have to be generalised. For example:

initiates(shoot, S, dead) ← demo(S, loaded)

terminates(shoot, S, alive) ← demo(S, loaded)

8.2 An Example from legislation

The following example illustrates the need to extend the holds predicate by means of

demo. Here bna48 and bna83 name the British Nationality Acts of 1948 and 1983,

respectively. For simplicity and naturalness, we use the uncompleted representation and

we use time points instead of situations.

happens(bna48, 1948)

happens(bna83, 1983)

initiates(bna48, ∀X [citizen(X, uk) ← born(X, uk)])

terminates(bna83, ∀X [citizen(X, uk) ← born(X, uk)])

happens(accept-belief, 1941)

happens(reject-belief, 1967)

initiates(accept-belief, born(mary, uk))

terminates(reject-belief, born(mary, uk))

Assume a completion in which no event between bna48 and bna83 terminates the law that

anyone born in the UK is a citizen of the UK, and in which no event between accept-belief

and reject-belief terminates the belief that Mary was born in the UK. Then the original

simplified event calculus axiom (introduced at the beginning of section 4) implies

holds(∀X [citizen(X, uk) ← born(X, uk)], T) ← 1948 < T < 1983

holds(born(mary, uk), T) ← 1941 < T < 1967

Together with D1, D2 and D5, these imply

demo(T, citizen(X, uk)) ← demo(T, born(X, uk)) ∧ 1948 < T < 1983 B1

demo(T, born(mary, uk)) ← 1941 < T < 1967 B2

Using transitivity of < and the facts that 1941<1948 and 1967<1983, these imply

demo(T, citizen(mary, uk)) ← 1948 < T < 1967

i.e. between 1948 and 1967 it is believed that Mary is a citizen of the UK.

A similar result would be obtained if we used situations instead of time points. We

simply use four situations s1, s2, s3, s4 corresponding to the times just before each of

1941, 1948, 1967, 1983, respectively, and assert

19

result(accept-belief, s1) < result(bna48, s2) < result(reject-belief, s3)< result(bna83, s4).

Using EC, LESS and transitivity of <, we would then be able to derive

demo(S, citizen(mary, uk)) ← situation(S) ∧ result(bna48, s2) < S< s3

Standard treatments of the situation calculus, which restrict the predicate P in

holds(P, S) to atoms or their negation, cannot represent this kind of reasoning. However,

they can approximate it by using so-called state or domain constraints. In this example,

domain constraints would be used to formulate B1 and B2 as domain-specific axioms in

terms of holds rather than in terms of demo. Our treatment derives the analogues of

domain constraints from more basic assumptions. Moreover, expressing B1 and B2 in

terms of demo rather than holds enables us to complete the definition of holds without

having to worry about interactions between the completion and domain constraints.

The simplified British Nationality Act example shows how the combination of events

which initiate and terminate the holding of sentences together with the definition of the

demo predicate deals automatically with certain kinds of ramifications. In this case, the

belief that Mary is a citizen of the UK, which begins after 1948, is a ramification of

passing bna48 and the earlier belief that Mary was born in the UK, initiated in 1941. The

blocks world provides another example.

8.3 A blocks world example

In this example, apart from the event of creation, all other events affect only the location

of objects. The property of an object being clear is a ramification of there being nothing

on it. The act of creation itself can be thought of as initiating the sentences that state that

an object is clear if it is not covered, and that it is covered if there is something on it. As

before, the axioms for the domain specific happens, initiates and terminates predicates

are common to both calculi:

happens(creation, s0)

initiates(creation, s0, ∀U [clear(U) ← ¬ covered(U)])

initiates(creation, s0, ∀U,V [covered(U) ← on(V,U)])

Assume a completion in which the two sentences, above, initiated by creation are never

terminated, i.e. assume that

¬∃A,S { terminates(A, S, ∀U [clear(U) ← ¬ covered(U)]) }

¬∃A,S { terminates(A, S, ∀U,V [covered(U) ← on(V,U)]) }

are properties of the completion.

Using the event calculus axiom EC we can derive

20

holds(∀U [clear(U) ← ¬ covered(U)], S) ←

trans(creation, s0) < S ∧ situation(S)

holds(∀U,V [covered(U) ← on(V,U)], S) ←

trans(creation, s0) < S ∧ situation(S)

These can also be derived using the situation calculus axiom SC. However, in this case the

proof requires the use of induction.

In both calculi, to reason further with these clauses, we can use the definition of demo to

derive

demo(S, clear(U)) ← ¬ demo(S, covered(U)) ∧ trans(creation, s0) < S ∧ situation(S)

demo(S, covered(U)) ← demo(S, on(V, U)) ∧ trans(creation, s0) < S ∧ situation(S)

In standard treatments of the situation calculus, similar clauses, expressed in terms of

holds rather than demo, would need to be given explicitly as state or domain constraints.

In our case, they are derivable from more fundamental assumptions.

9 Conclusions and related work

To compare the situation calculus and event calculus, we have made minor modifications

to both calculi, and formulated them as logic programs. Not only are the resulting calculi

in some sense equivalent, but they both inherit the ability from standard formulations of

the situation calculus to deal with hypothetical situations, and from the simplified event

calculus to deal with actual states of affairs. For these latter two purposes, we have

adapted the technique of [20, 21] for representing branching time.

However, our representation of time is less general than that of [20, 21], and is closer to

that of [6], because, for the purposes of our comparison, we restrict ourselves to the

special case where times are situations or transitions between situations.

We have seen that our derivation of the event calculus from the situation calculus

requires proof by induction, whereas our derivation of the situation calculus from the

event calculus does not. This suggests that the event calculus, even when restricted to

times which are situations and transitions is more powerful than the situation calculus,

as exemplified by our representation of the missing car example. We also believe that

the more general case of the event calculus, similar to that studied by [20, 21], is more

natural and more flexible than the restricted case. This was illustrated, for instance, in

section 8.2 in the British Nationality Act example.

In this paper we have been more careful than in our earlier paper [11] to clarify our

understanding of the iff-completions, induction and integrity constraints, in relation to

the semantics of logic programs. Our current view is that the former should be

understood as approximations to the intended semantics, in the same way that Peano

axioms approximate truth in arithmetic. This point of view may be useful in

understanding better the relationship between logic programming semantics and

21

circumscription, which defines semantics directly in terms of truth in all minimal

models. We believe that clarifying this relationship is an important direction for future

research, and that the situation calculus and event calculus provide a promising context

for such an investigation.

Our use of the iff-completion and induction yields a formalisation of the situation

calculus which is closer to Reiter's formulation [16] than to other formulations using

circumscription. However, one difference between his approach and ours is the treatment

of state constraints and ramifications. Our formulation is based upon allowing the holds

predicate to take arbitrary sentences as arguments and using the demo predicate to

formalise reasoning with such sentences. We believe that investigating more closely the

relationship between these and other approaches to state constraints and ramifications is

a fruitful direction of research.

Acknowledgements

We are grateful to Ray Reiter, Murray Shanahan, Mark Denecker and Danny De Schreye for

motivating and encouraging us to do this work, and to Mark Denecker, Danny De Schreye,

Rob Miller, Marek Sergot, Murray Shanahan and Francesca Toni for helpful discussions.

We would also like to thank the anonymous referees for their comments and suggestions

for improving the paper. This research was supported by Fujitsu Laboratories.

References

1. Baker A.B., Nonmonotonic reasoning in the framework of the situation calculus,

Artificial Intelligence, 49: page 5 (1991).

2. Charkravarthy U.S., Grant J. and Minker J., Logic-based approach to semantic

query optimization, ACM Transactions on Database Systems, 15(2): 162-207 (1990) .

3. Clark K.L., Negation as failure, in: Gallaire H. and Minker J. (eds.), Logic and data

bases, Plenum Press, 292-322, 1978.

4. Clark K.L. and Tarnlund S. A., A first-order theory of data and programs,

Proceedings of IFIP, North Holland, 939-944, 1977.

5. Eshghi K., Abductive planning with event calculus, Proceedings of ICLP, MIT Press,

Kowalski R.A. and Bowen K.A. (eds.), 562-579, 1988.

6. Kakas A. and Miller R., A simple declarative language for describing narratives

with actions, Journal of Logic Programming (this issue) (1996).

7. Kautz H., The logic of persistence, Proceedings of AAAI, page 401, 1986.

8. Kowalski R.A., Logic for problem solving, Elsevier North Holland, 1979.

22

9. Kowalski R.A., Problems and promises of computational logic, in Computational

logic, Symposium Proceedings, Lloyd J. (ed.), Springer, 80-95, 1990.

10. Kowalski R.A., Database updates in the event calculus, Journal of Logic

Programming 12:121-146 (1992).

11. Kowalski R. and Sadri F., The situation calculus and event calculus compared,

Proceedings of ILPS, Bruynooghe M. (ed.), MIT Press, 539-553, 1994.

12. Kowalski R.A. and Sergot M.J., A logic-based calculus of events, New Generation

Computing 4:67-95 (1986).

13. Lloyd J. W. , Foundations of logic programming, Springer Verlag Symbolic

Computation Series, 1987.

14. McCarthy J., Applications of circumscription to formalizing common sense

knowledge, Artificial Intelligence 26:page 89 (1986).

15. Pinto J. and Reiter R., Temporal reasoning in logic programming, a case for the

situation calculus, Proceedings of ICLP, MIT Press, Warren D.S. (ed.), 203-221, 1993.

16. Reiter R., Proving properties of states in the situation calculus, Artificial

Intelligence 64(2): 337-351 (1993).

17. Sadri F. and Kowalski R., Variants of the event calculus, Proceedings of ICLP, MIT

Press, Stirling L. (ed.), 67-82, 1995.

18. Shanahan M.P., Prediction is deduction but explanation is abduction, Proceedings

of IJCAI, 1055-1060, 1989.

19. Shanahan M.P., Explanation in the situation calculus, Proceedings of IJCAI, 160-

165, 1993.

20. Van Belleghem K., Denecker M. and De Schreye D., Combining situation calculus

and event calculus, Proceedings of ICLP, MIT Press, Stirling L. (ed.), 83-97, 1995.

21. Van Belleghem K., Denecker M. and De Schreye D., On the relation between

situation calculus and event calculus, Journal of Logic Programming (this issue) (1997).

22. Van Emden M. H. and Kowalski R. A., The semantics of predicate logic as a logic

programming language, J. ACM. 23(4):733-742 (1976).

23

